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The maximum number of K3-free and K4-free edge 4-colorings

Oleg Pikhurko and Zelealem B. Yilma

Abstract

Let F (n, r, k) denote the maximum number of edge r-colorings without a monochromatic copy of
Kk that a graph with n vertices can have. Addressing two questions left open by Alon, Balogh,
Keevash and Sudakov [J. London Math. Soc. 70 (2004) 273–288], we determine F (n, 4, 3) and
F (n, 4, 4) and describe the extremal graphs for all large n.

1. Introduction

Given a graph G and integers k � 3 and r � 2, let F (G, r, k) denote the number of distinct
edge r-colorings of G that are Kk-free, that is, do not contain a monochromatic copy of Kk,
the complete graph on k vertices. Note that we do not require that these edge colorings are
proper (that is, we do not require that adjacent edges get different colors). We consider the
following extremal function:

F (n, r, k) = max{F (G, r, k) : G is a graph on n vertices},
the maximum value of F (G, r, k) over all graphs of order n.

One obvious choice for G is to take a maximum Kk-free graph of order n. The celebrated
theorem of Turán [15] states that ex(n,Kk), the maximum size of a Kk-free graph of order n,
is attained by a unique (up to isomorphism) graph, namely, the Turán graph Tk−1(n) which is
the complete (k − 1)-partite graph on n vertices with parts of size �n/(k − 1)� or �n/(k − 1)�.
Thus

ex(n,Kk) = tk−1(n), for all n, k � 2, (1.1)

where tk−1(n) denotes the number of edges in Tk−1(n). This gives the following trivial lower
bound on our function:

F (n, r, k) � F (Tk−1(n), r, k) = rtk−1(n). (1.2)

Erdős and Rothschild (see [5, 6]) conjectured that this is best possible when r = 2 and k = 3.
Yuster [16] proved that, indeed, F (n, 2, 3) = 2t2(n) = 2�n

2/4� for large enough n. Both sets of
authors further conjectured that this holds for all k when we have r = 2 colors. Alon, Balogh,
Keevash and Sudakov [1] not only settled this conjecture for large n, but also showed that
it holds for 3-colorings as well, that is, we have equality in (1.2) when r = 2, 3, k � 3 and
n > n0(k).

The generalization of the problem where one has to avoid a monochromatic copy of a general
graph F was also studied in [1]. The papers [7, 9–11] studied H-free edge colorings for general
hypergraphs H. In particular, Lefmann, Person and Schacht [11] proved that, for every k-
uniform hypergraph F and r ∈ {2, 3}, the maximum number of F -free edge r-colorings over
n-vertex hypergraphs is rex(n,F )+o(nk). Interestingly, this result holds for every F even though
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the value of the Turán function ex(n, F ) is known for very few hypergraphs F . Also, Balogh [3]
studied a version of the problem where a specific coloring of a graph F is forbidden. Alon and
Yuster [2] considered this problem for directed graphs (where one counts admissible orientations
instead of edge colorings).

Let us return to the original question. Surprisingly, Alon et al. [1] showed that one can do
significantly better than (1.2) for larger values of r. In two particular cases, they were also able
to obtain the best possible constant in the exponent; namely, they proved that

F (n, 4, 3) = 18n2/8+o(n2), (1.3)

F (n, 4, 4) = 34n2/9+o(n2). (1.4)

Let us briefly show the lower bounds in (1.3) and (1.4), which are given by F (T4(n), 4, 3) and
F (T9(n), 4, 4), respectively. Let W1, . . . , Wk denote the parts of Tk(n). Consider T4(n) first. Fix
a function π that assigns to each pair {i, j} of {1, . . . , 4} a list π({i, j}) of two or three colors so
that each color appears in exactly four lists with the corresponding four pairs forming a 4-cycle.
Up to a symmetry, such an assignment is unique and we have two lists of size 2 and four lists
of size 3. Generate an edge coloring of T4(n) by choosing for each edge {u, v} with u ∈ Wi and
v ∈ Wj an arbitrary color from π({i, j}). Every obtained coloring is K3-free and if we assume
that, for example, n = 4m, there are 34m2 · 22m2

= 18n2/8 such colorings. We proceed similarly
for T9(n) except that we fix the (unique up to a symmetry) assignment where each pair from
{1, . . . , 9} gets a list of three colors while every color forms a copy of T3(9).

The goal of this paper is to determine F (n, 4, 3) and F (n, 4, 4) exactly and describe all
extremal graphs for large n. Specifically, we will show the following results.

Theorem 1.1. There is N such that, for all n � N, F (n, 4, 3) = F (T4(n), 4, 3) and T4(n)
is the unique graph achieving the maximum.

Theorem 1.2. There is N such that, for all n � N, F (n, 4, 4) = F (T9(n), 4, 4) and T9(n)
is the unique graph achieving the maximum.

Thus, a new phenomenon occurs for r � 4: extremal graphs may have many copies of the
forbidden monochromatic graph Kk. This makes the problem more interesting and difficult.

Similarly to [1], our general approach is to establish the stability property first: namely,
that all graphs with the number of colorings close to the optimum have essentially the same
structure. However, additionally to the approximate graph structure, we also have to describe
how typical colorings look like. This task is harder and we do it in stages, getting more and
more precise description of typical colorings (namely, the properties called satisfactory, good
and perfect in our proofs). We then proceed to show that the Turán graphs are, indeed, the
unique graphs that attain the optimum. It is not surprising that our proofs are longer and
more complicated than those in [1]. The case of r � 4 colors seems to be much harder than
the case r � 3. It is not even clear if there is a simple closed formula for F (T4(n), 4, 3) and
F (T9(n), 4, 4). Our proofs imply that

F (T4(n), 4, 3) = (C + o(1)) · 18t4(n)/3, (1.5)

F (T9(n), 4, 4) = (20160 + o(1)) · 3t9(n), (1.6)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.
Unfortunately, we could not determine F (n, r, k) for other pairs r, k, which seems to be

an interesting and challenging problem. Hopefully, our methods may be helpful in obtaining
further exact results. It is possible that, for all large n, n � n0(k, r), all extremal graphs are
complete partite (not necessarily balanced), but we could not prove nor disprove this.
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This paper is organized as follows. In Section 2, we state a version of Szemerédi’s Regularity
Lemma and some auxiliary definitions and results that we use in our arguments. Theorem 1.1
is proved in Section 3 and Theorem 1.2 is proved in Section 4.

2. Notation and tools

For a set X and a non-negative integer k, let
(
X
k

)
or
(

X
�k

)
be the set of all subsets of X

with exactly or at most k elements, respectively. Also, we denote
(

n
�k

)
=
∑k

i=0

(
n
i

)
and [k] =

{1, 2, . . . , k}. We often omit punctuation signs when writing unordered sets, abbreviating, for
example, {i, j} to ij.

As it is standard in graph theory, we use V (G) and E(G) to refer to the vertex and edge
set, respectively, of a graph G. Also, v(G) = |V (G)| and e(G) = |E(G)| denote, respectively,
the order and size of G. In addition, for disjoint A,B ⊆ V (G), we use G[A] to refer to the
subgraph induced by A and G[A,B] for the induced bipartite subgraph with parts A and B.
Let

NG(x) = {y ∈ V (G) : xy ∈ E(G)}
be the neighborhood of a vertex x in G. Let K(V1, . . . , Vl) denote the complete l-partite graph
with parts V1, . . . , Vl.

It will be often convenient to identify graphs with their edge sets. Thus, for example, |G| =
e(G) denotes the number of edges while G 	 H is the graph on V (G) ∪ V (H) whose edge set
is the symmetric difference of E(G) and E(H).

As we make use of a multicolor version of Szemerédi’s Regularity Lemma [14], we remind
the reader of the following definitions. Let G be a graph and A,B be two disjoint non-empty
subsets of V (G). The edge density between A and B is

d(A,B) =
e(G[A,B])
|A| |B| .

For ε > 0, the pair (A,B) is called ε-regular if, for every X ⊆ A and Y ⊆ B satisfying |X| >
ε|A| and |Y | > ε|B|, respectively, we have

|d(X,Y ) − d(A,B)| < ε.

An equitable partition of a set V is a partition of V into pairwise disjoint parts V1, . . . , Vm

of almost equal size, that is, | |Vi| − |Vj | | � 1 for all i, j ∈ [m]. An equitable partition of the set
of vertices of G into parts V1, . . . , Vm is called ε-regular if |Vi| � ε|V | for every i ∈ [m] and all,
but at most ε

(
m
2

)
of the pairs (Vi, Vj), 1 � i < j � m, are ε-regular.

The following more general result can be deduced from the original Regularity Lemma of
Szemerédi [14] (cf. [8, Theorems 1.8 and 1.18]).

Lemma 2.1 (Multicolor Regularity Lemma). For every ε > 0 and integer r � 1, there is
M = M(ε, r) such that, for any graph G on n > M vertices and any (not necessarily proper)
edge r-coloring χ : E(G) → [r], there is an equitable partition V (G) = V1 ∪ . . . ∪ Vm with 1/ε �
m � M, which is ε-regular simultaneously with respect to all graphs (V (G), χ−1(i)), i ∈ [r].

Also, we need the following special case of the Embedding Lemma (see, for example,
[8, Theorem 2.1]).

Lemma 2.2 (Embedding Lemma). For every η > 0 and integer k � 2 there exists ε > 0 such
that the following holds for all large n. Suppose that G is a graph of order n with an equitable
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partition V (G) = V1 ∪ . . . ∪ Vk such that every pair (Vi, Vj) for 1 � i < j � k is ε-regular of
density at least η. Then G contains Kk.

While we have tk(n) = (1 − 1/k + o(1))
(
n
2

)
for n → ∞, the following easy bound holds for

all k, n � 1:

max{e(G) : v(G) = n, G is k-partite} = tk(n) �
(

1 − 1
k

)
n2

2
. (2.1)

We will also use the following stability result for the Turán function (1.1).

Lemma 2.3 (Erdős [4] and Simonovits [12]). For every α > 0 and integer k � 1, there
exist β > 0 and n0 such that, for all n > n0, any Kk+1-free graph G on n vertices with at
least (1 − 1/k)n2/2 − βn2 edges admits an equitable partition V (G) = V1 ∪ . . . ∪ Vk with |G 	
K(V1, . . . , Vk)| < αn2.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Here we have to overcome many new difficulties that
are not present for two or three colors. So, unfortunately, the proof is long and complicated.
In order to improve its readability, we split it into a sequence of lemmas. Since we use the
Regularity Lemma, the obtained value for N in Theorem 1.1 is very large and is of little
practical value. Therefore, we make no attempt to determine or optimize it.

First, let us state some important definitions that are extensively used in the whole proof.
Fix positive constants

c0  c1  . . .  c10,

each being sufficiently small depending on the previous ones. Let M = 1/c9 and n0 = 1/c10.
Typically, the order of a graph under consideration is denoted by n and will satisfy n � n0.

We view n as tending to infinity with c0, . . . , c9 being fixed and use the asymptotic terminology
(such as, for example, the expression O(1) or the phrase ‘almost every’) accordingly.

Let Gn consist of graphs of order n that have many K3-free edge 4-colorings. Specifically,

Gn = {G : v(G) = n, F (G, 4, 3) � 18n2/8 · 2−c8n2}.
Let G =

⋃
n�n0

Gn. The lower bound in (1.3) (whose proof we sketched in Section 1) shows
that Gn is non-empty for each n � n0.

Next, for an arbitrary graph G with n � n0 vertices and a K3-free 4-coloring χ of the edges of
G, we define the following objects and parameters. As the constants c8 and M satisfy Lemma 2.1
(namely, we can assume that M is at least the function M(c8, 4) returned by Lemma 2.1), we
can find a partition V (G) = V1 ∪ . . . ∪ Vm with 1/c8 � m � M that is c8-regular with respect
to each color. Next, we define the cluster graphs H1,H2,H3 and H4 on vertex set [m], where H�

consists of those pairs ij ∈ ([m]
2

)
such that the pair (Vi, Vj) is c8-regular and has edge density

at least c7 with respect to the �-color subgraph χ−1(�) of G. For 1 � s � 4, let Rs be the graph
on vertex set [m] where ab ∈ E(Rs) if and only if ab ∈ E(H�) for exactly s values of � ∈ [4].
Let R =

⋃4
s=1 Rs be the union of the graphs Rs. Let rs = 2e(Rs)/m2.

We view m,Vi,Hi, Ri, R, ri as functions of the pair (G,χ). Although we may have some
freedom when choosing the c8-regular partition V1, . . . , Vm, we fix just one choice for each
input (G,χ). We do not require any ‘continuity’ property from these functions: for example, it
may be possible that χ1 and χ2 are two colorings of the same graph G that differ on one edge
only, but ri(G,χ1) and ri(G,χ2) are quite far apart.
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By Lemma 2.2, each cluster graph Hi is triangle-free and, by Turán’s theorem (1.1), has at
most t2(m) edges. By (2.1),

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
� 2. (3.1)

In addition, note that R3 ∪ R4 is triangle-free because a triangle in R3 ∪ R4 gives a triangle in
some Hi. Therefore, by (1.1) and (2.1),

r3 + r4 � 1/2. (3.2)

We also need the following ‘converse’ procedure for generating all K3-free edge 4-colorings of
G. Our upper bounds on F (G, 4, 3) and some structural information about typical colorings are
obtained by estimating the possible number of outputs. Since the parameters r1, . . . , r4 play a
crucial role in these estimates, some guesses of the functions m, Vi and Hi (and thus of Ri, R
and ri) are also generated. The procedure is rather wasteful in the sense that it can generate a
lot of ‘garbage’. But the obtained inequalities (3.1) and (3.2) imply the crucial property that
every K3-free edge 4-coloring of G with the correct guess of m, Vi and Hi is generated at least
once provided v(G) � n0.

The coloring procedure

(1) Choose an arbitrary integer m′ between 1/c8 and M .
(2) Choose an arbitrary equitable partition V (G) = V ′

1 ∪ . . . ∪ V ′
m′ .

(3) Choose arbitrary graphs H ′
1, . . . , H

′
4 with vertex set [m′] such that we have

r′1 + 2r′2 + 3r′3 + 4r′4 � 2, (3.3)
r′3 + r′4 � 1/2, (3.4)

where R′
i and r′i are defined by the direct analogy with Ri and ri. (For example, for i ∈ [4],

R′
i is the graph on [m′] whose edges are those pairs of

(
[m′]
2

)
that are edges in exactly i graphs

H ′
1, . . . , H

′
4.)

(4) Assign arbitrary colors to all edges of G that lie inside some part V ′
i .

(5) Select at most 4c8

(
m′

2

)
elements of

(
[m′]
2

)
and, for each selected pair ij, assign colors to

G[V ′
i , V ′

j ] arbitrarily.
(6) For every color l ∈ [4] and every ij ∈ ([m′]

2

)
color an arbitrary subset of edges of G[V ′

i , V ′
j ]

of size at most c7|V ′
i | |V ′

j | by color l.
(7) For every edge xy of G that is not colored yet, let us say x ∈ V ′

i and y ∈ V ′
j , pick an

arbitrary color from the set Cij = {s ∈ [4] : ij ∈ H ′
s}. If Cij = ∅, then we color xy with color 1.

Lemma 3.1. For every graph G of order n � n0, the number of choices in Steps (1)–(6) of
the Coloring Procedure is at most 2c6n2

.

Proof. Clearly, the number of choices in Steps (1)–(3) is at most

M · nM · (2(M
2 ))4 = 2O(log n). (3.5)

Fix these choices. Since m′ � 1/c8, the number of edges that lie inside some part V ′
i is at most

m′(�n/m′�
2

)
� c6n

2/8; so the number of choices in Step (4) is at most 4c6n2/8. In Step (5), we

have at most 2(m′
2 ) · 44c8(m′

2 )�n/m′�2 < 2c6n2/4 options. The number of choices in Step (6) is
at most ( �n/m′�2

� c7�n/m′�2
)4(m′

2 )
< 2c6n2/4.

By multiplying these four bounds, we obtain the required.
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The number of options in Step (7) can be bounded from above by

(2e(R′
2) · 3e(R′

3) · 4e(R′
4))�n/m′�2 � (2r′

2 · 3r′
3 · 4r′

4)n2/2+O(n) = 2Ln2/2+O(n), (3.6)

where L = r′2 + log2(3)r′3 + 2r′4. One can easily show that the maximum of L, given (3.3)
and (3.4) (and the non-negativity of r′1, . . . , r

′
4), is (log2 18)/4, with the (unique) optimal

assignment being r′1 = r′4 = 0, r′2 = 1/4, and r′3 = 1/2. When combined with Lemma 3.1, this
allows one to conclude that, for example,

F (n, 4, 3) � 18n2/8 · 22c6n2
, for all n � n0. (3.7)

This is essentially the argument from [1]. We need to take this argument further. As the
first step, we derive some information about r2 and r3 for a typical coloring χ. We call a pair
(G,χ) (or the coloring χ) satisfactory if

r2 > 1/4 − c5/2 and r3 > 1/2 − c5. (3.8)

Otherwise, (G,χ) is unsatisfactory. Next, we establish some results about satisfactory colorings.
Later, this will allow us to define two other important properties of colorings (namely, being
good and being perfect).

Lemma 3.2. For every graph G with n � n0 vertices the number of unsatisfactory K3-free
edge 4-colorings is less than 18n2/8 · 2−c6n2

. In particular, if G ∈ Gn, then almost every coloring
is satisfactory.

Proof. We use the Coloring Procedure and bound from above the number of outputs that
give unsatisfactory colorings. By Lemma 3.1, the number of choices in Steps (1)–(6) is at most
2c6n2

. We use (3.6) to estimate the number of choices in Step (7).
The value of L under constraints (3.3), (3.4) and

r′3 � 1/2 − c5 (3.9)

(as well as the non-negativity of the variables r′i) is at most

Lmax = (1/4 + 3c5/2) + (1/2 − c5) log2 3 < (1/4 − c2
5) log2 18.

This can be seen by multiplying (3.3), (3.4) and (3.9) by, respectively, y1 = 1/2, y2 = 0 and y3 =
log2 3 − 3/2 > 0, and adding these inequalities. The obtained inequality has Lmax in the right-
hand side while each coefficient of the left-hand side is at least the corresponding coefficient
of L, giving the required bound. (In fact, these reals yi are the optimal dual variables for the
linear program of maximizing L.)

Likewise, when we maximize L under constraints (3.3), (3.4) and

r′2 � 1/4 − c5/2, (3.10)

then we have the same upper bound Lmax (with the optimal dual variables for (3.3), (3.4)
and (3.10) being, respectively, y1 = 2 − log2 3 > 0, y2 = 4 log2 3 − 6 > 0 and y3 = 2 log2 3 − 3 >
0). Since in Step (7) we have only two (possibly overlapping) cases depending on which of (3.10)
or (3.9) holds, the total number of choices in Step (7) is by (3.6) at most

2 · 2Lmaxn2/2+O(n) < 18(1/8−c2
5/3)n2

.

By multiplying this by 2c6n2
, we obtain the required upper bound on the number of

unsatisfactory colorings.
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For each satisfactory coloring of G ∈ G, we record the vector ν(χ) = (m,Vi,Hi) of
parameters. Call a vector (m,Vi,Hi) popular if

|ν−1((m,Vi,Hi))| � 18n2/8 · 2−3c8n2
,

that is, if it appears for at least 18n2/8 · 2−3c8n2
satisfactory colorings, where n = v(G). As the

number of possible choices of vectors is bounded by (3.5), the number of satisfactory colorings
for which the corresponding vector is not popular is at most

2O(log n) · 18n2/8 · 2−3c8n2 � 18n2/8 · 2−2c8n2
,

that is, o(1)-fraction of all colorings. Let Pop(G) be the set of all popular vectors and let

S(G) = ν−1(Pop(G)) (3.11)

be the set of satisfactory K3-free edge 4-colorings of G for which the corresponding vector is
popular. By Lemma 3.2, S(G) is non-empty.

Our next goal is to exhibit a stability property, namely, that every graph G ∈ G is almost
complete 4-partite. First, we show that, for every popular vector (m,Vi,Hi) ∈ Pop(G), the
cluster graph R is almost complete 4-partite. Then we extend this result to G.

Lemma 3.3. Let n � n0, G ∈ Gn and (m,Vi,Hi) ∈ Pop(G). Then there exist equitable
partitions [m] = A ∪ B, A = U1 ∪ U2 and B = U3 ∪ U4 such that

|R3 	 K(A,B)| < c4m
2, (3.12)

|R2[A] 	 K(U1, U2)| < 2c3m
2, (3.13)

|R2[B] 	 K(U3, U4)| < 2c3m
2, (3.14)

|R 	 K(U1, U2, U3, U4)| < 5c3m
2. (3.15)

Proof. We have already proved that R3 is triangle-free. As (m,Vi,Hi) is associated with
a satisfactory coloring, (3.8) is satisfied; in particular, r3 > 1/2 − c5. Therefore, e(R3) =
r3m

2/2 > t2(m) − c5m
2/2. As c5 � c4, we can apply Lemma 2.3 to partition V (R3) = [m]

into two sets A and B such that |A| = �m/2�, |B| = �m/2� and (3.12) holds.
Since R2 ∩ R3 = ∅, we have |R2 ∩ K(A,B)| � |K(A,B) \ R3| < c4m

2. This and (3.8) imply
that

e(R2[A]) + e(R2[B]) > e(R2) − c4m
2 = r2m

2/2 − c4m
2 > m2/8 − 2c4m

2. (3.16)

What we show in the following sequence of claims is that R2[A] and R2[B] are both close to
being triangle-free and have roughly m2/16 edges each; then we can apply Lemma 2.3 to these
graphs, obtaining the desired partitions of A and B.

For a vertex a ∈ A, let Ba = NR3(a) ∩ B be the set of R3-neighbors of a that lie in B.
Similarly, for a vertex b ∈ B, let Ab = NR3(b) ∩ A.

Claim 3.4. For every a ∈ A the graph R2[Ba] is 4-partite.

Proof of Claim 3.4. Each pair ab with b ∈ Ba is contained in R3 and, by definition, is
labeled with a 3-element subset Xb of [4]. Color b by the unique element of [4] \ Xb. If
two adjacent vertices b and b′ of R2[Ba] receive identical color c, then the label of bb′ ∈ R2

(a 2-element subset of [4]) has a non-empty intersection with [4] \ {c}, which is the label of both
ab, ab′ ∈ R3. This implies the existence of a triangle in some Hi, which is a contradiction.
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Claim 3.5. If a1a2 ∈ E(R2[A]), then K3 � R2[Ba1 ∩ Ba2 ].

Proof of Claim 3.5. Suppose, on the contrary, that we have an edge a1a2 in R2[A] and
a triangle in R2[Ba1 ∩ Ba2 ] with vertices b1, b2 and b3. Let S be the multiset produced by
the union of the labels of the edges a1a2, aibj and bibj . As each edge aibj is labeled with a
3-element subset of [4] and the remaining four edges are labeled with a 2-element subset of [4],
we have |S| = 6 · 3 + 4 · 2 = 26. By the Pigeonhole Principle, some member of [4] belongs to S
with multiplicity at least 7. But this corresponds to some Hi having at least seven edges among
the five vertices a1, a2, b1, b2, b3. By Turán’s result (1.1), this implies that Hi has a triangle,
which is a contradiction.

Define

B′ = {b ∈ B : |Ab| > |A| − √
c4m}.

As each vertex of B \ B′ contributes at least
√

c4m to |K(A,B) \ R3|, there are less than
√

c4m
such vertices by (3.12). Thus, |B′| > |B| − √

c4m � (1/2 −√
c4)m. Similarly, we can define A′

to be the set of vertices a ∈ A for which |Ba|> |B|−√
c4m and note that |A′|> |A|−√

c4m > 0.

Claim 3.6. The graph R2[B′] is triangle-free.

Proof of Claim 3.6. Suppose, on the contrary, that b1, b2, b3 form a K3 in R2[B′]. Let
X = Ab1 ∩ Ab2 ∩ Ab3 . By definition, |A \ Abi

| <
√

c4m. So |X| > |A| − 3
√

c4m. By Claim 3.5,
there are no edges within X. So e(R2[A]) � |A \ X| · |A| < 3

√
c4m

2.
Let us estimate e(R2[B]) from above. Consider Ba for some a ∈ A′. By definition |Ba| >

|B| − √
c4m and, by Claim 3.4, Ba is 4-partite. By (2.1) the number of edges in R2[B] is at

most (3/4)|Ba|2/2 +
√

c4m|B|.
However, these upper bounds on e(R2[A]) and e(R2[B]) contradict (3.16).

In particular, R2[B] may be made triangle-free by the removal of at most |B \ B′| · |B| <√
c4m

2 edges. Hence, we have in fact that

e(R2[B]) < (1 − 1
2 )|B|2/2 +

√
c4m

2 � m2/16 + 2
√

c4m
2. (3.17)

By (3.16) and (3.17), e(R2[A]) > m2/16 − 2c4m
2 − 2

√
c4m

2. As above, by removing at most√
c4m

2 edges, we can form a graph R′
2 on vertex set A, which is triangle-free. We can now

apply Lemma 2.3 to R′
2, to find a partition A = U1 ∪ U2 such that |R′

2 	 K(U1, U2)| < c3m
2.

As R′
2 and R2[A] differ in at most

√
c4m

2 edges, we derive (3.13). The existence of an equitable
partition B = U3 ∪ U4 satisfying (3.14) is proved similarly.

By (3.12)–(3.14), we have |(R2 ∪ R3) 	 K(U1, U2, U3, U4)| < 4c3m
2 + c4m

2. Also, by (3.1)
and (3.8), we have r1 + r4 � 4c5 and |R1 ∪ R4| � 2c5m

2. Now (3.15) follows, completing the
proof of Lemma 3.3.

For a graph G ∈ G and a popular vector (m,Vi,Hi) ∈ Pop(G), fix the sets A,B,U1, . . . , U4

given by Lemma 3.3. For i ∈ [4], let Ũi =
⋃

j∈Ui
Vj be the blow-up of Ui. Let F̃ =

K(Ũ1, Ũ2, Ũ3, Ũ4).

Lemma 3.7. For every n � n0, G ∈ Gn and (m,Vi,Hi) ∈ Pop(G), we have |G 	 F̃ | <
12c3n

2.
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Proof. It routinely follows that the size of G \ F̃ is at most the sum of the following terms:

(i) m
(�n/m�

2

)
, the number of edges of G inside parts Vi;

(ii) 4c8

(
[m]
2

) · �n/m�2, edges between parts that are not c8-regular for at least one color
graph;

(iii) 4c7

(
n
2

)
, edges between parts of density at most c7 for at least one color; and

(iv) |R \ K(U1, U2, U3, U4)| · �n/m�2 � 5c3m
2 · �n/m�2, where we used (3.15).

Adding up, this gives less than 6c3n
2.

Next, we estimate |F̃ \ G| by bounding the number of satisfactory colorings of G that give our
fixed vector (m,Vi,Hi). Again, we use the Coloring Procedure to generate all such colorings,
where m,Vi,Hi are fixed in advance. By Lemma 3.1, we have at most 2c6n2

options in Steps (4)–
(6). Once we have fixed the choices in these steps, the remaining uncolored edges of G are
restricted to those between the parts while the graphs R1, . . . , R4 specify how many choices of
color each edge has. Thus, the number of options in Step (7) is at most

4∏
f=2

∏
ij∈Rf

f�n/m�2−|K(Vi,Vj)\G| � (22c6n2 · 18n2/8)
∏

ij∈R2∪R3

2−|K(Vi,Vj)\G|, (3.18)

where we used the bound in (3.7) together with the maximization result mentioned immediately
after (3.6). Let us look at the last factor in (3.18). If we replace the range of ij in the product by
K(U1, U2, U3, U4) instead of R2 ∪ R3, this will affect at most (c4 + 4c3)m2 pairs ij by (3.12)–
(3.14) and we get an extra factor of at most 25c3n2

. Thus,∏
ij∈R2∪R3

2−|K(Vi,Vj)\G| � 2−|F̃\G| · 25c3n2
.

Since the vector (m,Vi,Hi) is popular, we conclude that

|F̃ \ G| � c6n
2 + 5c3n

2 + 2c6n
2 + 3c8n

2 � 6c3n
2,

giving the required bound on |G 	 F̃ |.

Now, for every input graph G we fix a max-cut 4-partition V (G) = W1 ∪ W2 ∪ W3 ∪ W4,
that is, one that maximizes the number of edges of G across the parts.

Lemma 3.8 (Stability Property). Let n � n0, G ∈ Gn and W ′
1 ∪ W ′

2 ∪ W ′
3 ∪ W ′

4 be a
partition of V (G) with

|G ∩ K(W ′
1,W

′
2,W

′
3,W

′
4)| � |G ∩ K(W1,W2,W3,W4)| − c3n

2.

Then we have

|G 	 K(W ′
1,W

′
2,W

′
3,W

′
4)| � 15c3n

2, (3.19)

and, for every popular vector (m,Vi,Hi) ∈ Pop(G), there is a relabeling of W ′
1, . . . , W

′
4 such

that, for each i ∈ [4],
|W ′

i 	 Ũi| � 2000c3n. (3.20)

Also, we have | |Wi| − n/4| � c2n for each i ∈ [4] and |G 	 K(W1,W2,W3,W4)| � 15c3n
2.

Proof. Let F ′ = K(W ′
1,W

′
2,W

′
3,W

′
4) and F = K(W1,W2,W3,W4). As the max-cut parti-

tion W1 ∪ . . . ∪ W4 maximizes the number of edges across parts, we have |F ′ ∩ G| + c3n
2 � |F ∩

G| � |F̃ ∩ G|. Since the partitions [m] = U1 ∪ . . . ∪ U4 and [n] = V1 ∪ . . . ∪ Vm are equitable,
we have

| |Ũi| − n/4| � m + n/m. (3.21)
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Thus, we have |F̃ | � |F ′| − c7n
2 and, by Lemma 3.7,

|F ′ 	 G| = |F ′| + |G| − 2|F ′ ∩ G|
� (|F̃ | + c7n

2) + |G| − 2(|F̃ ∩ G| − c3n
2)

= |F̃ 	 G| + c7n
2 + 2c3n

2 � 15c3n
2, (3.22)

proving the first part of the lemma.
We look for a relabeling of W ′

1, . . . , W
′
4 such that |Ũi \ W ′

i | < 500c3n for each i ∈ [4]. Suppose
that no such relabeling exists. Then, since c3 � 1 and, for example, each |W ′

i | � n/3, there
is i ∈ [4] such that, for every j ∈ [4], we have that |Ũi \ W ′

j | � 500c3n. Take j ∈ [4] such that
|Ũi ∩ W ′

j | � |Ũi|/4 and let X = Ũi ∩ W ′
j and Y = Ũi \ W ′

j . However, X,Y ⊆ Ũi and Lemma 3.7
imply that e(G[X,Y ]) < 12c3n

2, whereas X ⊆ W ′
j , Y ∩ W ′

j = ∅, (3.21) and (3.22) imply that

e(G[X,Y ]) � |X| |Y | − 15c3n
2 � (n/16 − c7n) · 500c3n − 15c3n

2 > 12c3n
2,

which is a contradiction. So take the stated relabeling. Now (3.20) follows from the observation
that

W ′
i \ Ũi ⊆

⋃
j∈[4]\{i}

(Ũj \ W ′
j).

Alternatively, one could use Lemma 3.7 that G is 12c3n
2-close to the complete 4-partite

graph F̃ whose part sizes are close to n/4 by (3.21). One would get a weaker upper bound on
|W ′

i 	 Ũi| (of order
√

c3n) but which would also be sufficient for our proof.
Finally, the last two claims of Lemma 3.8 can be derived by taking W ′

i = Wi for i ∈ [4] (and
using (3.21)).

Define a pattern as an assignment π :
(
[4]
2

)→ (
[4]
2

) ∪ ([4]3 ) (to every edge of K4 we assign
a list of two or three colors) such that π−1(c) forms a 4-cycle for every color c ∈ [4]. Up to
isomorphism (of colors and vertices) there is only one pattern. We say that an edge 4-coloring
χ of G ∈ Gn follows the pattern π if, for every ij ∈ ([4]2 ), we have

|χ−1([4] \ π(ij)) ∩ G[Wi,Wj ]| � c2n
2,

that is, at most c2n
2 edges of G[Wi,Wi] get a color not in π(ij).

Recall that the set S(G) consists of all satisfactory colorings whose associated vector is
popular.

Lemma 3.9. For every graph G ∈ Gn with n � n0, every coloring χ ∈ S(G) follows a
pattern.

Proof. Take any χ ∈ S(G). Recall that A,B,U1, . . . , U4 are the sets given by Lemma 3.3.
Let

R′ = (R3 ∩ K(A,B)) ∪ (R2 ∩ K(U1, U2)) ∪ (R2 ∩ K(U3, U4)).

Let the label of an edge uv in R be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, for all edges uiuj ∈ R′

across Ui × Uj , we have

|χ̂(uiuj)| =

{
2, if {i, j} ∈ {{1, 2}, {3, 4}},
3, otherwise.

(3.23)

We show next that χ̂ has a very simple structure: with the exception of a small fraction of
edges, χ̂ behaves as the blow-up of some labeling on K4. Furthermore, the latter labeling is
isomorphic to some pattern π, as defined above.
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Claim 3.10. Let the sets {v1, v2, v3, v4} and {w, v2, v3, v4} both span a K4-subgraph in R′,
where w ∈ U1 and each vi ∈ Ui. Then χ̂(v1vi) = χ̂(wvi) for all i ∈ {2, 3, 4}.

Proof of Claim 3.10. First consider the restriction of χ̂ to X = {v1, v2, v3, v4}. Let S be the
multiset produced by the union of χ̂(vivj), 1 � i < j � 4. So |S| = 2 · 2 + 4 · 3 = 16. As each
Ht[X] is triangle-free, it follows by the uniqueness of the Turán graph that χ̂−1(t) forms a
4-cycle on X for each t ∈ [4]. When taking (3.23) into consideration, we see that there is only
one possible configuration (up to isomorphism). A nice property of this configuration is that
χ̂(vivj) = χ̂(vkv�) whenever {i, j, k, �} = [4], that is, edges that form a matching on X receive
identical labels. As {w, v2, v3, v4} also spans a copy of K4, we have χ̂(wvj) = χ̂(vkv�) = χ̂(v1vj),
where {j, k, �} = {2, 3, 4}, proving the claim.

Now choose X = {v1, v2, v3, v4}, where vi ∈ Ui, such that R′[X] ∼= K4 and, for each vertex
vi ∈ X, we have

|NR′(vi) ∩ Uj | > |Uj | − 2
√

c3m for all j ∈ [4] \ {i}. (3.24)

We may build such a set iteratively by picking v1 ∈ U1 satisfying (3.24), then v2 ∈ U2 ∩ N(v1)
satisfying (3.24), and so on. Such vertices exist as at most 2c3m

2 edges across a pair Ui, Uj are
missing from R′. In fact, the number of vertices u ∈ Ui that fail condition (3.24) is less than
3
√

c3m.
Let Ai ⊆ Ui consist of those vertices that lie in NR′(vj) for all vj ∈ X with j ∈ [4] \ {i}.

As all vertices vj satisfy (3.24), we have |Ai| > |Ui| − 6
√

c3m. If aiaj ∈ R′[Ai, Aj ], then all
three sets X, {ai, vj , vk, v�}, and {ai, aj , vk, v�} form 4-cliques in R′, where {i, j, k, �} = [4]. By
Claim 3.10 we have that χ̂(vivj) = χ̂(aivj) = χ̂(aiaj). Thus, the labeling on X determines the
labeling on all edges of R′ with the possible exception of at most m · 24

√
c3m edges incident to

vertices of
⋃4

i=1(Ui \ Ai). As |R \ R′| < 5c3m
2, we have a pattern π such that χ̂(uiuj) = π(ij)

for all, but at most 25
√

c3m
2 edges in R.

Now Lemma 3.8 implies that, for some relabeling of W1, . . . , W4, we have

|K(W1,W2,W3,W4) \ K(Ũ1, Ũ2, Ũ3, Ũ4)| < 4n · 2000c3n.

Then, including at most 5c7n
2 edges that disappear without a trace in any Hi during the

application of the Regularity Lemma and at most 12c3n
2 edges lost in Lemma 3.7, we have

that χ(wiwj) ∈ π(ij) for all, but at most

5c7n
2 + 12c3n

2 + 25
√

c3m
2 · �n/m�2 + 8000c3n

2 < c2n
2

edges wiwj in G[Wi,Wj ], proving the lemma.

Since c2 is small, Lemma 3.8 implies that the pattern π in Lemma 3.9 is unique. This allows
us to make the following definition. A coloring χ ∈ S(G) of a graph G ∈ Gn is good if, for every
ij ∈ ([4]2 ), all subsets Xi ⊆ Wi and Xj ⊆ Wj with |Xi| � c1n and |Xj | � c1n and every color
c ∈ π(ij), there is at least one edge xy in G[Xi,Xj ] with χ(xy) = c, where π is the pattern of
χ. Otherwise χ ∈ S(G) is called bad.

Lemma 3.11. The number of bad colorings of any G ∈ Gn, n � n0, is at most 18n2/8 ·
2−c2

1n2/8.

Proof. The following procedure generates each bad coloring of G at least once.

(i) Pick an arbitrary pattern π, a pair ij ∈ ([4]2 ) and a color c ∈ π(ij).
(ii) Choose up to 6c2n

2 edges and color them arbitrarily.
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(iii) Pick subsets Xi ⊆ Wi and Xj ⊆ Wj of size �c1n� each.
(iv) Color edges inside a part Wi arbitrarily.
(v) Color all edges in Xi × Xj using the colors from π(ij) \ {c}.
(vi) For each k� ∈ ([4]2 ) color all remaining edges of G[Wk,W�] using colors in π(k�).

The number of choices in Steps (i)–(iii) is bounded from above by

O(1)
( (

n
2

)
� 6c2n2

)
46c2n2

(|Wi|
|Xi|

)(|Wj |
|Xj |

)
< 2c3

1n2
.

The number of choices at Step (iv) is at most 415c3n2
by Lemma 3.8. The number of choices

in Steps (v)–(vi) is at most( |π(ij)| − 1
|π(ij)|

)|Xi| |Xj | ∏
k�∈([4]

2 )
|π(k�)||Wk| |W�| � (2/3)c2

1n2
(2234)n2/16+c2n2

,

where we used Lemma 3.8. We obtain the required result by multiplying the above bounds.

Call a good coloring χ of a graph G ∈ G perfect if χ(vivj) ∈ π(ij) for every ij ∈ ([4]2 ) and
every edge vivj ∈ G[Wi,Wj ], where π is the pattern of χ. Let P(G) denote the set of perfect
colorings of G.

The following lemma provides a key step of the whole proof.

Lemma 3.12. Let G be a graph of order n � n0 + 2 such that F (G, 4, 3) � 18n2/8 · 2−c9n2

and, for every distinct v, v′ ∈ V (G), we have

F (G, 4, 3)
F (G − v, 4, 3)

� (18 − c3)n/4, (3.25)

F (G, 4, 3)
F (G − v − v′, 4, 3)

� (18 − c3)(n+(n−1))/4. (3.26)

Then the following conclusions hold.

(i) The graph G is 4-partite.
(ii) Almost every coloring of G is perfect; specifically,

|P(G)| � (1 − 2−c9n)F (G, 4, 3).

(iii) If G �∼= T4(n), then there is a graph G′ of order n with F (G′, 4, 3) > F (G, 4, 3).

Proof. Since F (G − v − v′, 4, 3) > F (G − v, 4, 3)/4n > F (G, 4, 3)/16n for any v, v′ ∈ V (G),
we have G − v,G − v − v′ ∈ G and the notion of a good coloring with respect to G − v or
G − v − v′ is well defined.

Claim 3.13. For any distinct v, v′ ∈ V (G), there is a good coloring χ of G − v or of G −
v − v′, respectively, such that the number of ways to extend it to the whole of G is at least
(18 − c2)n/4 or at least (18 − c2)n/2, respectively.

Proof of Claim 3.13. By Lemma 3.11 the number of bad colorings of G − v is at most
2−c2

1n2/9F (G, 4, 3). If the claim fails for all good colorings of G − v, then

F (G, 4, 3) � 4n · 2−c2
1n2/9F (G, 4, 3) + (18 − c2)n/4F (G − v, 4, 3),

contradicting (3.25). The claim about G − v − v′ is proved in an analogous way.
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Claim 3.14. For all i ∈ [4] and v ∈ Wi, we have |N(v) ∩ Wi| < 8c1n.

Proof of Claim 3.14. Suppose, on the contrary, that some vertex v contradicts the claim.
Take the good coloring χ of G − v given by Claim 3.13.

For each class Wj (defined with respect to G), let nj = |N(v) ∩ Wj |. Note that

nj � |Wj | � n/4 + c2n, for all j ∈ [4], (3.27)

by Lemma 3.8. Let W ′
1 ∪ W ′

2 ∪ W ′
3 ∪ W ′

4 be the selected max-cut partition of G − v. As

|G ∩ K(W ′
1 ∪ {v},W ′

2,W
′
3,W

′
4)| > |G ∩ K(W1,W2,W3,W4)| − n,

it follows again from Lemma 3.8 that, after a relabeling of W ′
1, . . . , W

′
4, we have

|Wi 	 W ′
i | � 4000c3n + 1, for all i ∈ [4]. (3.28)

Also, let π be the pattern (with respect to W ′
1, . . . , W

′
4) associated with the good coloring χ of

G − v.
For each extension χ̄ of χ to G, record the vector x whose ith component is the number of

colors c such that at least 2c1n edges of G between v and Wi get color c. Let x = (x1, . . . , x4)
be a vector that appears most frequently over all extensions χ̄. Fix some χ̄ that gives this x.
For a color c and a class Wj , let

Zj,c = {u ∈ Wj : χ̄(uv) = c}.
(Thus, xj is the number of colors c with |Zj,c| � 2c1n.) Analogously, for a color c, let yc be the
number of classes Wj for which |Zj,c| � 2c1n. By (3.28) we have |Zj,c ∩ W ′

j | > c1n whenever
|Zj,c| > 2c1n.

Let us show yc � 2 for each c ∈ [4]. Indeed, if some yc � 3, then among the three
corresponding indices we can find two, say p and q, such that c ∈ π(pq). Since χ is good, there
is an edge uw ∈ (Zp,c ∩ W ′

p) × (Zq,c ∩ W ′
q) such that χ(uw) = c, giving a χ̄-monochromatic

triangle on {u, v, w}, which is a contradiction. In particular, we have

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4 � 8. (3.29)

Since there are at most 54 choices of (x1, . . . , x4) and we fixed a most frequent vector, the
total number of extensions of χ to G is at most

54
∏

j∈[4]

(
4
xj

)(
nj

� 2c1n

)4−xj

max(xj , 1)nj < 2c0n
∏

j∈[4]
xj 	=0

x
nj

j . (3.30)

As W1 ∪ W2 ∪ W3 ∪ W4 is a max-cut partition, we have |N(v) ∩ Wj | � 8c1n for all j ∈ [4].
By the pigeonhole principle, we have that xj � 1 for all j ∈ [4]. This and (3.29) imply that
x1x2x3x4 � 16. By (3.27) and (3.30), the total number of extensions of χ is at most

2c0n · (x1x2x3x4)n/4 · 44c2n < 22c0n · 16n/4 < (18 − c2)n/4,

contradicting the choice of χ.

We now strengthen Claim 3.14 and prove part (i) of the lemma.

Claim 3.15. For all i ∈ [4] and distinct v, v′ ∈ Wi, we have vv′ �∈ E(G).

Proof of Claim 3.15. Suppose on the contrary that the claim fails for some v and v′. Assume
without loss of generality that v, v′ ∈ W1.
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Let χ be the good coloring of G − v′ − v ∈ Gn−2 with at least (18 − c2)n/2 extensions to
G given by Claim 3.13. Let us recycle the definitions of Claim 3.14 that formally remain
unchanged even though χ is undefined on edges incident to v′. On top of them, we define a
few more parameters.

Specifically, we look at all extensions χ̄ that give rise to the fixed most frequent vector x. For
each such χ̄, we define Z ′

j,c = {u ∈ Wj : χ̄(uv′) = c} and let x′
j be the number of colors c such

that |Z ′
j,c| � 2c1n. Then we fix a most popular vector x′ = (x′

1, . . . , x
′
4) and take any extension

χ̄ that gives both x and x′ and, conditioned on this, such that the color χ̄(vv′) assumes its
most frequent value, which we denote by s. We define yc as before and let y′

c be the number
of j ∈ [4] such that |Z ′

c,j | � 2c1n. This is consistent with the definitions of Claim 3.14 because
there we did not have any restriction on χ̄ except that it gives the vector x.

Claim 3.14, the upper bounds on ni and n′
i = |N(v′) ∩ Wi| of Lemma 3.8, and the argument

leading to (3.30) show that the total number of extensions of χ to G is at most

(54)2 · 4 · 2c0n · (48c1n+3c2n)2 ·
4∏

i=2

(max(xi, 1) · max(x′
i, 1))n/4. (3.31)

If some |Zj,c| � 2c1n, but c �∈ π({1, j}), say j = 3, then the 4-cycle formed by color c visits
indices 1, 2, 3, 4 in this order and, since χ is good, we have |Z2,c| < 2c1n and |Z4,c| < 2c1n
(otherwise χ̄ contains a color-c triangle via v). Thus, yc contributes at most 1 to x2 + x3 + x4.
Since each yi � 2, we have that x2 + x3 + x4 � 7. It follows that

∏4
i=2 max(xi, 1) � 12. Since

x′
2 + x′

3 + x′
4 � 8, we have

∏4
i=2 max(x′

i, 1) � 18. Thus, the expression in (3.31) is at most
22c0n · (12 · 18)n/4, contradicting the choice of χ.

Thus, xi � |π({1, i})| for each i ∈ {2, 3, 4} and all these inequalities are in fact equalities
(otherwise

∏4
i=2 max(xi, 1) � 12, giving a contradiction as before). We conclude, for j ∈

{2, 3, 4}, that |Zj,c| � 2c1n if and only if c ∈ π({1, j}). The same applies to the parameters
x′

i and Z ′
j,c.

Let the special color s = χ̄(vv′) appear in, say, π({1, 2}) with |π({1, 2})| � 3. Then, for all
w ∈ W2 ∩ N(v) ∩ N(v′), there are at most x2x

′
2 − 1 choices for the colors of vw and vw′ when

extending χ to G because s cannot occur on both edges. Also, if w ∈ W2 \ (N(v) ∩ N(v′)), then
trivially there are at most four choices for this vertex w. This allows us to reduce the bound
in (3.31) by factor (8/9)n/4, giving the desired contradiction.

Thus, we have proved part (i) of the lemma. Next, we prove part (ii). If it is false, then, by
Lemma 3.11, there are at least (1/2) · 2−c9n · F (G, 4, 3) colorings of G that are good, but not
perfect. For each such coloring there is a wrong edge vv′ whose color does not conform to the
pattern. Pick an edge vv′ that appears most frequently this way, say v ∈ W1 and v′ ∈ W4, and
then a most frequent wrong color s of vv′.

By a version of (3.28), it is not hard to show that the number of good colorings χ of G − v − v′

for which there is an extension χ̄ which is a good coloring of G, but with a different pattern
from that of χ is at most, for example, 2−c2

1n2/9 · F (G, 4, 3). Indeed, the pattern π may change
only when some color c ∈ π(ij) appears very infrequently in G[Wi,Wj ] and the proportion of
such (degenerate) colorings can be bounded by, for example, (2/3 + c0)(n/4)2 .

It follows that there is a good coloring χ of G − v − v′ that has at least (18 − c2)n/2 pattern-
preserving extensions to G with vv′ getting the wrong color s. Indeed, if this is false, then we
would get a contradiction to (3.26) by an argument of Claim 3.13:

(1/2) · 2−c9n · F (G, 4, 3)
4 · (n2) � 2 · 16n · 2−c2

1n2/9 · F (G, 4, 3) + (18 − c2)n/2F (G − v − v′, 4, 3).

Here, we use the trivial upper bound 16n on the number of extensions for colorings of G − v − v′

that are bad or are good, but admit an extension with a different pattern. On the other hand, a
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good, but not perfect coloring of G may be overcounted as there may be more than one choice
of vv′ and s; we use the trivial upper bound of 4 · (n2) here.

Defining π, xi, x
′
i, Zj,c, Z

′
j,c, yi, y

′
i as in Claim 3.15, one can argue similarly to (3.31) that the

number of pattern-preserving extensions of χ is at most

2c0n

⎛
⎝ 4∏

j=2

max(xj , 1) ·
3∏

j=1

max(x′
j , 1)

⎞
⎠

n/4

, (3.32)

where all smaller terms are swallowed by 2c0n. Moreover, as before, |Zj,c| � 2c1n if and only if
c ∈ π({1, j}) while |Z ′

j,c| � 2c1n if and only if c ∈ π({j, 4}).
Since s �∈ π({1, 4}), we have s ∈ π({1, 3}) ∩ π({3, 4}). But then the number of choices per

w ∈ W3 ∩ N(v) ∩ N(v′) is at most x3x
′
3 − 1 (instead of x3x

′
3) because we cannot assign color

s to both vw and vw′. Also, if vw or vw′ is not an edge, then we have at most four choices per
w (while |π({1, 3})| · |π({3, 4}| � 6). This allows us to improve (3.32) by factor (8/9)n/4. This
contradicts the choice of χ and proves part (ii) of Lemma 3.12.

Let H = K(W1, . . . , W4). Suppose first that G �∼= H, that is, G is not complete 4-partite.
We know that almost every coloring χ of G is perfect. Moreover, if we start with a perfect
coloring χ of G and color all remaining edges in E(H) \ E(G) according to the pattern of χ,
then we get at least 2|H\G| � 2 extensions to H, none containing a monochromatic K3. Thus,
|P(H)| � 2|P(G)| > F (G, 4, 3) and we can take G′ = H.

Finally, suppose that G = H, but G �∼= T4(n). Let di = |Wi| for i ∈ [4]. Assume, without
loss of generality, that d1 � d2 � d3 � d4 with d1 � d4 + 2. Let G′ be the complete 4-partite
graph with parts of size d1 − 1, d2, d3, d4 + 1. We already know that almost every coloring
of G is perfect. Thus, in order to finish the proof it is enough to show that, for example,
|P(G′)| > 1.1|P(G)|.

The number of perfect colorings of G is given by the following expression:

|P(G)| = (12 + o(1))(S1 + S2 + S3), (3.33)

where

S1 = 2d1d2+d3d43d1d3+d1d4+d2d3+d2d4 ,

S2 = 2d1d3+d2d43d1d2+d1d4+d2d3+d3d4 ,

S3 = 2d1d4+d2d33d1d2+d1d3+d2d4+d3d4 .

Note that we have an error term in (3.33) because some (degenerate) colorings are overcounted
in the right-hand side. Also,

|P(G′)| = (12 + o(1))(2−d2+d33d1−d4−1+d2−d3 · S1

+ 2d2−d33d1−d4−1−d2+d3 · S2 + 2d1−d4−1 · S3).

But, as d1 − d4 � max{2, d2 − d3}, the coefficient in front of each Si is at least 4/3. Therefore,
|P(G′)| > 1.1|P(G)|, completing the proof of Lemma 3.12.

Routine calculations (omitted) show that

|P(T4(n))| = (C + o(1)) · 18t4(n)/3, (3.34)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.

Proof of Theorem 1.1. Let, for example, N = n2
0. Let G be an extremal graph on n � N

vertices. Suppose on the contrary that G �∼= T4(n). Let Gn = G.
We iteratively apply the following procedure. Given a current graph Gm on m � n0 + 2

vertices with F (Gm, 4, 3) � 18m2/8 · 2−c9m2
we apply Lemma 3.12. If (3.25) fails for some
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vertex v ∈ V (Gm), then we let Gm−1 = Gm − v, decrease m by 1, and repeat. Note that

F (Gm−1, 4, 3) � F (Gm, 4, 3)/(18 − c3)m/4 � 18(m−1)2/8 · 2−c9(m−1)2 .

Likewise, if (3.26) fails for some distinct v, v′ ∈ V (Gm), we let Gm−2 = G − v − v′, decrease
m by 2, and repeat. If both (3.25) and (3.26) hold and Gm �∼= T4(m), then replace Gm by the
graph G′ returned by Lemma 3.12 and repeat the step (without decreasing m).

Note that, for every m for which Gm is defined, we have

F (Gm, 4, 3) � F (G, 4, 3) · (18 − c3)−(n+(n−1)+...+(m+1))/4. (3.35)

It follows that we never reach m < n0 + 2, for otherwise, when this happens for the first time,
we get the contradiction

F (Gm, 4, 3) � 18n2/8 · 2−c9n2

(18 − c3)((
n
2)−(m

2 ))/4
> 4(m

2 ).

Thus, we stop for some m � n0 + 2, having Gm
∼= T4(m). We cannot have m = n, for

otherwise T4(n) strictly beats G. By Lemma 3.12, almost every coloring of Gm
∼= T4(m) is

perfect. Thus, by (3.35),

2 · |P(T4(m))| > F (T4(m), 4, 3) � F (G, 4, 3) · (18 − c3)−(n+(n−1)+...+(m+1))/4. (3.36)

Also, note that t4(�) − t4(� − 1) = �3�/4�. Thus, (3.34) implies that, for example, |P(T4(�))| �
18�/4−1|P(T4(� − 1))| for all � � n0. By the extremality of G, we conclude that

F (G, 4, 3) � F (T4(n), 4, 3) � |P(T4(n))| � 18(n+...+(m+1))/4

18n−m
|P(T4(m))|. (3.37)

But (3.36) and (3.37) give a contradiction to n > m, proving Theorem 1.1.

Remark 1. If we set G = T4(n) with n � N in the above argument, then we conclude that
m = n (otherwise we get a contradiction as before). Thus, we do not perform any iterations
at all, which implies that (3.25) and (3.26) hold for T4(n). By part (ii) of Lemma 3.12 almost
every coloring of T4(n) is perfect. Thus, the estimate (1.5) that was claimed in Section 1 follows
from (3.34).

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Some parts of the proof closely follow those of
Theorem 1.1. We omit many details that have already been presented or are obvious
modifications of those in Section 3. We start by fixing positive constants

c0  c1  . . .  c10.

Let M = 1/c9 and n0 = 1/c10. Define

Gn = {G : v(G) = n, F (G, 4, 4) � 34n2/9 · 2−c8n2},
and let G =

⋃
n�n0

Gn. The lower bound in (1.4) shows that Gn is non-empty for every n � n0.
Using the obvious analogs of the previous definitions, we define the parameters

(m,Vi,Hi, Ri, R, ri) arising from an arbitrary graph G and a K4-free 4-coloring χ of the edges
of G and fix one such vector for each pair (G,χ).

By Lemma 2.2, each cluster graph Hi is K4-free and, by Turán’s theorem (1.1), has at most
t3(m) edges. Thus, by (2.1),

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
� 8

3
. (4.1)
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We also have a procedure for generating all K4-free edge 4-colorings of G at least once.
This procedure is identical to the Coloring Procedure provided in Section 3 with the only
difference being that in Step (3) the parameters ri (where we omit primes for convenience)
now satisfy (4.1) instead of (3.3) and (3.4). So, Lemma 3.1, which bounds the number of
choices in Steps (1)–(6), still holds.

The number of options in Step (7) is again bounded by (3.6), that is, the expression
2Ln2/2+O(n), where L = r2 + log2(3)r3 + 2r4. Under the constraint (4.1) and the non-negativity
of the reals ri, the maximum of L is (8/9) log2 3 with the (unique) optimal assignment being
r1 = r2 = r4 = 0 and r3 = 8/9. We conclude that

F (n, 4, 4) � 34n2/9 · 22c6n2
,

as it was also shown in [1].
We shall now obtain structural information about the cluster graphs (and, indirectly, about

G). We call a pair (G,χ) (or the coloring χ) unsatisfactory if

r3 � 8/9 − c4. (4.2)

Otherwise, (G,χ) is satisfactory.

Lemma 4.1. For every graph G with n � n0 vertices the number of unsatisfactory K4-free
edge 4-colorings is less than 34n2/9 · 2−c6n2

.

Proof. The maximum of L under constraints (4.1) and (4.2) (and the non-negativity of the
variables ri) is

Lmax = (8/9 − c4) log2(3) + 3c4/2 < (8/9) log2(3) − c5,

with the optimal dual variables for (4.1) and (4.2) being y1 = 1/2 and y2 = log2(3) − 3/2 > 0,
respectively. Therefore, the total number of choices is at most 2c6n2 · 2Lmaxn2/2+O(n), giving
the required upper bound on the number of unsatisfactory colorings.

Call a vector (m,Vi,Hi) popular if it appears for at least 34n2/9 · 2−3c8n2
satisfactory K4-free

edge 4-colorings of G. As before, (3.5) guarantees that the number of colorings for which
the associated vector is not popular is at most 34n2/9 · 2−2c8n2

. Let Pop(G) be the set of all
popular vectors and let S(G) consist of all satisfactory colorings for which the associated vector
is popular.

Lemma 4.2. For any n � n0, a graph G ∈ Gn, and a popular vector (m,Vi,Hi) ∈ Pop(G),
there exists an equitable partition [m] = U1 ∪ . . . ∪ U9 such that

|R3 	 K(U1, . . . , U9)| < c3m
2, (4.3)

|R 	 K(U1, . . . , U9)| < 2c3m
2. (4.4)

Proof. Suppose that some Y ⊆ [m] induces a clique of order 10 in R3. Then R3[Y ] contains(
10
2

)
= 45 edges, each of which, by definition, belongs to exactly three cluster graphs Hi. Each

Hi is K4-free and so, by Turán’s Theorem (1.1), Hi[Y ] has at most t3(10) = 33 edges. But
4 · 33 < 3 · 45, which is a contradiction.

Thus, K10 � R3. Since e(R3) � (8/9 − c4)m2/2, Lemma 2.3 gives an equitable partition
[m] = U1 ∪ . . . ∪ U9 satisfying (4.3). This partition also satisfies (4.4) because r1 + r2 + r4 �
3c4 by (4.1) and the negation of (4.2).
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For a graph G and a popular vector (m,Vi,Hi) ∈ Pop(G), fix the equitable 9-partition [m] =
U1 ∪ . . . ∪ U9 given by Lemma 4.2. For i ∈ [9], let Ũi =

⋃
j∈Ui

Vj be the blow-up of Ui. Let
F̃ = K(Ũ1, . . . , Ũ9).

Lemma 4.3. For any n � n0, G ∈ Gn and (m,Vi,Hi) ∈ Pop(G), we have |G 	 F̃ | < 6c3n
2.

Proof. First consider G \ F̃ . Up to 5c7n
2 edges may be lost by application of the Regularity

Lemma. In addition, at most |R \ K(U1, . . . , U9)| · �n/m�2 edges are missing in F̃ . Overall,
|G \ F̃ | < 3c3n

2.
On the other hand, we may estimate |F̃ \ G| by bounding the number of colorings of G

associated with our vector (m,Vi,Hi). We revert to the Coloring Procedure and compute the
number of options in Step (7):

4∏
f=2

∏
ij∈Rf

f�n/m�2−|K(Vi,Vj)\G| � (34n2/9 · 22c6n2
)
∏

ij∈R3

2−|K(Vi,Vj)\G|

� (34n2/9 · 22c6n2
) · 2−|F̃\G|+2c3n2+O(n).

Since the vector (m,Vi,Hi) is popular, we have

|F̃ \ G| � c6n
2 + 2c3n

2 + 2c6n
2 + 3c8n

2 + O(n) � 3c3n
2,

as required.

For each graph G fix a max-cut partition V (G) = W1 ∪ . . . ∪ W9.

Lemma 4.4 (Stability Property). Let n � n0, G ∈ Gn and V (G) = W ′
1 ∪ . . . ∪ W ′

9 be a
partition with

|G ∩ K(W ′
1, . . . , W

′
9)| � |G ∩ K(W1, . . . , W9)| − c3n

2.

Then |G 	 K(W ′
1, . . . , W

′
9)| � 9c3n

2 and, for any (m,Vi,Hi) ∈ Pop(G), there is a relabeling of
W ′

1, . . . , W
′
9 such that

|W ′
i 	 Ũi| � 12000c3n, for each i ∈ [9]. (4.5)

Also we have ||Wi| − n/9| � c2n for each i ∈ [9] and |G 	 K(W1, . . . , W9)| � 9c3n
2.

Proof. Let F ′ = K(W ′
1, . . . , W

′
9) and F = K(W1, . . . , W9). As W1 ∪ . . . ∪ W9 is a max-cut

partition, we have |F ′ ∩ G| + c3n
2 � |F ∩ G| � |F̃ ∩ G|. In addition, both [m] = U1 ∪ . . . ∪ U9

and [n] = V1 ∪ . . . ∪ Vm are equitable partitions, so | |Ũi| − n/9| < m + n/m. It follows that
|F̃ | � |F ′| − c7n

2, and

|F ′ 	 G| � |F̃ 	 G| + c7n
2 + 2c3n

2 � 9c3n
2, (4.6)

where we used Lemma 4.3. This proves the first part of the lemma.
To prove the next part, we look for a relabeling of W ′

1, . . . , W
′
9 such that |Ũi \ W ′

i | < 1250c3n
for each i ∈ [9]. If no such relabeling exists, then we have some i ∈ [9] such that |Ũi \ W ′

j | �
1250c3n for all j ∈ [9]. However, for some j, |Ũi ∩ W ′

j | � |Ũi|/9. Let X = Ũi ∩ W ′
j and Y =

Ũi \ W ′
j . Then, by Lemma 4.3, we have e(G[X,Y ]) < 6c3n

2 while X ⊆ W ′
j , Y ∩ W ′

j = ∅ and
(4.6) imply that e(G[X,Y ]) > |X||Y | − 9c3n

2 > 6c3n
2, which is a contradiction.

The desired estimate (4.5) follows from the observation that

W ′
i \ Ũi ⊆

⋃
j∈[9]\{i}

(Ũj \ W ′
j).
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The last two claims of the lemma follow by taking W ′
i = Wi.

A pattern is an assignment π :
(
[9]
2

)→ (
[4]
3

)
(to every edge of K9 we assign a list of three

colors) such that π−1(i) is isomorphic to T3(9) for each i ∈ [4]. It is easy to check that up to
isomorphism (of colors and vertices) there is only one pattern. It can be explicitly described
as follows. Identify the 9-point vertex set with (F3)2, the 2-dimensional vector space over the
3-element finite field F3. There are four possible directions of 1-dimensional subspaces. Let the
color i ∈ [4] be present in the pattern in those pairs whose difference is not parallel to the ith
direction.

We say that an edge 4-coloring χ of G ∈ Gn follows the pattern π if, for every ij ∈ ([9]2 ),
we have

|χ−1([4] \ π(ij)) ∩ G[Wi,Wj ]| � c2n
2.

Lemma 4.5. Let n � n0 and G ∈ Gn. Then every coloring χ ∈ S(G) follows a pattern.

Proof. Let χ ∈ S(G) and (m,Vi,Hi) be the associated popular vector. Let [m] = U1 ∪ . . . ∪
U9 be the partition given by Lemma 4.2.

Let the label of an edge uv ∈ R3 be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, |χ̂(uv)| = 3 for all
edges uv ∈ R3.

Claim 4.6. Let Y = {v1, . . . , v9} be a subset of [m] such that R3[Y ] ∼= K9 and vi ∈ Ui

for each i ∈ [9]. Let v′
j ∈ Uj be such that Y ′ = (Y \ {vj}) ∪ {v′

j} also spans K9 in R3. Then
χ̂(vjvi) = χ̂(v′

jvi) for all i ∈ [9] \ {j}.

Proof of Claim 4.6. The identity 3 · (92) = 4 · t3(9) and Turán’s theorem imply that each
K4-free graph Hi[Y ] has exactly t3(9) vertices and thus is isomorphic to the Turán graph
T3(9). Let Yi,1, Yi,2 and Yi,3 be the parts of Hi[Y ]. The family of 3-sets {Yi,j : i ∈ [4], j ∈ [3]}
forms a Steiner triple system on Y , that is, every pair is covered exactly once. Thus, if we
delete a vertex from Y, then the four triples that contain it are uniquely reconstructible. It
follows that if we know Hi[Y ] − vj for each i ∈ [4], then the labels of the eight pairs containing
vj are uniquely determined. This and the analogous statement for Y ′ imply the claim.

We can iteratively build a set Y = {v1, . . . , v9} such that R3[Y ] ∼= K9 and, for all i ∈ [9], we
have vi ∈ Ui and

|NR3(vi) ∩ Uj | > |Uj | − √
c3m for all j ∈ [9] \ {i}. (4.7)

Let Ai ⊆ Ui consist of those vertices that lie in NR3(vj) for all j ∈ [9] \ {i}. As all
v1, . . . , v9 satisfy (4.7), we have |Ai| > |Ui| − 8

√
c3m. Now, if aiaj ∈ R3[Ai, Aj ] (without loss

of generality assume that (i, j) = (1, 2)), then all three sets {v1, v2, . . . , v9}, {a1, v2, . . . , v9}
and {a1, a2, v3, . . . , v9} form 9-cliques. By Claim 4.6 we have χ̂(vivj) = χ̂(aivj) = χ̂(aiaj).
Therefore, the labeling on Y determines the labeling on all edges of R3 with the possible
exception of at most 72

√
c3m

2 edges incident to vertices of
⋃9

i=1(Ui \ Ai). We, therefore, have
a pattern π such that χ̂(uiuj) = π(ij) for all, but at most 73

√
c3m

2 edges in R.
By applying (4.5) to W ′

i = Wi and arguing as in the proof of Lemma 3.9, one can show that
χ follows the pattern π.
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A coloring χ ∈ S(G) is called good if, for every distinct i, j, k ∈ [9], all sets Xi ⊆ Wi,Xj ⊆
Wj ,Xk ⊆ Wk each of size at least c1n, and a color c ∈ π(ij) ∩ π(ik) ∩ π(jk), we can find a
monochromatic triangle in color c with one vertex in each of Xi,Xj ,Xk. Otherwise, call χ bad.

We make use of the following result [1, Lemma 3.1] that is proved by the standard embedding
argument; see, for example, [13, Theorem 5].

Lemma 4.7. Let G be a graph and let V1, . . . , Vk be subsets of vertices of G such that, for
every i �= j and every pair of subsets Xi ⊆ Vi and Xj ⊆ Vj with |Xi| � 10−k|Vi| and |Xj | �
10−k|Vj |, there are at least 1

10 |Xi||Xj | edges between Xi and Xj in G. Then G contains a copy
of Kk with one vertex in each set Vi.

As a consequence of this lemma, a coloring fails to be good only if there are c, i, j such that
c ∈ π(ij), but for some sets Xi ⊆ Wi and Xj ⊆ Wj with, respectively, |Xi|, |Xj | � c1n/1000,
χ−1(c) has at most |Xi||Xj |/10 edges between Xi and Xj . The proof of Lemma 3.11 with
obvious modifications gives the following.

Lemma 4.8. The number of bad colorings is at most 34n2/9 · 2−c2
1n2/107

.

A good coloring χ of G is perfect if χ(vivj) ∈ π(ij) for every pair ij ∈ ([9]2 ) and every edge
vivj ∈ G[Wi,Wj ]. Let P(G) consist of all perfect colorings of G.

Lemma 4.9. Let G ∈ Gn be a graph of order n � n0 + 2 such that F (G, 4, 4) � 34n2/9 ·
2−c9n2

and, for every distinct v, v′ ∈ V (G), we have

F (G, 4, 4)
F (G − v, 4, 4)

� (3 − c3)8n/9, (4.8)

F (G, 4, 4)
F (G − v − v′, 4, 4)

� (3 − c3)(8/9)(n+(n−1)). (4.9)

Then the following conclusions hold:

(i) G is 9-partite;
(ii) |P(G)| � (1 − 2−c9n)F (G, 4, 4);
(iii) if G �∼= T9(n), then there is a graph G′ with v(G′) = n and F (G′, 4, 4) > F (G, 4, 4).

Proof. As in the proof of Lemma 3.12, the notion of a good coloring is well defined for
G − X provided |X| � 2.

Claim 4.10. For each i ∈ [9] and every v ∈ Wi, |N(v) ∩ Wi| < 8c1n.

Proof of Claim 4.10. Suppose that a vertex v violates the claim. Let W ′
1 ∪ . . . ∪ W ′

9 be
the selected max-cut partition of G − v. Similarly to Claim 3.13, there is a good coloring χ
of G − v with at least (3 − c2)8n/9 extensions to G. Let π be the pattern of χ (with respect
to W ′

1, . . . , W
′
9) and ni = |N(v) ∩ Wi| for i ∈ [9]. As in the proof of Lemma 3.12, we take an

extension χ̄ of χ that gives a most frequent vector x = (x1, . . . , x9), where xi is the number of
colors c such that Zi,c = {u ∈ Wi : χ̄(uv) = c} has at least 2c1n elements. Also, let yc be the
number of j ∈ [9] such that |Zj,c| � 2c1n. We have

x1 + x2 + . . . + x9 = y1 + y2 + y3 + y4. (4.10)
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By the max-cut property, each xi � 1. The argument of (3.30) shows that the number of
extensions of χ to G is at most 2c0n

∏9
i=1 xni

i .
Suppose yc � 7 for some color c. Any seven vertices of the color-c graph that is isomorphic

to T3(9) span a triangle. The three c-neighborhoods of v in the corresponding parts W ′
i have

at least |Zi,c| − 24000c3n > c1n vertices each by (4.5). Since χ is good, this gives a copy of K4

of color c in χ̄, which is a contradiction.
Thus, yc � 6 for every c ∈ [4] and the sum in (4.10) is at most 24. Since each xi is a positive

integer, their product is at most 2336 (it is clearly maximized when the factors are nearly
equal). Also, each ni � n/9 + c2n by Lemma 4.4. Thus, the number of extensions of χ is at
most 22c0n(2336)n/9 < (3 − c2)8n/9, which is a contradiction that proves the claim.

Claim 4.11. If x1, . . . , x8 are non-negative integers with sum 24, then
∏8

i=1 max(xi, 1) � 38

with equality if and only if each xi equals 3.

Proof of Claim 4.11. Clearly, the product of two positive integers k and l given their sum
is maximum when |k − l| � 1. Thus, if exactly t values xi are non-zero, then their product is
maximized when each positive xi is �24/t� or �24/t�. Thus, for t = 8, 7, . . . , 1 the maximum
of the product is, respectively, 38 = 6561, 34 · 43 = 5184, 46 = 4096, 4 · 54 = 2500, 64 = 1296,
83 = 512, 122 = 144 and 24. Here, 38 is the largest entry.

Claim 4.12. For all i ∈ [9] and all v, v′ ∈ Wi, we have vv′ �∈ E(G).

Proof of Claim 4.12. Assume for a contradiction that vv′ ∈ E(G), where without loss of
generality v, v′ ∈ W9. As in Claim 3.13, one can find a good coloring χ of G − v − v′ ∈ Gn−2 with
at least (3 − c2)16n/9 extensions to G. Define the parameters π, ni, Zi,c, xi, yi, n

′
i, Z

′
i,c, x

′
i, y

′
i, χ̄

and a most frequent color s of vv′, as it was done in Claim 3.15. Then a version of (3.31) states
that the total number of extensions of χ is at most

(59)2 · 4 · 2c0n · (48c1n+8c2n)2 ·
8∏

i=1

(max(xi, 1) · max(x′
i, 1))n/9. (4.11)

Since each yc � 6, we have
∑8

i=1 xi � 24. By Claim 4.11 we have that xi = x′
i = 3 for each i ∈

[8], for otherwise the bound in (4.11) is strictly less than (3 − c2)16n/9, which is a contradiction
to the choice of χ.

Assume that the parts of Hs
∼= T3(9) are A1 = {1, 2, 3}, A2 = {4, 5, 6} and A3 = {7, 8, 9}.

Suppose first that there is j ∈ [8] such that |Zj,s| � 2c1n but s �∈ π({j, 9}), say j = 8.
By (4.5), we have |Z8,s ∩ W ′

8| � c1n. Since χ is good, in order to avoid a color-s K4 in χ̄,
we must have |Zi,s| < 2c1n for all i ∈ A1 or for all i ∈ A2. Thus, ys contributes at most 5 to∑8

i=1 xi and (since any other yt is at most 6) this sum is at most 23, giving a contradiction by
Claim 4.11 and (4.11).

Also, this implies that |Zj,s| � 2c1n for all j ∈ [6] (for otherwise ys � 5). The same claim
applies to |Z ′

j,s|. Let y1z1, . . . , ymzm be a maximal matching formed by color-s edges between
W1 and W4. Since χ is good, we have that

m � min(|W1|, |W4|) − c1n � n/9 − 2c1n.

When we extend the coloring χ to G, the number of choices to color the edges of G[vv′, yizi]
is at most 34 − 1 for every i ∈ [m] because, if all four pairs are present in G, then we are not
allowed to color all of them with color s, while otherwise we have at most 43 < 34 choices.
This allows us to improve the bound in (4.11) by factor (80/81)n/10, giving the desired
contradiction.
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Thus, we have proved part (i) of the lemma.
Suppose on the contrary that the conclusion of part (ii) does not hold. As in the proof of

Lemma 3.8, we can find an edge vv′ ∈ G, say with v ∈ W1 and v′ ∈ W9, a color s, and a good
coloring χ of G − v − v′, such that there are at least (3 − c2)16n/9 good extensions of χ to G that
preserve the pattern π of χ and assign the ‘wrong’ color s to vv′. Defining xi, x

′
i, Zj,c, Z

′
j,c, yi, y

′
i

by the direct analogy with the definitions of Claim 3.15, one can argue similarly to (3.31) that
the total number of extensions of χ is at most

2c0n ·
(

9∏
i=2

max(xi, 1) ·
8∏

i=1

max(x′
i, 1)

)n/9

. (4.12)

By Claim 4.11, we have xi = 3 for each 2 � i � 9 and x′
i = 3 for each i ∈ [8]. Thus, yi = y′

i = 6
for all i. It follows that, for any 2 � j � 9 and c ∈ [4], we have |Zj,c| � 2c1n if and only if
c ∈ π({1, j}). Also, the analogous claim holds for |Z ′

j,c|. Since s �∈ π({1, 9}), we can find distinct
i, j ∈ {2, . . . , 8} such that s belongs to π(ij) as well as to the label of each pair in {1, 9} × {i, j}.
As before, by considering a maximal color-s matching in G[Wi,Wj ], we can improve (4.12) by
factor (80/81)n/10, obtaining a contradiction and proving part (ii) of the lemma.

Let us prove part (iii). If G is not complete 9-partite, then by part (ii) we can take
G′ = K(W1, . . . , W9): indeed, |P(G′)| � 3|P(G)| > F (G, 4, 4). So suppose that G is complete
9-partite.

Let us determine the number of possible patterns (with distinguishable colors and vertices).
For the color-1 graph we have

(
8
2

) · (52) choices (there are
(
8
2

)
choices for the part A1 ∈ ([9]3 )

containing 1, then
(
5
2

)
choices for the part A2 containing the smallest element of [9] \ A1).

Then we have 9 · 4 choices for color 2, then two choices for color 3 and one choice for color 4.
Thus, the total number of patterns is 20160 = 9!/18. The same answer can be obtained by
noting that when we permute [9], then we have a transitive action on patterns and every
pattern is fixed by eighteen permutations.

It follows that G has (9!/18 + o(1))3e(G) perfect colorings in total, since every edge of G
has exactly three choices for a given pattern. Since G �∼= T9(n), we have |P(T9(n))| � (3 +
o(1))|P(G)| and we can take G′ = T9(n). This completes the proof of Lemma 4.9.

Now Theorem 1.2 can be deduced from Lemma 4.9 in the same way (modulo some obvious
modifications) as Theorem 1.1 was deduced from Lemma 3.12.
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