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Let fr(n) be the maximum number of edges in an r-uniform
hypergraph on n vertices that does not contain four distinct edges
A, B , C , D with A ∪ B = C ∪ D and A ∩ B = C ∩ D = ∅. This
problem was stated by Erdős [P. Erdős, Problems and results in
combinatorial analysis, Congr. Numer. 19 (1977) 3–12]. It can be
viewed as a generalization of the Turán problem for the 4-cycle to
hypergraphs.
Let φr = lim supn→∞ fr(n)/

( n
r−1

)
. Füredi [Z. Füredi, Hypergraphs

in which all disjoint pairs have distinct unions, Combinatorica 4
(1984) 161–168] observed that φr � 1 and conjectured that this
is equality for every r � 3. The best known upper bound φr � 3
was proved by Mubayi and Verstraëte [D. Mubayi, J. Verstraëte,
A hypergraph extension of the bipartite Turán problem, J. Combin.
Theory Ser. A 106 (2004) 237–253]. Here we improve this bound.
Namely, we show that φr � min(7/4,1 + 2/

√
r ) for every r � 3,

and φ3 � 13/9. In particular, it follows that φr → 1 as r → ∞.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Erdős [5] stated the following problem. Determine fr(n), the maximum number of edges in an
r-graph on n vertices that does not contain four distinct edges A, B , C , D with A ∪ B = C ∪ D and
A ∩ B = C ∩ D = ∅.

For r = 2, this reduces to the known and well-studied problem of extremal graph theory to deter-
mine the Turán function for the 4-cycle. It was raised by Erdős [3] in 1938 and various results were
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obtained in [1,2,4,6–8,10,17]. It is known that f2(n) = ( 1
2 + o(1))n3/2 as n → ∞, see Brown [1] and

Erdős, Rényi, and Sós [7].
Thus the computation of fr(n) can be viewed as a generalization of this problem to hypergraphs.

Therefore, we denote the family of forbidden r-graphs as C r
4 and call each member of C r

4 a generalized
4-cycle. When r = 2 or 3, there is only one forbidden subgraph up to isomorphism.

Bollobás and Erdős (unpublished, see [5, p. 11]) proved that there are constants c1, c2 > 0 such
that c1n2 � f3(n) � c2n2. As Erdős and Frankl pointed out in 1975 (see [9, p. 162]), one can show that
fr(n) = O (nr−1/2) for all r � 2. Füredi [9] proved that(

n − 1

r − 1

)
+

⌊
n − 1

r

⌋
� fr(n) <

7

2

(
n

r − 1

)
. (1)

The lower bound in (1) arises from the family of all r-element subsets of [n] := {1, . . . ,n} con-
taining the element n together with an arbitrary family of �n−1

r 	 pairwise disjoint r-element subsets
of [n − 1]. Füredi [9, Example 1.3] also observed that if we replace every 5-set in a Steiner S1(n,5,2)-
system by all its 3-element subsets, then the resulting C 3

4 -free triple system has
(n

2

)
triples. A Steiner

S1(n,5,2)-system exists if and only if n ≡ 1 or 5 (mod 20), see Hanani [11,12]. Thus this construction
improves the lower bound in (1) to f3(n) �

(n
2

)
for such n. Füredi [9, Conjecture 1.4] conjectured that,

for n � n0(r), fr(n) �
( n

r−1

)
if r � 3 and fr(n) = (n−1

r−1

) + �n−1
r 	 if r � 4.

Also, Mubayi [14, Conjecture 6.2] conjectured that the fr(n)-problem is stable for r � 4, that is, for
any r � 4 and δ > 0 there are ε > 0 and n0 such that any C r

4-free r-graph with n vertices and at least
(1 − ε)

( n
r−1

)
edges contains a vertex v belonging to at least (1 − δ)

( n
r−1

)
edges.

By (1), it makes sense to define

φr = lim sup
n→∞

fr(n)( n
r−1

) , r � 3. (2)

Füredi [9, Proposition 6.1] showed that f3(n)/
(n

2

)
converges as n → ∞ but the existence of the limit

for r � 4 is still an open question. Recently, Mubayi and Verstraëte [15] showed that fr(n) � 3
( n

r−1

) +
O (nr−2) if r � 3 is fixed, thus improving the upper bound in (1). Hence, 1 � φr � 3 for any r � 3.

Here we prove the following results.

Theorem 1. For every r � 3 we have φr � min(1 + 2/
√

r,7/4). In particular, limr→∞ φr = 1.

Unfortunately, the optimal upper bound on φ3 given by our proof of Theorem 1 is a cumbersome
expression, involving roots of cubic polynomials. Therefore, we decided to state the weaker bound
1 + 2/

√
r as well as to give some simple constant (i.e. 7/4) that is an upper bound on φr for every r.

(Note that 1 + 2/
√

r < 7/4 for r � 8.) We refer the reader to the remarks at the end of Section 6 for
a discussion of the best upper bounds on φr given by our proof. These bounds are largest when r = 3
and 4.

Given this, the case r = 3 seems the most interesting one, especially that it is somewhat excep-
tional (if Füredi’s conjecture is true). Also, the proofs in [9,15] proceeded by reducing the general
case to the 3-partite version of the problem for 3-graphs. Therefore, we worked harder on the case
r = 3 and were able to improve the bound φ3 � 1.739 . . . of Theorem 1 (obtained by optimizing the
constants) to φ3 � 13/9 = 1.444 . . . in the following, somewhat more precise form.

Theorem 2. f3(n) � 13
9

(n
2

)
for every n � 1.

The key ingredient in our being able to improve the previous results comes from a strengthening
of an auxiliary result of Füredi [9, Lemma 3.1] on the minimum number of edges that meet every
4-cycle in a graph. The exact statement of the new lemma and a short discussion can be found in
Section 3.

Let us mention a few other related results. Mubayi [13] proved that if, in addition to C 3
4 , we also

forbid the complete 3-partite 3-graph with parts of sizes 1, 2 and 4, then the maximum number of
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triples on n vertices is indeed at most
(n

2

)
. Mubayi and Verstraëte [16] showed that the maximum

size of an r-graph on n vertices without any minimal 4-cycle (a certain r-graph family including all
C r

4-cycles) is
(n−1

r−1

) + O (nr−2). Mubayi and Verstraëte [15] stated some generalizations of the fr(n)-
problem and presented various bounds.

Here we concentrate on the original function fr(n). Our paper is organized as follows. Section 2
lists the notation used in this paper. Some auxiliary results for graphs are presented in Section 3 and
for hypergraphs in Sections 4–5. Theorem 1 is proved in Section 6 and Theorem 2 in Section 7.

2. Notation

We use the following notation in this paper. We denote [n] = {1, . . . ,n}. Also,
(X

k

) = {Y ⊆ X :
|Y | = k} is the set of all k-subsets of a set X . For brevity, we use abbreviations like ab = {a,b} and
abc = {a,b, c} (and even a = {a} in the cases when the meaning is clear).

An r-graph (or an r-uniform set system) on a set X is G ⊆ (X
r

)
, a collection of r-subsets of X . We

identify r-graphs with their edge sets so that, for example, |G| denotes the number of edges of G . The
vertex set of G is V (G) = ⋃

E∈G E . When r = 2, we use the term graph.
Some special r-graphs are as follows.

• C4(ab, cd) is the graph {ac,ad,bc,bd}.
• C 3

4 (ab, cd, ef ) is the 3-graph {abc,abd, cef ,def }.
• C r

4 denotes the family of r-graphs with four distinct edges A, B , C , D such that A ∪ B = C ∪ D
and A ∩ B = C ∩ D = ∅.

• P (T , P ) is the 3-graph consisting of all triples E with |T ∩ E| = 2 and |P ∩ E| = 1, where T and P
and are two disjoint sets of vertices.

• Pi is a copy of P (T , P ) with |T | = 3 and |P | = i.
• K−

5 is the family of all 3-graphs with 5 vertices and at least 8 edges such that if two different
triples are missing then these triples intersect in precisely one vertex. (Thus, up to isomorphism,
K−

5 has three different 3-graphs.)

Let G ⊆ (X
2

)
be a graph and ab ∈ (X

2

)
. The μ-multiplicity of ab in G is μG (ab) = |{x ∈ X: ax,bx ∈ G}|,

the number of 2-paths connecting a to b. The pair ab is a diagonal of G if μG (ab) � 2 (equivalently,
if a and b are diametrally opposite points on some 4-cycle in G ). Let

D(G) =
{

xy ∈
(

X

2

)
: μG (xy) � 2

}

be the set of all diagonals of G . The pair ab is a half-diagonal if μG (ab) = 1. Let

E (G) =
{

xy ∈
(

X

2

)
: μG (xy) = 1

}
.

Let G ⊆ (X
r

)
be an r-graph. For A ⊆ X , its link (r − |A|)-graph is G A = {B ⊆ X \ A: A ∪ B ∈ G}. If

|A| = r − 1, then we view G A as a set of vertices rather than as a set of single-element sets. Also,
G[B] = {E ∈ G : E ⊆ B} denotes the subgraph induced by a set B ⊆ X .

Let G ⊆ (X
3

)
be a 3-graph. Let

Di(G) =
{

ab ∈
(

X

2

)
:

∣∣{x ∈ X \ ab: ab ∈ D(Gx)
}∣∣ = i

}

consist of those pairs ab that are diagonals in exactly i link graphs of G . Define D(G) = ⋃
i�1 Di(G)

and E (G) = (
⋃

x∈X E (Gx)) \ D(G). We call the elements of D(G) (respectively E (G)) diagonals (respec-
tively half-diagonals) of the 3-graph G .

3. Removing diagonals in graphs

Füredi [9, Lemma 3.1] proved that any bipartite graph G can be made C4-free by removing at
most |D(G)| edges. This lemma, interesting on its own, turned out to be very useful in proving
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upper bounds on fr(n), see [9,15]. Here we strengthen Füredi’s lemma in two directions simulta-
neously. Firstly, we remove the assumption that G is bipartite. Secondly, we show that every diagonal
of the original graph G is neither a diagonal nor a half-diagonal in the obtained graph G′ . (In general,
G′ need not consist of isolated edges only so it may have some other pairs as half-diagonals.)

Lemma 3. For any graph G there is an edge set R ⊆ G such that |R| � |D(G)| and

D(G) ∩ (
D(G′) ∪ E (G′)

) = ∅, (3)

where G′ = G \ R, that is, μG′(ab) = 0 for every diagonal ab of G . (In particular, G′ is C4-free.)

Proof. Let us prove the following claim first.

Claim 1. For any graph H that contains at least one 4-cycle, we can remove a non-empty set R ⊆ H of edges
so that the obtained graph H′ = H \ R satisfies∣∣D(H) \ (

D(H′) ∪ E (H′)
)∣∣ � |R|, (4)

that is, we have μH′ (ab) = 0 for at least |R| diagonals ab ∈ D(H).

Proof. Choose any uv which is an edge of at least one C4-subgraph of H. For x ∈ V (H), let D(x) =
{y ∈ V (H): xy ∈ D(H)}. Define

X = D(u) ∩ Hv = {
x ∈ V (H): ux ∈ D(H), vx ∈ H

}
,

Y = D(v) ∩ Hu = {
y ∈ V (H): v y ∈ D(H), uy ∈ H

}
.

Note that both X and Y are non-empty, because there is a 4-cycle containing the edge uv . Also,
u, v /∈ X ∪ Y .

Remove all edges between v and X and between u and Y . It is enough to show that in the
obtained graph H′ all pairs v y with y ∈ Y and ux with x ∈ X have μ-multiplicity 0. Suppose on
the contrary that, for example, for some w ∈ V (H′) and y ∈ Y we have v w, wy ∈ H′ . Then w �= u
because uy has been deleted but wy ∈ H′ . Thus C4(uw, v y) ⊆ H. By definition, w ∈ X . But all edges
between v and X have been deleted and cannot belong to H′ , a contradiction that finishes the proof
of Claim 1. �

Let us return to the proof of the lemma. Starting with H = G , we iteratively apply Claim 1 and
keep removing edges from H until no C4-subgraph remains. Suppose we have removed k edges in
total. Let H′ be the final graph. Then the number of ab ∈ D(G) with μH′ (ab) = 0 is at least k. Since
H′ is C4-free, all other diagonals ab of G satisfy μH′ (ab) = 1. For each ab ∈ D(G) ∩ E (H′) pick an
edge Eab ∈ H′ whose removal would bring the μ-multiplicity of ab to 0. Note that there are at most
|D(G)| − k such pairs ab. Let G′ be obtained from H′ by removing all such edges Eab . Clearly, the
edge set R = G \ G′ satisfies all the conclusions of the lemma. �

We will also need the following simple observation.

Lemma 4. Let G be a C4-free graph on n vertices with g = |G| edges. Then |E (G)| � 2g − n.

Proof. Let g1 � · · · � gn be the degrees of G . Since C4 � G , we have

∣∣E (G)
∣∣ =

n∑
i=1

(
gi

2

)
. (5)

Note that
(k

2

)
� k−1 for every non-negative integer k. This, (5), and the identity

∑n
i=1(gi −1) = 2g −n

imply the lemma. �
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4. Multiple diagonals in C3
4 -free 3-graphs

Here we present some auxiliary lemmas about multiple diagonals (i.e. pairs in
⋃

i�2 Di(G)) for C 3
4 -

free 3-graphs. All results in this section are obtained by a straightforward case analysis. The reader
may wish to skip the proofs and refer only to the statements of the results.

The following lemma implies that Di(G) = ∅ for any C 3
4 -free 3-graph G except possibly for i ∈

{0,1,3}. Recall that P (X, Y ) denotes the 3-graph with edges {xyz: xz ∈ (X
2

)
, y ∈ Y }.

Lemma 5. For an arbitrary C 3
4 -free 3-graph G , each pair ab of vertices is a diagonal for either 0, 1, or 3 link

graphs. In the last case, there is a 3-set X such that P (X,ab) ⊆ G and, moreover, for every x ∈ X, C4(ab, X \ x)
is the unique cycle of the link graph Gx that has ab as a diagonal.

Proof. Suppose that ab is a diagonal for a least two link graphs, say, ab ∈ D(Gx) ∩ D(Gx′ ) for some
distinct x, x′ ∈ V (G). Let the corresponding 4-cycles be C4(ab, cd) ⊆ Gx and C4(ab, c′d′) ⊆ Gx′ .

Let us first derive a contradiction by assuming that x′ /∈ cd. At least one of two distinct vertices c′
and d′ is not equal to x, so assume without loss of generality that d′ �= x. Likewise, by the symmetry
of cd, we can assume that c �= d′ . But then C 3

4 (xc,ab, x′d′) ⊆ G , a contradiction.
This shows that x′ ∈ cd. Thus ab can be a diagonal for at most three link graphs of G . Without

loss of generality assume that x′ = c (thus ab ∈ D(Gc)). It follows that C4(ab, cd) is the unique cycle
of Gx having ab for a diagonal: if av,bv ∈ Gx with v /∈ cd, then C4(ab,dv) is another 4-cycle with
the diagonal ab that omits the vertex c = x′ , a contradiction to the arguments from the previous
paragraph. Clearly, the roles of c and x can be interchanged. Thus the unique 4-cycle in Gc that
has ab for a diagonal has to use the vertex x. If C4(ab, ex) ⊆ Gc with e �= d, then C 3

4 (ce,ab,dx) ⊆ G ,
a contradiction. Otherwise, the unique cycle is C4(ab,dx) ⊆ Gc . It follows that P (cdx,ab) ⊆ G and
ab ∈ D3(G). By symmetry, C4(cx,ab) is the unique 4-cycle of Gd that has ab as a diagonal. The lemma
is proved. �
Lemma 6. Let G be a C 3

4 -free 3-graph and let P (xyz,ab) ⊆ G . If auv,buv ∈ G , then uv ⊆ xyz.

Proof. If uv � xyz, then by symmetry we can assume that xy ∩ uv = ∅. But then C 3
4 (uv,ab, xy) ⊆ G ,

a contradiction. �
Lemma 7. Let G be a C 3

4 -free 3-graph and let P (T , P ), P (T ′, P ′) ⊆ G be such that T �= T ′ , T = t1t2t2 and
T ′ = t′

1t′
2t′

3 are 3-element sets while P ⊇ p1 p2 and P ′ ⊇ p′
1 p′

2 have at least 2 elements each. If((
T

2

)
∪

(
P

2

))
∩

((
T ′

2

)
∪

(
P ′

2

))
�= ∅,

then |P | = |P ′| = 2, T ∪ P = T ′ ∪ P ′ , and the 5-set T ∪ P spans a K−
5 -subgraph in G .

Proof. We have p1 p2 �= p′
1 p′

2 for otherwise the pair p1 p2 is a diagonal for at least four different link
graphs Gx (namely, for x ∈ T ∪ T ′), contradicting Lemma 5. Up to a symmetry, there are the following
two cases to consider.

Case 1. T ′ = {t1, t2, t′
3}.

Since T �= T ′ , we have t3 �= t′
3. Let us show that p′

1 ∈ p1 p2t3. Indeed, otherwise at least one of
p1 �= p2 is distinct from t′

3, say p1 �= t′
3. But then C 3

4 (p1t3, t1t2, p′
1t′

3) ⊆ G , a contradiction. By symme-
try, p′

2 ∈ p1 p2t3 and p1, p2 ∈ p′
1 p′

2t′
3. Since p1 p2 �= p′

1 p′
2, we have t′

3 ∈ p1 p2 and t3 ∈ p′
1 p′

2.
If there is a vertex p3 ∈ P \ p1 p2, then the above arguments with p1 replaced by p3 imply that

T ∪ p1 p2 p3 ⊆ T ′ ∪ p′
1 p′

2, a contradiction. It follows that |P | = 2 and, by symmetry, |P ′| = 2. This in
turn implies that T ∪ P = T ′ ∪ P ′ . It routinely follows that at most one triple of T ∪ P (namely P ∪ P ′)
can be missing from G , settling Case 1.
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Case 2. Let p′
1 = t1 and p′

2 = t2.

Suppose first that T ′ � T ∪ p1 p2. By symmetry, we can assume that t′
1 /∈ T ∪ p1 p2. If p1 /∈ T ′ ,

then one of t′
2 �= t′

3 is not equal to t3, say t′
2 �= t3, and we have C 3

4 (p1t3, t1t2, t′
1t′

2) ⊆ G , a con-
tradiction. Hence p1 ∈ T ′ . Likewise, p2 ∈ T ′ . Since t′

1 /∈ p1 p2, we have t′
2t′

3 = p1 p2. But then
C 3

4 (t′
1t′

2, t1t2, t3t′
3) ⊆ G , a contradiction.

Thus T ′ ⊆ T ∪ p1 p2, that is, T ′ = p1 p2t3. Since p1, p2 ∈ P were arbitrary, we conclude that |P | = 2.
We cannot have another vertex p′

3 ∈ P ′ \ p′
1 p′

2 for otherwise C 3
4 (t1t2, p1 p2, p′

3t3) ⊆ G , a contradiction.
Thus |P ′| = 2 and T ∪ P = T ′ ∪ P ′ . It is routine to see that most two triples can be missing from
G[T ∪ P ], namely T and T ′ with |T ∩ T ′| = 1.

The lemma is proved. �
Let us call any element of

(T
2

) ∪ (P
2

)
, where |T | = 3 and |P | � 2, a private pair of the 3-graph

P (T , P ).

Lemma 8. Let G ∈ K−
5 . Then for every two distinct points x, y ∈ V (G) there are two triples in G whose sym-

metric difference is xy.

Proof. Assume V (G) = abcde with possible missing triples being abc and cde. Up to a symmetry,
there are three different cases to consider. If xy is respectively ab, ac, and ad, then the required
triples are uvx, uv y ∈ G , where uv is respectively de, bd, and be. �
Lemma 9. Let G be a C 3

4 -free 3-graph and ab ∈ E (G). Then there is exactly one pair uv with auv,buv ∈ G .

Proof. Let u be such that ab ∈ E (Gu). This means that there is a vertex v such that av,bv ∈ Gu ,
which implies the existence of the desired pair uv . On the other hand, if there was another such
pair u′v ′ , then we would obtain a contradiction: if uv ∩ u′v ′ = ∅, then C 3

4 (uv,ab, u′v ′) ⊆ G , otherwise
ab ∈ D(G). �
5. Removing diagonals in 3-graphs

Recall that, for a 3-graph G and an integer i � 0, Di(G) consists of all pairs ab such that ab is
a diagonal in exactly i link graphs Gx . Also,

D(G) =
⋃
i�1

Di(G) =
⋃

x∈V (G)

D(Gx),

is the set of all diagonals, ignoring their multiplicity.
Here we prove a version of Lemma 3 for 3-graphs. We will show that one can destroy all diagonals

of a C 3
4 -free 3-graph G by removing at most |D(G)| edges. Although we cannot prevent some diago-

nals of G becoming half-diagonals of the final 3-graph G′ , we nonetheless get some control over their
distribution. We do need the assumption that C 3

4 � G : for example, one has to remove Ω(n3) edges

in order to destroy all diagonals in the complete 3-graph
([n]

3

)
. As we already know by Lemma 5, this

assumption implies that Di(G) is empty except possibly for i = 0,1, or 3. It is not surprising that the
main idea behind the proof of Lemma 10 below is to apply Lemma 3 to each link graph Gx .

Lemma 10. Let G be a C 3
4 -free 3-graph with vertex set V . Let � be an arbitrary linear ordering of V . Then

there is a subgraph G′ ⊆ G such that all the following properties hold.

1. |G| − |G′| � |D(G)|.
2. D(G′) = ∅, that is, all link graphs of G′ are C4-free.
3. If ab ∈ D1(G), then there do not exist u, v ∈ V \ ab with auv,buv ∈ G′ . (This property implies that

E (G′) ∩ D1(G) = ∅.)
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4. If ab ∈ D3(G), say

ab ∈ D(Gx) ∩ D(G y) ∩ D(Gz), with x ≺ y ≺ z, (6)

and auv,buv ∈ G′ , then necessarily uv = yz.

Proof. We take the vertices of G one by one in the �-ordering. For each x ∈ V , we construct a set Rx

of edges so that G′ = G \ (
⋃

x∈V Rx) satisfies all the properties. In order to establish Property 1, we
also define an injection � :

⋃
x∈V Rx → D(G). Since we will need to refer to the original graph G later,

it remains unchanged throughout the proof. For ab ∈ D(G), let

f (ab) = min
�

{
y ∈ V : ab ∈ D(G y)

}
, (7)

be the �-smallest vertex y ∈ V with ab ∈ D(G y).
Suppose we are about to start working on the next vertex x ∈ V . Define V≺x = {y ∈ V : y ≺ x} and

Hx = G \
( ⋃

y∈V≺x

R y

)
. (8)

One can view Hx as the ‘current’ 3-graph at the moment when we have just deleted the sets R y for
all y preceding x.

Apply Lemma 3 to Hx
x , the link graph of the vertex x in the 3-graph Hx . The lemma returns an

edge set R ⊆ Hx
x . Let R′

x = {abx: ab ∈ R} ⊆ Hx and H′ = Hx \ R′
x . Extend the function � to R′

x by
mapping R′

x injectively into D(Hx
x) ⊆ D(Gx). (Note that |R′

x| � |D(Hx
x)| by Lemma 3.) We will argue

later that no new value of � coincides with a previous value.
Let R′′

x = ∅. Take one by one pairs ab ∈ D(Gx) \ D(Hx
x). If x = f (ab), where f (ab) is defined by (7),

and there is a vertex w with aw,bw ∈ H′
x (of course, if w exists, it is unique because H′

x is C4-free),
and awx /∈ R′′

x , then add awx to R′′
x and define �(awx) = ab. (To avoid any ambiguity, we may agree

that, for example, a ≺ b.) Otherwise, we do nothing with R′′
x for this pair ab. Having processed all

pairs ab ∈ D(Gx) \ D(Hx
x) this way, let Rx = R′

x ∪ R′′
x . Note that Rx ⊆ Hx is disjoint from

⋃
y∈V≺x

R y

by (8). The function � has already been defined on the elements of this set; we have

�(Rx) ⊆ D(Gx). (9)

This finishes the definition of Rx .
Being done with x, take the next vertex of V with respect the �-ordering. If x is the last vertex,

then we have defined R y for every y ∈ V and we let G′ = G \ (
⋃

y∈V R y).
We have achieved that, for every ab ∈ D(Gx) with x = f (ab), the link graph (Hx \ Rx)x contains no

2-path connecting a to b. Indeed, this follows from Lemma 3 if ab ∈ D(Hx
x) and from the definition

of R′′
x otherwise. Thus, for every ab ∈ D(G) we have

μG′
x
(ab) = μ(Hx\Rx)x (ab) = 0, where x = f (ab). (10)

Let us show all the claims with respect to the final 3-graph G′ .
Property 1. It suffices to show that � :

⋃
x∈V Rx → D(G) is an injection.

Let ab ∈ D(G) be arbitrary and let x = f (ab). Let us show that if ab ∈ D(G) belongs to �(Ru) for
some u ∈ V , then u = x. This is clearly true for ab ∈ D1(G) by (9), so suppose that ab ∈ D3(G). By
Lemma 5, there is a pair yz ∈ (V

2

)
with P (xyz,ab) ⊆ G . Since x = f (ab), we have x ≺ y and x ≺ z.

By (9), we have ab ∈ D(Gu). Hence u ∈ xyz. Suppose on the contrary that u �= x, say u = y. Since
x = f (ab) and H y ⊆ Hx \ Rx , (10) implies that at least one of the triples axy and bxy is missing
from H y . But C4(ab, xz) is the unique 4-cycle of G y having ab for a diagonal by the second part of
Lemma 5. Hence ab /∈ D(H y). Thus ab /∈ �(R′

y). Also, ab /∈ �(R′′
y) because y �= f (ab). So ab /∈ �(R y),

a contradiction that proves that u = x as claimed.
Hence, it is enough to show that � is injective on Rx = R′

x ∪ R′′
x for every x ∈ V . Note that

�(R′
x) ⊆ D(Hx

x) is disjoint from �(R′′
x ) ⊆ D(Gx) \ D(Hx

x). The injectivity of � on each of R′
x and R′′

x is
obvious from the definition. Thus � is an injection, as required.
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Property 2 clearly holds because Lemma 3 was applied to the x-link graph of the current hyper-
graph for each x ∈ V .

Property 3. Suppose on the contrary that ab and uv contradict it. Let ab ∈ D(Gx). Choose a 4-cycle
demonstrating this fact, say C4(ab, cd) ⊆ Gx for some vertices c and d. We cannot have x ∈ uv because
x = f (ab) and there is no 2-path connecting a to b in G′

x by (10). If uv = cd, then P (cdx,ab) ⊆ G ,
which shows that ab ∈ D(Gx) ∩ D(Gc) ∩ D(Gd), a contradiction to our assumption ab ∈ D1(G). Other-
wise (if uv �= cd), we can assume by symmetry that c /∈ uv , but then C 3

4 (uv,ab, xc) ⊆ G , a contradic-
tion proving Property 3.

Property 4. Suppose that vertices a, b, x, y, z and a pair uv satisfy all assumptions of Property 4.
Lemma 5 implies that P (xyz,ab) ⊆ G and Lemma 6 implies that uv ⊆ xyz. Since x = f (ab), the link
graph G′

x cannot contain a 2-path connecting a and b by (10). Thus we have uv = yz, as required.

The lemma is completely proved. �
Remark. In fact, Property 2 follows from Properties 3–4 (and the C 3

4 -freeness of G ) but it is convenient
to have it explicitly stated.

The following lemma is needed in the proof of Theorem 2 but not in that of Theorem 1.

Lemma 11. Let G be an arbitrary C 3
4 -free 3-graph on an n-set V . Then we can find a set of edges R ⊆ G such

that G′ = G \ R does not contain a K−
5 -subgraph and

∣∣D(G′) ∪ E (G′)
∣∣ �

(
n

2

)
− |R|. (11)

Proof. Let A ⊆ (V
5

)
be the family of the vertex sets of all K−

5 -subgraphs of G .
Let us show that

A, B ∈ A, A �= B �⇒ |A ∩ B| � 1. (12)

Let A, B ∈ A. Since G is C 3
4 -free, Lemma 8 implies that |A ∩ B| = 2 is impossible. Suppose next that

A ∩ B = xyz. Let A \ xyz = uv . Every two of the triples uvx, uv y, uvz share two vertices so at most
one can be missing from G because G[A] ∈ K−

5 . Assume that uvx, uv y ∈ G . Lemma 8, when applied
to xy and B , produces u′, v ′ ∈ B with u′v ′x, u′v ′ y ∈ G . This gives C 3

4 (uv, xy, u′v ′) ⊆ G , a contradiction.
Finally, let us derive a contradiction by assuming that |A ∩ B| = 4. Since this can make our task only
harder, assume that two edges are missing from G[A] (respectively G[B]). Let a ∈ A (respectively
b ∈ B) be the vertex shared by these two edges. The 3-graph G[A] contains two P2-subgraphs whose
private pairs form two triangles sharing the vertex a. (Recall that P2 is a copy of P (xyz, uv) and its
private pairs are uv , xy, xz, and yz.) A quadruple X = A ∩ B of vertices contains either 2 disjoint
private pairs (if a /∈ X ) or a triangle with a pendant edge (if a ∈ X ). The analogous claims hold for B .
Since A �= B , the 3-graphs G[A] and G[B] cannot share a private pair by Lemma 7. It follows that
a,b /∈ X and the missing edges are auv,axy,bux,bv y, where X = uvxy. But then C 3

4 (uy,ab, vx) ⊆ G .
This contradiction proves (12).

Let R = M ∪ S , where M = ⋃
A∈A G[A] consists of what we call main triples and

S = {
E ∈ G : ∃A ∈ A, |E ∩ A| = 2

}
,

consists of all secondary triples. Let G′ = G \ R. Let us define the logic predicate L(x, y, uv, A) which
is true if and only if A ∈ A, u, v, y ∈ A, x ∈ V \ A, and uvx, uv y ∈ G .

In order to prove the lemma it is enough to specify a set R′ ⊆ (V
2

)
of pairs such that |R′| � |R|

and

R′ ∩ (
D(G′) ∪ E (G′)

) = ∅. (13)
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Let M′ = ⋃
A∈A

(A
2

)
consist of what we call main pairs. Let us call a pair xy ∈ (V

2

)
a secondary pair

if there are u, v , and A satisfying L(x, y, uv, A) or L(y, x, uv, A). Let S ′ ⊆ (V
2

)
consist of all secondary

pairs. Let us show that R′ = M′ ∪ S ′ is the required set.
Let us check (13) first. Suppose on the contrary to (13) that xy ∈ R′ and ab ∈ (V

2

)
satisfy

abx,aby ∈ G′ . If xy lies inside some A ∈ A (i.e. it is a main pair), then a /∈ A and b /∈ A for oth-
erwise, for example, aby belongs to R = G \ G′ , a contradiction. By Lemma 8, there are a′,b′ ∈ A
with a′b′x,a′b′ y ∈ G . But then C 3

4 (ab, xy,a′b′) ⊆ G , a contradiction. So suppose that xy is a secondary
pair, which is witnessed by L(x, y, uv, A). Since aby ∈ G \ R, we have a /∈ A and b /∈ A. But then
C 3

4 (ab, xy, uv) ⊆ G , a contradiction proving (13).
Thus, in order to finish the proof of the lemma, it is enough to show that |R| � |R′|. Inequal-

ity (12) implies that |M′| = 10|A| � |M|.
It remains to consider secondary pairs and triples. Let xy be an arbitrary secondary pair with

L(x, y, uv, A) being true. Observe that xy cannot be a subset of some B ∈ A. Indeed, other-
wise A ∩ B = {y} by (12) while there are u′v ′ ∈ B with u′v ′x, u′v ′ y ∈ G by Lemma 8, giving
C 3

4 (u′v ′, xy, uv) ⊆ G , a contradiction. Therefore, we have M′ ∩ S ′ = ∅. (It also holds that M ∩ S = ∅
but we do not need this fact.)

Claim 1. Suppose that L(x, y, uv, A) holds for some x, y, uv, and A. Then there are no u′v ′ and A′ such that
A′ �= A and L(x, y, u′v ′, A′) is true. Moreover, there are at most 2 choices of an unordered pair u′v ′ satisfying

L(x, y, u′v ′, A).

Proof. If the first statement is false, then A ∩ A′ = {y} by (12), and C 3
4 (uv, xy, u′v ′) ⊆ G , a contradic-

tion.
Suppose on the contrary to the second statement that the link graph Gx has at least three witness

pairs inside the 4-element set A \ y. Three of these pairs form either a triangle {u1u2, u1u3, u2u3},
a star {u0u1, u0u2, u0u3}, or a path {u1u2, u2u3, u3u4}.

Suppose that we have the triangle. Let z be the unique vertex of A \ u1u2u3 y. Then every
two of the triples u1 yz, u2 yz, and u3 yz share two vertices, so at most one of the triples can
be missing from G (because G[A] ∈ K−

5 ). By symmetry, assume that u1 yz, u2 yz ∈ G . But then
C 3

4 (u3x, u1u2, yz) ⊆ G , a contradiction.
Suppose that we have the 3-star. Like before, at least two of the triples u1u2 y, u1u3 y, and u2u3 y

are present in G , say u1u2 y and u1u3 y. But then C 3
4 (u0x, u2u3, u1 y) ⊆ G , a contradiction.

Finally, we cannot have the 3-path for otherwise C 3
4 (u1u2, yx, u3u4) ⊆ G . Claim 1 is proved. �

Let us define the auxiliary bipartite graph H with parts S and S ′ , where for every satisfied predi-
cate L(x, y, uv, A) we put an edge between xy and uvx. Note that uvx ∈ G is necessarily a secondary
triple because it intersects A ∈ A in exactly two vertices, u and v . Also, we do not have to worry
about multiple edges in H because if {xy, uvx} ∈ H then there is the unique A with L(x, y, uv, A) by
Claim 1.

Let us show that for every edge {xy, uvx} ∈ H we have

d(xy) � d(uvx), (14)

where d denotes the degree of a vertex in the graph H.
Suppose first that there are no A′ and u′v ′ such that L(y, x, u′v ′, A′) holds. Claim 1 implies that

d(xy) � 2. On the other hand, pick the (unique) set A ∈ A with A ∩ uvx = uv . Then there are at least
two choices of z ∈ A \ uv with L(x, z, uv, A). (Indeed, since G[A] ∈ K−

5 , at most one triple uvz with
z ∈ A \ uv can be missing from G .) Thus d(uvx) � 2, as required.

It remains to assume that both L(x, y, uv, A) and L(y, x, u′v ′, A′) hold for some A, A′ , and u′v ′ .
By Claim 1, A and A′ are uniquely determined while we have at most two choices for each of uv
and u′v ′ . Hence d(xy) � 4. By considering a possible generalized 4-cycle C 3

4 (uv, xy, u′v ′), we conclude
that uv ∩ u′w ′ �= ∅, say u = u′ . By (12), A ∩ A′ = {u}. Thus uvx intersects each of A and A′ in exactly
two vertices. By the argument of the previous paragraph, there are at least two choices of z ∈ A \ uv
satisfying L(x, z, uv, A) and at least two choices of z′ ∈ A′ \ ux satisfying L(v, z′, ux, A′). Moreover,
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the four corresponding secondary pairs are pairwise different. (Two of them contain x but not v and
two contain v but not x.) Hence, d(uvx) � 4. This proves (14).

Let us assign weights to the edges of H so that an edge {xy, uvx} ∈ H gets weight 1/d(xy). Then
the total edge weight is equal to |S ′|. On the other hand, for every uvx ∈ S , the sum of the weights
of all edges incident to uvx is at least 1 by (14). Hence |S ′| � |S| and we obtain

|R| � |M| + |S| � |M′| + |S ′| = |R′|,
proving the lemma. �
6. Upper bounds on fr(n) for general r

Proof of Theorem 1. Given r � 3, we choose some real σ (to be specified later) with 0 < σ < 1. Let n
be sufficiently large and let G be an arbitrary C r

4-free r-graph on an n-set V .
Let C ⊆ V be a random uniformly distributed subset of size (r − 2)t , where

t =
⌊

(1 − σ)n

r − 2

⌋
. (15)

Let S = V \ C and s = |S|. Take a random partition of C into (r −2)-sets C1, . . . , Ct , all partitions being
equally likely. Let T = [t]. (We assume that [t] ∩ V = ∅.)

Define a 3-graph H on S ∪ T by including those triples abx such that ab ∈ (S
2

)
, x ∈ T , and

ab ∪ Cx ∈ G . Since a permutation of V does not change the distribution of (C, C1, . . . , Ct), any two
r-subsets of V are equally likely to contribute a triple to H. This common probability is

(s
2

)
t/

(n
r

)
be-

cause the complete r-graph
(V

r

)
would contribute exactly

(s
2

)
t triples. Let us choose C, C1, . . . , Ct so

that |H| is at least its expected value, that is,

|H| � |G|
(s

2

)
t(n

r

) . (16)

Since every edge of H intersects T in exactly one vertex, that is,

|E ∩ T | = 1, ∀E ∈ H, (17)

it is straightforward to check that C 3
4 � H (for otherwise C r

4 ⊆ G ). Thus we can apply Lemma 10 to H,
with an arbitrary ordering �, obtaining a subgraph H′ ⊆ H that satisfies Properties 1–4.

By (17), we have D(H) ⊆ (S
2

) ∪ (T
2

)
, that is, no xy with x ∈ T and y ∈ S can be a diagonal in H.

Hence, by Property 1 of Lemma 10 we have

h := |H| − |H′| �
∣∣∣∣D(H) ∩

(
S

2

)∣∣∣∣ +
(

t

2

)
. (18)

By Lemma 5, Di(G) = ∅ except possibly for i ∈ {0,1,3}. Also, (17) implies that any subgraph
P (xyz, u) ⊆ H satisfies u ∈ T . Thus D3(H) ∩ (S

2

) = ∅. By Property 3 of Lemma 10, we conclude that

E (H′) ∩
(

S

2

)
⊆ E (H) ∩

(
S

2

)
⊆

(
S

2

)
\ D(H).

Hence, by (18),∣∣∣∣E (H′) ∩
(

S

2

)∣∣∣∣ �
(

s

2

)
−

∣∣∣∣D(H) ∩
(

S

2

)∣∣∣∣ �
(

s

2

)
+

(
t

2

)
− h. (19)

Let us derive a contradiction by assuming that uv ∈ E (H′
x) ∩ E (H′

y) for some uv ∈ (S
2

)
and two

different x, y ∈ T . Choose witnesses c and d with cu, cv ∈ H′
x and du,dv ∈ H′

y . Then c,d ∈ S , so
they are different from x and y. If c = d, this gives C4(uv, xy) ⊆ H′

c , a contradiction to Property 2 of
Lemma 10. Otherwise, C 3

4 (cx, uv,dy) ⊆ H, a contradiction again. Hence,

E
(

H′
x

) ∩ E
(

H′
y

) ∩
(

S

2

)
= ∅, ∀xy ∈

(
T

2

)
. (20)
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Table 1

r 3 4 5 6 7 8

Optimal σ(r) 0.6388 . . . 0.5233 . . . 0.4570 . . . 0.4119 . . . 0.3786 . . . 0.3525 . . .

Upper bound on φr 1.7397 . . . 1.7442 . . . 1.7159 . . . 1.6826 . . . 1.6506 . . . 1.6214 . . .

We apply Lemma 4 to each link graph H′
x with x ∈ T . (Recall that H′

x is C4-free by Property 2 of
Lemma 10.) We conclude by (17) and (20) that

2|H′| − st =
∑
x∈T

(
2
∣∣H′

x

∣∣ − s
)
�

∣∣∣∣E (H′) ∩
(

S

2

)∣∣∣∣.
This, (18), and (19) imply that

|H| = |H′| + h �
(s

2

) + (t
2

) − h + st

2
+ h �

(
s

2

)
+

(
t

2

)
+ st

2
.

This, (16), equality s = n − (r − 2)t , and (15) imply that, when r is fixed and n → ∞,

|G| � |H| ×
(n

r

)
(s

2

)
t

�
((

s

2

)
+

(
t

2

)
+ st

2

)
×

(n
r

)
(s

2

)
t

=
(

σ 2(r2 − 5r + 7) + σ(r − 4) + 1

r(r − 2)(−σ 3 + σ 2)
+ o(1)

)(
n

r − 1

)
. (21)

If we set σ = 1/
√

r, then we obtain

|G| �
(

1 + 2√
r

− 2
√

r − 3

(
√

r − 1)(r − 2)
√

r
+ o(1)

)(
n

r − 1

)
,

which implies that φr � 1 + 2/
√

r. The bound φr � 7/4 follows from the assignment σ = 2/r. �
Remark. The optimal σ(r), the one that would minimize the coefficient at

( n
r−1

)
in (21), can be found

by solving a cubic equation and, in fact, satisfies σ(r) = (1 + o(1))/
√

r as r → ∞. Table 1 lists the
numerical values of the upper bound on φr given by the proof of Theorem 1 with the optimal σ(r)
for some small r.

7. The case r = 3

Proof of Theorem 2. Let G be an arbitrary C 3
4 -free 3-graph on an n-set V . First, we apply Lemma 11

to G to obtain an edge set R ⊆ G . Let G′ = G \ R be the corresponding K−
5 -free subgraph of G . Let

m = |R| + |D(G′)|. Lemma 11 ensures that

∣∣E (G′)
∣∣ �

(
n

2

)
− m. (22)

Next, we fix some ordering � of V and apply Lemma 10 to G′ with respect to � to obtain a subgraph
H ⊆ G′ . We have |G \ H| � m.

For xyz ∈ (V
3

)
let P (xyz) = {a ∈ V : P (xyz,a) ⊆ G′} consist of those vertices a ∈ V such that

axy,axz,ayz ∈ G′ . For every pair yz ∈ (V
2

)
we do the following. If there exists a vertex x ∈ V such

that x ≺ y, x ≺ z, and |P (xyz)| � 2, then let x(yz) be this vertex x and let

S(yz) = {
a ∈ P (xyz): ayz ∈ H

} = P (xyz) ∩ H yz.

(Note that if x exists, it is unique by Lemma 7 because K−
5 � G′ .) Otherwise, we set x(yz) = 0 and

S(yz) = ∅, where 0 /∈ V is some fixed element with 0 ≺ v for every v ∈ V . Also, we let s(yz) = |S(yz)|.
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By Property 2 of Lemma 10, we have D(H) = ∅. Let us show that

E (H) ⊆ E (G′) ∪
( ⋃

yz∈(V
2)

(
S(yz)

2

))
. (23)

Suppose that ab ∈ E (H) \ E (G′), say auv,buv ∈ H for some u, v ∈ V . Since H ⊆ G′ , we have E (H) ⊆
E (G′)∪ D(G′). Thus ab ∈ D(G′). By Property 3 of Lemma 10, we have ab ∈ D3(G′). By Lemma 5, there
is a triple xyz ∈ (V

3

)
with ab ⊆ P (xyz). Without loss of generality assume that x ≺ y ≺ z. By Property 4

of Lemma 10, uv = yz. By the definition of S(yz), we have a,b ∈ S(yz), proving (23).
For yz ∈ (V

2

)
, recall that H yz = {x ∈ V : xyz ∈ H}; let hyz = |H yz|. Then, since H ⊆ G is C 3

4 -free and
every link graph Hx is C4-free by Property 2 of Lemma 10, we conclude by Lemma 9, (22) and (23)
that

∑
yz∈(V

2)

(
hyz

2

)
= ∣∣E (H)

∣∣ �
(

n

2

)
− m +

∑
yz∈(V

2)

(
s(yz)

2

)
. (24)

Let Si = {yz ∈ (V
2

)
: s(yz) = i}, si = |Si |, and S�3 = ⋃

i�3 Si .

Claim 1. The following inequality holds:

∑
yz∈(V

2)

hyz � 2

(
n

2

)
− m +

∑
i�2

(i − 1)si . (25)

Proof. Let us maximize σ = ∑
yz∈(V

2)
hyz over non-negative integers hyz , given that (24) holds,

hyz � s(yz) for every yz ∈ (V
2

)
, and

∑
yz∈(V

2)

(
hyz

2

)
�

(
n

2

)
. (26)

(The last inequality holds for otherwise we get either a copy of C 3
4 in H or a copy of C4 in a link

graph of H, a contradiction.)
Take an optimal integer vector h = (hyz)yz∈(V

2)
. Suppose first that hyz > s(yz) for some yz ∈ S�3.

By (26), there is a pair ab with hab � 1. We decrease hyz by 1 and increase hab by 2. The left-hand
side of (24) changes by(

hab + 2

2

)
−

(
hab

2

)
+

(
hyz − 1

2

)
−

(
hyz

2

)
�

(
3

2

)
−

(
1

2

)
+

(
3

2

)
−

(
4

2

)
= 0.

Thus we still have a feasible solution while the sum of the entries of h strictly increases. This contra-
dicts the optimality of h. Thus we have hyz = s(yz) for all yz ∈ S�3. We have

−
(

n

2

)
+

∑
yz∈(V

2)

hyz =
∑

yz∈(V
2)

(hyz − 1) �
∑

yz∈(V
2)\S�3

(
hyz

2

)
+

∑
i�3

(i − 1)si .

Also, by (24),

∑
yz∈(V

2)\S�3

(
hyz

2

)
=

∑
yz∈(V

2)

(
hyz

2

)
−

∑
i�3

(
i

2

)
si �

((
n

2

)
− m +

∑
i�2

(
i

2

)
si

)
−

∑
i�3

(
i

2

)
si .

Claim 1 follows from the last two inequalities. �
Each yz with s(yz) � 2 comes from some P (xyz, P (xyz)) ⊆ G′ with |P (xyz)| � s(yz) while every

such Pi -subgraph of G′ with i � 2 gives at most one such pair yz because of the relation x ≺ y, z in
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the definition of S(yz). Since K−
5 � G′ , the private pairs of these Pi -subgraphs are distinct from each

other by Lemma 7 and all belong to D(G′). Thus

∑
i�2

(
3 +

(
i

2

))
si �

∣∣D(G′)
∣∣ = m − |R|. (27)

It is routine to see that i − 1 � 1
3 (3 + ( i

2

)
) for every i � 2. Thus (25) and (27) imply that

3|H| =
∑

yz∈(V
2)

hyz � 2

(
n

2

)
− m +

∑
i�2

(i − 1)si

� 2

(
n

2

)
− m + 1

3

(
m − |R|) = 2

(
n

2

)
− 2m

3
− |R|

3
.

We conclude that

|G| � m + |H| � m + 1

3

(
2

(
n

2

)
− 2m

3
− |R|

3

)
� 7m

9
+ 2

3

(
n

2

)
.

Finally, m = |D(G′)| + |R| � (n
2

)
, giving the required. �

8. Concluding remarks

By analyzing the proof of Theorem 2, it should be possible to derive a contradiction from assuming
that f3(n) = (13/9 + o(1))

(n
2

)
for an infinite sequence of n. This would imply that there is a constant

c > 0 such that φ3 � 13/9 − c. Unfortunately, a rigorous proof of this would be rather long and messy,
especially if one tries to optimize the value of c. Therefore, we decided to settle for the current bound
of 13/9, with a reasonably short and clear proof.
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