

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A Journal of Combinatorial Theory

www.elsevier.com/locate/jcta

The maximum size of hypergraphs without generalized 4-cycles

Oleg Pikhurko^{a,1}, Jacques Verstraëte^b

^a Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
 ^b Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

ARTICLE INFO

Article history: Received 30 December 2007 Available online 14 November 2008

Keywords: Generalized 4-cycle Turán function

ABSTRACT

Let $f_r(n)$ be the maximum number of edges in an *r*-uniform hypergraph on *n* vertices that does not contain four distinct edges *A*, *B*, *C*, *D* with $A \cup B = C \cup D$ and $A \cap B = C \cap D = \emptyset$. This problem was stated by Erdős [P. Erdős, Problems and results in combinatorial analysis, Congr. Numer. 19 (1977) 3–12]. It can be viewed as a generalization of the Turán problem for the 4-cycle to hypergraphs. Let $\phi_r = \limsup_{n\to\infty} f_r(n)/{\binom{n}{r-1}}$. Füredi [Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, Combinatorica 4 (1984) 161–1681 observed that $\phi_r \ge 1$ and conjectured that this

(1984) 161–168] observed that $\phi_r \ge 1$ and conjectured that this is equality for every $r \ge 3$. The best known upper bound $\phi_r \le 3$ was proved by Mubayi and Verstraëte [D. Mubayi, J. Verstraëte, A hypergraph extension of the bipartite Turán problem, J. Combin. Theory Ser. A 106 (2004) 237–253]. Here we improve this bound. Namely, we show that $\phi_r \le \min(7/4, 1 + 2/\sqrt{r})$ for every $r \ge 3$, and $\phi_3 \le 13/9$. In particular, it follows that $\phi_r \to 1$ as $r \to \infty$. © 2008 Elsevier Inc. All rights reserved.

1. Introduction

Erdős [5] stated the following problem. Determine $f_r(n)$, the maximum number of edges in an r-graph on n vertices that does not contain four distinct edges A, B, C, D with $A \cup B = C \cup D$ and $A \cap B = C \cap D = \emptyset$.

For r = 2, this reduces to the known and well-studied problem of extremal graph theory to determine the Turán function for the 4-cycle. It was raised by Erdős [3] in 1938 and various results were

0097-3165/\$ – see front matter $\ \textcircled{0}$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2008.09.002

E-mail address: jacques@ucsd.edu (J. Verstraëte).

URL: http://www.math.cmu.edu/~pikhurko (O. Pikhurko).

¹ Partially supported by the National Science Foundation, Grant DMS-0457512.

obtained in [1,2,4,6–8,10,17]. It is known that $f_2(n) = (\frac{1}{2} + o(1))n^{3/2}$ as $n \to \infty$, see Brown [1] and Erdős, Rényi, and Sós [7].

Thus the computation of $f_r(n)$ can be viewed as a generalization of this problem to hypergraphs. Therefore, we denote the family of forbidden *r*-graphs as C_4^r and call each member of C_4^r a generalized 4-cycle. When r = 2 or 3, there is only one forbidden subgraph up to isomorphism.

Bollobás and Erdős (unpublished, see [5, p. 11]) proved that there are constants $c_1, c_2 > 0$ such that $c_1n^2 \leq f_3(n) \leq c_2n^2$. As Erdős and Frankl pointed out in 1975 (see [9, p. 162]), one can show that $f_r(n) = O(n^{r-1/2})$ for all $r \geq 2$. Füredi [9] proved that

$$\binom{n-1}{r-1} + \left\lfloor \frac{n-1}{r} \right\rfloor \leqslant f_r(n) < \frac{7}{2} \binom{n}{r-1}.$$
(1)

The lower bound in (1) arises from the family of all *r*-element subsets of $[n] := \{1, ..., n\}$ containing the element *n* together with an arbitrary family of $\lfloor \frac{n-1}{r} \rfloor$ pairwise disjoint *r*-element subsets of [n-1]. Füredi [9, Example 1.3] also observed that if we replace every 5-set in a Steiner $S_1(n, 5, 2)$ -system by all its 3-element subsets, then the resulting C_4^3 -free triple system has $\binom{n}{2}$ triples. A Steiner $S_1(n, 5, 2)$ -system exists if and only if $n \equiv 1$ or 5 (mod 20), see Hanani [11,12]. Thus this construction improves the lower bound in (1) to $f_3(n) \ge \binom{n}{2}$ for such *n*. Füredi [9, Conjecture 1.4] conjectured that, for $n \ge n_0(r)$, $f_r(n) \le \binom{n}{r-1}$ if $r \ge 3$ and $f_r(n) = \binom{n-1}{r-1} + \lfloor \frac{n-1}{r} \rfloor$ if $r \ge 4$. Also, Mubayi [14, Conjecture 6.2] conjectured that the $f_r(n)$ -problem is *stable* for $r \ge 4$, that is, for

Also, Mubayi [14, Conjecture 6.2] conjectured that the $f_r(n)$ -problem is *stable* for $r \ge 4$, that is, for any $r \ge 4$ and $\delta > 0$ there are $\varepsilon > 0$ and n_0 such that any C_4^r -free r-graph with n vertices and at least $(1 - \varepsilon) \binom{n}{r-1}$ edges contains a vertex ν belonging to at least $(1 - \delta) \binom{n}{r-1}$ edges.

By (1), it makes sense to define

$$\phi_r = \limsup_{n \to \infty} \frac{f_r(n)}{\binom{n}{r-1}}, \quad r \ge 3.$$
⁽²⁾

Füredi [9, Proposition 6.1] showed that $f_3(n)/\binom{n}{2}$ converges as $n \to \infty$ but the existence of the limit for $r \ge 4$ is still an open question. Recently, Mubayi and Verstraëte [15] showed that $f_r(n) \le 3\binom{n}{r-1} + O(n^{r-2})$ if $r \ge 3$ is fixed, thus improving the upper bound in (1). Hence, $1 \le \phi_r \le 3$ for any $r \ge 3$.

Here we prove the following results.

Theorem 1. For every $r \ge 3$ we have $\phi_r \le \min(1 + 2/\sqrt{r}, 7/4)$. In particular, $\lim_{r\to\infty} \phi_r = 1$.

Unfortunately, the optimal upper bound on ϕ_3 given by our proof of Theorem 1 is a cumbersome expression, involving roots of cubic polynomials. Therefore, we decided to state the weaker bound $1 + 2/\sqrt{r}$ as well as to give some simple constant (i.e. 7/4) that is an upper bound on ϕ_r for every r. (Note that $1 + 2/\sqrt{r} < 7/4$ for $r \ge 8$.) We refer the reader to the remarks at the end of Section 6 for a discussion of the best upper bounds on ϕ_r given by our proof. These bounds are largest when r = 3 and 4.

Given this, the case r = 3 seems the most interesting one, especially that it is somewhat exceptional (if Füredi's conjecture is true). Also, the proofs in [9,15] proceeded by reducing the general case to the 3-partite version of the problem for 3-graphs. Therefore, we worked harder on the case r = 3 and were able to improve the bound $\phi_3 \leq 1.739...$ of Theorem 1 (obtained by optimizing the constants) to $\phi_3 \leq 13/9 = 1.444...$ in the following, somewhat more precise form.

Theorem 2.
$$f_3(n) \leq \frac{13}{9} \binom{n}{2}$$
 for every $n \geq 1$.

The key ingredient in our being able to improve the previous results comes from a strengthening of an auxiliary result of Füredi [9, Lemma 3.1] on the minimum number of edges that meet every 4-cycle in a graph. The exact statement of the new lemma and a short discussion can be found in Section 3.

Let us mention a few other related results. Mubayi [13] proved that if, in addition to C_4^3 , we also forbid the complete 3-partite 3-graph with parts of sizes 1, 2 and 4, then the maximum number of

triples on *n* vertices is indeed at most $\binom{n}{2}$. Mubayi and Verstraëte [16] showed that the maximum size of an r-graph on n vertices without any minimal 4-cycle (a certain r-graph family including all C_4^r -cycles) is $\binom{n-1}{r-1} + O(n^{r-2})$. Mubayi and Verstraëte [15] stated some generalizations of the $f_r(n)$ problem and presented various bounds.

Here we concentrate on the original function $f_r(n)$. Our paper is organized as follows. Section 2 lists the notation used in this paper. Some auxiliary results for graphs are presented in Section 3 and for hypergraphs in Sections 4–5. Theorem 1 is proved in Section 6 and Theorem 2 in Section 7.

2. Notation

We use the following notation in this paper. We denote $[n] = \{1, ..., n\}$. Also, $\binom{X}{k} = \{Y \subseteq X:$ |Y| = k is the set of all k-subsets of a set X. For brevity, we use abbreviations like $ab = \{a, b\}$ and $abc = \{a, b, c\}$ (and even $a = \{a\}$ in the cases when the meaning is clear).

An *r*-graph (or an *r*-uniform set system) on a set X is $\mathcal{G} \subseteq \binom{X}{r}$, a collection of *r*-subsets of X. We identify r-graphs with their edge sets so that, for example, $|\mathcal{G}|$ denotes the number of edges of \mathcal{G} . The *vertex set* of \mathcal{G} is $V(\mathcal{G}) = \bigcup_{E \in \mathcal{G}} E$. When r = 2, we use the term graph.

Some special *r*-graphs are as follows.

- $C_4(ab, cd)$ is the graph $\{ac, ad, bc, bd\}$.
- $C_4^3(ab, cd, ef)$ is the 3-graph {abc, abd, cef, def}. C_4^r denotes the family of *r*-graphs with four distinct edges *A*, *B*, *C*, *D* such that $A \cup B = C \cup D$ and $A \cap B = C \cap D = \emptyset$.
- $\mathcal{P}(T, P)$ is the 3-graph consisting of all triples *E* with $|T \cap E| = 2$ and $|P \cap E| = 1$, where *T* and *P* and are two disjoint sets of vertices.
- \mathcal{P}_i is a copy of $\mathcal{P}(T, P)$ with |T| = 3 and |P| = i.
- \mathcal{K}_5^- is the family of all 3-graphs with 5 vertices and at least 8 edges such that if two different triples are missing then these triples intersect in precisely one vertex. (Thus, up to isomorphism, \mathcal{K}_5^- has three different 3-graphs.)

Let $\mathcal{G} \subseteq {X \choose 2}$ be a graph and $ab \in {X \choose 2}$. The μ -multiplicity of ab in \mathcal{G} is $\mu_{\mathcal{G}}(ab) = |\{x \in X : ax, bx \in \mathcal{G}\}|$, the number of 2-paths connecting a to b. The pair ab is a diagonal of \mathcal{G} if $\mu_{\mathcal{G}}(ab) \ge 2$ (equivalently, if *a* and *b* are diametrally opposite points on some 4-cycle in \mathcal{G}). Let

$$\mathcal{D}(\mathcal{G}) = \left\{ xy \in \binom{X}{2} : \ \mu_{\mathcal{G}}(xy) \ge 2 \right\}$$

be the set of all diagonals of \mathcal{G} . The pair *ab* is a *half-diagonal* if $\mu_{\mathcal{G}}(ab) = 1$. Let

$$\mathcal{E}(\mathcal{G}) = \left\{ xy \in \binom{X}{2} : \ \mu_{\mathcal{G}}(xy) = 1 \right\}.$$

Let $\mathcal{G} \subseteq {X \choose r}$ be an *r*-graph. For $A \subseteq X$, its link (r - |A|)-graph is $\mathcal{G}_A = \{B \subseteq X \setminus A: A \cup B \in \mathcal{G}\}$. If |A| = r - 1, then we view \mathcal{G}_A as a set of vertices rather than as a set of single-element sets. Also, $\mathcal{G}[B] = \{E \in \mathcal{G}: E \subseteq B\}$ denotes the subgraph induced by a set $B \subseteq X$.

Let $\mathcal{G} \subseteq \binom{X}{3}$ be a 3-graph. Let

$$\mathcal{D}_{i}(\mathcal{G}) = \left\{ ab \in \binom{X}{2} : \left| \left\{ x \in X \setminus ab : ab \in \mathcal{D}(\mathcal{G}_{X}) \right\} \right| = i \right\}$$

consist of those pairs *ab* that are diagonals in exactly *i* link graphs of \mathcal{G} . Define $\mathcal{D}(\mathcal{G}) = \bigcup_{i \ge 1} \mathcal{D}_i(\mathcal{G})$ and $\mathcal{E}(\mathcal{G}) = (\bigcup_{x \in X} \mathcal{E}(\mathcal{G}_x)) \setminus \mathcal{D}(\mathcal{G})$. We call the elements of $\mathcal{D}(\mathcal{G})$ (respectively $\mathcal{E}(\mathcal{G})$) diagonals (respectively tively half-diagonals) of the 3-graph \mathcal{G} .

3. Removing diagonals in graphs

Füredi [9, Lemma 3.1] proved that any bipartite graph \mathcal{G} can be made \mathcal{C}_4 -free by removing at most $|\mathcal{D}(\mathcal{G})|$ edges. This lemma, interesting on its own, turned out to be very useful in proving upper bounds on $f_r(n)$, see [9,15]. Here we strengthen Füredi's lemma in two directions simultaneously. Firstly, we remove the assumption that \mathcal{G} is bipartite. Secondly, we show that every diagonal of the original graph \mathcal{G} is neither a diagonal nor a half-diagonal in the obtained graph \mathcal{G}' . (In general, \mathcal{G}' need not consist of isolated edges only so it may have some other pairs as half-diagonals.)

Lemma 3. For any graph \mathcal{G} there is an edge set $\mathcal{R} \subseteq \mathcal{G}$ such that $|\mathcal{R}| \leq |\mathcal{D}(\mathcal{G})|$ and

$$\mathcal{D}(\mathcal{G}) \cap \left(\mathcal{D}(\mathcal{G}') \cup \mathcal{E}(\mathcal{G}') \right) = \emptyset,$$

where $\mathcal{G}' = \mathcal{G} \setminus \mathcal{R}$, that is, $\mu_{\mathcal{G}'}(ab) = 0$ for every diagonal ab of \mathcal{G} . (In particular, \mathcal{G}' is \mathcal{C}_4 -free.)

Proof. Let us prove the following claim first.

Claim 1. For any graph \mathcal{H} that contains at least one 4-cycle, we can remove a non-empty set $\mathcal{R} \subseteq \mathcal{H}$ of edges so that the obtained graph $\mathcal{H}' = \mathcal{H} \setminus \mathcal{R}$ satisfies

$$\left|\mathcal{D}(\mathcal{H}) \setminus \left(\mathcal{D}(\mathcal{H}') \cup \mathcal{E}(\mathcal{H}')\right)\right| \ge |\mathcal{R}|,\tag{4}$$

that is, we have $\mu_{\mathcal{H}'}(ab) = 0$ for at least $|\mathcal{R}|$ diagonals $ab \in \mathcal{D}(\mathcal{H})$.

Proof. Choose any uv which is an edge of at least one C_4 -subgraph of \mathcal{H} . For $x \in V(\mathcal{H})$, let $D(x) = \{y \in V(\mathcal{H}): xy \in \mathcal{D}(\mathcal{H})\}$. Define

$$X = D(u) \cap \mathcal{H}_{v} = \left\{ x \in V(\mathcal{H}): \ ux \in \mathcal{D}(\mathcal{H}), \ vx \in \mathcal{H} \right\},$$

$$Y = D(v) \cap \mathcal{H}_{u} = \left\{ y \in V(\mathcal{H}): \ vy \in \mathcal{D}(\mathcal{H}), \ uy \in \mathcal{H} \right\}.$$

Note that both *X* and *Y* are non-empty, because there is a 4-cycle containing the edge uv. Also, $u, v \notin X \cup Y$.

Remove all edges between v and X and between u and Y. It is enough to show that in the obtained graph \mathcal{H}' all pairs vy with $y \in Y$ and ux with $x \in X$ have μ -multiplicity 0. Suppose on the contrary that, for example, for some $w \in V(\mathcal{H}')$ and $y \in Y$ we have $vw, wy \in \mathcal{H}'$. Then $w \neq u$ because uy has been deleted but $wy \in \mathcal{H}'$. Thus $C_4(uw, vy) \subseteq \mathcal{H}$. By definition, $w \in X$. But all edges between v and X have been deleted and cannot belong to \mathcal{H}' , a contradiction that finishes the proof of Claim 1. \Box

Let us return to the proof of the lemma. Starting with $\mathcal{H} = \mathcal{G}$, we iteratively apply Claim 1 and keep removing edges from \mathcal{H} until no \mathcal{C}_4 -subgraph remains. Suppose we have removed k edges in total. Let \mathcal{H}' be the final graph. Then the number of $ab \in \mathcal{D}(\mathcal{G})$ with $\mu_{\mathcal{H}'}(ab) = 0$ is at least k. Since \mathcal{H}' is \mathcal{C}_4 -free, all other diagonals ab of \mathcal{G} satisfy $\mu_{\mathcal{H}'}(ab) = 1$. For each $ab \in \mathcal{D}(\mathcal{G}) \cap \mathcal{E}(\mathcal{H}')$ pick an edge $E_{ab} \in \mathcal{H}'$ whose removal would bring the μ -multiplicity of ab to 0. Note that there are at most $|\mathcal{D}(\mathcal{G})| - k$ such pairs ab. Let \mathcal{G}' be obtained from \mathcal{H}' by removing all such edges E_{ab} . Clearly, the edge set $\mathcal{R} = \mathcal{G} \setminus \mathcal{G}'$ satisfies all the conclusions of the lemma. \Box

We will also need the following simple observation.

Lemma 4. Let \mathcal{G} be a \mathcal{C}_4 -free graph on n vertices with $g = |\mathcal{G}|$ edges. Then $|\mathcal{E}(\mathcal{G})| \ge 2g - n$.

Proof. Let $g_1 \ge \cdots \ge g_n$ be the degrees of \mathcal{G} . Since $\mathcal{C}_4 \nsubseteq \mathcal{G}$, we have

$$\left|\mathcal{E}(\mathcal{G})\right| = \sum_{i=1}^{n} \binom{g_i}{2}.$$
(5)

Note that $\binom{k}{2} \ge k-1$ for every non-negative integer *k*. This, (5), and the identity $\sum_{i=1}^{n} (g_i - 1) = 2g - n$ imply the lemma. \Box

(3)

4. Multiple diagonals in C_4^3 -free 3-graphs

Here we present some auxiliary lemmas about *multiple diagonals* (i.e. pairs in $\bigcup_{i \ge 2} \mathcal{D}_i(\mathcal{G})$) for \mathcal{C}_4^3 -free 3-graphs. All results in this section are obtained by a straightforward case analysis. The reader may wish to skip the proofs and refer only to the statements of the results.

The following lemma implies that $\mathcal{D}_i(\mathcal{G}) = \emptyset$ for any \mathcal{C}_4^3 -free 3-graph \mathcal{G} except possibly for $i \in \{0, 1, 3\}$. Recall that $\mathcal{P}(X, Y)$ denotes the 3-graph with edges $\{xyz: xz \in \binom{X}{2}, y \in Y\}$.

Lemma 5. For an arbitrary C_4^3 -free 3-graph \mathcal{G} , each pair ab of vertices is a diagonal for either 0, 1, or 3 link graphs. In the last case, there is a 3-set X such that $\mathcal{P}(X, ab) \subseteq \mathcal{G}$ and, moreover, for every $x \in X$, $C_4(ab, X \setminus x)$ is the unique cycle of the link graph \mathcal{G}_x that has ab as a diagonal.

Proof. Suppose that *ab* is a diagonal for a least two link graphs, say, $ab \in \mathcal{D}(\mathcal{G}_x) \cap \mathcal{D}(\mathcal{G}_{x'})$ for some distinct $x, x' \in V(\mathcal{G})$. Let the corresponding 4-cycles be $\mathcal{C}_4(ab, cd) \subseteq \mathcal{G}_x$ and $\mathcal{C}_4(ab, c'd') \subseteq \mathcal{G}_{x'}$.

Let us first derive a contradiction by assuming that $x' \notin cd$. At least one of two distinct vertices c' and d' is not equal to x, so assume without loss of generality that $d' \neq x$. Likewise, by the symmetry of cd, we can assume that $c \neq d'$. But then $C_4^3(xc, ab, x'd') \subseteq \mathcal{G}$, a contradiction.

This shows that $x' \in cd$. Thus ab can be a diagonal for at most three link graphs of \mathcal{G} . Without loss of generality assume that x' = c (thus $ab \in \mathcal{D}(\mathcal{G}_c)$). It follows that $\mathcal{C}_4(ab, cd)$ is the unique cycle of \mathcal{G}_x having ab for a diagonal: if $av, bv \in \mathcal{G}_x$ with $v \notin cd$, then $\mathcal{C}_4(ab, dv)$ is another 4-cycle with the diagonal ab that omits the vertex c = x', a contradiction to the arguments from the previous paragraph. Clearly, the roles of c and x can be interchanged. Thus the unique 4-cycle in \mathcal{G}_c that has ab for a diagonal has to use the vertex x. If $\mathcal{C}_4(ab, ex) \subseteq \mathcal{G}_c$ with $e \neq d$, then $\mathcal{C}_4^3(ce, ab, dx) \subseteq \mathcal{G}$, a contradiction. Otherwise, the unique cycle is $\mathcal{C}_4(ab, dx) \subseteq \mathcal{G}_c$. It follows that $\mathcal{P}(cdx, ab) \subseteq \mathcal{G}$ and $ab \in \mathcal{D}_3(\mathcal{G})$. By symmetry, $\mathcal{C}_4(cx, ab)$ is the unique 4-cycle of \mathcal{G}_d that has ab as a diagonal. The lemma is proved. \Box

Lemma 6. Let \mathcal{G} be a \mathcal{C}_4^3 -free 3-graph and let $\mathcal{P}(xyz, ab) \subseteq \mathcal{G}$. If $auv, buv \in \mathcal{G}$, then $uv \subseteq xyz$.

Proof. If $uv \not\subseteq xyz$, then by symmetry we can assume that $xy \cap uv = \emptyset$. But then $\mathcal{C}_4^3(uv, ab, xy) \subseteq \mathcal{G}$, a contradiction. \Box

Lemma 7. Let \mathcal{G} be a \mathcal{C}_4^3 -free 3-graph and let $\mathcal{P}(T, P)$, $\mathcal{P}(T', P') \subseteq \mathcal{G}$ be such that $T \neq T'$, $T = t_1 t_2 t_2$ and $T' = t'_1 t'_2 t'_3$ are 3-element sets while $P \supseteq p_1 p_2$ and $P' \supseteq p'_1 p'_2$ have at least 2 elements each. If

$$\left(\binom{T}{2} \cup \binom{P}{2}\right) \cap \left(\binom{T'}{2} \cup \binom{P'}{2}\right) \neq \emptyset.$$

then |P| = |P'| = 2, $T \cup P = T' \cup P'$, and the 5-set $T \cup P$ spans a \mathcal{K}_5^- -subgraph in \mathcal{G} .

Proof. We have $p_1p_2 \neq p'_1p'_2$ for otherwise the pair p_1p_2 is a diagonal for at least four different link graphs \mathcal{G}_x (namely, for $x \in T \cup T'$), contradicting Lemma 5. Up to a symmetry, there are the following two cases to consider.

Case 1. $T' = \{t_1, t_2, t'_3\}.$

Since $T \neq T'$, we have $t_3 \neq t'_3$. Let us show that $p'_1 \in p_1 p_2 t_3$. Indeed, otherwise at least one of $p_1 \neq p_2$ is distinct from t'_3 , say $p_1 \neq t'_3$. But then $C_4^3(p_1t_3, t_1t_2, p'_1t'_3) \subseteq \mathcal{G}$, a contradiction. By symmetry, $p'_2 \in p_1 p_2 t_3$ and $p_1, p_2 \in p'_1 p'_2 t'_3$. Since $p_1 p_2 \neq p'_1 p'_2$, we have $t'_3 \in p_1 p_2$ and $t_3 \in p'_1 p'_2$.

If there is a vertex $p_3 \in P \setminus p_1p_2$, then the above arguments with p_1 replaced by p_3 imply that $T \cup p_1p_2p_3 \subseteq T' \cup p'_1p'_2$, a contradiction. It follows that |P| = 2 and, by symmetry, |P'| = 2. This in turn implies that $T \cup P = T' \cup P'$. It routinely follows that at most one triple of $T \cup P$ (namely $P \cup P'$) can be missing from \mathcal{G} , settling Case 1.

Case 2. Let $p'_1 = t_1$ and $p'_2 = t_2$.

Suppose first that $T' \not\subseteq T \cup p_1p_2$. By symmetry, we can assume that $t'_1 \notin T \cup p_1p_2$. If $p_1 \notin T'$, then one of $t'_2 \neq t'_3$ is not equal to t_3 , say $t'_2 \neq t_3$, and we have $\mathcal{C}^3_4(p_1t_3, t_1t_2, t'_1t'_2) \subseteq \mathcal{G}$, a contradiction. Hence $p_1 \in T'$. Likewise, $p_2 \in T'$. Since $t'_1 \notin p_1p_2$, we have $t'_2t'_3 = p_1p_2$. But then $\mathcal{C}^3_4(t'_1t'_2, t_1t_2, t_3t'_3) \subseteq \mathcal{G}$, a contradiction.

Thus $T' \subseteq T \cup p_1 p_2$, that is, $T' = p_1 p_2 t_3$. Since $p_1, p_2 \in P$ were arbitrary, we conclude that |P| = 2. We cannot have another vertex $p'_3 \in P' \setminus p'_1 p'_2$ for otherwise $C_4^3(t_1t_2, p_1p_2, p'_3t_3) \subseteq \mathcal{G}$, a contradiction. Thus |P'| = 2 and $T \cup P = T' \cup P'$. It is routine to see that most two triples can be missing from $\mathcal{G}[T \cup P]$, namely T and T' with $|T \cap T'| = 1$.

The lemma is proved. \Box

Let us call any element of $\binom{T}{2} \cup \binom{P}{2}$, where |T| = 3 and $|P| \ge 2$, a private pair of the 3-graph $\mathcal{P}(T, P)$.

Lemma 8. Let $\mathcal{G} \in \mathcal{K}_5^-$. Then for every two distinct points $x, y \in V(\mathcal{G})$ there are two triples in \mathcal{G} whose symmetric difference is xy.

Proof. Assume $V(\mathcal{G}) = abcde$ with possible missing triples being *abc* and *cde*. Up to a symmetry, there are three different cases to consider. If *xy* is respectively *ab*, *ac*, and *ad*, then the required triples are $uvx, uvy \in \mathcal{G}$, where uv is respectively *de*, *bd*, and *be*. \Box

Lemma 9. Let \mathcal{G} be a \mathcal{C}_4^3 -free 3-graph and $ab \in \mathcal{E}(\mathcal{G})$. Then there is exactly one pair uv with auv, $buv \in \mathcal{G}$.

Proof. Let *u* be such that $ab \in \mathcal{E}(\mathcal{G}_u)$. This means that there is a vertex *v* such that $av, bv \in \mathcal{G}_u$, which implies the existence of the desired pair uv. On the other hand, if there was another such pair u'v', then we would obtain a contradiction: if $uv \cap u'v' = \emptyset$, then $\mathcal{C}_4^3(uv, ab, u'v') \subseteq \mathcal{G}$, otherwise $ab \in \mathcal{D}(\mathcal{G})$. \Box

5. Removing diagonals in 3-graphs

Recall that, for a 3-graph \mathcal{G} and an integer $i \ge 0$, $\mathcal{D}_i(\mathcal{G})$ consists of all pairs *ab* such that *ab* is a diagonal in exactly *i* link graphs \mathcal{G}_x . Also,

$$\mathcal{D}(\mathcal{G}) = \bigcup_{i \ge 1} \mathcal{D}_i(\mathcal{G}) = \bigcup_{x \in V(\mathcal{G})} \mathcal{D}(\mathcal{G}_x),$$

is the set of all diagonals, ignoring their multiplicity.

Here we prove a version of Lemma 3 for 3-graphs. We will show that one can destroy all diagonals of a C_4^3 -free 3-graph \mathcal{G} by removing at most $|\mathcal{D}(\mathcal{G})|$ edges. Although we cannot prevent some diagonals of \mathcal{G} becoming half-diagonals of the final 3-graph \mathcal{G}' , we nonetheless get some control over their distribution. We do need the assumption that $C_4^3 \notin \mathcal{G}$: for example, one has to remove $\Omega(n^3)$ edges in order to destroy all diagonals in the complete 3-graph $\binom{[n]}{3}$. As we already know by Lemma 5, this assumption implies that $\mathcal{D}_i(\mathcal{G})$ is empty except possibly for i = 0, 1, or 3. It is not surprising that the main idea behind the proof of Lemma 10 below is to apply Lemma 3 to each link graph \mathcal{G}_x .

Lemma 10. Let \mathcal{G} be a \mathcal{C}_4^3 -free 3-graph with vertex set V. Let \preccurlyeq be an arbitrary linear ordering of V. Then there is a subgraph $\mathcal{G}' \subseteq \mathcal{G}$ such that all the following properties hold.

1. $|\mathcal{G}| - |\mathcal{G}'| \leq |\mathcal{D}(\mathcal{G})|.$

- 2. $\mathcal{D}(\mathcal{G}') = \emptyset$, that is, all link graphs of \mathcal{G}' are \mathcal{C}_4 -free.
- 3. If $ab \in \mathcal{D}_1(\mathcal{G})$, then there do not exist $u, v \in V \setminus ab$ with $auv, buv \in \mathcal{G}'$. (This property implies that $\mathcal{E}(\mathcal{G}') \cap \mathcal{D}_1(\mathcal{G}) = \emptyset$.)

4. If $ab \in \mathcal{D}_3(\mathcal{G})$, say

$$ab \in \mathcal{D}(\mathcal{G}_{x}) \cap \mathcal{D}(\mathcal{G}_{y}) \cap \mathcal{D}(\mathcal{G}_{z}), \quad \text{with } x \prec y \prec z, \tag{6}$$

and auv, $buv \in \mathcal{G}'$, then necessarily uv = yz.

Proof. We take the vertices of \mathcal{G} one by one in the \preccurlyeq -ordering. For each $x \in V$, we construct a set \mathcal{R}_x of edges so that $\mathcal{G}' = \mathcal{G} \setminus (\bigcup_{x \in V} \mathcal{R}_x)$ satisfies all the properties. In order to establish Property 1, we also define an injection $\ell : \bigcup_{x \in V} \mathcal{R}_x \to \mathcal{D}(\mathcal{G})$. Since we will need to refer to the original graph \mathcal{G} later, it remains unchanged throughout the proof. For $ab \in \mathcal{D}(\mathcal{G})$, let

$$f(ab) = \min_{\mathcal{A}} \{ y \in V \colon ab \in \mathcal{D}(\mathcal{G}_y) \},\tag{7}$$

be the \preccurlyeq -smallest vertex $y \in V$ with $ab \in \mathcal{D}(\mathcal{G}_{\gamma})$.

Suppose we are about to start working on the next vertex $x \in V$. Define $V_{\prec x} = \{y \in V: y \prec x\}$ and

$$\mathcal{H}^{x} = \mathcal{G} \setminus \left(\bigcup_{y \in V_{\prec x}} \mathcal{R}_{y}\right).$$
(8)

One can view \mathcal{H}^x as the 'current' 3-graph at the moment when we have just deleted the sets \mathcal{R}_y for all *y* preceding *x*.

Apply Lemma 3 to \mathcal{H}_x^x , the link graph of the vertex x in the 3-graph \mathcal{H}^x . The lemma returns an edge set $\mathcal{R} \subseteq \mathcal{H}_x^x$. Let $\mathcal{R}_x' = \{abx: ab \in \mathcal{R}\} \subseteq \mathcal{H}^x$ and $\mathcal{H}' = \mathcal{H}^x \setminus \mathcal{R}_x'$. Extend the function ℓ to \mathcal{R}_x' by mapping \mathcal{R}_x' injectively into $\mathcal{D}(\mathcal{H}_x^x) \subseteq \mathcal{D}(\mathcal{G}_x)$. (Note that $|\mathcal{R}_x'| \leq |\mathcal{D}(\mathcal{H}_x^x)|$ by Lemma 3.) We will argue later that no new value of ℓ coincides with a previous value.

Let $\mathcal{R}''_x = \emptyset$. Take one by one pairs $ab \in \mathcal{D}(\mathcal{G}_x) \setminus \mathcal{D}(\mathcal{H}^x_x)$. If x = f(ab), where f(ab) is defined by (7), and there is a vertex w with $aw, bw \in \mathcal{H}'_x$ (of course, if w exists, it is unique because \mathcal{H}'_x is \mathcal{C}_4 -free), and $awx \notin \mathcal{R}''_x$, then add awx to \mathcal{R}''_x and define $\ell(awx) = ab$. (To avoid any ambiguity, we may agree that, for example, $a \prec b$.) Otherwise, we do nothing with \mathcal{R}''_x for this pair ab. Having processed all pairs $ab \in \mathcal{D}(\mathcal{G}_x) \setminus \mathcal{D}(\mathcal{H}^x_x)$ this way, let $\mathcal{R}_x = \mathcal{R}'_x \cup \mathcal{R}''_x$. Note that $\mathcal{R}_x \subseteq \mathcal{H}^x$ is disjoint from $\bigcup_{y \in V_{\prec x}} \mathcal{R}_y$ by (8). The function ℓ has already been defined on the elements of this set; we have

$$\ell(\mathcal{R}_{x}) \subseteq \mathcal{D}(\mathcal{G}_{x}).$$
(9)

This finishes the definition of \mathcal{R}_x .

Being done with *x*, take the next vertex of *V* with respect the \preccurlyeq -ordering. If *x* is the last vertex, then we have defined \mathcal{R}_y for every $y \in V$ and we let $\mathcal{G}' = \mathcal{G} \setminus (\bigcup_{v \in V} \mathcal{R}_y)$.

We have achieved that, for every $ab \in \mathcal{D}(\mathcal{G}_x)$ with x = f(ab), the link graph $(\mathcal{H}^x \setminus \mathcal{R}_x)_x$ contains no 2-path connecting a to b. Indeed, this follows from Lemma 3 if $ab \in \mathcal{D}(\mathcal{H}_x^x)$ and from the definition of \mathcal{R}_x'' otherwise. Thus, for every $ab \in \mathcal{D}(\mathcal{G})$ we have

$$\mu_{\mathcal{G}'_{\nu}}(ab) = \mu_{(\mathcal{H}^{x} \setminus \mathcal{R}_{x})_{x}}(ab) = 0, \quad \text{where } x = f(ab). \tag{10}$$

Let us show all the claims with respect to the final 3-graph \mathcal{G}' .

Property 1. It suffices to show that $\ell : \bigcup_{x \in V} \mathcal{R}_x \to \mathcal{D}(\mathcal{G})$ is an injection.

Let $ab \in \mathcal{D}(\mathcal{G})$ be arbitrary and let $x = \widehat{f}(ab)$. Let us show that if $ab \in \mathcal{D}(\mathcal{G})$ belongs to $\ell(\mathcal{R}_u)$ for some $u \in V$, then u = x. This is clearly true for $ab \in \mathcal{D}_1(\mathcal{G})$ by (9), so suppose that $ab \in \mathcal{D}_3(\mathcal{G})$. By Lemma 5, there is a pair $yz \in \binom{V}{2}$ with $\mathcal{P}(xyz, ab) \subseteq \mathcal{G}$. Since x = f(ab), we have $x \prec y$ and $x \prec z$. By (9), we have $ab \in \mathcal{D}(\mathcal{G}_u)$. Hence $u \in xyz$. Suppose on the contrary that $u \neq x$, say u = y. Since x = f(ab) and $\mathcal{H}^y \subseteq \mathcal{H}^x \setminus \mathcal{R}_x$, (10) implies that at least one of the triples axy and bxy is missing from \mathcal{H}^y . But $\mathcal{C}_4(ab, xz)$ is the unique 4-cycle of \mathcal{G}_y having ab for a diagonal by the second part of Lemma 5. Hence $ab \notin \mathcal{D}(\mathcal{H}^y)$. Thus $ab \notin \ell(\mathcal{R}'_y)$. Also, $ab \notin \ell(\mathcal{R}''_y)$ because $y \neq f(ab)$. So $ab \notin \ell(\mathcal{R}_y)$, a contradiction that proves that u = x as claimed.

Hence, it is enough to show that ℓ is injective on $\mathcal{R}_x = \mathcal{R}'_x \cup \mathcal{R}''_x$ for every $x \in V$. Note that $\ell(\mathcal{R}'_x) \subseteq \mathcal{D}(\mathcal{H}^x_x)$ is disjoint from $\ell(\mathcal{R}''_x) \subseteq \mathcal{D}(\mathcal{G}_x) \setminus \mathcal{D}(\mathcal{H}^x_x)$. The injectivity of ℓ on each of \mathcal{R}'_x and \mathcal{R}''_x is obvious from the definition. Thus ℓ is an injection, as required.

643

Property 2 clearly holds because Lemma 3 was applied to the x-link graph of the current hypergraph for each $x \in V$.

Property 3. Suppose on the contrary that *ab* and *uv* contradict it. Let $ab \in \mathcal{D}(\mathcal{G}_x)$. Choose a 4-cycle demonstrating this fact, say $C_4(ab, cd) \subseteq G_x$ for some vertices *c* and *d*. We cannot have $x \in uv$ because x = f(ab) and there is no 2-path connecting a to b in \mathcal{G}'_x by (10). If uv = cd, then $\mathcal{P}(cdx, ab) \subseteq \mathcal{G}$, which shows that $ab \in \mathcal{D}(\mathcal{G}_x) \cap \mathcal{D}(\mathcal{G}_c) \cap \mathcal{D}(\mathcal{G}_d)$, a contradiction to our assumption $ab \in \mathcal{D}_1(\mathcal{G})$. Otherwise (if $uv \neq cd$), we can assume by symmetry that $c \notin uv$, but then $\mathcal{C}^3_4(uv, ab, xc) \subseteq \mathcal{G}$, a contradiction proving Property 3.

Property 4. Suppose that vertices a, b, x, y, z and a pair uv satisfy all assumptions of Property 4. Lemma 5 implies that $\mathcal{P}(xyz, ab) \subseteq \mathcal{G}$ and Lemma 6 implies that $uv \subseteq xyz$. Since x = f(ab), the link graph \mathcal{G}'_x cannot contain a 2-path connecting *a* and *b* by (10). Thus we have uv = yz, as required.

The lemma is completely proved. \Box

Remark. In fact, Property 2 follows from Properties 3–4 (and the C_4^3 -freeness of \mathcal{G}) but it is convenient to have it explicitly stated.

The following lemma is needed in the proof of Theorem 2 but not in that of Theorem 1.

Lemma 11. Let \mathcal{G} be an arbitrary \mathcal{C}_4^3 -free 3-graph on an n-set V. Then we can find a set of edges $\mathcal{R} \subseteq \mathcal{G}$ such that $\mathcal{G}' = \mathcal{G} \setminus \mathcal{R}$ does not contain a \mathcal{K}_5^- -subgraph and

$$\left|\mathcal{D}(\mathcal{G}')\cup\mathcal{E}(\mathcal{G}')\right| \leqslant \binom{n}{2} - |\mathcal{R}|.$$
(11)

Proof. Let $\mathcal{A} \subseteq {\binom{V}{5}}$ be the family of the vertex sets of all \mathcal{K}_5^- -subgraphs of \mathcal{G} .

Let us show that

$$A, B \in \mathcal{A}, A \neq B \implies |A \cap B| \leq 1.$$
⁽¹²⁾

Let $A, B \in \mathcal{A}$. Since \mathcal{G} is \mathcal{C}_4^3 -free, Lemma 8 implies that $|A \cap B| = 2$ is impossible. Suppose next that $A \cap B = xyz$. Let $A \setminus xyz = uv$. Every two of the triples uvx, uvy, uvz share two vertices so at most one can be missing from \mathcal{G} because $\mathcal{G}[A] \in \mathcal{K}_{5}^{-}$. Assume that $uvx, uvy \in \mathcal{G}$. Lemma 8, when applied to *xy* and *B*, produces $u', v' \in B$ with $u'v'x, u'v'y \in G$. This gives $C_4^3(uv, xy, u'v') \subseteq G$, a contradiction. Finally, let us derive a contradiction by assuming that $|A \cap B| = 4$. Since this can make our task only harder, assume that two edges are missing from $\mathcal{G}[A]$ (respectively $\mathcal{G}[B]$). Let $a \in A$ (respectively $b \in B$) be the vertex shared by these two edges. The 3-graph $\mathcal{G}[A]$ contains two \mathcal{P}_2 -subgraphs whose private pairs form two triangles sharing the vertex a. (Recall that \mathcal{P}_2 is a copy of $\mathcal{P}(xyz, uv)$ and its private pairs are uv, xy, xz, and yz.) A quadruple $X = A \cap B$ of vertices contains either 2 disjoint private pairs (if $a \notin X$) or a triangle with a pendant edge (if $a \in X$). The analogous claims hold for B. Since $A \neq B$, the 3-graphs $\mathcal{G}[A]$ and $\mathcal{G}[B]$ cannot share a private pair by Lemma 7. It follows that $a, b \notin X$ and the missing edges are auv, axy, bux, bvy, where X = uvxy. But then $C_4^3(uy, ab, vx) \subseteq \mathcal{G}$. This contradiction proves (12).

Let $\mathcal{R} = \mathcal{M} \cup \mathcal{S}$, where $\mathcal{M} = \bigcup_{A \in \mathcal{A}} \mathcal{G}[A]$ consists of what we call *main triples* and

$$\mathcal{S} = \{ E \in \mathcal{G} \colon \exists A \in \mathcal{A}, |E \cap A| = 2 \},\$$

consists of all secondary triples. Let $\mathcal{G}' = \mathcal{G} \setminus \mathcal{R}$. Let us define the logic predicate $\mathcal{L}(x, y, uv, A)$ which is true if and only if $A \in \mathcal{A}$, $u, v, y \in A$, $x \in V \setminus A$, and $uvx, uvy \in \mathcal{G}$. In order to prove the lemma it is enough to specify a set $\mathcal{R}' \subseteq \binom{V}{2}$ of pairs such that $|\mathcal{R}'| \ge |\mathcal{R}|$

and

$$\mathcal{R}' \cap \left(\mathcal{D}(\mathcal{G}') \cup \mathcal{E}(\mathcal{G}') \right) = \emptyset.$$
(13)

Let $\mathcal{M}' = \bigcup_{A \in \mathcal{A}} {A \choose 2}$ consist of what we call *main pairs*. Let us call a pair $xy \in {V \choose 2}$ a *secondary pair* if there are u, v, and A satisfying $\mathcal{L}(x, y, uv, A)$ or $\mathcal{L}(y, x, uv, A)$. Let $\mathcal{S}' \subseteq {V \choose 2}$ consist of all secondary pairs. Let us show that $\mathcal{R}' = \mathcal{M}' \cup \mathcal{S}'$ is the required set.

Let us check (13) first. Suppose on the contrary to (13) that $xy \in \mathcal{R}'$ and $ab \in \binom{V}{2}$ satisfy $abx, aby \in \mathcal{G}'$. If xy lies inside some $A \in \mathcal{A}$ (i.e. it is a main pair), then $a \notin A$ and $b \notin A$ for otherwise, for example, aby belongs to $\mathcal{R} = \mathcal{G} \setminus \mathcal{G}'$, a contradiction. By Lemma 8, there are $a', b' \in A$ with $a'b'x, a'b'y \in \mathcal{G}$. But then $C_4^3(ab, xy, a'b') \subseteq \mathcal{G}$, a contradiction. So suppose that xy is a secondary pair, which is witnessed by $\mathcal{L}(x, y, uv, A)$. Since $aby \in \mathcal{G} \setminus \mathcal{R}$, we have $a \notin A$ and $b \notin A$. But then $C_4^3(ab, xy, uv) \subseteq \mathcal{G}$, a contradiction proving (13).

Thus, in order to finish the proof of the lemma, it is enough to show that $|\mathcal{R}| \leq |\mathcal{R}'|$. Inequality (12) implies that $|\mathcal{M}'| = 10|\mathcal{A}| \geq |\mathcal{M}|$.

It remains to consider secondary pairs and triples. Let *xy* be an arbitrary secondary pair with $\mathcal{L}(x, y, uv, A)$ being true. Observe that *xy* cannot be a subset of some $B \in \mathcal{A}$. Indeed, otherwise $A \cap B = \{y\}$ by (12) while there are $u'v' \in B$ with $u'v'x, u'v'y \in \mathcal{G}$ by Lemma 8, giving $\mathcal{C}_4^3(u'v', xy, uv) \subseteq \mathcal{G}$, a contradiction. Therefore, we have $\mathcal{M}' \cap \mathcal{S}' = \emptyset$. (It also holds that $\mathcal{M} \cap \mathcal{S} = \emptyset$ but we do not need this fact.)

Claim 1. Suppose that $\mathcal{L}(x, y, uv, A)$ holds for some x, y, uv, and A. Then there are no u'v' and A' such that $A' \neq A$ and $\mathcal{L}(x, y, u'v', A')$ is true. Moreover, there are at most 2 choices of an unordered pair u'v' satisfying $\mathcal{L}(x, y, u'v', A)$.

Proof. If the first statement is false, then $A \cap A' = \{y\}$ by (12), and $C_4^3(uv, xy, u'v') \subseteq \mathcal{G}$, a contradiction.

Suppose on the contrary to the second statement that the link graph \mathcal{G}_x has at least three witness pairs inside the 4-element set $A \setminus y$. Three of these pairs form either a triangle $\{u_1u_2, u_1u_3, u_2u_3\}$, a star $\{u_0u_1, u_0u_2, u_0u_3\}$, or a path $\{u_1u_2, u_2u_3, u_3u_4\}$.

Suppose that we have the triangle. Let *z* be the unique vertex of $A \setminus u_1u_2u_3y$. Then every two of the triples u_1yz , u_2yz , and u_3yz share two vertices, so at most one of the triples can be missing from \mathcal{G} (because $\mathcal{G}[A] \in \mathcal{K}_5^-$). By symmetry, assume that u_1yz , $u_2yz \in \mathcal{G}$. But then $\mathcal{C}_4^3(u_3x, u_1u_2, yz) \subseteq \mathcal{G}$, a contradiction.

Suppose that we have the 3-star. Like before, at least two of the triples u_1u_2y , u_1u_3y , and u_2u_3y are present in \mathcal{G} , say u_1u_2y and u_1u_3y . But then $\mathcal{C}_4^3(u_0x, u_2u_3, u_1y) \subseteq \mathcal{G}$, a contradiction.

Finally, we cannot have the 3-path for otherwise $C_4^3(u_1u_2, yx, u_3u_4) \subseteq \mathcal{G}$. Claim 1 is proved. \Box

Let us define the auxiliary bipartite graph \mathcal{H} with parts S and S', where for every satisfied predicate $\mathcal{L}(x, y, uv, A)$ we put an edge between xy and uvx. Note that $uvx \in \mathcal{G}$ is necessarily a secondary triple because it intersects $A \in \mathcal{A}$ in exactly two vertices, u and v. Also, we do not have to worry about multiple edges in \mathcal{H} because if $\{xy, uvx\} \in \mathcal{H}$ then there is the unique A with $\mathcal{L}(x, y, uv, A)$ by Claim 1.

Let us show that for every edge $\{xy, uvx\} \in \mathcal{H}$ we have

$$d(xy) \leqslant d(uvx),\tag{14}$$

where *d* denotes the degree of a vertex in the graph \mathcal{H} .

Suppose first that there are no A' and u'v' such that $\mathcal{L}(y, x, u'v', A')$ holds. Claim 1 implies that $d(xy) \leq 2$. On the other hand, pick the (unique) set $A \in \mathcal{A}$ with $A \cap uvx = uv$. Then there are at least two choices of $z \in A \setminus uv$ with $\mathcal{L}(x, z, uv, A)$. (Indeed, since $\mathcal{G}[A] \in \mathcal{K}_5^-$, at most one triple uvz with $z \in A \setminus uv$ can be missing from \mathcal{G} .) Thus $d(uvx) \geq 2$, as required.

It remains to assume that both $\mathcal{L}(x, y, uv, A)$ and $\mathcal{L}(y, x, u'v', A')$ hold for some A, A', and u'v'. By Claim 1, A and A' are uniquely determined while we have at most two choices for each of uvand u'v'. Hence $d(xy) \leq 4$. By considering a possible generalized 4-cycle $\mathcal{C}_4^3(uv, xy, u'v')$, we conclude that $uv \cap u'w' \neq \emptyset$, say u = u'. By (12), $A \cap A' = \{u\}$. Thus uvx intersects each of A and A' in exactly two vertices. By the argument of the previous paragraph, there are at least two choices of $z \in A \setminus uv$ satisfying $\mathcal{L}(x, z, uv, A)$ and at least two choices of $z' \in A' \setminus ux$ satisfying $\mathcal{L}(v, z', ux, A')$. Moreover, the four corresponding secondary pairs are pairwise different. (Two of them contain x but not v and two contain v but not x.) Hence, $d(uvx) \ge 4$. This proves (14).

Let us assign weights to the edges of \mathcal{H} so that an edge $\{xy, uyx\} \in \mathcal{H}$ gets weight 1/d(xy). Then the total edge weight is equal to |S'|. On the other hand, for every $uvx \in S$, the sum of the weights of all edges incident to uvx is at least 1 by (14). Hence $|S'| \ge |S|$ and we obtain

$$|\mathcal{R}| \leq |\mathcal{M}| + |\mathcal{S}| \leq |\mathcal{M}'| + |\mathcal{S}'| = |\mathcal{R}'|,$$

proving the lemma.

6. Upper bounds on $f_r(n)$ for general r

Proof of Theorem 1. Given $r \ge 3$, we choose some real σ (to be specified later) with $0 < \sigma < 1$. Let n be sufficiently large and let \mathcal{G} be an arbitrary \mathcal{C}_4^r -free *r*-graph on an *n*-set *V*.

Let $C \subseteq V$ be a random uniformly distributed subset of size (r-2)t, where

$$t = \left\lfloor \frac{(1-\sigma)n}{r-2} \right\rfloor.$$
(15)

Let $S = V \setminus C$ and s = |S|. Take a random partition of C into (r-2)-sets C_1, \ldots, C_t , all partitions being equally likely. Let T = [t]. (We assume that $[t] \cap V = \emptyset$.)

Define a 3-graph \mathcal{H} on $S \cup T$ by including those triples *abx* such that $ab \in \binom{S}{2}$, $x \in T$, and $ab \cup C_x \in \mathcal{G}$. Since a permutation of V does not change the distribution of (C, C_1, \ldots, C_t) , any two r-subsets of V are equally likely to contribute a triple to \mathcal{H} . This common probability is $\binom{s}{2}t/\binom{n}{r}$ because the complete *r*-graph $\binom{V}{r}$ would contribute exactly $\binom{s}{2}t$ triples. Let us choose C, C_1, \ldots, C_t so that $|\mathcal{H}|$ is at least its expected value, that is,

$$|\mathcal{H}| \ge |\mathcal{G}| \frac{\binom{2}{2}t}{\binom{n}{r}}.$$
(16)

Since every edge of \mathcal{H} intersects T in exactly one vertex, that is,

$$|E \cap T| = 1, \quad \forall E \in \mathcal{H},\tag{17}$$

it is straightforward to check that $\mathcal{C}_4^3 \nsubseteq \mathcal{H}$ (for otherwise $\mathcal{C}_4^r \subseteq \mathcal{G}$). Thus we can apply Lemma 10 to \mathcal{H} , with an arbitrary ordering \preccurlyeq , obtaining a subgraph $\mathcal{H}' \subseteq \mathcal{H}$ that satisfies Properties 1–4. By (17), we have $\mathcal{D}(\mathcal{H}) \subseteq {S \choose 2} \cup {T \choose 2}$, that is, no *xy* with $x \in T$ and $y \in S$ can be a diagonal in \mathcal{H} .

Hence, by Property 1 of Lemma 10 we have

$$h := |\mathcal{H}| - |\mathcal{H}'| \leq \left| \mathcal{D}(\mathcal{H}) \cap {\binom{S}{2}} \right| + {\binom{t}{2}}.$$
(18)

By Lemma 5, $\mathcal{D}_i(\mathcal{G}) = \emptyset$ except possibly for $i \in \{0, 1, 3\}$. Also, (17) implies that any subgraph $\mathcal{P}(xyz, u) \subseteq \mathcal{H}$ satisfies $u \in T$. Thus $\mathcal{D}_3(\mathcal{H}) \cap {S \choose 2} = \emptyset$. By Property 3 of Lemma 10, we conclude that

$$\mathcal{E}(\mathcal{H}') \cap {\binom{S}{2}} \subseteq \mathcal{E}(\mathcal{H}) \cap {\binom{S}{2}} \subseteq {\binom{S}{2}} \setminus \mathcal{D}(\mathcal{H}).$$

Hence, by (18),

$$\left| \mathcal{E}(\mathcal{H}') \cap \binom{S}{2} \right| \leq \binom{s}{2} - \left| \mathcal{D}(\mathcal{H}) \cap \binom{S}{2} \right| \leq \binom{s}{2} + \binom{t}{2} - h.$$
(19)

Let us derive a contradiction by assuming that $uv \in \mathcal{E}(\mathcal{H}'_x) \cap \mathcal{E}(\mathcal{H}'_y)$ for some $uv \in \binom{s}{2}$ and two different $x, y \in T$. Choose witnesses c and d with $cu, cv \in \mathcal{H}'_x$ and $du, dv \in \mathcal{H}'_y$. Then $c, d \in S$, so they are different from x and y. If c = d, this gives $C_4(uv, xy) \subseteq H'_c$, a contradiction to Property 2 of Lemma 10. Otherwise, $C_4^3(cx, uv, dy) \subseteq \mathcal{H}$, a contradiction again. Hence,

$$\mathcal{E}(\mathcal{H}'_{x}) \cap \mathcal{E}(\mathcal{H}'_{y}) \cap {\binom{S}{2}} = \emptyset, \quad \forall xy \in {\binom{T}{2}}.$$
(20)

Table 1

r	3	4	5	6	7	8
Optimal $\sigma(r)$	0.6388	0.5233	0.4570	0.4119	0.3786	0.3525
Upper bound on ϕ_r	1.7397	1.7442	1.7159	1.6826	1.6506	1.6214

We apply Lemma 4 to each link graph \mathcal{H}'_x with $x \in T$. (Recall that \mathcal{H}'_x is C_4 -free by Property 2 of Lemma 10.) We conclude by (17) and (20) that

$$2|\mathcal{H}'| - st = \sum_{x \in T} \left(2|\mathcal{H}'_x| - s \right) \leq \left| \mathcal{E}(\mathcal{H}') \cap \binom{S}{2} \right|$$

This, (18), and (19) imply that

$$|\mathcal{H}| = |\mathcal{H}'| + h \leqslant \frac{\binom{s}{2} + \binom{t}{2} - h + st}{2} + h \leqslant \binom{s}{2} + \binom{t}{2} + \frac{st}{2}.$$

This, (16), equality s = n - (r - 2)t, and (15) imply that, when *r* is fixed and $n \to \infty$,

$$\begin{aligned} |\mathcal{G}| &\leq |\mathcal{H}| \times \frac{\binom{n}{r}}{\binom{s}{2}t} \leq \left(\binom{s}{2} + \binom{t}{2} + \frac{st}{2}\right) \times \frac{\binom{n}{r}}{\binom{s}{2}t} \\ &= \left(\frac{\sigma^2(r^2 - 5r + 7) + \sigma(r - 4) + 1}{r(r - 2)(-\sigma^3 + \sigma^2)} + o(1)\right) \binom{n}{r - 1}. \end{aligned}$$

$$(21)$$

If we set $\sigma = 1/\sqrt{r}$, then we obtain

$$|\mathcal{G}| \leqslant \left(1 + \frac{2}{\sqrt{r}} - \frac{2\sqrt{r} - 3}{(\sqrt{r} - 1)(r - 2)\sqrt{r}} + o(1)\right) \binom{n}{r - 1},$$

which implies that $\phi_r \leq 1 + 2/\sqrt{r}$. The bound $\phi_r \leq 7/4$ follows from the assignment $\sigma = 2/r$. \Box

Remark. The optimal $\sigma(r)$, the one that would minimize the coefficient at $\binom{n}{r-1}$ in (21), can be found by solving a cubic equation and, in fact, satisfies $\sigma(r) = (1 + o(1))/\sqrt{r}$ as $r \to \infty$. Table 1 lists the numerical values of the upper bound on ϕ_r given by the proof of Theorem 1 with the optimal $\sigma(r)$ for some small r.

7. The case r = 3

Proof of Theorem 2. Let \mathcal{G} be an arbitrary \mathcal{C}_4^3 -free 3-graph on an *n*-set *V*. First, we apply Lemma 11 to *G* to obtain an edge set $\mathcal{R} \subseteq \mathcal{G}$. Let $\mathcal{G}' = \mathcal{G} \setminus \mathcal{R}$ be the corresponding \mathcal{K}_5^- -free subgraph of \mathcal{G} . Let $m = |\mathcal{R}| + |\mathcal{D}(\mathcal{G}')|$. Lemma 11 ensures that

$$\left|\mathcal{E}(\mathcal{G}')\right| \leqslant \binom{n}{2} - m. \tag{22}$$

Next, we fix some ordering \preccurlyeq of *V* and apply Lemma 10 to \mathcal{G}' with respect to \preccurlyeq to obtain a subgraph $\mathcal{H} \subseteq \mathcal{G}'$. We have $|\mathcal{G} \setminus \mathcal{H}| \leqslant m$.

For $xyz \in {V \choose 3}$ let $P(xyz) = \{a \in V : \mathcal{P}(xyz, a) \subseteq \mathcal{G}'\}$ consist of those vertices $a \in V$ such that $axy, axz, ayz \in \mathcal{G}'$. For every pair $yz \in {V \choose 2}$ we do the following. If there exists a vertex $x \in V$ such that $x \prec y, x \prec z$, and $|P(xyz)| \ge 2$, then let x(yz) be this vertex x and let

$$S(yz) = \{a \in P(xyz): ayz \in \mathcal{H}\} = P(xyz) \cap \mathcal{H}_{yz}.$$

(Note that if *x* exists, it is unique by Lemma 7 because $\mathcal{K}_5^- \nsubseteq \mathcal{G}'$.) Otherwise, we set x(yz) = 0 and $S(yz) = \emptyset$, where $0 \notin V$ is some fixed element with $0 \prec v$ for every $v \in V$. Also, we let s(yz) = |S(yz)|.

By Property 2 of Lemma 10, we have $\mathcal{D}(\mathcal{H}) = \emptyset$. Let us show that

$$\mathcal{E}(\mathcal{H}) \subseteq \mathcal{E}(\mathcal{G}') \cup \left(\bigcup_{yz \in \binom{V}{2}} \binom{S(yz)}{2}\right).$$
⁽²³⁾

Suppose that $ab \in \mathcal{E}(\mathcal{H}) \setminus \mathcal{E}(\mathcal{G}')$, say $auv, buv \in \mathcal{H}$ for some $u, v \in V$. Since $\mathcal{H} \subseteq \mathcal{G}'$, we have $\mathcal{E}(\mathcal{H}) \subseteq \mathcal{E}(\mathcal{G}') \cup \mathcal{D}(\mathcal{G}')$. Thus $ab \in \mathcal{D}(\mathcal{G}')$. By Property 3 of Lemma 10, we have $ab \in \mathcal{D}_3(\mathcal{G}')$. By Lemma 5, there is a triple $xyz \in {V \choose 3}$ with $ab \subseteq P(xyz)$. Without loss of generality assume that $x \prec y \prec z$. By Property 4 of Lemma 10, uv = yz. By the definition of S(yz), we have $a, b \in S(yz)$, proving (23).

For $yz \in \binom{V}{2}$, recall that $\mathcal{H}_{yz} = \{x \in V : xyz \in \mathcal{H}\}$; let $h_{yz} = |\mathcal{H}_{yz}|$. Then, since $\mathcal{H} \subseteq \mathcal{G}$ is \mathcal{C}_4^3 -free and every link graph \mathcal{H}_x is \mathcal{C}_4 -free by Property 2 of Lemma 10, we conclude by Lemma 9, (22) and (23) that

$$\sum_{yz\in\binom{V}{2}}\binom{h_{yz}}{2} = \left|\mathcal{E}(\mathcal{H})\right| \leq \binom{n}{2} - m + \sum_{yz\in\binom{V}{2}}\binom{s(yz)}{2}.$$
(24)

Let $S_i = \{yz \in \binom{V}{2}$: $s(yz) = i\}$, $s_i = |S_i|$, and $S_{\geq 3} = \bigcup_{i \geq 3} S_i$.

Claim 1. The following inequality holds:

$$\sum_{yz \in \binom{V}{2}} h_{yz} \leq 2\binom{n}{2} - m + \sum_{i \ge 2} (i-1)s_i.$$
⁽²⁵⁾

Proof. Let us maximize $\sigma = \sum_{yz \in \binom{V}{2}} h_{yz}$ over non-negative integers h_{yz} , given that (24) holds, $h_{yz} \ge s(yz)$ for every $yz \in \binom{V}{2}$, and

$$\sum_{yz\in\binom{V}{2}}\binom{h_{yz}}{2} \leqslant \binom{n}{2}.$$
(26)

(The last inequality holds for otherwise we get either a copy of C_4^3 in \mathcal{H} or a copy of C_4 in a link graph of \mathcal{H} , a contradiction.)

Take an optimal integer vector $\mathbf{h} = (h_{yz})_{yz \in \binom{V}{2}}$. Suppose first that $h_{yz} > s(yz)$ for some $yz \in S_{\geq 3}$. By (26), there is a pair *ab* with $h_{ab} \leq 1$. We decrease h_{yz} by 1 and increase h_{ab} by 2. The left-hand side of (24) changes by

$$\binom{h_{ab}+2}{2} - \binom{h_{ab}}{2} + \binom{h_{yz}-1}{2} - \binom{h_{yz}}{2} \leq \binom{3}{2} - \binom{1}{2} + \binom{3}{2} - \binom{4}{2} = 0.$$

Thus we still have a feasible solution while the sum of the entries of **h** strictly increases. This contradicts the optimality of **h**. Thus we have $h_{yz} = s(yz)$ for all $yz \in S_{\ge 3}$. We have

$$-\binom{n}{2}+\sum_{yz\in\binom{V}{2}}h_{yz}=\sum_{yz\in\binom{V}{2}}(h_{yz}-1)\leqslant\sum_{yz\in\binom{V}{2}\setminus\mathcal{S}\geqslant3}\binom{h_{yz}}{2}+\sum_{i\geqslant3}(i-1)s_i.$$

Also, by (24),

$$\sum_{yz\in\binom{V}{2}\setminus\mathcal{S}_{\geq 3}}\binom{h_{yz}}{2} = \sum_{yz\in\binom{V}{2}}\binom{h_{yz}}{2} - \sum_{i\geq 3}\binom{i}{2}s_i \leq \binom{n}{2} - m + \sum_{i\geq 2}\binom{i}{2}s_i - \sum_{i\geq 3}\binom{i}{2}s_i.$$

Claim 1 follows from the last two inequalities. \Box

Each *yz* with $s(yz) \ge 2$ comes from some $\mathcal{P}(xyz, P(xyz)) \subseteq \mathcal{G}'$ with $|P(xyz)| \ge s(yz)$ while every such \mathcal{P}_i -subgraph of \mathcal{G}' with $i \ge 2$ gives at most one such pair *yz* because of the relation $x \prec y, z$ in

648

the definition of S(yz). Since $\mathcal{K}_5^- \notin \mathcal{G}'$, the private pairs of these \mathcal{P}_i -subgraphs are distinct from each other by Lemma 7 and all belong to $\mathcal{D}(\mathcal{G}')$. Thus

$$\sum_{i\geq 2} \left(3 + \binom{i}{2}\right) s_i \leq |\mathcal{D}(\mathcal{G}')| = m - |\mathcal{R}|.$$
⁽²⁷⁾

It is routine to see that $i - 1 \leq \frac{1}{3}(3 + {i \choose 2})$ for every $i \geq 2$. Thus (25) and (27) imply that

$$3|\mathcal{H}| = \sum_{yz \in \binom{V}{2}} h_{yz} \leq 2\binom{n}{2} - m + \sum_{i \ge 2} (i-1)s_i$$
$$\leq 2\binom{n}{2} - m + \frac{1}{3}(m - |\mathcal{R}|) = 2\binom{n}{2} - \frac{2m}{3} - \frac{|\mathcal{R}|}{3}$$

We conclude that

$$|\mathcal{G}| \leq m + |\mathcal{H}| \leq m + \frac{1}{3} \left(2\binom{n}{2} - \frac{2m}{3} - \frac{|\mathcal{R}|}{3} \right) \leq \frac{7m}{9} + \frac{2}{3}\binom{n}{2}.$$

Finally, $m = |\mathcal{D}(\mathcal{G}')| + |\mathcal{R}| \leq \binom{n}{2}$, giving the required. \Box

8. Concluding remarks

By analyzing the proof of Theorem 2, it should be possible to derive a contradiction from assuming that $f_3(n) = (13/9 + o(1)) \binom{n}{2}$ for an infinite sequence of *n*. This would imply that there is a constant c > 0 such that $\phi_3 \leq 13/9 - c$. Unfortunately, a rigorous proof of this would be rather long and messy, especially if one tries to optimize the value of *c*. Therefore, we decided to settle for the current bound of 13/9, with a reasonably short and clear proof.

Acknowledgments

The authors thank the anonymous referees for helpful remarks.

References

- [1] W.G. Brown, On graphs that do not contain a Thomsen graph, Canad. Math. Bull. 9 (1966) 281-289.
- [2] C.R.J. Clapham, A. Flockhart, J. Sheehan, Graphs without four-cycles, J. Graph Theory 13 (1989) 29-47.
- [3] P. Erdős, On sequences of integers no one of which divides the product of two others and on some related problems, Inst. Math. Mech. Univ. Tomsk 2 (1938) 74–82.
- [4] P. Erdős, Some recent results on extremal problems in graph theory. Results, in: Theory of Graphs, Internat. Sympos., Rome, 1966, Gordon and Breach, New York, 1967, pp. 117–123 (in English); pp. 124–130 (in French).
- [5] P. Erdős, Problems and results in combinatorial analysis, Congr. Numer. 19 (1977) 3-12.
- [6] P. Erdős, A. Rényi, On a problem in the theory of graphs, Publ. Math. Inst. Hungar. Acad. Sci. 7 (1962) 623-641 (in Hungarian).
- [7] P. Erdős, A. Rényi, V.T. Sós, On a problem in the theory of graphs, Studia Sci. Math. Hungar. 1 (1966) 215-235.
- [8] Z. Füredi, Graphs without quadrilaterals, J. Combin. Theory Ser. A 34 (1983) 187–190.
- [9] Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, Combinatorica 4 (1984) 161–168.
- [10] Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory Ser. B 68 (1996) 1-6.
- [11] H. Hanani, The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32 (1961) 361-386.
- [12] H. Hanani, A balanced incomplete block design, Ann. Math. Statist. 36 (1965) 711.
- [13] D. Mubayi, Some exact results and new asymptotics for hypergraph Turán numbers, Combin. Probab. Comput. 11 (2002) 299–309.
- [14] D. Mubayi, Structure and stability of triangle-free set systems, Trans. Amer. Math. Soc. 359 (2007) 275-291.
- [15] D. Mubayi, J. Verstraëte, A hypergraph extension of the bipartite Turán problem, J. Combin. Theory Ser. A 106 (2004) 237–253.
- [16] D. Mubayi, J. Verstraëte, Minimal paths and cycles in set systems, European J. Combin. 28 (2007) 1681-1693.
- [17] Y. Yuansheng, P. Rowlinson, On extremal graphs without four-cycles, Util. Math. 41 (1992) 204-210.