
4260 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 6, JUNE 2025

New Bounds for the Optimal Density of Covering
Single-Insertion Codes via the Turán Density

Oleg Pikhurko , Oleg Verbitsky , and Maksim Zhukovskii

Abstract—We prove that the density of any covering single-
insertion code C ⊆ Xr over the n-symbol alphabet X cannot be
smaller than 1/r + δr for some positive real δr not depending
on n. This improves the volume lower bound of 1/(r + 1). On
the other hand, we observe that, for all sufficiently large r, if n
tends to infinity then the asymptotic upper bound of 7/(r + 1)
due to Lenz et al. (2021) can be improved to 4.911/(r+ 1). Both
the lower and the upper bounds are achieved by relating the
code density to the Turán density from extremal combinatorics.
For the last task, we use the analytic framework of measurable
subsets of the real cube [0, 1]r.

Index Terms—Covering insertion codes, Turán systems.

I. INTRODUCTION

LET r < k be positive integers and X be a (not necessarily
finite) set. We say that a sequence x ∈ Xr covers a

sequence a ∈ Xk if x is a subsequence of a, i.e., if x is
obtainable by removing k − r elements from a (while keeping
the ordering of the remaining elements). We say that a set
C ⊆ Xr covers a set A ⊆ Xk if every sequence in A is covered
by at least one sequence in C.

Definition 1: A set C ⊆ Xr covering Xk is called a covering
(k − r)-insertion code over X. If X = [n], where we denote
[n] = {0, 1, . . . , n − 1}, we speak of a covering code over the
n-symbol alphabet. The minimum possible cardinality of such
a code will be denoted by S (n, k, r).

Example 1 (Grozea [9]:) S (3, 4, 3) = 12 and the unique,
up to renaming the symbols, optimal code consists of the
sequences (0, 0, 0), (1, 1, 1), (2, 2, 2), (0, 0, 1), (0, 1, 0), (1, 0, 0),
(1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 0), (2, 0, 2), (0, 2, 2).

It is not hard to show (see Section II) that for each k and r,
the optimal density S (n, k, r)/nr of a code converges to a limit
s(k, r) as n increases and that

S (n, k, r)/nr ≥ s(k, r) (1)

for all n. This motivates estimating the limit value s(k, r),
especially because determining the exact values of S (n, k, r) is
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computationally infeasible even for relatively small parameters
n, k, and r (cf. [9] where the exact values of S (n, 4, 3) are
determined for n ≤ 5).

We are especially interested in single-insertion codes, that
is, in the case of k = r+1. As observed by various researchers
(e.g. [13, Eq. (2)] for n = 2 and [22, Lemma 4.1] for general
n), every sequence x ∈ [n]r covers exactly (r + 1)(n − 1) + 1
sequences in [n]r+1, which immediately yields

S (n, r + 1, r) ≥
nr+1

(r + 1)(n − 1) + 1
.

On the other hand, Lenz et al. [12] proved that

S (n, r + 1, r) ≤
7nr+1

(r + 1)(n − 1) + 1
.

These estimates readily imply that

1
r + 1

≤ s(r + 1, r) ≤
7

r + 1
. (2)

In the present paper, we aim at improving the lower and the
upper bound in (2).

We begin with addressing the question whether or not the
lower bound in (2) is sharp. The equality s(r+1, r) = 1/(r+1)
would mean the existence of asymptotically perfect covering
single-insertion codes. Our first estimate rules out this possi-
bility by showing that

s(r + 1, r) ≥
1
r
. (3)

We prove the lower bound (3) in a natural analytic frame-
work of measurable covering single-insertion codes over the
real segment [0, 1]. This framework is useful for establishing
a relationship between covering codes and Turán systems, the
classical and actively studied subject in combinatorics [10],
[18], [20]. Of crucial importance for us is the concept of the
extremal Turán density t(k, r) (see Section V for the definition).
We notice that

s(k, r) ≤ t(k, r) (4)

and, therefore, any upper bound for t(k, r) yields also an
upper bound for s(k, r). The currently best upper bounds for
the Turán density t(r + 1, r) have recently been obtained by
Pikhurko [16] who proved that t(r + 1, r) ≤ 6.239/(r + 1)
for all r and t(r + 1, r) ≤ 4.911/(r + 1) for all sufficiently
large r. Both of these bounds imply an improvement of the
upper bound in (2). These improvements can also be derived
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by a more careful analysis of the construction in [12].1 In any
case, it is remarkable that the state-of-the-art upper bounds for
s(r+1, r) are actually provided by the available upper bounds
for t(r + 1, r).

Somewhat surprisingly, we obtain a relation between s(r +
1, r) and t(r+1, r) also in the other direction: Any lower bound
for t(r + 1, r) better than 1/r implies a lower bound for s(r +
1, r) also better than 1/r. Lower bounds t(r + 1, r) ≥ 1/r + εr

for εr > 0 are obtained by Chung and Lu [4] and Lu and Zhao
[15] and, therefore, our initial lower bound (3) can be further
improved to s(r+1, r) ≥ 1/r+δr for some δr > 0. Though we
provide explicit values of δr in the main body of the paper,
right now we prefer to summarize the new bounds for the
optimal density of covering single-insertion codes, improving
the current bounds (2), in a somewhat simplified form.

Theorem 1: For s(k, r) = limn→∞ S (n, k, r)/nr,

1
r
< s(r + 1, r) ≤

4.911
r + 1

where the former inequality is true for all r and the latter
inequality is true for all sufficiently large r.

Taking into account the inequality (1), note that the lower
bound stated in Theorem 1 is not just asymptotic, as it yields
a lower bound S (n, k, r)/nr ≥ 1/r + δr for some real δr not
depending on n (an explicit value of δr will be specified in
the sequel). Covering codes over large alphabets naturally
arise in research driven by applications in computational
biology and genomics. Notably, DNA and RNA sequences
are constructed from five canonical nucleobases: A, C, G,
T, and U. Furthermore, the genetic code of life involves 22
proteinogenic amino acids, while over 500 amino acids are
known to occur in nature. For results concerning the Hamming
metric, we refer to [11], while results for the Levenshtein
metric (which can be described using insertion/deletion codes)
can be found in [3]. Covering insertion/deletion codes over
arbitrarily large alphabets have also been studied in [1] and [2]
in the context of the MapReduce framework for data analytics.

The paper is organized as follows. The convergence of
the optimal code density S (n, k, r)/nr to a limit s(k, r) is
showed in Section II. An analytic framework for estimation
of s(k, r) is suggested in Section III. Our first lower bound
(3) is established in Section IV. In Section V we introduce
Turán systems and prove the relation (4), thereby obtaining
the upper bound in Theorem 1 (restated as Corollary 2). A
reverse relation between s(r + 1, r) and t(r + 1, r) is proved
in Section VI as Theorem 5 and Corollary 3, which allows us
to improve (3) to a strict inequality stated in Theorem 1 in a
simplified form and made more precise in Corollaries 4 and
5. Note that the proof of Theorem 5 is heavily based on the
argument used in Section IV for obtaining the bound in (3).

II. PRELIMINARY LEMMAS

Given a function f : Y → X, we define a function f r :
Yr → Xr by f r(y1, . . . , yr) = ( f (y1), . . . , f (yr)). The preimage
of a set C ⊆ Xr under f r will be denoted by f −r(C).

1Using the same argument as in [16, Lemma 2.3], it can be showed that
[12, Lemma 8] in fact holds if µI ≤ 4.911 and q is large enough.

Lemma 1: If C ⊆ Xr covers Xk and f is an arbitrary function
from Y to X, then f −r(C) covers Yk.

Proof: Consider an arbitrary (y1, . . . , yk) ∈ Yk and denote
(x1, . . . , xk) = f k(y1, . . . , yk). Since C covers Xk, some r-
dimensional projection of (x1, . . . , xk) belongs to C. Let, say,
(x1, . . . , xr) ∈ C. It remains to note that (y1, . . . , yk) is covered
by the vector (y1, . . . , yr) in f −r(C).�

Lemma 2: For all positive integers k > r, the optimal code
density S (n, k, r)/nr converges to a limit s(k, r) as n grows,
and S (n, k, r)/nr ≥ s(k, r) for all n.

Proof: Let C ⊆ [n]r be an optimal covering (k− r)-insertion
code, that is, |C| = S (n, k, r). Let m > n and define f : [m]→
[n] by f (y) = y mod n for all y ∈ [m]. By Lemma 1, the
preimage f −r(C) is a covering (k− r)-insertion code over [m].
Let q = bm/nc. Thus,

S (m, k, r) ≤ | f −r(C)| ≤ (q + 1)r |C|.

It follows that

lim sup
m→∞

S (m, k, r)
mr ≤

S (n, k, r)
nr ,

implying both statements in the lemma.�

III. ANALYTIC REFORMULATION

Definition 1 admits consideration of an infinitary setting. In
order to be able to speak about the size of a code, we suppose
that X is a measurable space endowed with a probability
measure λ. The Cartesian power Xr is endowed with the
product measure, which for brevity will be denoted also by
λ. We define s(X, k, r) = infC λ(C) where the infimum is taken
over all measurable (k − r)-insertion covering codes C ⊆ Xr.
In the discrete case, we endow X = [n] with the uniform
probability measure, getting s([n], k, r) = S (n, k, r)/nr, which
is just another notation for the optimal code density over a
finite alphabet. For the unit segment of reals X = [0, 1], let λ
be the Lebesgue measure. In this case,

s([0, 1], k, r) = inf
C
λ(C) (5)

where the infimum is taken over Lebesgue measurable (k− r)-
insertion covering codes C ⊆ [0, 1]r.

Theorem 2: s(k, r) = s([0, 1], k, r).
Proof: We first prove that s([0, 1], k, r) ≤ s(k, r). Let C ⊆

[n]r be an optimal covering (k−r)-insertion code, that is, |C| =
S (n, k, r). Define fn : [0, 1] → [n] by fn(0) = 0 and fn(x) = i
for all x ∈

� i
n ,

i+1
n

�
. By Lemma 1, the preimage f −r

n (C) ⊆
[0, 1]r is a covering (k − r)-insertion code over [0, 1]. Note
that fn is a measurable function, and λ( f −r

n (C)) = |C|/nr. This
shows that

s([0, 1], k, r) ≤ λ
�

f −r
n (C)

�
=
|C|
nr = s([n], k, r)

for all k > r, implying the required inequality.
In order to prove that s(k, r) ≤ s([0, 1], k, r), we use the

following convention. A mapping τ : [t]→ Z can be identified
with the sequence (τ(0), τ(1), . . . , τ(t − 1)) ∈ Zt. After this, it
makes sense to say, for example, that ρ : [r] → Z covers
κ : [k]→ Z.

Let C ⊆ [0, 1]r be a covering (k − r)-insertion code over
[0, 1]. Given a sequence y = (y0, y1, . . ., yn−1) in [0, 1]n, we
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define Cn = Cn(y) as the set of all mappings ρ : [r] → [n]
such that (yρ(0), yρ(1), . . . , yρ(r−1)) ∈ C. According to our con-
vention, we view Cn as a subset of [n]r and claim that Cn

covers [n]k, i.e., that it is a covering (k − r)-insertion code
over [n]. Indeed, take an arbitrary mapping κ : [k] → [n].
Since C covers [0, 1]k, the sequence (yκ(0), yκ(1), . . . , yκ(k−1)) is
covered by some subsequence (yκ(i0), . . . , yκ(ir−1)) ∈ C where
0 ≤ i0 < i1 < . . . < ir−1 < k. Define ρ : [r] → [n] by setting
ρ(0) = κ(i0), . . ., ρ(r − 1) = κ(ir−1) and note that ρ ∈ Cn covers
κ.

It follows that S (n, k, r) ≤ |Cn(y)| for every y ∈ [0, 1]n.
This implies that if we take y uniformly at random in [0, 1]n

or, equivalently, if we take independent random variables
y0, . . ., yn−1 uniformly distributed in [0, 1], then S (n, k, r) does
not exceed the expectation E|Cn(y)|, which by linearity is equal
to the sum

P
ρ P[(yρ(0), . . . , yρ(r−1)) ∈ C] of probabilities over

all maps ρ : [r]→ [n]. If ρ is injective, then (yρ(0), . . . , yρ(r−1)) ∈
C with probability λ(C) and, therefore,

S (n, k, r) ≤ n(n − 1) · · · (n − r + 1)λ(C)
+ (nr − n(n − 1) · · · (n − r + 1)) .

Using Lemma 2, we derive from here

s(k, r) ≤
S (n, k, r)

nr ≤ λ(C) + o(1).

As C can be chosen with λ(C) arbitrarily close to s([0, 1], k, r),
this proves the inequality s(k, r) ≤ s([0, 1], k, r).�

While some of the forthcoming proofs use the analytic
setting of a measurable subset X ⊆ [0, 1]r, they can also
be easily re-written to work directly with subsets of [n]r.
The choice of which language to use is just the matter of
convenience.

IV. A BETTER LOWER BOUND FOR s(r + 1, r)

We now improve the lower bound in (2).
Theorem 3: s(r + 1, r) ≥ 1/r.
Recall that Theorem 2 allows us to switch to the analytic

setting, where we have to prove that s([0, 1], r + 1, r) ≥ 1/r.
The proof is based on two lemmas below.

Let C1, . . . ,Ck be measurable sets in a space Ω with
probability measure λ. For two indices i and j such that i < j,
let Ci, j = Ci ∩C j. By Bonferroni’s inequality,

λ

 
k[

i=1

Ci

!
≥

kX
i=1

λ(Ci) −
X

1≤i< j≤k

λ(Ci, j).

We, however, need an inequality in the opposite direction.
Lemma 3 (An inverse Bonferroni’s inequality) Let T be a

tree with vertex set V(T ) = {1, 2, . . . , k} and edge set E(T ).
Then

λ

 
k[

i=1

Ci

!
≤

kX
i=1

λ(Ci) −
X

e∈E(T )

λ(Ce). (6)

Proof: Note that λ
�Sk

i=1 Ci

�
=
P

A λ(A), where the sum is
over all atomic sets A in the Boolean algebra generated by the
subsets C1, . . . ,Ck of Ω, apart A = Ω \

Sk
i=1 Ci. Consider a

particular atomic set A and let t(A) denote the number of sets
Ci including A as a subset. If t(A) > 0, then A is included in

at most t(A) − 1 of the sets Ce with e ∈ E(T ). This is true
because a set of t vertices spans the subgraph of the tree T
with at most t − 1 edges. It follows thatX

e∈E(T )

λ(Ce) ≤
X

A: t(A)>0

(t(A) − 1) · λ(A).

We conclude thatX
e∈E(T )

λ(Ce) + λ

 
k[

i=1

Ci

!
≤
X

A

t(A) · λ(A) =

kX
i=1

λ(Ci),

completing the proof.�
Let X = [0, 1] and λ be the Lebesgue measure on X. We

write λ also to denote the corresponding product measure
on Xr+1.

Let C ⊆ Xr. For i ≤ r + 1, we define Ci ⊆ Xr+1 as the set
of all sequences x in Xr+1 such that the subsequence obtained
by removing the i-th element of x belongs to C. Theorem 3
immediately follows from the next lemma.

Lemma 4: If C ⊆ Xr covers Xr+1, i.e.,
Sr+1

i=1 Ci = Xr+1,
then λ(C) ≥ 1/r.

Proof: Applying Lemma 3 to C1, . . .,Cr+1 ⊆ [0, 1]r+1 for
any fixed tree T, we readily obtainX

e∈E(T )

λ(Ce)≤
r+1X
i=1

λ(Ci) − λ

 
r+1[
i=1

Ci

!
= (r + 1)λ(C) − 1.

We now estimate the left-hand side from below. Denote the
characteristic function of C by χC . Using Fubini’s theorem
along with the Cauchy-Bunyakovsky-Schwarz inequality, we
get

λ(C1,2) =

Z
Xr+1

χC(x1, x3, . . . , xr+1)

× χC(x2, x3, . . . , xr+1)dx1 · · · dxr+1

=

Z
Xr−1

�Z
X
χC(x1, x3, . . . , xr+1)dx1

×
Z

X
χC(x2, x3, . . . , xr+1)dx2

�
dx3 · · · dxr+1

=

Z
Xr−1

�Z
X
χC(x, x3, . . . , xr+1)dx

�2

dx3 · · · dxr+1

≥

�Z
Xr−1

Z
X
χC(x, x3, . . . , xr+1)dxdx3 · · · dxr+1

�2

=

�Z
Xr
χC(x, x3, . . . , xr+1)dxdx3 · · · dxr+1

�2

= λ(C)2.

Each of the r values λ(Ce) for e ∈ E(T ) is estimated
similarly. It follows that

rλ(C)2 ≤ (r + 1)λ(C) − 1.

Rewriting this as

(1 − λ(C))(rλ(C) − 1) ≥ 0, (7)

we conclude that λ(C) ≥ 1/r.�
We conclude this section with a discussion of a consequence

of Theorem 3. We call X ⊆ [n]r+1 a 1-packing if no two
sequences in X have a common subsequence of length r (or,
equivalently, if the minimum Levenshtein distance between
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two elements of X is larger than 2). Denote the maximum size
|X| of a 1-packing X ⊆ [n]r+1 by P(n, r + 1, r). The packing
and covering numbers are related by the inequality

P(n, r + 1, r) ≤ S (n, r + 1, r); (8)

indeed, every element of a covering 1-insertion code C ⊆ [n]r

can cover at most one element of a maximum packing X ⊆
[n]r+1. It is known [14, Cor. 5.1] that P(n, r+1, r)/nr ∼ 1/(r+
1) if n/r → ∞. Taking this result into account, our Theorem 3
separates the two values in (8) by showing an additive gap at
least 1/(r(r + 1)) between their density versions in the setting
when r is fixed and n grows.

V. TURÁN SYSTEMS

If X ⊆ Y are any sets, then one can say that Y covers X,
but by a kind of duality we will also say that X covers Y. Let
1 < r < k < n. A family C of r-element subsets of [n] is
called a Turán (n, k, r)-system if every k-element subset of [n]
is covered by at least one member of C. The minimum possible
cardinality of C is denoted by T (n, k, r). A well-known argu-
ment [10], [20] shows that (n − r) T (n, k, r) ≥ n T (n − 1, k, r),
which implies that the densities T (n, k, r)/

�n
r

�
form a non-

decreasing sequence for each k and r. The limit is called the
Turán density and denoted by t(k, r). For surveys including
Turán systems, see [10], [18], [20].

We connect Turán systems and covering insertion codes by
showing that the former concept can in limit be seen as a
symmetric version of the latter concept.

Call a set C ⊆ Xr symmetric if C is closed with respect
to all permutations of the r coordinates. Let us start with a
simple observation.

Lemma 5: If C ⊆ Xr is symmetric, then f −r(C) is also
symmetric for any function f : Y → X.

The Turán density t(k, r) can be characterized in terms of an
analytic object similarly to Theorem 2. Specifically, we define
s?([0, 1], k, r) similarly to (5) with the additional condition that
the infimum is taken over symmetric codes.

Theorem 4: For all positive integers k > r, we have
t(k, r) = s?([0, 1], k, r).

Proof: We first prove the inequality s?([0, 1], k, r) ≤ t(k, r).
For a set A ⊆ [n]r, let A† denote the set of all sequences
in A with pairwise distinct elements and A‡ = A \ A† be the
remaining part of A.

Let Tn be an optimal Turán (n, k, r)-system, that is,
|Tn| = T (n, k, r). Convert Tn into a covering (k − r)-insertion
code Cn ⊆ [n]r as follows. For each r-element set in Tn, place
all its r! orderings in Cn, thereby covering all sequences in
([n]k)†. In order to cover the remaining sequences, we just
add ([n]r)‡ to Cn. Note that Cn is symmetric and that

|Cn| ≤ |Tn| r! + |([n]r)‡| = |Tn| r!+
(nr − n(n − 1) · · · (n − r + 1)) . (9)

Consequently,
|Cn|

nr ≤
|Tn|�n

r

� + o(1)

where the little-o term approaches 0 as n increases. Consider
Dn = f −r

n (Cn) for the function fn : [0, 1] → [n] defined in the

proof of Theorem 2. Note that fn has preimages of measure
1/n each. By Lemma 1, Dn ⊆ [0, 1]r is a covering (k − r)-
insertion code over [0, 1]. Since Cn is symmetric, Dn is also
symmetric by Lemma 5. It follows that

s?([0, 1], k, r) ≤ λ(Dn) =
|Cn|

nr

≤
|T (n, k, r)|�n

r

� + o(1) ≤ t(k, r) + o(1),

yielding the required inequality.
We now prove that, conversely, t(k, r) ≤ s?([0, 1], k, r). Let

C ⊆ [0, 1]r be an arbitrary measurable symmetric covering
(k − r)-insertion code over [0, 1]. Given an integer n ≥ k,
consider a sequence y = (y0, . . ., yn−1) in [0, 1]n with pairwise
different elements. Define a family G = G(y) of r-element
subsets of [n] by putting {i1, . . ., ir} ⊆ [n] in G if and only if
(yi1 , . . ., yir ) ∈ C. The last condition does not depend on the
order of indices by the symmetry of C.

Let us show that G is a Turán (n, k, r)-system. Take any
k-element set K ⊆ [n]. Since the subsequence (yi)i∈K of y
is covered by some sequence in C, there is an r-element set
{i1, . . ., ir} ⊆ K such that (yi1 , . . ., yir ) ∈ C. By definition, this
means that {i1, . . ., ir} ∈ G. Since K was an arbitrary k-element
subset of [n], G is indeed a Turán (n, k, r)-system.

Now, take a uniformly random y = (y0, . . ., yn−1) in [0, 1]n;
equivalently, we take independent uniform y0, . . ., yn−1 ∈ [0, 1].
With probability 1, all yi are different. To compute the expected
number of r-element sets belonging to G, we sum the probabil-
ity that R ∈ G over all R = {i1, . . ., ir} ⊆ [n]. By the uniformity
of (y0, . . ., yn−1) ∈ [0, 1]n, we have that (yi1 , . . ., yir ) is a uniform
element of [0, 1]r. Thus, the probability that (yi1 , . . ., yir ) ∈ C
(which is exactly the probability that R ∈ G) is equal to the
measure λ(C) of C. We conclude that E|G| =

�n
r

�
λ(C).

Of course, if we remove from [0, 1]n the null-set D of
points y where some two coordinates yi’s coincide, then the
expectation does not change. Take (y0, . . ., yn−1) ∈ [0, 1]n \ D
such that |G| is at most its expected value

�n
r

�
λ(C). Then the

density of G is most λ(C). Since n and C were arbitrary, with
λ(C) arbitrarily close to s?([0, 1], k, r), the required inequality
follows.�

One can show that the appropriately defined parameter
s?(X, k, r) (resp. s(X, k, r)) is the same for all atomless proba-
bility spaces X, since each such space admits, for every n, a
measurable partition into parts of measure 1/n each.

For fixed k and r, one can alternatively define the function
s?(k, r) using the r-hypergraphon limit object introduced by
Elek and Szegedy [8]. While the advantage of this approach
is that the infimum in the definition would be in fact the
minimum (that is, would be attained) potentially allowing for
further methods like variational calculus, the limit object is
rather complicated and requires a lot of technical preliminaries.
So we stay with our simple setting of measurable subsets
of [0, 1]r.

We state an immediate consequence of (9) (which also
follows from Theorems 2 and 4).

Corollary 1: s(k, r) ≤ t(k, r).
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Theorem 3, therefore, implies that

t(r + 1, r) ≥ s(r + 1, r) ≥ 1/r.

This lower bound t(r + 1, r) ≥ 1/r was shown independently
by de Caen [5], Sidorenko [19], and Tazawa and Shirakura
[21] and generalized by de Caen [6]. Thus, Theorem 3 is
an extension of this classical result to the realm of covering
insertion codes.

On the other hand, no analogue of the upper bound
s(r + 1, r) = O(1/r) (see (2)) was known for t(r + 1, r). Quite
the contrary, de Caen [7] conjectured that r·t(r+1, r)→ ∞ as r
grows. Inspired by the relationship between Turán systems and
covering insertion codes, which we pinpoint here, Pikhurko
[16] disproved this conjecture by showing that t(r + 1, r) ≤
6.239/(r + 1) for all r and t(r + 1, r) ≤ 4.911/(r + 1) for all
sufficiently large r. By Corollary 1, the same upper bounds
apply to s(r + 1, r). Alternatively, Corollary 2 below follows
from the recurrence in [12], via the same analysis as that in
the proof of [16, Lemma 2.3].

Corollary 2:
1. s(r + 1, r) ≤ 6.239/(r + 1) for all r.
2. s(r + 1, r) ≤ 4.911/(r + 1) for all sufficiently large r.
In the particular case of r = 2, we have

s([0, 1], 3, 2) = s?([0, 1], 3, 2) = 1/2.

Indeed, s([0, 1], 3, 2) ≥ 1/2 by Theorem 3. The upper bound
s?([0, 1], 3, 2) ≤ 1/2 is provided by the symmetric single-
insertion code

�
0, 1

2

�2
∪
� 1

2 , 1
�2 covering the cube [0, 1]3, which

is an analog of the single-insertion code {(0, 0), (1, 1)} covering
the Boolean cube {0, 1}3.

Along with Theorem 4, this implies that t(3, 2) = 1
2 , which is

a well-known fact belonging to the basics of graph theory. The
lower bound t(3, 2) ≥ 1

2 is known as Mantel’s theorem. The
upper bound t(3, 2) ≤ 1

2 follows by considering the disjoint
union of complete graphs Kbn/2c and Kdn/2e.

We conclude this section with an overview of the known
bounds on t(r + 1, r) for r ≥ 3.

A. Bounds for Small r

For r = 3 it is known that

0.438334 ≤ t(4, 3) ≤
4
9

= 0.444 . . . . (10)

The lower bound is due to Razborov [17]. The upper bound,
conjectured to be optimal, is given by many different construc-
tions, one of which is the following. Split [n] into three parts
V0,V1,V2 as evenly as possible and put a 3-element set in C
if it either lies entirely inside some Vi or, for some residue i
modulo 3, has two elements in Vi and one element in Vi+1.

An account of the known bounds on t(r + 1, r) for other
small values of r can be found in the survey [20].

B. General Bounds

The bound t(r+1, r) ≥ 1/r is improved in [4] for odd r and
in [15] for even r. For all odd r ≥ 3, it is shown in [4] that

t(r + 1, r) ≥
5r −

√
9r2 + 24r + 12
2r(r + 3)

=
1
r
+

1
r2 + O(r−3).

(11)

For all even r ≥ 4, it is shown in [15] that

t(r + 1, r) ≥
1
r
+

(1 − 1/rp−1)(r − 1)2

2rp
��r+p

p−1

�
+
�r+1

2

�� , (12)

where p is the least prime factor of r − 1. This bound is the
strongest if p = 3, that is, r = 4 (mod 6). In this case, it reads

t(r + 1, r) ≥
1
r
+

1
2r3 + O(r−4).

In the worst case, which happens when p = r− 1, Bound (12)
yields

t(r + 1, r) ≥
1
r
+

1 − o(1)
4rr−3

�2r
r

� .
VI. A FURTHER IMPROVEMENT OF THE LOWER BOUND

FOR s(r + 1, r)

We now improve Theorem 3 by showing that any lower
bound for t(r+1, r) better than 1/r implies a lower bound for
s(r + 1, r) better than 1/r.

We have s(r+1, r) ≤ t(r+1, r) by Corollary 1. Let us prove
a relation in the opposite direction.

Theorem 5: For every r ≥ 3, it holds that

t(r + 1, r) ≤ s(r + 1, r)

+ 2r!

s
r(r + 1)(1 − s(r + 1, r))

�
s(r + 1, r) −

1
r

�
.

Proof: Let X = [0, 1] and let λ denote the Lebesgue measure
on X. Moreover, we write λ to denote also the corresponding
product measure on any k-dimensional cube Xk. Consider a
measurable set C ⊆ Xr. As in Section IV, for each i ≤ r+1 we
define Ci ⊆ Xr+1 to be the set of all sequences x in Xr+1 such
that the subsequence obtained by removing the i-th element of
x belongs to C. Suppose that C covers Xr+1, that is, Xr+1 =Sr+1

i=1 Ci. We define

K =

r+1\
i=1

Ci,

Pi = Ci \
[
j,i

C j,

R = Xr+1 \

 
K ∪

r+1[
i=1

Pi

!
,

Ri = R \Ci.

In other words, K is the atomic set of the Boolean algebra
generated by C1, . . .,Cr+1 occurring in these sets with the
maximum possible multiplicity t(K) = r+1. For each i ≤ r+1,
Pi is an atomic set of minimum possible multiplicity t(Pi) = 1
(as 0 is impossible by the covering property). The remaining
part R is the union of all atomic sets A of intermediate
multiplicity 1 < t(A) ≤ r. Finally, Ri is the part of R formed
by the atomic sets outside Ci.

Let k = r + 1. The inverse Bonferroni’s inequality
given by Lemma 3 can be somewhat improved. While T
was in this lemma an arbitrary tree on vertices 1, . . ., k,
let T j be now the star with centre at j, that is, E(T j) =
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{{ j, i} : 1 ≤ i ≤ r + 1, i�= j}. In the case that T = T j, Inequality
(6) can be improved to

λ

 
k[

i=1

Ci

!
≤

kX
i=1

λ(Ci) −
X

e∈E(T j)

λ(Ce) − λ(R j),

which can be routinely verified by looking at the contribution
of each atomic set. Since C covers Xr+1, the left hand side is
equal to 1. Arguing as in the proof of Lemma 4, in place of
Inequality (7) we obtain

λ(R j) ≤ (1 − λ(C))(rλ(C) − 1)

for each j ≤ r + 1. It follows that

λ(R) ≤
r+1X
j=1

λ(R j) ≤ (r + 1)(1 − λ(C))(rλ(C) − 1)

= r(r + 1)(1 − λ(C))
�
λ(C) −

1
r

�
. (13)

This shows that if the covering code C has density sufficiently
close to 1/r, then up to a small set R, the Boolean algebra
generated by C1, . . .,Cr+1 is the sunflower with kernel K and
petals P1, . . ., Pr+1.

Given a set M ⊆ Xk, we define its symmetric closure M to
be the inclusion-minimal symmetric superset of M:

M =
˚
(x1, . . ., xk) ∈ Xk : ∃ permutation σ of {1, . . ., k}

with (xσ(1), . . ., xσ(k)) ∈ M
	
.

Claim A. K \ R is symmetric.
Proof of Claim A. Let (x1, x2, x3, . . ., xr+1) ∈ K \ R. Since

(x1, x2, x3, . . ., xr+1) ∈ K ⊆ C1∩C2, we have (x2, x3, . . ., xr+1) ∈
C and (x1, x3, . . ., xr+1) ∈ C. By the definition of Ci,
this implies that (x2, x1, x3, . . ., xr+1) ∈ C1 ∩ C2. Since
(x1, x2, x3, . . ., xr+1) < R, the vector (x2, x1, x3, . . ., xr+1) does
not belong to R and, therefore, belongs to K. This argument
actually shows that (x1, x2, x3, . . ., xr+1) still belongs to K \ R
after transposing any two coordinates. It follows that every
permutation of (x1, x2, x3, . . ., xr+1) stays in K \ R.

Claim A shows that if C is a covering code of density λ(C) ≈
1/r and, therefore, λ(R) is small, then the kernel K is almost
symmetric.

Given (x1, . . ., xr−1, xr) ∈ C, define the splinter of C at
(x1, . . ., xr−1, xr) with respect to the last coordinate as the set

S (x1, . . . , xr−1, xr) = {x ∈ X : (x1, . . . , xr−1, x) ∈ C} .

Let δ ∈ (0, 1) be the parameter whose value will be chosen
later. Consider the part C′ of C consisting of the vectors with
small splinters. Specifically,

C′ = {(x1, . . . , xr) ∈ C : λ (S (x1, . . . , xr)) ≤ δ} .

Note that
λ(C′) ≤ δ. (14)

Given (x1, . . ., xr−1, xr) ∈ C, we also define its extension-
deletion set E(x1, . . ., xr−1, xr) ⊆ Xr+1 by

E(x1, . . ., xr−1, xr) =
˚
(x1, . . ., xr−1, xr, xr+1) ∈ Xr+1 :

(x1, . . ., xr−1, xr+1) ∈ C
	
.

Finally, let

W =
˚
(x1, . . . , xr) ∈ C\C′ : E (x1, . . . , xr) ⊆ R̄

	
.

Claim B. λ(W) ≤ λ(R)/δ.

Proof of Claim B. Consider the set

W+ =
[

(x1,...,xr)∈W

E(x1, . . ., xr).

Since W+ ⊆ R, we have W+ ⊆ R and, therefore,

λ(W+) ≤ λ(R). (15)

On the other hand,

λ(W+) ≥ λ(W) · δ. (16)

Indeed, for (x1, . . ., xr) ∈ W let σ be the lexico-
graphically smallest permutation of {1, . . ., r} such that
(xσ(1), . . ., xσ(r)) ∈ W. For every x ∈ S (xσ(1), . . ., xσ(r)), we
have (xσ(1), . . ., xσ(r), x) ∈ E(xσ(1), . . ., xσ(r)) ⊆ W+ and, hence,
(x1, . . ., xr, x) ∈ W+. To obtain Inequality (16), it suffices to
note that λ(S (xσ(1), . . ., xσ(r))) > δ because (xσ(1), . . ., xσ(r)) <
C′.

The claim readily follows from Inequalities (15) and (16).

We now show that if δ is chosen so that λ(C′) and λ(W)
are small, then C is almost symmetric.

Claim C. C \ (C′ ∪W) ⊆ C.

Proof of Claim C. For any (x1, . . ., xr) ∈ C, note that its
extension (x1, . . ., xr, xr+1) belongs to E(x1, . . ., xr) if and only
if it belongs to Cr ∩Cr+1. Suppose that (x1, . . ., xr) ∈ C \ (C′∪
W). By the definition of W, we have E(x1, . . ., xr)�⊆R. This
means that there exists xr+1 ∈ X such that (x1, . . ., xr, xr+1)
belongs to Cr ∩Cr+1 but not to R. It follows that

(x1, . . ., xr, xr+1) ∈ (Cr ∩Cr+1) \ R

⊆ (Cr ∩Cr+1) \ R ⊆ K.

We conclude that (x1, . . ., xr, xr+1) ∈ K \ R. Let σ be an
arbitrary permutation of {1, . . ., r}. By Claim A, we have
(xσ(1), . . ., xσ(r), xr+1) ∈ K. Since K ⊆ Cr+1, this implies that
(xσ(1), . . ., xσ(r)) ∈ C.

Since C covers Xr+1, its symmetrization C covers Xr+1 as
well and, by Claim C, we have

s?([0, 1], r + 1, r) ≤ λ(C) ≤ λ(C) + λ(C′) + λ(W).

Taking into account Bound (14) and Claim B, we obtain

s?([0, 1], r + 1, r) ≤ λ(C) + r! λ(C′) + λ(R)/δ
≤ λ(C) + r! δ+ r! λ(R)/δ.

Setting δ =
√
λ(R), we conclude that

s?([0, 1], r + 1, r) ≤ λ(C) + 2r!
p
λ(R).

Along with Bound (13), this implies that

s?([0, 1], r + 1, r) ≤ λ(C)

+ 2r!

s
r(r + 1)(1 − λ(C))

�
λ(C) −

1
r

�
.
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Since λ(C) can be taken arbitrarily close to s([0, 1], r + 1, r),
the proof is completed by applying Theorems 2 and 4.�

Corollary 3: s(r + 1, r) ≥ 1
r + (1 − o(1))

� t(r+1,r)−1/r
2r·r!

�2
.

Proof: Let sr = s(r + 1, r) − 1/r and tr = t(r + 1, r) − 1/r.
Set R = r · r!. Using the lower bound s(r + 1, r) ≥ 1/r of
Theorem 3, from Theorem 5 we derive

tr ≤ sr + 2r!
p

r(r + 1)(1 − 1/r)sr < sr + 2R
√

sr.

This readily implies
√

sr >
p

tr + R2 − R =
tr

R +
p

R2 + tr
>

tr
R +

√
R2 + 1

,

yielding the desired bound.�
Plugging in Bound (11), we obtain the following.
Corollary 4: For odd r,

s(r + 1, r) ≥
1
r
+

1 − o(1)
4r6(r!)2 .

An analog of Corollary 4 for even r follows from
Corollary 3 by using Bound (12).

Combining Theorem 5 for r = 3 with the lower bound
in (10), we get

0.438334 ≤ s(4, 3) + 24
p

(1 − s(4, 3))(3s(4, 3) − 1).

This allows us to slightly improve the lower bound
s(4, 3) ≥ 1/3 given by Theorem 3.

Corollary 5: s(4, 3) ≥ 0.3333429.
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