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DESCRIPTIVE COMPLEXITY OF FINITE STRUCTURES:

SAVING THE QUANTIFIER RANK

OLEG PIKHURKO AND OLEG VERBITSKY

Abstract. We say that a first order formula Φ distinguishes a structure M over a vocabulary L from

another structure M ′ over the same vocabulary if Φ is true on M but false onM ′ . A formula Φ defines

an L-structure M if Φ distinguishes M from any other non-isomorphic L-structure M ′. A formula Φ

identifies an n-element L-structure M if Φ distinguishes M from any other non-isomorphic n-element

L-structure M ′ .

We prove that every n-element structure M is identifiable by a formula with quantifier rank less than
`

1 − 1
2k

´

n + k2 − k + 4 and at most one quantifier alternation, where k is the maximum relation arity
of M . Moreover, if the automorphism group of M contains no transposition of two elements, the same

result holds for definability rather than identification.

TheBernays-Schönfinkel class consists of prenex formulas inwhich the existential quantifiers all precede

the universal quantifiers. We prove that every n-element structure M is identifiable by a formula in the

Bernays-Schönfinkel class with less than
`

1 − 1
2k2+2

´

n + k quantifiers. If in this class of identifying

formulas we restrict the number of universal quantifiers to k, then less than n − √
n + k2 + k quantifiers

suffice to identifyM and, as long as we keep the number of universal quantifiers bounded by a constant,

at total n − O(√n) quantifiers are necessary.

§1. Introduction. LetM be a structure over a vocabulary L. A closed first order
formula Φ with relation symbols in L ∪ {=} is either true or false onM . IfM ′ is
another L-structure isomorphic withM , then Φ is equally true or false onM and
M ′. On the other hand, ifM is finite andM ′ is non-isomorphic toM , then there is
a formula ΦM,M ′ that is true onM and false onM ′. As it is well known, for infinite
structures this is not necessary true. In this paper, however, we deal only with finite
structures. We call the number of elements of a structureM its order.
If a first order formula Φ is true onM but false onM ′, we say that Φ distinguishes
M fromM ′. We say that Φ defines anL-structureM if Φ distinguishesM from any
other non-isomorphic L-structureM ′. Furthermore, a formula Φ identifies a finite
L-structure M if Φ distinguishes M from any other non-isomorphic L-structure
M ′ of the same order.
We address the question of how simple a formula identifying (defining) a finite
structure can be. The complexity measure of a first order formula we use here
is the quantifier rank, that is, the maximum number of nested quantifiers in a
formula. Let I (M ) (resp.D (M )) denote the minimum quantifier rank of a formula
identifying (resp. defining) a structure M . We will pay a special attention to
formulas of restricted logical structure. The alternation number of a formula Φ
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is the maximum number of quantifier alternations over all possible sequences of
nested quantifiers under the assumption that Φ is reduced to its negation normal
form, i.e., all negations are assumed to occur only in front of atomic subformulas.
By Il (M ) and Dl (M ) we denote the variants of I (M ) and D (M ) for the class of
formulas with alternation number at most l .
We will estimate I (M ) and D (M ) as functions of the order ofM . The latter is
denoted throughout the paper by n. A simple upper bound for I (M ) is

I0(M ) ≤ n.
Indeed, every structureM is identified by formula

∃x1 . . . ∃xn
(

∧

1≤i<j≤n
xi 6= xj ∧ΨM (x1, . . . , xn)

)

,(1)

where ΨM is the conjunction that gives an account of all relations between elements
ofM and negations thereof. For example, ifM consists of a single binary relation
RM on the set {1, . . . , n}, then

ΨM =
∧

(i,j)∈RM
R(xi , xj) ∧

∧

(i,j) /∈RM
¬R(xi , xj).

It is an easy exercise to show that, ifM has only unary relations, then I0(M ) ≤
(n + 1)/2. In [15] we prove the following results. IfM has only unary and binary
relations, then I1(M ) ≤ (n + 3)/2. In the particular case that M is an ordinary
undirected graph, we are able to improve on the alternation number by showing
that then I0(M ) ≤ (n + 5)/2. It is not hard to show that these bounds are tight up
to a small additive constant. IfM is a k-uniform hypergraph, we have the bound
I1(M ) ≤ (1− 1/k)n + 2k − 1.
Here we continue the research initiated in [15] and prove a general upper bound

I1(M ) <

(

1− 1

2k

)

n + k2 − k + 4,(2)

where k, here and throughout, denotes the maximum relation arity of the vocabu-
lary L.
A simple upper bound for D (M ) is

D0(M ) ≤ n + 1.
An appropriate defining formula is the conjunction of (1) and the formula saying
that there are no n + 1 pairwise distinct elements. The upper bound of n + 1 is
generally best possible. For example, we have D (Mn) = n + 1 if Mn consists of
the single totally true unary relation or is a complete graph on n vertices. However,
for a quite representative class of structures we are able to prove a better bound
making use of one quantifier alternation. We call a structure irredundant if its
automorphism group contains no transposition of two elements. Similarly to (2),
for any irredundant structureM we obtain

D1(M ) <

(

1− 1

2k

)

n + k2 − k + 4.(3)

This is a qualitative extension of a result in [15], where the boundD1(M ) ≤ n/2+2
is proved for any irredundant structureM with maximum relation arity 2. On the
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other hand, there are simple examples of irredundant structures withD (M ) ≥ n/4
(see Remark 4.4).
In fact, the bound (3) may not hold only for structures with a simple, easily
recognizable property. Namely, given elements u and v of M , let us call them
similar if the transposition of u and v is an automorphism of M . It turns out
that, either we have the upper bound for D1(M ) or otherwise M has more than
(

1 − 1
2k

)

n + (k − 1)2 + 3 pairwise similar elements. In the latter case we are able
to easily compute the value of D (M ) up to an additive constant of k. For graphs
such a dichotomy result was obtained in [15].
Furthermore, we address the identification of finite structures by formulas of the
simplest logical structure, namely, those in the prenex normal form (or prenex formu-
las). In this case the quantifier rank is just the number of quantifiers occurring in a
formula. Let Σ1 (resp. Π1) consist of the existential (resp. universal) prenex formu-
las. Furthermore, let Σi (resp. Πi ) be the extension of Σi−1 ∪Πi−1 with prenex for-
mulas whose quantifier prefix begins with ∃ (resp. with ∀) and has less than i quan-
tifier alternations. In particular, Σ2 is the well-known Bernays-Schönfinkel class of
formulas (see [1, 5] for the role of this class in finite model theory). Define Pi(M ) to
be the minimum number of quantifiers in a Σi ∪Πi formula identifying a structure
M . Similarly, let BS (M ) be the minimum number of quantifiers of an identifying
formula in the Bernays-Schönfinkel class Σ2. We hence have the following hierarchy:

I (M ) ≤ Ii−1(M ) ≤ Pi (M ) ≤ Pi−1(M ), i ≥ 1;
P2(M ) ≤ BS (M ) ≤ P1(M ) ≤ n.

(4)

The upper bound of n is here due to the identifying formula (1). The bound
P1(M ) ≤ n is generally best possible. It is attained, for example, if M consists of
the single unary relation true on all but one elements of the structure.
Our concern becomes therefore BS (M ), the next member at the top of the
hierarchy (4). We prove that

BS (M ) <

(

1− 1

2k2 + 2

)

n + k.(5)

Though the multiplicative constant in (5) is worse than that in the bound (2), the
bound (5) may be regarded as a qualitative strengthening of (2) because the class
of formulas in the former result is much more limited than that in the latter result.
If we restrict the number of universal quantifiers to a constant, Bernays-Schönfin-
kel formulas become much less powerful. Let BSq(M ) denote the minimum total
number of quantifiers in a Bernays-Schönfinkel formula identifyingM with at most
q universal quantifiers. We prove that BSk(M ) < n − √

n + k2 + k and that
BSq(M ) ≥ n −O(

√
n) as long as q is bounded by a constant.

To prove (2), we use the characterization of the quantifier rank of a formula
distinguishing structuresM andM ′ as the length of theEhrenfeucht game onM and
M ′ [4] (an essentially equivalent characterization in terms of partial isomorphisms
between M andM ′ and extensions thereof is due to Fraı̈ssé [6]). Unlike (2), our
proof of (5) uses a direct approach. Nevertheless, both the results share the same
background which is based on the notion of a base of a structureM .
Given a set X of elements of M and elements u and v of M , we say that X
separates u and v if the extension of the identity map ofX onto itself taking u to v is
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not a partial automorphism ofM . Clearly, no X can separate similar u and v. On
the other hand, if X separates every two non-similar elements in the complement
of X , we call X a base of M . Every M trivially has (n − 1)-element bases. Our
technical results imply that a considerably smaller base always exists.1

Related work. Our paper is focused on the descriptive complexity of individual
structures as opposed to the descriptive complexity of classes of structures. The lat-
ter is the subject of a large research area, which is emphasized much on themonadic
second order logic (we refer the reader to the survey [5] and textbooks [3, 9]).
The identification of graphs in first order logic is studied in [10, 11, 2, 7, 8] in
aspects relevant to computer science. The main focus of this line of research is on
the minimum number of variables in an identifying formula, where formulas are in
the first order language enriched by counting quantifiers. This complexity measure
of a formula corresponds to the dimension of theWeisfeiler-Lehman algorithm that
succeeds in finding a canonical form of a graph [2].
The present paper studies, in a sense, the worst case descriptive complexity of a
structure. Two other possibilities, the “best” and average structures, are considered
in [14] and [12] in the case of graphs.

Organization of the paper. In Section 2 we explain the notation used throughout
the paper, recall some basic definitions, define the Ehrenfeucht game and state its
connection to distinguishing non-isomorphic structures in first order logic. In Sec-
tion 3 we introduce some relations, partitions, transformations, and constructions
over a finite structure and explore their properties. The main task performed in this
section is construction of a particular base in an arbitrary structure. We will benefit
from these preliminaries while proving both our main results, bounds (2) and (5), in
Sections 4 and 5 respectively. In Section 4 we also prove the bound (3) and the other
definability results. Section 6 is devoted to identification by Bernays-Schönfinkel
formulas with bounded number of universal quantifiers. In Section 7 we focus on
graphs and improve the bound (5) for this class of structures. We conclude with a
list of open problems in Section 8.

§2. Background.

2.1. Notation. Writing ū ∈ U k for a setU and a positive integer k, we mean that
ū = (u1, . . . , uk) with ui ∈ U for every i ≤ k. If u, v ∈ U , then ū(uv) denotes2 the
result of substituting v in place of every occurrence of u in ū and substituting u in
place of every occurrence of v in ū. Here (uv) denotes the transposition of u and
v, that is, the permutation of U interchanging u and v and leaving the remaining
elements unchanged. Given a function φ defined on U , we extend it over U k by
φ(ū) = (φ(u1), . . . , φ(uk)) for ū ∈ U k .
Notation idU stands for the identity map of a set U onto itself. The domain and
range of a function f are denoted by domf and rangef respectively.

1In fact, we do not state this explicitly. However, it is easy to derive from the estimate (39) that every
structure has a base with less than

`

1 − 1
2k2+1

´

n elements. On the other hand, there are structures

whose all bases have at least bn/2c elements. A simple example is given by the graph with m pairwise
non-adjacent edges.
2The double use of the character u here should not be confusing: We will often use u to denote a

single element of a sequence ū.
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2.2. Basic definitions. A k-ary relation R on a set V (or a relation R of arity k)
is a function from V k to {0, 1}. A vocabulary is a finite sequence R1, . . . , Rm of
relation symbols along with a sequence k1, . . . , km of positive integers, where each
ki is the arity of the respective Ri . If L is a vocabulary, a finite structure A over L
(or an L-structure A) is a finite set V (A), called the universe, along with relations
RA1 , . . . , R

A
m , where R

A
i has arity ki . The order ofA is the number of elements in the

universe V (A). If U ⊆ V (A), then A induces on U the structure A[U ] with the
universe V (A[U ]) = U and relationsRA[U ]1 , . . . , RA[U ]m such thatRA[U ]i ā = RAi ā for
every ā ∈ U ki . Two L-structures A and B are isomorphic if there is a one-to-one
map φ : V (A)→ V (B), called an isomorphism fromA toB , such thatRAi ā = RBi φā
for every i ≤ m and all ā ∈ V (A)ki . An automorphism ofA is an isomorphism from
A to itself. If U ⊆ V (A) andW ⊆ V (B), we call a one-to-one map φ : U → W a
partial isomorphism from A to B if it is an isomorphism from A[U ] to B[W ].
Without loss of generality we assume first order formulas to be over the set of
connectives {¬,∧,∨}.

Definition 2.1. A sequence of quantifiers is a finite word over the alphabet {∃, ∀}.
If S is a set of such sequences, then ∃S (resp. ∀S) means the set of concatenations
∃s (resp. ∀s) for all s ∈ S. If s is a sequence of quantifiers, then s̄ denotes the result
of replacement of all occurrences of ∃ to ∀ and vice versa in s . The set S̄ consists of
all s̄ for s ∈ S.
Given a first order formula Φ, its set of sequences of nested quantifiers is denoted
by Nest(Φ) and defined by induction as follows:

(1) Nest(Φ) = {ë} if Φ is atomic, where ë denotes the empty word.
(2) Nest(¬Φ) = Nest(Φ).
(3) Nest(Φ ∧Ψ) = Nest(Φ ∨Ψ) = Nest(Φ) ∪Nest(Ψ).
(4) Nest(∃xΦ) = ∃Nest(Φ) and Nest(∀xΦ) = ∀Nest(Φ).
The quantifier rank of a formula Φ, denoted by qr(Φ), is the maximum length of
a string in Nest(Φ).
Given a sequence of quantifiers s , let alt(s) denote the number of occurrences of

∃∀ and ∀∃ in s . The alternation number of a first order formula Φ is the maximum
alt(s) over s ∈ Nest(Φ).

Given anL-structureA and a closed first order formulaΦwhose relation symbols
are fromL∪{=}, we writeA |= Φ if Φ is true onA andA 6|= Φ otherwise. GivenA,
a formulaΨ(x1, . . . , xm) withm free variables x1, . . . , xm , and a sequence a1, . . . , am
of elements in V (A), we write A, a1, . . . , am |= Ψ(x1, . . . , xm) if Ψ(x1, . . . , xm) is
true on A with each xi assigned the respective ai .
If B is another L-structure, we say that a formula Φ distinguishes A from B if
A |= ΦbutB 6|= Φ. We say thatΦ defines anL-structureA (up to an isomorphism) if
Φ distinguishes A from any non-isomorphic L-structure B . We say that Φ identifies
an L-structure A of order n (up to an isomorphism in the class of L-structures of
the same order) if Φ distinguishes A from any non-isomorphic L-structure B of
order n.
By D (A,B) (resp. Dl (A,B)) we denote the minimum quantifier rank of a for-
mula (resp. with alternation number at most l) distinguishing a structure A from
a structure B . By D (A) (resp. Dl (A)) we denote the minimum quantifier rank of
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a formula defining A (resp. with alternation number at most l). By I (A) (resp.
Il (A)) we denote the minimum quantifier rank of a formula identifying A (resp.
with alternation number at most l).

Lemma 2.2. Let A be a finite structure over vocabulary L. Then the following
equalities hold true:

D (A) = max {D (A,B) : B 6∼= A } ,
Dl (A) = max {Dl (A,B) : B 6∼= A } ,
I (A) = max {D (A,B) : B 6∼= A, |V (B)| = |V (A)| } ,
Il (A) = max {Dl (A,B) : B 6∼= A, |V (B)| = |V (A)| } ,

where ∼= denotes the isomorphism relation between L-structures.
Proof. We prove the first equality; The proof of the others is similar. Given an
L-structure B non-isomorphic to A, let ΦB be a formula of minimum quantifier
rank distinguishing A from B , that is, qr(ΦB) = D (A,B). Let R = maxB qr(ΦB ).
We have D (A) ≥ R because D (A) ≥ D (A,B) for every B . To prove the reverse
inequality D (A) ≤ R, notice that A is defined by the formula Φ = ∧

B ΦB whose
quantifier rank isR. The only problem is thatΦ is an infinite conjunction (a FO∞ù-
formula). However, as it is well known, over a fixed finite vocabulary there are only
finitely many inequivalent first order formulas of bounded quantifier rank (see, e.g.,
[2, 3, 9]). We therefore can reduce Φ to a finite conjunction. a
2.3. The Ehrenfeucht game. Let A and B be structures over the same vocabulary
with disjoint universes. The r-round Ehrenfeucht game on A and B , denoted
by Ehrr(A,B), is played by two players, Spoiler and Duplicator, with r pairwise
distinct pebbles p1, . . . , pr , each given in duplicate. Spoiler starts the game. A round
consists of a move of Spoiler followed by a move of Duplicator. In the s-th round
Spoiler selects one of the structures A or B and places ps on an element of this
structure. In response Duplicator should place the other copy of ps on an element
of the other structure. It is allowed to place more than one pebble on the same
element. We will use as (resp. bs) to denote the element of A (resp. B) occupied by
ps , irrespectively of who of the players places the pebble on this element. If

ai = aj if and only if bi = bj for all i , j ≤ r,
and the component-wise correspondence between (a1, . . . , ar) and (b1, . . . , br) is a
partial isomorphism fromA toB , this is a win for Duplicator; Otherwise the winner
is Spoiler.
The l -alternationEhrenfeucht game onA andB is a variant of the game in which
Spoiler is allowed to switch from one structure to another at most l times during
the game, i.e., in at most l rounds he can choose the structure other than that in the
preceding round.
The following statement provides us with a robust technical tool.

Lemma 2.3. Let A and B be non-isomorphic structures over the same vocabulary.

(1) D (A,B) equals the minimum r such that Spoiler has a winning strategy in
Ehrr(A,B).

(2) Dl (A,B) equals the minimum r such that Spoiler has a winning strategy in the
l -alternation Ehrr(A,B).
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We refer the reader to [3, Theorem 1.2.8], [9, Theorem 6.10], or [17, Theorem 2.3.1]
for the proof of the first claim and to [13] for the second claim.

§3. Exploring structural properties of finite structures.

3.1. A few useful relations. Throughout this section we are given an arbitrary
finite structureM over vocabulary L. We abbreviate V = V (M ).

Definition 3.1. For a, b ∈ V we write a ∼ b if the transposition (ab) is an
automorphism ofM . In other words, a ∼ b if, for every l -ary relation R ofM , we
have Rā = Rā(ab) for all ā ∈ V l .
Lemma 3.2. ∼ is an equivalence relation on V .
Proof. The relation is obviously reflexive and symmetric. The transitivity follows
from the facts that the composition of automorphisms is an automorphism and that
the transposition (ac) is decomposed into a composition of (ab) and (bc). a
Given X ⊂ V , we will denote its complement by X = V \X .
Definition 3.3. Let X ⊂ V and a, b ∈ X . We write a ≡X b if idX extends to
an isomorphism fromM [X ∪ {a}] toM [X ∪ {b}]. In other words, for every l -ary
relation R ofM , we have Rā = Rā(ab) for all ā ∈ (X ∪ {a})l .
Furthermore, we write a ≈X b if the transposition (a, b) is an automorphism of
M [X∪{a, b}]. In otherwords, for every l -ary relationRofM , we haveRā = Rā (ab)
for all ā ∈ (X ∪ {a, b})l .
Clearly, a ≈X b implies a ≡X b. It is also clear that≡X is an equivalence relation
on X . In contrast to this, simple examples show that a ≈X b is generally not an
equivalence relation.

Definition 3.4. Let C (X ) denote the partition ofX into≡X -equivalence classes.
Furthermore, Cm(X ) = {C ∈ C (X ) : |C | ≤ m }.
The following lemma points some trivial but important properties of the partition
C (X ).

Lemma 3.5.

(1) If X1 ⊆ X2, then C (X2) is a refinement of C (X1) on X2.
(2) For any X , the ∼-equivalence classes restricted to X refine the partition C (X ).
In the sequelM ′ denotes another L-structure.

Definition 3.6. Let φ : X → X ′ be a partial isomorphism from M to M ′. Let
a ∈ X and a′ ∈ X ′. We write a ≡φ a′ if φ extends to an isomorphism from
M [X ∪ {a}] toM ′[X ′ ∪ {a′}].
Lemma 3.7. Let φ : X → X ′ be a partial isomorphism fromM toM ′. Then the
following claims are true.

(1) Assume that a ≡X b and a′ ≡X ′ b′. Then a ≡φ a′ if and only if b ≡φ b′.
(2) Assume that a ≡φ a′ and b ≡φ b′. Then a ≡X b if and only if a ′ ≡X ′ b′.
(3) Let φ̄ be a partial isomorphism from M to M ′ which is an extension of φ. If
a ∈ dom φ̄ \X , then a ≡φ φ̄(a).

(4) Let φ̄ be a partial isomorphism fromM toM ′ which is an extension of φ. Let
a, b ∈ dom φ̄ \X . Then a ≡X b if and only if φ̄(a)≡X ′ φ̄(b).
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The proof is easy. Item 1 of the lemma makes the following definition correct.

Definition 3.8. Let φ : X → X ′ be a partial isomorphism from M to M ′. Let
C ∈ C (X ) and C ′ ∈ C (X ′). We write C ≡φ C ′ if a ≡φ a′ for some (equivalently,
for all) a ∈ C and a′ ∈ C ′.

3.2. A couple of useful transformations. Let M be a finite structure of order n
with themaximum relation arity k. LetX ⊆ V (M ). We define two transformations
that, if applicable to X , extend it to a larger set.

Transformation T : If there exists a set S ⊆ X with at most k−1 elements such that
|C (X ∪ S)| > |C (X )|, take the lexicographically first such S and set T (X ) =
X ∪ S. Otherwise T is not applicable to X .

Transformation E: Apply T iteratively as long as it is applicable (note that this is
possible less than n times). The result is denoted byE(X ). If T is not applicable
at all, set E(X ) = X .

Lemma 3.9. Assume that T is not applicable to X . If C ∈ C (X ) \ C 2(X ), then
a ≈X b for every a, b ∈ C .
Proof. Let C ∈ C (X ) and |C | ≥ 3. Given a and b in C , we have to show
that a ≈X b. In other words, our task is, given an l -ary relation R of M and
ā ∈ (X ∪ {a, b})l , to show that Rā = Rā(ab). If ā contains no occurrence of a or
no occurrence of b, this equality is true because a ≡X b. It remains to consider the
case that ā contains occurrences of both a and b.

Claim A. Let u, v, and w be pairwise distinct elements in C . Let R be an l -ary
relation of M and ū ∈ (X ∪ {u, v})l with occurrences of both u and v. Then
Rū = Rū(vw).

Proof of Claim. If Rū 6= Rū(vw), then removal of u from C to X splits C into
at least two ≡X∪{u}-subclasses, containing v and w respectively. This contradicts
the assumption that T is not applicable to X . a
Let c be an arbitrary element in C \ {a, b}. Applying Claim A repeatedly three
times, we obtain

Rā = Rā(bc) = R(ā(bc))(ab) = R((ā(bc))(ab))(ac) = Rā(bc)(ab)(ac) = Rā(ab),

as required. a
Lemma 3.10. |E(X ) \X | ≤ (k − 1)

(

|C (E(X ))| − |C (X )|).
3.3. The many-layered base of a finite structure.

Definition 3.11. Suppose that a finite structureM with maximum relation arity
k is given. A setX ⊆ V (M ) is called a base ofM if the relations≡X and∼ coincide
on X .
For X ⊂ V (M ), let Y (X ) = ⋃

C∈C k+1(X ) C . We set

X0 = Y0 = ∅,
Xi = E(Xi−1 ∪ Yi−1) for 1 ≤ i ≤ k,
Yi = Y (Xi) for 1 ≤ i ≤ k,

Xk+1 = Xk ∪ Yk ,
Z = V (M ) \Xk+1.
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We will call Xk+1 the canonical base of M .

The terminology introduced by the definition is coherent due to the following
fact.

Lemma 3.12. On Z the relations ≡Xk , ≡Xk+1 , and ∼ coincide. Thus, the canonical
base of any structureM is a base ofM .

Proof. We start with relations ≡Xk and∼. Assume on the contrary that a ≡Xk b
but a 6∼ b for some a, b ∈ Z. The latter means that, for some l -ary relation R of
M and ā ∈ V l with at least one occurrence of a,

Rā(ab) 6= Rā.(6)

Denote A = {a1, . . . , al} \ {a, b}. Since |A| ≤ k − 1 and the Yi ’s are pairwise
disjoint, there is j ≤ k such that

A ∩ Yj = ∅.(7)

Our goal is now to show that the transformation T is applicable to Xj , making a
contradiction to the construction of Xj . For this purpose, we will “modify” Xj by
setting X ′

j = Xj ∪ A and show that |C (X ′
j)| > |C (Xj)|. By (6), we have

a 6≈X ′

j
b.(8)

No class in C (Xj) can disappear completely after extending Xj to X ′
j : The classes

in C k+1(Xj) can only split up because of (7), the classes in C (Xj) \ C k+1(Xj) can
lose up to k − 1 elements and/or split up.
Since a ≡Xk b and a, b ∈ Z, both a and b belong to the same ≡Xk -class C ∗

containing at least k + 2 elements. Let C be the ≡Xj -class such that C ∗ ⊆ C .
We now show that C is split up after modifying Xj thereby obtaining the desired
inequality |C (X ′

j)| > |C (Xj)|.
Indeed, if a 6≡X ′

j
b, we have two subclasses containing respectively a and b. If

a ≡X ′

j
b, it follows by Lemma 3.9 from (8) that the class in C (X ′

j) containing a and

b is exactly {a, b}. After removing at most k − 1 elements, in C there remain at
least 3 elements and therefore C must have at least one more ≡X ′

j
-subclass besides

{a, b}.
Thus, on Z the relations ≡Xk and ∼ are identical. By Item 1 of Lemma 3.5, on
Z the relation ≡Xk+1 refines ≡Xk . By Item 2 of the same lemma the converse is also
true. It follows that on Z the relations ≡Xk+1 and≡Xk also coincide. a
Lemma 3.13. Let n be the order ofM and k be the maximum relation arity ofM .
We have

k
∑

i=1

|C k+1(Xi )|+
|Z|
2
>
n

2k
+
1

2
− 1

2k
if k ≥ 2(9)

and

2k
k−1
∑

i=1

|C k+1(Xi )|+ (k + 1)|C k+1(Xk)|+ (k − 1)|C (Xk)|+ |Z| ≥ n + k − 1.

(10)



428 OLEG PIKHURKO AND OLEG VERBITSKY

Proof. By Lemma 3.10 we have

|X1| ≤ (k − 1)(|C (X1)| − 1),(11)

|Xi \ (Xi−1 ∪ Yi−1)| ≤ (k − 1)(|C (Xi)| − |C (Xi−1 ∪ Yi−1)|)(12)

for 2 ≤ i ≤ k. Note that
|C (Xi )| = |C k+1(Xi )|+ |C (Xi ) \ C k+1(Xi )|

and

|C (Xi ) \ C k+1(Xi )| ≤ |C (Xi ∪ Yi)|
for 1 ≤ i ≤ k. The latter inequality is true because, according to Item 1 of Lemma
3.5, the partition C (Xi ∪ Yi ) is a refinement of C (Xi ) \ C k+1(Xi ). Combining it
with (11) and (12), we obtain

|X1| ≤ (k − 1)(|C k+1(X1)|+ |C (X1 ∪ |Y1)| − 1)(13)

|Xi \ (Xi−1 ∪ Yi−1)| ≤ |(k − 1)(|C k+1(Xi )|+ |C (Xi ∪ Yi )| − |C (Xi−1 ∪ |Yi−1)|).
(14)

Summing up (13) and (14) over all 2 ≤ i ≤ k, we have

|X1|+
k

∑

i=2

|Xi \ (Xi−1 ∪ Yi−1)| ≤ (k − 1)
(

k
∑

i=1

|C k+1(Xi )|+ |C (Xk ∪ Yk)| − 1
)

.

(15)

According to Lemma 3.12,

C (Xk ∪ Yk) = C (Xk) \ C k+1(Xk)(16)

and, as a consequence,

|C (Xk ∪ Yk)| ≤ |Z|/(k + 2).(17)

From (15) we conclude, using (16), that

|X1|+
k

∑

i=2

|Xi \ (Xi−1 ∪ Yi−1)| ≤ (k − 1)
(

k−1
∑

i=1

|C k+1(Xi )|+ |C (Xk)| − 1
)

(18)

and, using (17), that

|X1|+
k

∑

i=2

|Xi \ (Xi−1 ∪ Yi−1)| ≤ (k − 1)
(

k
∑

i=1

|C k+1(Xi )|+
|Z|
k + 2

− 1
)

.(19)

Notice also a trivial inequality

|Yi | ≤ (k + 1)|C k+1(Xi )|.(20)

It is easy to see that

n = |X1|+
k

∑

i=2

|Xi \ (Xi−1 ∪ Yi−1)|+
k

∑

i=1

|Yi |+ |Z|.(21)
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Using (18) and (20), we derive from (21) that

n ≤ 2k
k−1
∑

i=1

|C k+1(Xi)|+ (k + 1)|C k+1(Xk)|+ (k − 1)|C (Xk)|+ |Z| − (k − 1),

which implies (10). Using (19) and (20), we derive from (21) that

n ≤ 2k
k

∑

i=1

|C k+1(Xi )|+
(

2− 3

k + 2

)

|Z| − (k − 1),(22)

which implies (9) (the inequality in (9) is strict due to the condition that k ≥ 2). a

§4. Identifying finite structures with smaller quantifier rank.

Theorem 4.1. Let L be a vocabulary with maximum relation arity k. For every
L-structureM of order n we have

I1(M ) <

(

1− 1

2k

)

n + k2 − k + 4.

The proof takes the next two subsections. The case of k = 1 is an easy exercise
and we will assume that k ≥ 2. According to Lemma 2.2, it suffices to consider
an arbitrary L-structureM ′ non-isomorphic withM and of the same order n, and
estimate the value of D1(M,M ′). We will design a strategy enabling Spoiler to win
the Ehrenfeucht game onM andM ′ in less than (1− 1

2k )n+k
2−k+4moves with

at most one alternation between the structures. This will give us the desired bound
by Lemma 2.3.

4.1. Spoiler’s strategy. The strategy splits play into k + 2 phases. Spoiler will
play almost all the time inM , possibly with one alternation fromM toM ′ at the
end of the game. For each vertex v ∈ V (M ) selected by Spoiler up to Phase i ,
let φ∗i (v) denote the vertex in V (M

′) selected in response by Duplicator. Thus,
each subsequent φ∗i+1 extends φ

∗
i . Provided Phase i has been already finished but

the game not yet, φ∗i is a partial isomorphism from M to M
′. Under the same

condition, it will be always the case that domφ∗i ⊆ Xi . We will use notation
Ỹi−1 = domφ∗i ∩ Yi−1. Recall that the sets Xi and Yi are defined by Definition
3.11 so that Yi−1 ⊂ Xi .
Phase 1. Spoiler selects all vertices in X1. Let X ′

1 = φ
∗
1 (X1).

End of phase description.

Phase j+1, 1 ≤ j ≤ k. Our description of Phase j+1 is based on the assumption
that Phase j is completed but the game is not finished yet and that the following
conditions are true for every 1 ≤ i ≤ j.
Condition 1: φ∗i has a unique extension φi over the whole Xi that is a partial iso-
morphism fromM toM ′. Let X ′

i = φi(Xi ).
Condition 2: There is a one-to-one correspondence between the partitions
C
k+1(Xi−1) and C k+1(X ′

i−1) such that, if C
′ ∈ C k+1(X ′

i−1) corresponds to

C ∈ C k+1(Xi−1), then C ≡φi−1 C ′ and |C | = |C ′|.
Condition 3: For every C ∈ C k+1(Xi−1), φ∗i is defined on all but one elements of
C . Denote C̃ = domφ∗i ∩ C . Then φ∗i (C̃ ) ⊂ C ′, where C ′ corresponds to C
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according to Condition 2. Furthermore, φi takes the single element in C \ C̃ to
the single element in C ′ \ φ∗i (C̃ ). Thus, φi(C ) = C ′.
For the further references we denote the set φi(Yi−1) = Y (X ′

i−1) by Y
′
i−1 and

its subset φ∗i (Ỹi−1) by Ỹ
′
i−1.

Condition 1 is true for i = 1 because φ∗1 is defined on the whole X1. For the sake
of technical convenience, we setX ′

0 = X0 = ∅. We suppose thatn > k+1 (otherwise
Theorem 4.1 is trivially true). This implies that C k+1(X0) = C k+1(X ′

0) = ∅ and
makes Conditions 2 and 3 for i = 1 trivially true. For i > 1 Conditions 1–3 follow
by induction from Claim C below.
In the sequel we will intensively exploit the following notion. We say that a pair
(a, a′) ∈ V (M ) × V (M ′) is i-threatening (for Duplicator) if a and a ′ are selected
by the players in the same round after Phase i and

• a /∈ Xi or a′ /∈ X ′
i ,

• a 6≡φi a′.
We now start description of the phase. It consists of two parts.

Part 1. As long as no i-threatening pair arises for 1 ≤ i ≤ j, Spoiler selects all
but one elements in each class C ∈ C k+1(Xj). The set of the vertices selected in C
will be denoted by C̃ . Furthermore, Spoiler selects all vertices in Xj+1 \ (Xj ∪Yj).
As soon as an i-threatening pair for some 1 ≤ i ≤ j arises, Spoiler switches to the
strategy given by Claim B below and wins in at most (i − 1)(k − 1) moves.
Part 2. Assume that Part 1 finishes and Duplicator still does not lose. Then, if
Spoiler is able to win in at most k next moves irrespective of Duplicator’s strategy,
he does so and the game finishes. If he is not able to win but able in at most k + 2
moves to enforce creating an i-threatening pair for some i ≤ j, he does so and wins
in atmost (i−1)(k−1) subsequent moves using the strategy of Claim B. Otherwise
Phase j + 1 is complete and the next Phase j + 2 starts.
End of phase description.

Claim A. Let i ≤ k +1. Suppose that Phase i is finished and Conditions 1–3 are
met for i and all its preceding values. Assume that a ∈ V (M ) and a ′ ∈ V (M ′) are
selected by the players in the same round after Phase i and neither of them has been
selected before. If

• a ∈ Xi but a′ 6= φi (a) or
• a′ ∈ X ′

i but a 6= φ−1i (a′),
then the pair (a, a′) is m-threatening for some m < i .

Proof of Claim. Let m, 1 ≤ m < i , be the largest index such that neither
a ∈ Xm nor a′ ∈ X ′

m . Then a ∈ Xm+1 or a′ ∈ X ′
m+1. We consider the former case

(the analysis of the latter case is symmetric). By Condition 3, a ∈ Ym \ Ỹm and
the relation a ≡φm x with x /∈ domφ∗i holds for the only x = φm+1(a). We have
a′ 6= φi(a) = φm+1(a) (the latter equality is due to the uniqueness of theφi ’s ensured
by Condition 1). Therefore a 6≡φm a′, which means that (a, a ′) ism-threatening. a
Claim B. Assume that Phase j, j ≤ k + 1, finishes, Conditions 1–3 for all i ≤ j
are met, and the game is going on. Let 1 ≤ i ≤ j. As soon as after Phase j an
i-threatening pair (a, a ′) arises, Spoiler is able to win in atmost (i−1)(k−1)moves
playing all the time, at his own choice, either inM or inM ′.
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Convention. Given a relation R = RM of M , we will denote the respective
relation RM

′

by R′.

Proof of Claim. We proceed by induction on i . For i = 1 the claim easily
follows from Item 3 of Lemma 3.7. Let i ≥ 2 and assume that the claim is true for
all preceding values 1, 2, . . . , i − 1.
We focus on the case that a /∈ Xi (in the case that a′ /∈ X ′

i the proof is given by the
symmetric argument). The non-equivalence a 6≡φi a′ can happen in two situations.

Case 1. a′ ∈ X ′
i . Clearly, a 6= φ−1i (a′) and therefore, by Claim A, the pair (a, a ′)

is m-threatening for some m < i . By the induction hypothesis, Spoiler is able to
win in at most (m − 1)(k − 1) moves.
Case 2. a′ /∈ X ′

i . Then the non-equivalence a 6≡φi a′ means that there is an l -ary
relation ofM and ā ∈ (Xi ∪ {a})l with at least one occurrence of a such that

Rā 6= R′øā,(23)

where ø is the map defined by ø(x) = φi (x) for all x in A = {a1, . . . , al} \ {a}
and by ø(a) = a′. Thus, ø is not a partial isomorphism fromM toM ′. Hence, if
A ⊆ domφ∗i , then Spoiler wins immediately.
Assume that Â = A\domφ∗i is nonempty. Spoiler selects all unselected elements
in Â, if he wants to play inM , or in φi(Â), if he prefers to play inM ′. This takes
at most k − 1 moves. Suppose that Spoiler plays in M (for M ′ the argument is
symmetric). If for every b ∈ Â its counterpart inV (M ′) is φi (b), this is Spoiler’s win
by (23). If some b ∈ Â has the counterpart b′ such that b′ 6= φi (b), byClaimA there
arises an m-threatening pair for some m < i . Applying the induction hypothesis
for the index m, we conclude that Spoiler is able to win in at most (m − 1)(k − 1)
moves, having made altogether at most (k − 1) + (m − 1)(k − 1) ≤ (i − 1)(k − 1)
moves. a

Claim C. Assume that Phase j, j ≤ k, has been finished and Conditions 1–3 for
all i ≤ j are met. Assume furthermore that Part 1 of Phase j + 1 finishes and the
game is still going on. Then either Conditions 1–3 hold true for i = j + 1 as well
or Spoiler is able to win or to create an i-threatening pair for some i ≤ j in at most
k + 2 moves with at most one alternation fromM toM ′ (and hence he is able to
win in Part 2 of Phase j + 1).

Proof of Claim. Assuming that Spoiler is unable to win or to create an i-
threatening pair, we check Conditions 1–3.
Condition 2. The following two facts take place, for else Spoiler would be able to
enforce creating a j-threatening pair in at most k + 2 moves:

• For every C ′ ∈ C k+1(X ′
j) there is C ∈ C k+1(Xj) such thatC ≡φj C ′. (Other-

wise, if some C ′ ∈ C k+1(X ′
j) has no ≡φj -counterpart in C (Xj), then Spoiler

selects an element in the C ′. If C ′ has a counterpart C in C (Xj) but not in
C
k+1(Xj), then Spoiler selects k + 2 elements in the C . A j-threatening pair
arises whatever Duplicator’s response is.)

• For every C ∈ C k+1(Xj) there is C ′ ∈ C k+1(X ′
j) such that C ≡φj C ′ and

|C ′| ≥ |C | − 1. (Otherwise, for some C , φ∗j+1(C̃ ) cannot be included into the
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respective C ′. Therefore c 6≡φj φ∗j+1(c) for at least one c ∈ C̃ , providing us
with a j-threatening pair already in Part 1 of Phase j + 1.)

Thus, there is a one-to-one correspondence between C k+1(Xj) and C k+1(X ′
j) such

that, for C and C ′ corresponding to one another, C ≡φj C ′, |C ′| ≥ |C | − 1,
and φ∗j+1(C̃ ) ⊆ C ′. Moreover, it actually holds |C ′| = |C | because, if |C ′| ≥
|C | + 1, Spoiler could select 2 vertices in C ′ \ φ∗j+1(C̃ ) obtaining a j-threatening
pair whatever Duplicator’s response.
Conditions 1 and 3. By Condition 1 for i = j, the partial isomorphism φ∗j+1 can
be extended on Xj only to φj and then it remains undefined within Xj+1 only on

Yj \ Ỹj . Define an extension φj+1 of φ∗j+1 on the whole Xj+1 so that φj+1
• agrees with φj on Xj ,
• agrees with φ∗j+1 on Ỹj , and
• for eachC ∈ C k+1(Xj), takes the single element inC \ C̃ to the single element
in C ′ \ φ∗j+1(C̃ ), where C ′ corresponds to C according to Condition 2 that
we have already proved.

We have to show that φj+1 is a partial isomorphism from M to M ′ and no other
extension of φ∗j+1 is such.
Assume that φj+1 is not a partial isomorphism and get a contradiction to the
assumption that Spoiler can in the nearest k moves neither win nor create an i-
threatening pair. For some l -ary relation ofM and ā ∈ X lj+1, we should have

Rā 6= R′φj+1ā.(24)

As a consequence, A = {a1, . . . , al} is not included into domφ∗j+1 for else φ∗j+1
would not be a partial isomorphism, contradicting the assumption that the game is
still going on. Let Spoiler select all elements in Â = A \ domφ∗j+1. If for b ∈ Â
Duplicator always responds with φj+1(b), he loses by (24). Otherwise, let b be

an element in Â to which Duplicator responds with b′ 6= φj+1(b). If b ∈ Xj or
b′ ∈ X ′

j , then we have b
′ 6= φj(b) because φj+1 extends φj . By Claim A, (b, b′) is

an i-threatening pair for some i < j. If b ∈ Xj+1 \ Xj and b′ ∈ V (M ′) \ X ′
j , then

b 6≡φj b′ by Condition 2 proved above and the definition of φj+1. Thus, (b, b′) is
j-threatening. We have a contradiction in any case and therefore φj+1 is a partial
isomorphism fromM toM ′ indeed.
To prove the uniqueness of the extension φj+1 (i.e., Condition 1), assume that

φ̂j+1 is another extension of φ∗j+1 over Xj+1 which is a partial isomorphism and

differs from φj+1 at b ∈ Yj \ Ỹj . Let b′ = φj+1(b) and b′′ = φ̂j+1(b). By Condition
2 proved above,

b′ 6≡X ′

j
b′′.(25)

By Condition 1 for i = j, φ̂j+1 on Xj coincides with φj . Thus, the composition

φ̂j+1φ
−1
j+1 takes b

′ to b′′, extends idX ′

j
, and is a partial isomorphism from M ′ to

itself. This makes a contradiction to (25). a
ClaimC implies by an easy induction on j from1 tok+1 that, for each 1 ≤ j ≤ k,
unless Spoiler wins in Phase j or earlier, Conditions 1–3 assumed in our description
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of Phase j+1 are indeed true. For analysis of the concluding phase, we state simple
consequences of Claims A–C.

Claim D. Suppose that Spoiler follows the strategy designed above (Duplicator’s
strategy does not matter). Assume that Duplicator survives up to Phase k + 1.
Then the following claims are true.

(1) Conditions 1–3 hold true for all i ≤ k + 1.
(2) When in further play Spoiler selects v ∈ V (M ) ∪ V (M ′), we denote Dupli-
cator’s response by ø(v). As long as there arises no i-threatening pair for any
i ≤ k, it holds

ø(v)≡φk v if v /∈ Xk ∪ X ′
k ,(26)

ø(v) = φk+1(v) if v ∈ Xk+1,(27)

ø(v) = φ−1k+1(v) if v ∈ X ′
k+1.(28)

(The relations in (26) and (27)–(28) are equivalent on (Xk+1 ∪X ′
k+1) \ (Xk ∪

X ′
k).)

Proof of Claim. Item 1 follows from Claim C by an easy inductive argument.
Regarding Item 2, note that, if (26) were false, (v, ø(v)) would be a k-threatening
pair. If (27) or (28) were false, (v, ø(v)) would be an i-threatening pair for some
i ≤ k on the account of Claim A. a
Concluding Phase (Phase k + 2). We here assume that Phases from 1 up to
k+1 have been finished without Spoiler’s win and therefore Items 1 and 2 of Claim
D hold true. As soon as there arises an i-threatening pair for some i ≤ k, Spoiler
switches to the strategy given by Claim B and wins in at most (k − 1)2 moves. As
long as there occurs no such pair, Spoiler follows the strategy described below. The
strategy depends on which of the following three cases takes place.

Case 1. There is a one-to-one correspondence between C (Xk) andC (X
′
k) such that,

if C and C ′ correspond to one another, then C ≡φk C ′ and, moreover, |C | = |C ′|.
By Item 1 of Claim D, such correspondence does exist between C k+1(Xk) and
C
k+1(X ′

k) in any case.
Let Υ be the set of maps φ : V (M ′)→ V (M ) such that
• φ is one-to-one,
• φ extends φ−1k+1,
• for every C ′ ∈ C (X ′

k), we have φ(C
′) ∈ C (Xk) and φ(C ′)≡φk C ′.

Claim E. Assume that φ and ø are in Υ. Let R be an l -ary relation ofM . Then
Rφā′ = Røā′ for all ā′ ∈ V (M ′)l .

Proof of Claim. The product øφ−1 is a permutation of V (M ) that moves only
elements in Z. Moreover, øφ−1 preserves the partition C (Xk) \ C k+1(Xk) of
Z and therefore øφ−1 is decomposed into the product of permutations ðC over
C ∈ C (Xk) \ C k+1(Xk), where each ðC acts on the respective C . Since every
ðC is decomposable into a product of transpositions, we have øφ−1 = ô1ô2 . . . ôt
with ôi being a transposition of two elements both in some C . It is easy to see
that øā′ = (. . . ((φā′)ôt ) . . . )ô1 . By Lemma 3.12, each application of ôi does not
change the initial value of Rφā ′. Therewith we arrive at the desired equality
Rφā′ = Røā′. a
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To specify Spoiler’s strategy, we fix φ ∈ Υ arbitrarily. Since M and M ′ are
non-isomorphic, φ is not an isomorphism fromM ′ toM , that is,

Rφā′ 6= R′ā′(29)

for some l -ary relation R′ of M ′ and ā′ ∈ V (M ′)l . This inequality implies that
the set A′ = {a′1, . . . , a′l} is not included into X ′

k+1. Spoiler selects, one by one,

elements of Â = A′ \ rangeφ∗k+1. For Spoiler’s move v, let ø(v) denote Duplicator’s
response.
Assume first that

ø(v)≡φk v whenever v /∈ X ′
k

and(30)

ø(v) = φ−1k+1(v) whenever v ∈ X ′
k+1.

Due to (30), we are able to extend ø, initially defined on Â, to a map in Υ. Fix
a such extension. By Claim E, Rφā ′ = Røā′ and, by (29), Spoiler wins. If (30)
is violated for some v ∈ Â, by Item 2 of Claim D this produces an i-threatening
pair for i ≤ k and therefore Spoiler wins in at most (k − 1)2 moves, having made
altogether at most k + (k − 1)2 moves.

Case 2. There is no one-to-one correspondence between C (Xk) and C (X
′
k) such

that, if C and C ′ correspond to one another, then C ≡φk C ′. Spoiler selects an
element in C or C ′ that has no counterpart. Whatever Duplicator’s response,
there arises a k-threatening pair. This allows Spoiler to win altogether in at most
1 + (k − 1)2 moves.

Case 3. There is a one-to-one correspondence between C (Xk) andC (X
′
k) such that,

ifC andC ′ correspond to one another, thenC ≡φk C ′. However, there areC ∈ C (Xk)
and C ′ ∈ C (X ′

k) such that C ≡φk C ′ but |C | 6= |C ′|.
Call a classC ∈ C (Xk) useful ifC≡φkC ′ but |C | 6= |C ′|. The description of Case
3 tells us that there is at least one useful class. Actually, since |V (M )| = |V (M ′)|,
there are at least two useful classes, C1 andC2. Note that |C1|+|C2| ≤ |Z|. Without
loss of generality, assume that |C1| ≤ |Z|/2. Let C ′

1 be the counterpart of C1 in
C (X ′

k), i.e., C1≡φk C ′
1 . In the larger ofC1 andC

′
1 Spoiler selects min{|C1|, |C ′

1 |}+1
elements. Duplicator is enforced to at least once reply not in the smaller class. This
produces an i-threatening pair and Spoiler, according to Claim B, wins in at most
(k − 1)2 subsequent moves, having made altogether at most |Z|/2 + 1 + (k − 1)2
moves.
End of description of the conluding phase.

4.2. Estimation of the length of the game. If Spoiler follows the above strategy
andDuplicator delays his loss as long as possible, the end of the game is always this:
Spoiler enforces creating a threatening pair in at most k + 2 moves and then wins
in at most (k − 1)2 next moves using the strategy of Claim B. Let us calculate the
smallest possible (optimal for Duplicator) number of elements in M unoccupied
till such final stage of the game. The minimum is attained if all Phases from 1 up to
k + 2 are played and Case 3 occurs in Phase k + 2. Then the number of elements
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unoccupied in Xk+1 is equal to

k
∑

i=1

|Yi \ Ỹi | =
k

∑

i=1

|C k+1(Xi )|.

The number of elements unoccupied in Z is at least |Z| − (|Z|/2+ 1) = |Z|/2− 1.
By Lemma 3.13, the total number of unoccupied elements is at least

k
∑

i=1

|C k+1(Xi)|+
|Z|
2

− 1 > n
2k

− 1
2
− 1

2k
.

Thus, the maximum possible number of occupied elements is less than
(

1− 1

2k

)

n +
1

2
+
1

2k
.

Summing up, we conclude that our strategy allows Spoiler to win in less that
(

1− 1

2k

)

n + k2 − k + 4

moves. Theorem 4.1 is proved.

4.3. Definability results. Anatural question is if our approach applies to defining
rather than identifying formulas. In fact, the proof of Theorem 4.1 implies the
definability with small quantifier rank for a quite representative class of structures.

4.3.1. Definability of irredundant structures.

Definition 4.2. IfM is a finite structure, let

ó(M ) = max { |A| : A ⊆ V (M ) such that a1 ∼ a2 for every a1, a2 ∈ A }
be the maximum cardinality of a ∼-equivalence class in V (M ).
If ó(M ) = 1, i.e., no transposition of two elements is an automorphism of M ,
we callM irredundant.

Theorem 4.3. LetM be an irredundant structure of order n withmaximum relation
arity k. Then

D1(M ) <

(

1− 1

2k

)

n + k2 − k + 3.

Proof. It is not hard to see that the claim is true for k = 1; in fact, an irredundant
structure all whose relations are unary is definable by a formula with quantifier rank
2. Notice that Spoiler’s strategy described in Section 4.1 applies for any pair of L-
structures M and M ′ of arbitrary orders with the only exception of Case 3 in
the concluding Phase k + 2, where the equality |V (M )| = |V (M ′)| is supposed.
Since the set Z is partitioned into ∼-equivalence classes each consisting of at least
k + 2 elements, for an irredundant structure M we have Z = ∅. Consequently,
V (M ) = Xk+1. It follows that either Spoiler wins at latest in Phase k + 1 or,
according to Item 1 of Claim D, there is a partial isomorphism φk+1 fromM toM

′

with domφk+1 = V (M ).
In the latter case, since M and M ′ are non-isomorphic, there is at least one
element v ∈ V (M ′) \ rangeφk+1. In the concluding phase of the game Spoiler
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selects v and, according to Claim D, there arises a k-threatening pair. Spoiler
switches to the strategy given by Claim B and wins in at most (k − 1)2 moves.
It remains to estimate the length of the game. Similarly to Section 4.2, we conclude

that Spoiler needs at most n−∑k
i=1 |C k+1(Xi )|+k+2+(k−1)2 moves to win. By

estimate (22), where |Z| = 0, this number is less than (1− 1
2k )n + k

2 − k + 3. a

Remark 4.4. There are simple examples of irredundant structuresM showing a
lower bound D (M ) ≥ n/4. For example, let F be a directed graph on two vertices
u and v consisting of a single (directed) edge (uv). Let G be another directed
graph on u and v consisting of two edges, (uv) and the loop (uu). Denote the
disjoint union of a copies of F and b copies of G by aF + bG . It is easy to see
that aF + bG is irredundant for any a and b. Directed graphs M = mF + mG
andM ′ = (m − 1)F + (m +1)G are non-isomorphic and both have order 4m. An
obvious strategy for Duplicator in the Ehrenfeucht game onM andM ′ shows that
D (M,M ′) ≥ m.

Theorem 4.3 will be considerably strengthened in the next subsections. In partic-
ular, it will be surpassed by Theorem 4.11.

4.3.2. A further refinement. Aswe observed in the proof ofTheorem 4.3, Spoiler’s
strategy designed in Section 4.1 ensures the bound

D1(M,M
′) <

(

1− 1

2k

)

n + k2 − k + 4(31)

forM ′ of any order under an additional condition imposed onM . We are able to
describe exceptional pairs of non-isomorphicM andM ′ forwhich (31)maynot hold
much more precisely. Assume thatM ′ has order n′ ≥ n. As was alreadymentioned,
the assumption that n′ = n is used only in Case 3 of the concluding Phase k + 2.
Turning back to this case, we see that what is actually used is the existence of at least
two useful classes in C (Xk). Thus, (31) may not hold in the only case that there
is a unique useful class C0 ∈ C (Xk). Since actually C0 ∈ C (Xk) \ C k+1(Xk), we
have |C0| ≥ k + 2. By Lemma 3.12, the class C0 consists of pairwise ∼-equivalent
elements.
Let C ′

0 be the counterpart of C0 in C (X
′
k), i.e., C

′
0 ≡φk C0. Given B ⊆ C ′

0

with |B | = |C0|, let M ′
B = M

′[V (M ′) \ (C ′
0 \ B)]. Consider an arbitrary map

φ : V (M ′
B) → V (M ) extending φ−1k+1, mapping each C ′ ∈ C (X ′

k) \ {C ′
0} onto its

≡φk -counterpart in C (Xk), andmappingB ontoC0. As in Case 1 of Phase k+2, we
see that Spoiler is able to win within the bound of (31) unless φ is an isomorphism
fromM ′

B toM . From here we easily arrive at the following conclusion.

Lemma 4.5. Let L be a vocabulary with maximum relation arity k. LetM andM ′

be non-isomorphic L-structures of orders n and n′ respectively and n ≤ n′. Then the
bound

D1(M,M
′) <

(

1− 1

2k

)

n + k2 − k + 4

may be false only if there is a set C0 ⊆ V (M ) with |C0| ≥ k+2 consisting of pairwise
∼-equivalent vertices and there is a partial isomorphism ø fromM toM ′ defined on
V (M ) \ C0 whose any injective extension is a partial isomorphism fromM toM ′.
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In the next subsection we make a constructive interpretation of the condition
appearing in the lemma.

4.3.3. Cloning an element of a structure.

Notation. Recall that, given a set V and a function ð defined on V , we extend
ð over V l , where l ≥ 1, by ðū = (ð(u1), . . . , ð(ul )) for any ū = (u1, . . . , ul ) with
all ui in V . In particular, this concerns the case that ð is a permutation of elements
of V . Recall also that, if ð = (v1v2) is a transposition, then we may write ū(v1v2) in
place of ðū.

Definition 4.6. Given v ∈ V (M ), let [v]M = {u ∈ V (M ) : u ∼ v } be the ∼-
equivalence class of the element v.

We now introduce an operation of expanding a class [v]M , i.e., adding toM new
elements ∼-equivalent to v. This operation was considered in [15] in the particular
case of uniform hypergraphs.
Let L be a vocabulary with maximum relation arity k. Below K and M are
L-structures, v is an element ofM , and t is a non-negative integer.
Definition A. The notation K = M ⊕ tv means that the following conditions
are fulfilled.

(A1) V (M ) ⊆ V (K) and |V (K)| = |V (M )|+ t.
(A2) K [V (M )] =M .
(A3) |[v]M | ≥ k.
(A4) [v]K = [v]M ∪ (V (K) \ V (M )).
Definition B. The notationK =M ⊕ tv means that the following conditions are
fulfilled.

(B1) V (M ) ⊆ V (K) and |V (K)| = |V (M )|+ t.
(B2) There is C ⊆ [v]M with |C | ≥ k such that every injective extension of

idV (M )\C to a map ø : V (M ) → V (K) is a partial isomorphism from M
to K .

Definition C. The notationK =M ⊕ tv means that the following conditions are
fulfilled.

(C1) V (M ) ⊆ V (K) and |V (K)| = |V (M )|+ t.
(C2) |[v]M | ≥ k.
(C3) Let R be an l -ary relation in L. If ū ∈ V (M )l , then RK ū = RM ū.
(C4) Let R be an l -ary relation in L. Assume that ū ∈ V (K)l and the set

{u1, . . . , ul} \ V (M ) = {w1, . . . , wp} is nonempty. Then RK ū = 1 if and
only if there are pairwise distinct elements v1, . . . , vp ∈ [v]M \ {u1, . . . , ul}
such that RMðū = 1 for ð = (w1v1) · · · (wpvp).

Lemma 4.7. Definitions A, B, and C are equivalent.

Proof. Conditions A1–A4 imply Conditions B1–B2. Since B1 coincides with A1,
we only have to derive B2. We are actually able to prove B2 for an arbitrary
C ⊆ [v]M with |C | ≥ k (there is at least one such C by A3). Let ø be as specified
in B2. For any l -ary relation R in L and ū ∈ V (M )l , we have to check that
RM ū = RKøū. Assume that in {ø(u1), . . . , ø(ul )} there are p elements from
V (K) \ V (M ) and denote them by w1, . . . , wp. Take arbitrary pairwise distinct
v1, . . . , vp ∈ C \ {ø(u1), . . . , ø(ul )}. Let ũ = ðøū with ð = (w1v1) · · · (wpvp).
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By A4, we have vi ∼ wi in K for all i ≤ p. It follows that RKøū = RK ũ. Since
ũ ∈ V (M )l , by A2 we have RK ũ = RM ũ. Notice now that ũ and ū coincide at the
positions occupied by elements in V (M ) \ C , while elements in C are permuted
according to some permutation ô, i.e., ũ = ôū. Since ô is decomposable in a
product of transpositions and elements of C are pairwise ∼-equivalent in M , we
have RM ũ = RM ū, completing derivation of B2.
Conditions B1–B2 imply Conditions C1–C4. For C1 and C2 this is trivial. C3
immediately follows from B2 if we take ø = idV (M ). Let us focus on C4. Let ū

and w1, . . . , wp be as specified in this condition. Assume first that R
K ū = 1. Take

v1, . . . , vp ∈ C \ {u1, . . . , ul} being pairwise distinct and define ø by ø(vi) = wi
for i ≤ p and ø(x) = x for all other x ∈ V (M ). Notice that ø−1ū = ðū for
ð = (w1v1) · · · (wpvp). As ø is a partial isomorphism by B2, we conclude that
RMðū = RK ū = 1. This proves C4 in one direction. Such a way of proving
RMðū = RK ū will be referred to as ø-argument.
For the other direction, assume that RMðū = 1 for ð = (w1v1) · · · (wpvp) with
some v1, . . . , vp ∈ [v]M \{u1, . . . , ul}. If all vi are inC , the equalityRK ū = 1 follows
from the ø-argument with the same ø as above. Otherwise, we can replace each vi
with some v′i ∈ C , where v′1, . . . , v′p are pairwise distinct elements ofC \{u1, . . . , ul}
and v′i = vi whenever vi ∈ C . For no i this replacement changes the initial
value of RMðū and, after all replacements are done, we have RMð′ū = 1 with
ð′ = (w1v′1) · · · (wpv′p). Defining ø′ by ø′(v′i ) = wi and ø

′(x) = x elsewhere on

V (M ), we obtain RK ū = RMð′ū = 1 by the ø′-argument.
Conditions C1–C4 imply Conditions A1–A4. Since A1–A3 are virtually the same
as C1–C3, our concern is A4. It is easy to see that [v]K ∩ V (M ) cannot be
larger than [v]M . Therefore, it suffices to show that in K we have v ∼ v ′ for any
v′ ∈ [v]M ∪ (V (K) \ V (M )). Given an l -ary relation R in L and ū ∈ V (K)l , we
have to check that

RK ū = RK ū(vv
′).

We do it by routine examination of several cases. Note that, if neither v nor v ′

occurs in ū, then there is nothing to prove.
To simplify notation, denote

û = ū(vv
′).

Furthermore, let U = {u1, . . . , ul} andU \V (M ) = {w1, . . . , wp}. Denote the set
of elements in û by Û .

Case 1. v′ ∈ V (K) \ V (M ).
Subcase 1.1. v ∈ U , v ′ ∈ U .
Assuming RK ū = 1, we will infer RK û = 1. This will give also the converse
implication because ū is supposed arbitrary with occurrences of both v and v ′

and we hence can take û instead of ū. Without loss of generality, assume that
v′ = wp. By C4, there are v1, . . . , vp ∈ [v]M \ U such that RMðū = 1 with
ð = (w1v1) · · · (wp−1vp−1)(v′vp). As easily seen, ðû = (ðū)(vvp). Since vp ∼ v in
M , we have RMðû = 1. Note that Û = U and hence v1, . . . , vp ∈ [v]M \ Û . By
C4, we conclude that RK û = 1, as desired.
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Subcase 1.2. v ∈ U , v ′ /∈ U .
Note that Û \ V (M ) = {w1, . . . , wp, v′} and [v]M \ Û = ([v]M \U ) ∪ {v}. We
first assume that RK ū = 1 and infer from here that RK û = 1. Let v1, . . . , vp be as
ensured by Condition C4 for ū, that is, RMðū = 1 with ð = (w1v1) · · · (wpvp). Let
ð′ = ð(v′v). As easily seen, ð′û = ðū. Thus, RMð′û = RMðū = 1 and, by C4, we
conclude that RK û = 1.
We now assume that RK û = 1 and have to infer RK ū = 1. According to C4,
there are pairwise distinct v ′1, . . . , v

′
p+1 ∈ [v]M \ Û such that RMð′û = 1 with ð′ =

(w1v′1) · · · (wpv′p)(v′v′p+1). Choose pairwise distinct v1, . . . , vp in {v′1, . . . , v′p+1} \
{v} and apply to ū the substitution ð = (w1v1) · · · (wpvp). It is not hard to see that
ðū = ôð′û for ô being a permutation of the set V = {v, v ′1, . . . , v′p , v′p+1} taking v′i
to vi for i ≤ p and v′p+1 to v. A such ô exists because elements in {v ′1, . . . , v′p+1}
and in {v1, . . . , vp, v} are pairwise distinct (the fact that the two sets may intersect
does not matter). Since ô is decomposable in a product of transpositions of two
elements from V and elements in V are pairwise ∼-equivalent in M , we have
RMðū = RMð′û = 1. By C4, we conclude that RK ū = 1, as desired.

Subcase 1.3. v /∈ U , v ′ ∈ U . This subcase reduces to Subcase 1.2 by considering
û in place of ū.

Case 2. v′ ∈ [v]M .
Since in this case v and v ′ are interchangeable, it suffices to assume that v ∈ U
and prove that RK ū = 1 implies RK û = 1. Note that Û \ V (M ) = {w1, . . . , wp}.
Subcase 2.1. v′ ∈ U .
Note that [v]M \ Û = [v]M \ U . Let v1, . . . , vp ∈ [v]M \ U be as ensured by
Condition C4 for ū, i.e., RMðū = 1 with ð = (w1v1) · · · (wpvp). Applying the same
ð to û, we see that ðû = (ðū)(vv

′). As v ∼ v′ inM , we have RMðû = RMðū = 1
and hence, by C4, we obtain RK û = 1.

Subcase 2.2. v′ /∈ U .
Note that [v]M \ Û = (([v]M \ U ) \ {v′}) ∪ {v}. Let v1, . . . , vp and ð be as
in Subcase 2.1. The difference is that now the containment v ′ ∈ {v1, . . . , vp} is
possible. For i ≤ p, set

v′i =

{

vi if vi 6= v′,
v if vi = v′

and apply to û the substitution ð′ = (w1v′1) · · · (wpv′p). It is not hard to see that
ð′û = ôðū for ô being a permutation of the set {v, v1, . . . , vp, v′} taking vi to v′i for
all i ≤ p and v to v′. Similarly to the second part of Subcase 1.2, we conclude that
RMð′û = RMðū = 1 and, by C4, we obtain RK û = 1. a

Lemma 4.8. Let L be a vocabulary with maximum relation arity k. Let M be an
L-structure, v ∈ V (M ) with |[v]M | ≥ k, and t ≥ 0. Then an L-structureK such that
K =M ⊕ tv exists and is unique up to an isomorphism.
Proof. The existence follows from Definition C. To obtain K , we add t new
elements to V (M ), keep all relations of M on V (M ), and add new relations
involving at least one new element, being guided by Condition C4.
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To prove the uniqueness, we use Definition B. Assume that K1 = M ⊕ tv and
K2 =M ⊕ tv according to this definition. Let φ : V (K1)→ V (K2) be an arbitrary
one-to-one map whose restriction on V (M ) is idV (M ). We claim that φ is an

isomorphism from K1 to K2. Given an l -ary relation R in L and ū ∈ V (K1)l , we
have to check thatRK1 ū = RK2φū. The case that ū ∈ V (M )l is trivial. Suppose that
{u1, . . . , ul} \ V (M ) = {w1, . . . , wp} is nonempty. Note that {φ(u1), . . . , φ(ul)} \
V (M ) = {φ(w1), . . . , φ(wp)} and {u1, . . . , ul} ∩ V (M ) = {φ(u1), . . . , φ(ul)} ∩
V (M ). Let v1, . . . , vp be pairwise distinct elements in C that do not occur in ū and
hence in φū. Define ø1 by ø1(vi ) = wi for i ≤ p and ø1(x) = x for all other x
in V (M ). Define ø2 similarly with the difference that ø2(vi ) = φ(wi) for i ≤ p.
Obviously, ø−1

2 φū = ø
−1
1 ū. By B2, ø1 and ø2 are partial isomorphisms from M

to K1 and K2 respectively. Therefore

RK1 ū = RMø−1
1 ū = R

Mø−1
2 φū = R

K2φū.

The proof is complete. a
Using Definition B, the following lemma is a direct consequence of Lemma 4.5.

Lemma 4.9. Let L be a vocabulary with maximum relation arity k. LetM andM ′

be non-isomorphic L-structures of orders n and n′ respectively and n ≤ n′. Then the
bound

D1(M,M
′) <

(

1− 1

2k

)

n + k2 − k + 4

may be false only if M ′ = M∗ ⊕ (n′ − n)v for some structureM ∗ isomorphic with
M and v ∈ V (M ∗).

4.3.4. An upper bound for D (M ). The following result was obtained in [15] for
graphs with the proof easily adaptable for any structures (see Lemma 4.2 and
Remark 4.9 in [15]).

Lemma 4.10. [15] LetM be a structure of order n with maximum relation arity k,
v be an element ofM with |[v]M | = s ≥ k, andM ′ =M ⊕ tv with t ≥ 1. Then

s + 1 ≤ D (M,M ′) ≤ D1(M,M ′) ≤ s + k − 1 + n + 1
s + 1

.

Putting Lemmas 4.9 and 4.10 together, we immediately obtain an upper bound
for D (M ). Recall that ó(M ) = maxv∈V (M ) |[v]M |.
Theorem 4.11. For a structureM of order n with maximum relation arity k, we
have

D1(M ) ≤ max
{(

1− 1

2k

)

n + k2 − k + 4, ó(M ) + k
}

.

Proof. Given M , let us summarize upper bounds we have for D1(M,M ′) for
variousM ′ non-isomorphic withM . Denote

uk,n =

(

1− 1

2k

)

n + k2 − k + 4 and f(s) =

⌊

s + k − 1 + n + 1
s + 1

⌋

.

IfM ′ =M∗ ⊕ tv forM ∗ an isomorphic copy ofM , then

D1(M,M
′) ≤ max

1≤s≤ó(M )
f(s)(32)
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by Lemma 4.10. Similarly, if M = M ∗ ⊕ tv for M ∗ an isomorphic copy of M ′,
then

D1(M,M
′) ≤ max

1≤s≤ó(M ′)
f(s),

which is within the bound (32) because in this case ó(M ′) ≤ ó(M ). For all other
M ′ we have

D1(M,M
′) < uk,n

by Lemma 4.9.
Notice now that

max
1≤s≤ó(M )

f(s) = max{f(1), f(ó(M ))}.

Furthermore,

f(ó(M )) ≤
{

f(1) if ó(M ) ≤ (n − 1)/2,
ó(M ) + k if ó(M ) ≥ n/2,

and f(1) < uk,n. Summing up, we conclude that

max
M ′

D1(M,M
′) ≤ max{uk,n, ó(M ) + k}.

By Lemma 2.2, the proof is complete. a
Note that, givenM , the number ó(M ) is efficiently computable in the sense that
computing ó(M ) reduces to verification if a transposition is an automorphism of
the structure. Thus, Theorem 4.11 provides an efficiently computable non-trivial
upper bound forD1(M ). This is of particular interest in view of a conjecture that the
exact value ofD (M ) is uncomputable. Some evidences in favour of this conjecture
stem from the classical research on the Hilbert Entscheidungsproblem [1] where, as
a common technical tool, a computation of a Turing machine is simulated by a
first order sentence about a finite structure. Note on the other hand that D0(M ) is
computable (the reader is referred to [14] for this and related facts).
We also can restate the obtained bounds as a dichotomy result telling us that
either we have the bound D1(M,M

′) ≤ (1 − 1
2k )n + k

2 − k + 4 or else M has a
simple, easily recognizable property and, moreover, for all such exceptionalM we
are able to easily compute D (M ) within an additive constant. Results of this sort
are obtained in [15] for structures with maximum relation arity 2 and k-uniform
hypergraphs.

Theorem 4.12. LetM be a structure of order n with maximum relation arity k. If

ó(M ) ≤
(

1− 1

2k

)

n + (k − 1)2 + 3,(33)

we have

D1(M ) ≤
(

1− 1

2k

)

n + k2 − k + 4.(34)

Otherwise we have

ó(M ) + 1 ≤ D (M ) ≤ D1(M ) ≤ ó(M ) + k.(35)
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Proof. If the condition (33) is met, the bound (34) follows directly from The-
orem 4.11. If (33) does not hold, the upper bound in (35) again follows from
Theorem 4.11. The lower bound in (35) follows from Lemma 4.10 as D (M ) ≥
D (M,M ⊕ 1v) ≥ ó(M ) + 1, where v ∈ V (M ) is such that |[v]M | = ó(M ) and
hence |[v]M | > k. a

§5. Identifying finite structures by Bernays-Schönfinkel formulas.

Theorem 5.1. Let L be a vocabulary with maximum relation arity k. IfM is an
L-structure of order n, then

BS (M ) <

(

1− 1

2k2 + 2

)

n + k.(36)

If k = 1, a stronger bound BS (M ) ≤ n/2 + 1 holds true.
The case of k = 1 is easy and included for the sake of completeness. The upper
bound of n/2 + 1 matches, up to an additive constant of 1, a simple lower bound
of n/2 attainable by structures with a single unary relation. The proof of Theorem
5.1 takes the rest of this section.

5.1. Notation. In addition to the notation introduced in Section 2.1, we will
denote [k] = {1, 2, . . . , k}. If z̄ = (z1, . . . , zl ) and ô is a map from [k] to [l ], then
z̄ô = (zô(1), . . . , zô(k)).
Recall that, given a partial isomorphism φ : X → X ′ from an L-structureM to
another L-structureM ′, we have defined a relation ≡φ between elements in X and
elements in X ′ (see Definition 3.6). Definition 3.8 extends this relation over classes
in C (X ) and C (X ′). We will need yet another extension of ≡φ over subsets of X
and X ′. Let U ⊆ X and U ′ ⊆ X ′. We will write U ∼=φ U ′ if φ extends to an
isomorphism fromM [X ∪U ] toM ′[X ′ ∪U ′].
We define BSq(M ) similarly toBS (M ) with the only additional requirement that
an identifying Bernays-Schönfinkel formula has at most q universal quantifiers. It
is clear that BS (M ) ≤ BSq+1(M ) ≤ BSq(M ).
5.2. A couple of useful formulas. If x̄ = (x1, . . . , xl ) is a sequence of variables, let

Dist(x̄) =
∧

1≤i<j≤l
xi 6= xj .

LetM be a finite structure over vocabulary L and ā be a sequence of l pairwise
distinct elements of V (M ). Then it is easy to construct a first order formula
IsoM,ā(x1, . . . , xl ) such that, for every L-structure M

′ and ā′ ∈ V (M ′)l , we have
M ′, ā′ |= IsoM,ā(x̄) if and only if the component-wise correspondence between
ā and ā′ is a partial isomorphism between M and M ′. Specifically, assume that
L = (R1, . . . , Rm), where Ri has arity ki . Then

IsoM,ā(x̄) = Dist(x̄) ∧
m
∧

i=1

(

∧

ô

{

Ri (x̄
ô)

∣

∣

∣
ô : [ki ]→ [l ], RMi (āô) = 1

}

∧
∧

ô

{

¬Ri (x̄ô)
∣

∣

∣
ô : [ki ]→ [l ], RMi (āô) = 0

}

)

.
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5.3. The first way of identification. In this section wewill exploit the relation∼ on
V (M ) defined in Section 3.1 and the invariant ó(M ) introduced in Definition 4.2.

Proposition 5.2. Let L be a vocabulary with maximum relation arity k. For every
L-structureM of order n, we have

BSk(M ) ≤ n + k − ó(M ).
Proof. Suppose that ó(M ) = k+d with d ≥ 1 (if ó(M ) ≤ k, the proposition is
trivial). LetA be a∼-equivalence class of elements ofV (M ) such that |A| = ó(M ).
Denote B = A and fix orderings A = {a1, . . . , ak+d } and B = {b1, . . . , bn−k−d}.
Set ā = (a1, . . . , ak). We suggest the following formula ΦM to identifyM :

ΦM = ∃y1 . . . ∃yn−k−d ∀x1 . . . ∀xk ΨM (ȳ, x̄),
where

ΨM (ȳ, x̄) = IsoM,b̄(ȳ) ∧
(

Dist(ȳ, x̄)→ IsoM,b̄,ā(ȳ, x̄)
)

.

Note thatM ′ |= ΦM if and only if there is a partial isomorphism φ : B → B ′ from
M toM ′ such that every injective extension of φ over B ∪ {a1, . . . , ak} is a partial
isomorphism fromM toM ′. ByDefinition B in Section 4.3.3 this means thatM ′ |=
ΦM if andonly ifM ′ is isomorphic toM ′′ such thatM ′′ =M [B∪{a1, . . . , ak}]⊕ta1
for some t ≥ 0. Using Definition A, we see that M satisfies the latter condition
and hence M |= ΦM . By Lemma 4.8, an M ′′ as above is, for each t, unique up
to isomorphism. It follows that M ′ of order n satisfies ΦM if and only if M ′ is
isomorphic toM . a
5.4. The second way of identification. Recall that the notion of a base is intro-
duced in Definition 3.11.

Definition 5.3. Let B ⊆ V (M ) be a base of a structure M . The fineness of
B is defined by f(B) = max { |C | : C ∈ C (B) }. Furthermore, let ñ(B) = |B | +
max{f(B) + 1, k}.
We define ñ(M ) to be the minimum ñ(B) over all bases B ofM .

Proposition 5.4. BS (M ) ≤ ñ(M ).
Proof. Given a base B ofM , we construct a Bernays-Schönfinkel formula ΦM
with ñ(B) quantifiers that identifiesM . Let p = |B | and q = max{f(B) + 1, k}.
Assume that p+ q < n for otherwise we are done. Denote A = B and fix orderings
A = {a1, . . . , an−p} and B = {b1, . . . , bp}. We set

ΦM = ∃y1 . . . ∃yp ∀x1 . . . ∀xq ΨM (ȳ, x̄),
where

ΨM (ȳ, x̄) = IsoM,b̄(ȳ) ∧
(

Dist(ȳ, x̄)→
∨

ô : [q]→[n−p]
ô is injective

IsoM,b̄,āô (ȳ, x̄)
)

.

Claim A. Let M ′ be another L-structure, b̄′ = (b′1, . . . , b
′
p) be a sequence of

elements of V (M ′), and A′ = V (M ′) \ {b′1, . . . , b′p}. Then
M ′, b̄′ |= ∀x1 . . . ∀xqΨM (ȳ, x̄)

holds if and only if
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• the component-wise correspondence φ between b̄ and b̄′ is a partial isomor-
phism fromM toM ′ and

• for everyU ′ ⊆ A′ with atmost q elements there is aU ⊆ A such thatU ∼=φU ′.

The proof is fairly obvious. The claim immediately implies thatM |= ΦM .
Claim B. IfM ′ |= ΦM andM ′ has order n, thenM andM ′ are isomorphic.

Proof of Claim. Let b̄′ = (b′1, . . . , b
′
p) be such that

M ′, b̄′ |= ∀x1 . . . ∀xqΨM (ȳ, x̄).
Set B ′ = {b′1, . . . , b′p}. By the definition of ΨM , there is a partial isomorphism
φ : B → B ′ from M to M ′. By Claim A, for every a ′ ∈ A′ there is a ∈ A such
that a ≡φ a′. Hence for every C ′ ∈ C (B ′) there is C ∈ C (B) such that C ≡φ C ′.
Moreover, for every C ′ ∈ C (B ′) and the respective C ∈ C (B) it holds |C | ≥ |C ′|
(if |C ′| > |C |, then for any (|C |+ 1)-element set U ′ ⊆ C ′ the second condition in
Claim A fails). Since |A| = |A′| or, in other terms,∑C∈C (B) |C | =

∑

C ′∈C (B′) |C ′|,
for every C ′ it actually holds the equality |C | = |C ′|. Thus, we have a one-to-one
correspondence between C (B) and C (B ′) such that, if C ∈ C (B) and C ′ ∈ C (B ′)
correspond to one another, then C ≡φ C ′ and |C | = |C ′|.
We are now prepared to exhibit an isomorphism fromM ′ toM . Fix an arbitrary
extension ø of φ−1 to a one-to-one map from V (M ′) to V (M ) taking each C ′

to the respective C . We will show that ø is an isomorphism. Let R′ be an l -ary
relation of M ′ and R be the respective relation of M . Given an arbitrary l -tuple
ū′ ∈ V (M ′)l , we have to prove that

Røū′ = R′ū′.(37)

Denote U ′ = {u′1, . . . , u′l}. Let øU ′ be the extension of φ−1 to a partial isomor-
phism fromM ′ toM with U ′ ⊆ domøU ′ whose existence is guaranteed by Claim
A. We have

RøU ′ ū′ = R′ū′.

To prove (37), it suffices to prove that

RøU ′ ū′ = Røū′.(38)

We proceed similarly to the proof of Claim E in Section 4.1. By Item 3 of
Lemma 3.7, the partial map øU ′ takes an element in a class C ′ to an element in the
respective class C . Suppose that øU ′ is extended over the whole V (M ′) with the
latter condition obeyed. Since both øU ′ and ø extend φ−1, the product øU ′ø−1

moves only elements in A. Since both ø and øU ′ take an element in a class C ′

to an element in the respective class C , the map øU ′ø−1 preserves the partition
C (B) ofA. It follows thatøU ′ø−1 is decomposed into the product of permutations
ðC over C ∈ C (B), where each ðC acts on the respective C . Since every ðC is
decomposable into a product of transpositions, we have øU ′ø−1 = ô1ô2 . . . ôt with
ôi being a transposition of two elements both in some C . It is easy to see that
øU ′ ū′ = (. . . ((øū′)ôt ) . . . )ô1 . By Lemma 3.12, each application of ôi does not
change the initial value of Røā ′. Therewith (38) is proved. a

Remark 5.5. One can show that ñ(M ) provides us with an upper bound not only
for BS (M ) but also for D1(M ).



DESCRIPTIVE COMPLEXITY OF FINITE STRUCTURES 445

5.5. The third way of identification. Yet another way of identification that we
suggest here is actually not new, being a specification of Proposition 5.4 in the
preceding section.

Definition 5.6. IfM is a finite structure, let

ä(M ) = max { |A| : A ⊆ V (M ) such that a1 6≡A a2 for every a1, a2 ∈ A } .
It is not hard to see that, in other terms, ä(M ) = maxX⊆V (M ) |C (X )|.
Proposition 5.7. Let L be a vocabulary with maximum relation arity k ≥ 2. For
every L-structureM of order n, we have

BSk(M ) ≤ n + k − ä(M ).
Proof. As easily seen, if A ⊆ V (M ) is such that a1 6≡A a2 for every a1, a2 ∈ A,
then A = V (M ) \ A is a base ofM with fineness f(A) = 1. Since k ≥ 2, we have
max{f(A)+1, k} = k and therefore ñ(M ) ≤ n+k− ä(M ). Thus, the proposition
directly follows from Proposition 5.4. We only have to note that the identifying
formula constructed in the proof of Proposition 5.4 has max{f(A) + 1, k} = k
universal quantifiers. a
5.6. Putting it together. Wenowcomplete the proof ofTheorem5.1. Assume that
k ≥ 2. We will employ all three possibilities of identifyingM given by Propositions
5.7, 5.2, and 5.4. Using the last possibility, we will use the canonical base ofM that
was constructed in Definition 3.11 and denoted by Xk+1.
By the bound (10) of Lemma 3.13 and the fact that |C (X )| ≤ ä(M ) for every
X ⊆ V (M ), we have

|Xk+1| = n − |Z| ≤ 2k2ä(M )− (k − 1).(39)

We now consider two cases.

Case 1. Z = ∅.
By (39) we have ä(M ) ≥ n+k−1

2k2
. By Proposition 5.7, this implies that

BS (M ) <

(

1− 1

2k2

)

n + k.

Case 2. Z 6= ∅.
In this case for the fineness of the canonical baseXk+1 we have f(Xk+1) ≥ k+2.
Using (39), we obtain

ñ(Xk+1) ≤ 2k2ä(M ) − (k − 1) + max { |C | : C ∈ C (Xk+1) }+ 1
≤ 2k2ä(M ) + ó(M ) + 2− k.

Let ë(M ) = max{ä(M ), ó(M )}. By Propositions 5.7, 5.2, and 5.4, we have
BS (M ) ≤ min{n + k − ä(M ), n + k − ó(M ), 2k2ä(M ) + ó(M ) + 2− k}

≤ min{n + k − ë(M ), (2k2 + 1)ë(M ) + 2− k}
≤ max
1≤ë≤n

min{n + k − ë, (2k2 + 1)ë+ 2− k}

≤
(

1− 1

2k2 + 2

)

n + k − k − 1
k2 + 1

<

(

1− 1

2k2 + 2

)

n + k.
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Since the latter bound holds in both the cases, the proof of Theorem 5.1 is for k ≥ 2
complete.
In the case of k = 1 we use Propositions 5.2 and 5.4. We use the fact that, for a
structureM with all relations unary, the empty set is a base and ñ(∅) = ó(M ) + 1.
We therefore have BS (M ) ≤ min{n + 1− ó(M ), ó(M ) + 1} ≤ n/2 + 1.

§6. Identifying finite structures by Bernays-Schönfinkel formulas with bounded
number of universal quantifiers. Recall that BSq(M ) denotes the minimum total
number of quantifiers in a Bernays-Schönfinkel formula identifyingM with at most
q universal quantifiers. We now address the asymptotics of the maximum value
of BSq(M ) over structures of order n under the condition that q is bounded by a
constant. We first observe that less than k universal quantifiers are rather useless
for identification of a structure with maximum relation arity k.

Proposition 6.1. IfM is a structure of order n with maximum relation arity k and
n ≥ k, then BSk−1(M ) = n.
Proof. We have to show that no formulaΦ = ∃y1 . . . ∃yp∀x1 . . . ∀xqΨ(ȳ , x̄) with
Ψ quantifier-free, q ≤ k − 1, and p + q ≤ n − 1 can identifyM . Suppose that

M, b̄, ā |= Ψ(ȳ, x̄)(40)

for some b̄ ∈ V (M )p and all ā ∈ V (M )q . Let A = V (M ) \ {b1, . . . , bp}. Since
q + 1 ≤ k, q + 1 ≤ n − p ≤ |A|, and n ≥ k, there is a k-element U ⊆ V (M ) such
that |U ∩ A| ≥ q + 1. Let u1, . . . , uk be an arbitrary ordering of U . Let R be a
k-ary relation ofM . Define a relation R′ so that R′ū 6= Rū and R′ coincides with
R elsewhere. Let M ′ be the modification ofM with R′ instead of R. Clearly, M ′

andM are non-isomorphic. It is easy to see thatM ′, b̄, ā |= Ψ(ȳ, x̄) for the same
b̄ as in (40) and all ā ∈ V (M ′)q . ThereforeM ′ |= Φ and Φ fails to identifyM . a
If at least k universal quantifiers are available, some saving on the number of
quantifiers is possible: It turns out thatBSk(M ) < n−

√
n+k2+k and this bound

cannot be improved much if we keep the number of universal quantifiers constant.

Theorem 6.2. Let BSq(n, k) denote the maximum BSq(M ) over structuresM of
order n and maximum relation arity k. Then

BSk(n, k) < n −
√
n + k2 + k.

On the other hand, if n is a square, then

BSq(n, k) ≥ n − (q − 1)
√
n + q

for every q ≥ 2 and k ≥ 2.
The upper bound of Theorem 6.2 is provable by the techniques from Section 5.
Let M be a structure of order n with maximum relation arity k. By Propositions
5.7 and 5.2,

BSk(M ) ≤ n + k −max{ä(M ), ó(M )}.
It remains to prove the following bound.

Lemma 6.3. max{ä(M ), ó(M )} > √
n − k2.
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Proof. By the bound (10) of Lemma 3.13,

n + k − 1 ≤ 2k
k−1
∑

i=1

|C k+1(Xi )|+ (k + 1)|C k+1(Xk)|+ (k − 1)|C (Xk)|+ |Z|.

We bound each term |C (X )| from above by ä(M ). Furthermore, we bound |Z|
from above by the number of ≡Xk+1 -equivalence classes inside Z multiplied by the
maximum number of elements in such a class. By Lemma 3.12 it follows that
|Z| ≤ ä(M )ó(M ). We therefore conclude that

n + k − 1 ≤ ä(M )(2k2 + ó(M )).
This implies

max{ä(M ), ó(M )} ≥ min
1≤ó≤n

max

{

ó,
n + k − 1
2k2 + ó

}

>
√
n − k2,

as required. a
Remark 6.4. The bound of Lemma 6.3 is essentially optimal because, for any
graphG of orderm2 whose vertex set is partitioned intom ∼-equivalence classes of
m element each, it holds ó(G) = m and ä(G) ≤ m. SuchG can be constructed from
any graph H of order m whose automorphism group contains no transposition by
replacing each vertex v ∈ V (H ) with m pairwise (non-)adjacent vertices ∼-related
to v in H .

We now prove the lower bound of Theorem 6.2. It suffices to do it for graphs.
The example of G with large BSq(G) will be the same as in Remark 6.4. This
example can be lifted to a higher arity k by adding k− 2 dummy coordinates to the
adjacency relation with no affect to its truth value.

Proposition 6.5. Let Gm be a graph of order m2 whose vertex set is partitioned
into m ∼-equivalence classes of m elements each. Let q ≥ 2. Then BSq(Gm) ≥
m2 − (q − 1)m + q.
Proof. It is enough to show that, if Gm is identified by a Bernays-Schönfinkel
formula Φ with q universal quantifiers, then Φ contains at least m2 − (q − 1)m
existential quantifiers. If q ≥ m + 1, this is trivial. Assume that q ≤ m.
Suppose on the contrary that Gm is identified by a Bernays-Schönfinkel formula
Φ = ∃y1 . . . ∃yp∀x1 . . . ∀xq Ψ(ȳ , x̄) with p < m2 − (q − 1)m. Let b̄ ∈ V (Gm)p be
such that Gm , b̄ |= ∀x1 . . . ∀xqΨ(ȳ, x̄). Equivalently,

Gm , b̄, ā |= Ψ(ȳ, x̄) for all ā ∈ V (Gm)q .(41)

Let A = V (Gm) \ {b1, . . . , bp}. We have |A| ≥ (q − 1)m + 1. The condition
imposed on Gm implies that there are two ∼-equivalence classes, C1 and C2, such
that |A∩C1| ≥ q and |A∩C2| ≥ 1. Let us modifyGm by removing one vertex from
A∩C2 and adding a new vertex v ′ to C1 so that v′ ∼ v for all v ∈ C1. The modified
graph, G ′, is clearly non-isomorphic to Gm . We show that, nevertheless, G ′ |= Φ.
It suffices to show that G ′, b̄, ā′ |= Ψ(ȳ, x̄) for every ā′ ∈ V (G ′)q . In view of
(41), we are done if for every ā ′ ∈ V (G ′)q we are able to find an ā ∈ V (Gm)q
such that the component-wise correspondence between b̄, ā and b̄, ā′ is a partial
isomorphism between Gm and G ′. If ā′ does not contain any occurrence of v ′, we
obviously can take ā = ā ′. If ā′ contains an occurrence of v ′, let v be a vertex in
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A ∩ C1 that does not occur in ā′ and let ā be the result of substituting v in place of
v′ everywhere in ā′. It is not hard to see that the obtained ā is as required. a

§7. The case of graphs. For a binary structureM , Theorem 4.1 implies I (M ) <
0.75n + 4 and Theorem 5.1 implies BS (M ) < 0.9n + 2. In the case of graphs,
both these bounds can be improved. In [15] we obtain an almost optimal bound
I (G) ≤ (n + 3)/2 (there are simple examples of graphs with I (G) ≥ (n + 1)/2).
Combining the approach from [15] and the techniques from Section 5, we are able
to prove a better bound for BS (G) as well. We are also interested in knowing
the smallest n starting from which for G of order n we have the bound at least
BS (G) ≤ n − 1, an improvement on the trivial bound of n.
Theorem 7.1. Let G be a graph of order n.

(1) We have BS (G) ≤ 3n/4 + 3/2.
(2) If n ≥ 5, we have BS2(G) ≤ n − 1 with the only exception of the graphH on 5
vertices with 2 adjacent edges for which, nevertheless, we have BS3(H ) ≤ 4.

Proof. Given a graphG , letX = E(∅), where the transformationE is introduced
in Section 3.2. We state two properties of the X established in [15]:

Property 1: |C (X )| ≥ |X |+ 1.
Property 2: Let Y = Y (X ), as in Definition 3.11, andZ = V (G)\ (X ∪Y ). Every
class in C (X ∪ Y ) consists of pairwise ∼-equivalent vertices.

Note that |C (X )| ≤ ä(G). By Property 1 we conclude that
|X |+ |Y | ≤ |X |+ |C (X )| ≤ 2|C (X )| − 1 ≤ 2ä(G)− 1.(42)

Property 2 means that X ∪ Y is a base of G .
We now consider two cases.

Case 1. Z = ∅.
In this case n = |X | + |Y |. By (42), ä(G) ≥ (n + 1)/2. Using Proposition 5.7,
we obtain BS2(G) ≤ n/2 + 3/2.
Case 2. Z 6= ∅.
In this case ñ(X ∪ Y ) ≤ |X | + |Y | + ó(G) + 1. By (42) we have ñ(X ∪ Y ) ≤
2ä(G) + ó(G). Denote ë(G) = max{ä(G), ó(G)}. By Propositions 5.7, 5.2,
and 5.4, we have

BS (G) ≤min{n + 2− ä(G), n + 2− ó(G), 2ä(G) + ó(G)}
≤min{n + 2− ë(G), 3ë(G)}
≤ max
1≤ë≤n

min{n + 2− ë, 3ë} = 3n/4 + 3/2.

Since this bound holds true in both the cases, Item 1 of the theorem is proved.

To prove Item 2, we estimate max{ä(G), ó(G)}. Since n = |X | + |Y | + |Z| ≤
2ä(G)− 1 + ä(G)ó(G), we have

n + 1 ≤ ä(G)(2 + ó(G)).(43)

It follows that

max{ä(G), ó(G)} ≥ min
1≤c≤n

max

{

c,
n + 1

2 + c

}

=
√
n + 2− 1
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and hence

max{ä(G), ó(G)} ≥ 3(44)

whenever n > 7.

Claim A. The bound (44) holds for all G of order 6 or 7.

Proof of Claim. This claim is proved by the direct brute force analysis. We have
ä(G) = ä(G) and ó(G) = ó(G), where G denotes the complement of a graph G .
Hence, for order 6, it suffices to consider graphs with at most 7 edges. For order 7
the number of cases is much larger; the complete analysis can be found in [16]. a
Thus, if G has order at least 6, we have the bound (44) and the theorem follows
from Propositions 5.7 and 5.2. For graphs of order 5 the estimate (44) holds with
the only exception for the specified graphH . This graph is identified by formula

∃y1 ∀x1∀x2∀x3
(

Dist(y1, x1, x2, x3)→ ¬E(x1, x2)∧
3

∨

i=1

E(y1, xi )∧
3

∨

i=1

¬E(y1, xi )
)

,

where E is the adjacency relation. a
Remark 7.2. Item 2 of Theorem 7.1 does not hold true for graphs of order n = 4:
It is not hard to prove that BS (F ) = 4 for the graph F on 4 vertices with 1 edge.

Remark 7.3. In [12] we address the first order definability of a random graph G
on n vertices. It is proved that, with probability 1− o(1),

log2 n − 2 log2 log2 n ≤ I (G) ≤ log2 n − log2 log2 n +O(log2 log2 log2 n).
One of the ingredients of the proof is that, with high probability, ä(G) ≥ n − (2 +
o(1)) log2 n. Since I (G) ≤ BS2(G) ≤ n + 2 − ä(G), we conclude that, with high
probability,

log2 n − 2 log2 log2 n ≤ BS2(G) ≤ (2 + o(1)) log2 n.

§8. Open problems.
1. Let I (n, k) (resp. Il (n, k); BS (n, k)) be the maximum I (M ) (resp. Il (M );
BS (M )) over structures of order n with maximum relation arity k. We now know
that

n
2 ≤ I (n, k) ≤ I1(n, k) ≤ BS (n, k) < (1− 1

2k2+2
)n + k

and I1(n, k) < (1− 1
2k )n + k

2 − k + 4.
(45)

Note that I (n, k) ≤ I (n, k + 1) and that the lower bound of n/2 is actually for
I (n, 1). Make the gap between the lower and upper bounds in (45) closer.
The case of k = 2 is essentially solved in [15], where the bounds

n + 1

2
≤ I (n, 2) ≤ I1(n, 2) ≤

n + 3

2

are proved. If k = 3, we are able to improve on (45) by showing that I1(n, 3) ≤
2
3 n +O(1) (in [15] this bound was obtained for 3-uniform hypergraphs).

2. Can one improve on the trivial upper bound I0(n, k) ≤ n? It is easy to show
that I0(n, 1) ≤ (n + 1)/2. In [15] we prove that I0(G) ≤ (n + 5)/2 for graphs of
order n.
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3. What happens if we restrict the number of existential rather than universal
quantifiers in an identifying Bernays-Schönfinkel formula?
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