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Erdős asked in 1962 about the value of f(n, k, l), the minimum number of k-cliques in a

graph with order n and independence number less than l. The case (k, l) = (3, 3) was solved

by Lorden. Here we solve the problem (for all large n) for (3, l) with 4 � l � 7 and (k, 3)

with 4 � k � 7. Independently, Das, Huang, Ma, Naves and Sudakov resolved the cases

(k, l) = (3, 4) and (4, 3).

2010 Mathematics subject classification: Primary 05C35

Secondary 90C35

1. Introduction

Let us give some definitions first. As usual, a graph G is a pair (V (G), E(G)), where

V (G) is the vertex set and the edge set E(G) consists of unordered pairs of vertices. An

isomorphism between graphs G and H is a bijection f : V (G) → V (H) that preserves edges

and non-edges. For a graph G, let G = (V (G),
(
V (G)

2

)
\ E(G)) denote its complement and let

v(G) = |V (G)| denote its order. For graphs F and G with v(F) � v(G), let P (F,G) be the

number of v(F)-subsets of V (G) that induce in G a subgraph isomorphic to F; further,

define the density of F in G to be

p(F,G) = P (F,G)

(
v(G)

v(F)

)−1

. (1.1)

Let Kk denote the complete graph on k vertices. Let α(G) = max{l : P (Kl, G) > 0} be

the independence number of G, that is, the maximum size of an edge-free set of vertices.

† Supported by the European Research Council (grant agreement no. 306493) and the National Science

Foundation of the USA (grant DMS-1100215).
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Given a graph F on [m] = {1, . . . , m} and a sequence of disjoint sets V1, . . . , Vm, let the

expansion F((V1, . . . , Vm)) be the graph on V1 ∪ · · · ∪ Vm obtained by putting the complete

graph on each Vi and putting, for each edge {i, j} ∈ E(F), the complete bipartite graph

between Vi and Vj . An expansion is uniform if ||Vi| − |Vj || � 1 for any i, j ∈ [m]. If we

consider expansion in terms of complements, then it amounts to blowing up each vertex i

of F by factor |Vi| (and taking the complement of the obtained graph). Clearly, expansions

cannot increase the independence number.

We consider the following extremal function:

f(n, k, l) = min{P (Kk,G) : v(G) = n, α(G) < l},

that is, the minimum number of k-cliques in a graph with n vertices that does not contain

Kl . This function (in its full generality) was first defined by Erdős [6] in 1962.

Earlier, Goodman [10] determined f(2n, 3, 3); his bounds also give the asymptotic value

of f(2n+ 1, 3, 3). Lorden [14] determined f(n, 3, 3) and showed that the complement of

T2(n) is the unique extremal graph when n � 12, where the Turán graph Tm(n) is the

complete m-partite graph on [n] with parts being nearly equal. (In other words, Tm(n) is

the complement of the uniform expansion of Km.)

Erdős [6] asked if perhaps

f(n, k, l) = P (Kk, T l−1(n)), (1.2)

that is, if the uniform expansion of Kl−1 gives the value of f(n, k, l) and, specifically, if

f(3n, 3, 4) = 3

(
n

3

)
. (1.3)

Nikiforov [15] showed that the limit

ck,l = lim
n→∞

f(n, k, l)(
n
k

) (1.4)

exists for every pair (k, l) and that the upper bound ck,l � (l − 1)1−k given by the graphs

T l−1(n) as n → ∞ can be sharp only for finitely many pairs (k, l). Thus, it was too

optimistic to expect that (1.2) holds.

The main motivation of the papers [6, 10] came from Ramsey’s theorem [19], which

implies that f(n, k, l) > 0 when n � n0(k, l) is sufficiently large. Both papers also considered

the related problem of minimizing p(Kk,G) + p(Kk,G) over an (arbitrary) order-n graph

G. The last question, known as the Ramsey multiplicity problem, attracted a lot of attention

and led to many important developments.

On the other hand, the problem of determining f(n, k, l) was rather neglected although

it was mentioned in the book by Bollobás [3, Problem 11 on page 361] and the survey by

Thomason [22, Section 5.5]. One possible reason is that determining ck,l , even for some

small k and l, might require keeping track of too many different subgraph densities than

is practically feasible when doing calculations ‘by hand’.

Razborov [20] introduced a powerful formal system for deriving inequalities between

subgraph densities, where a computer can be used to do routine book-keeping. One aspect

of his theory (discussed in [21]) allows us to minimize linear combinations of subgraph

densities by setting up and solving a semi-definite program. In some cases, the numerical
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solution thus obtained can be converted into a rigorous mathematical proof. Baber and

Talbot [2] and Vaughan [23] (see [8, 9]) wrote openly available software for doing such

calculations.

By using Flagmatic [23], we can solve the problem (for all large n) when k = 3 with

4 � l � 7 or l = 3 with 4 � k � 7. Independently, Das, Huang, Ma, Naves and Sudakov [5]

solved the problem when n is large and (k, l) = (3, 4) or (4, 3), also by using flag algebras.

We state our results as three separate theorems.

Theorem 1.1 (Asymptotic Result).

c3,l = (l − 1)−2, 4 � l � 7, (1.5)

c4,3 = 3/25, (1.6)

c5,3 = 31/54 = 31/625, (1.7)

c6,3 = 19211/220 = 19211/1048576, (1.8)

c7,3 = 98491/224 = 98491/16777216. (1.9)

Furthermore, we have in each of these cases that

f(n, k, l) = ck,l

(
n

k

)
+ O(nk−1). (1.10)

The upper bounds in (1.5), (1.6), and (1.7) are obtained by taking a uniform expansion

of F , where F is respectively Kl−1, the 5-cycle C5, and (again) C5. Easy calculations show

that the density of k-cliques in these graphs is as required. These upper bounds on c4,3
and c5,3 come from Nikiforov [15]. In a subsequent paper [16], he also showed that an

order-n graph G with α(G) < 3 satisfies P (K4, G) � ( 3
25

+ o(1))
(
n
4

)
under the additional

assumption that G is close to being regular.

The upper bounds in (1.8) and (1.9) come from a more complicated construction. The

Clebsch graph L has binary 5-sequences of even weight (i.e., with an even number of

entries equal to 1) for vertices, with two vertices being adjacent if the term-wise sum

modulo 2 of the corresponding sequences has weight 4. For example, the neighbours

of 00011 ∈ V (L) are 01100, 10100, 11000, 11101, and 11110. It easily follows from this

description that the Clebsch graph is triangle-free and vertex-transitive. For example, an

automorphism that maps 00000 to 11000 is to flip the first two bits.

The complement F = L of the Clebsch graph is a 10-regular graph on 16 vertices.

Take a uniform expansion F ′ of F of large order n. The limit of p(Kk, F
′) as n → ∞ is

equal to the probability that, if we independently sample uniformly distributed vertices

x1, . . . , xk ∈ V (L), they do not induce any edge in L. By the vertex-transitivity of L, we can

fix x1 = 00000. The Clebsch graph has the following maximal independent sets containing

00000: the sequences that we add to 00000 must have weight 2, with the corresponding

pairs of indices forming either K1,4 (the star with 4 edges) or K3 (the triangle). There are 5

of the former sets and 10 of the latter sets, of sizes 5 and 4 respectively. A straightforward
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inclusion–exclusion counting shows that the above probability is

5 · 5k−1 + 10 · 4k−1 − 30 · 3k−1 + 20 · 2k−1 − 4

16k−1
.

By plugging in k = 6 and 7, we get the upper bounds on ck,3 stated in (1.8) and (1.9).

The upper bound in (1.10) follows by observing that if we pick a random injection

φ : [k] → V (F ′), where F ′ is a uniform expansion of F of order n, and condition on the

restriction of φ to [i] for i < k, then the probability that φ(i+ 1) belongs to a particular

part of F ′ is 1/v(F) + O(1/n). Thus p(Kk, F
′) is within additive term O(1/n) from its limit

as n → ∞.

The lower bounds of Theorem 1.1 are proved in Section 3 by using flag algebras.

We say that two graphs G and H of the same order are at edit distance at most m (or

are m-close) if G can be made isomorphic to H by changing (adding or deleting) at most

m edges. By inspecting the proof certificate returned by a flag algebra computation, one

can sometimes describe the structure of all almost extremal graphs up to a small edit

distance (see, for example, [4, 11, 17]). This also works here, and we can establish the

following results that apply when (k, l) is one of the pairs (3, l) with 3 � l � 7, (k, 3) with

4 � k � 5, and (k, 3) with 6 � k � 7, while F is respectively Kl−1, C5, and L.

Theorem 1.2 (Stability Property). Let k, l, F be as above. Then, for every ε > 0 there exist

δ > 0 and n0 such that every graph G of order n � n0 with α(G) < l and P (Kk,G) � (ck,l +

δ)
(
n
k

)
is ε

(
n
2

)
-close to a uniform expansion of F .

We see that, in each case above, almost extremal graphs on [n] have the same structure

up to the edit distance of o(n2). Such extremal problems are called stable. The stability

property, besides being of interest on its own, is often very helpful in establishing the

exact result for all large n. Here, we also use stability to prove the following theorem.

Theorem 1.3 (Exact Result). Let k, l, F be as above. Then there is n0 such that every graph

G of order n � n0 with α(G) < l and the minimum number of Kk-subgraphs contains an

expansion F ′ = F((V1, . . . , Vm)) as a spanning subgraph (that is, V1 ∪ · · · ∪ Vm = V (G) and

E(F ′) ⊆ E(G)).

Let n be sufficiently large. Since G in Theorem 1.3 is extremal and F ′ is Kl−1-free, we

have that P (Kk,G) = P (Kk, F
′), that is, the value of f(n, k, l) is attained by some expansion

of F . Furthermore, if l = 3 and 4 � k � 7, then G is necessarily equal to F ′ because the

addition of any extra edge to F ′ creates at least one copy of Kk . Next, consider the four

remaining cases, that is, k = 3 and 4 � l � 7. It is easy to show that T l−1(n) has the

smallest number of triangles among all order-n expansions of Kl−1. Thus Theorem 1.3

proves Erdős’s conjecture (1.3) for all large n. However, note that there are other extremal

constructions for f(n, 3, l) with 4 � l � 7 that can be obtained from T l−1(n) by adding

edges so that no new triangles are created.

As asked in [5], it would be interesting to determine those l for which c3,l = (l − 1)−2.

We know now that this is the case for all 2 � l � 7. Nikiforov [15] showed that this
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equality can hold for only finitely many l. Das, Huang, Ma, Naves and Sudakov [5]

proved that no l � 2074 satisfies it.

Although our proofs rely on extensive computer calculations, new mathematical ideas

are also introduced (such as, for example, Theorem 5.1, which deals with all studied cases

in a unified manner). Hopefully, these ideas and results will be useful for other problems.

For example, the concept of a phantom edge introduced here in Section 3.4 has been

successfully applied to another extremal problem [7].

2. Notation

Here we collect some graph theory notation that we use.

The cycle (resp. path) with k vertices is denoted by Ck (resp. Pk).

Let G and H be graphs. We write H ⊆ G and say that H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H ⊆ G is called spanning if V (H) = V (G). It

is called induced if H = G[V (H) ], where we denote G[X] = (X, {{x, y} ∈ E(G) : x, y ∈ X})
for X ⊆ V (G). A strong homomorphism from H to G is a map φ : V (H) → V (G) that

preserves both edges and non-edges. For example, H admits a strong homomorphism to

K2 if and only if H is a complete bipartite graph. An embedding is a strong homomorphism

which is injective; in other words, it is an isomorphism from H to an induced subgraph

of G.

An automorphism of G is a map V (G) → V (G) that preserves both edges and non-edges

(i.e., an isomorphism of G to itself). A graph G is vertex-transitive if for every two vertices

there is an automorphism of G mapping one to the other. The neighbourhood of a vertex

x ∈ V (G) is

ΓG(x) = {y ∈ V (G) : {x, y} ∈ E(G)}.

The closed neighbourhood of x is Γ̂G(x) = ΓG(x) ∪ {x}.
The Ramsey number R(k, l) is the minimum n such that every order-n graph has a

k-clique or an independent set of size l. Thus f(n, k, l) > 0 if and only if R(k, l) � n.

3. Lower bounds in Theorem 1.1

3.1. Proof certificates

As we have already mentioned, our lower bounds are proved with the help of a computer

by using flag algebras and semi-definite programming; see Razborov [20, 21]. This method

is described in a number of research publications ([2, 8, 9, 12, 20, 21]), so we will be brief.

We used Flagmatic (Version 2.0) [23] for the computations. For each proof that we

present, we provide a certificate that contains the information needed for others to be

able to verify all claims. The script inspect certificate.py that comes with Flagmatic

can be used for investigating the certificates and performing some level of verification.

The certificates are in a documented format [23] and it is hoped that others will be able

to independently verify them.

Also, we include the code that generated each certificate as well as the transcript of

each session, to aid the reader in repeating our calculations. This may be helpful if the
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reader would like to experiment with the software by changing parameters (or to apply

Flagmatic to some related problems).

These materials are available from Flagmatic’s website at

http://flagmatic.org/examples/Fkl.tgz

Each solved case (k, l) is supported by the following data: the complete code, the transcript

of the session, and all generated certificates. For example, the corresponding files for the

case (k, l) = (7, 3) are 73.sage, 73.txt, and two certificates 73.js and 73a.js.

Alternatively, the ancillary folder of [18] contains all files except some certificates

whose sizes are larger than arXiv’s allowance. The reader should be able to generate these

certificates by running the appropriate scripts with Flagmatic 2.0.

Also, the cases (3, 4) and (k, 3) with 4 � k � 7 were previously solved with Version 1.5

of Flagmatic; see [18] (Version 3) for all details. This is reassuring as Flagmatic 2.0 was

re-written essentially from scratch (when it was decided to do everything inside sage for

greater functionality).

Our presentation is different from that of Das, Huang, Ma, Naves and Sudakov [5],

who worked hard at making their paper self-contained and the proof as human-readable

as possible. This has many advantages (such as giving more insight into the problem)

but makes the paper rather long. Our objective is to present formal rigorous proofs

of all claimed results. We do so by describing the information that is contained in the

certificates and by showing how it implies the stated results. While the certificates are not

very suitable for direct inspection (some of them are very large and contain integers with

hundreds of digits), the reader may verify all stated properties by using Flagmatic or by

writing an independent script.

Let us give some definitions that are needed to describe the certificates. Fix one of the

pairs (k, l) as above.

Let us call a graph admissible if its independence number is less than l. A type is a pair

(H,φ) where H is an admissible graph and φ : [v] → V (H) is a bijection, where v = v(H).

Given a type τ = (H,φ) as above, a τ-flag is a pair (G,ψ) where G is an admissible graph

and ψ : [v] → V (G) is an injection such that ψ ◦ φ−1 : V (H) → V (G) is an embedding

(that is, an injection that preserves both edges and non-edges). Informally, a type is a

vertex-labelled graph and a τ-flag is a partially labelled graph such that the labelled

vertices induce τ. The order v((G,ψ)) of a type or a flag is v(G), the number of vertices in

it.

For two τ-flags (G1, ψ1) and (G2, ψ2) with n1 � n2 vertices, let P ((G1, ψ1), (G2, ψ2)) be

the number of n1-subsets X ⊆ V (G2) such that X ⊇ ψ2([v]) (i.e., X contains all labelled

vertices) and the τ-flags (G1, ψ1) and (G2[X], ψ2) are isomorphic, meaning that there is a

graph isomorphism that preserves the labels. Also, define the density

p((G1, ψ1), (G2, ψ2)) =
P ((G1, ψ1), (G2, ψ2))(

n2−v
n1−v

)

to be the probability that a uniformly drawn random n1-subset X of V (G2) with X ⊇
φ2([v]) induces a copy of the τ-flag (G1, ψ1) in (G2, ψ2).
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Now, we can present the information that is contained in each certificate (a file with

extension js) and is needed in the proof.

First, the certificate lists all (up to an isomorphism) admissible N-vertex graphs for

some integer N. Let us denote these graphs by G1, . . . , Gg . Then the certificate describes

some types τ1, . . . , τt such that their graph components are pairwise non-isomorphic (as

unlabelled graphs) and N − v(τi) is a positive even number for each i ∈ [t].

The certificate contains, for each i ∈ [t], the list (Fτi1 , . . . , F
τi
gi
) of all τi-flags (up to

isomorphism of τi-flags) with exactly (N + v(τi))/2 vertices.

Also, for each i ∈ [t], the certificate (indirectly) contains a symmetric positive semi-

definite gi × gi-matrix Qτi . More precisely, the matrix Qτi is represented in the following

manner: we have a diagonal matrix Q′ all whose diagonal entries are positive rational

numbers and a rational matrix R such that

Qτi = RQ′RT . (3.1)

This decomposition automatically implies that the matrix Qτi is positive semi-definite.

Now, let G be an admissible graph of large order n. Initially, let a = 0. Let us do

the following for each v such that N − v is a positive even integer. Enumerate all

n(n− 1) . . . (n− v + 1) injections ψ : [v] → V (G). If the induced type G[ψ] = (G[ψ([v])], ψ)

is isomorphic to some τi (as vertex-labelled graphs), then we add xψQ
τixTψ to a, where

xψ =
(
P

(
Fτi1 , (G,ψ)

)
, . . . , P

(
Fτigi , (G,ψ)

))
. (3.2)

Since each Qτi is positive semi-definite, we have that xψQ
τixTψ � 0 and that the final a is

non-negative.

Let us take some type τ of order v and two τ-flags F1 and F2 with respectively �1 and

�2 vertices. Let � = �1 + �2 − v. Consider the sum

∑
ψ :G[ψ]∼=τ

P (F1, (G,ψ))P (F2, (G,ψ)), (3.3)

taken over all injections ψ : [v] → V (G) such that the induced type G[ψ] is isomorphic

to τ. Each term P (Fi, (G,ψ)) in (3.3) can be expanded as the sum over �i-sets Xi with

ψ([v]) ⊆ Xi ⊆ V (G) of the indicator function that (G[Xi], ψ) is a τ-flag isomorphic to Fi.

Ignoring the choices when X1 and X2 intersect outside ψ([v]), the remaining terms can

be generated by choosing an �-set X = X1 ∪X2 first, then an injective map ψ : [v] → X,

and finally X1 and X2. Clearly, the terms that we ignore contribute at most O(n�−1) in

total. Also, the contribution of each �-set X to (3.3) depends only on the isomorphism

class H of G[X]. Thus the sum in (3.3) can be written (modulo an additive error term

O(n�−1)) as an explicit linear combination of the subgraph counts P (H,G), where H runs

over unlabelled graphs with � vertices; see, e.g., [20, Lemma 2.3].

By the above discussion, if we expand each quadratic form xψQ
τixTψ in the definition of

a and take the sum over all injections ψ, then we will get a representation

0 � a =

g∑
i=1

αiP (Gi, G) + O(nN−1), (3.4)
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where each αi is a rational number that does not depend on n and can be computed given

the above information (types, flags, and matrices). An explicit formula for αi is rather

messy, so we do not state it.

The crucial property that our certificates possess is that

αi � p(Kk,Gi) − c′
k,l , for every i ∈ [g], (3.5)

where c′
k,l is the right-hand side of the appropriate statement (1.5)–(1.9), i.e., c′

k,l is the

lower bound on ck,l that we want to prove. This property (involving rational numbers)

can be verified by the stand-alone script inspect certificate.py, which uses exact

arithmetic.

If we assume that (3.5) holds, then we have, by Bayes’ formula, that

p(Kk,G) − c′
k,l =

g∑
i=1

(p(Kk,Gi) − c′
k,l)p(Gi, G) �

g∑
i=1

αip(Gi, G) � −O(1/n). (3.6)

Thus we derived not only ck,l � c′
k,l but also the claimed lower bound in (1.10).

At this point, we may stop and assume that Theorem 1.1 has been proved (modulo

verifying all the claims above with the help of a computer). However, it may be useful to

say a few words about how these certificates were obtained. Finding matrices Qτ1 , . . . , Qτt

amounts to solving a semi-definite program. The program is usually quite large. So it is

generated by a computer as well; Flagmatic provides a highly customizable way of doing

this. Then the obtained program is fed into an SDP-solver which returns floating-point

matrices. It is a good idea to start with N as small as possible and keep increasing it

until the obtained (floating-point) bound seems to be equal to the conjectured value. We

found it beneficial, at this stage, to use the double-precision spda dd solver, which usually

returns the correct values of around 20 first decimal digits.

In fact, this was how the extremal configuration for c6,3 was discovered. The solver

seemed to give the same bound c6,3 � 19211/220 for both N = 7 and 8. Here, the

denominator is a high power of 2. This suggested that an extremal configuration might

be a uniform expansion of a graph with 16 vertices, which made us look at such graphs.

This process of converting the obtained floating-point matrices into those that sat-

isfy (3.5) exactly also uses a computer. It is fairly automated in Flagmatic, although it

sometimes requires adjustment of various parameters and options. Of course, once we

have found suitable rational matrices that provide a rigorous proof, we can ignore their

floating-point lineage altogether.

One strategy to simplify the proof certificates, once N has been fixed, is to reduce the

number of types as much as possible by re-running the SDP-solver and checking that we

still get the same bound. Note that τ1, . . . , τt need not enumerate all types. The removal of

some type τ effectively means that we make the corresponding matrix Qτ to be identically

0. (Likewise, Fτi1 , . . . , F
τi
gi

need not enumerate all τi-flags but this observation does not seem

to be very useful.)

Another useful trick comes from the following lemma.

Lemma 3.1. Suppose that we have a flag algebra proof, as specified above, that the value

of ck,l is given by uniform expansions of a Kl-free graph F . Fix i ∈ [t]. Let the ith type τi
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be (H,φ) and let v = v(τi). Let n be large and let G be a uniform expansion of F of order

n. Let ψ : [v] → V (G) be an injection such that ψ ◦ φ−1 is an embedding of H into G. Then

xψQ
τixTψ = O(nN−v−1), where xψ is defined by (3.2).

Proof. Since each part Vi of G is homogeneous, any modification of the injection ψ such

that its values stay in the same parts is an embedding. These new injections give the same

vector xψ . Thus, with m = v(F),

0 �
(
n

m
+ O(1)

)v

xψQ
τixTψ � a. (3.7)

Let us run our flag algebra proof on G. It shows in fact that p(Kk,G) � ck,l + a/
(
n
N

)
+

O(1/n). Also, as we have previously remarked, p(Kk,G) deviates from ck,l by at most

O(1/n). We conclude that a = O(nN−1), implying the lemma by (3.7).

Thus, when we let n → ∞ and scale xψ to have the �1-norm equal to 1, we obtain a

zero eigenvector of Qτi in the limit. (Note that xQxT = 0 for Q � 0 implies that QxT = 0.)

We call such a zero eigenvector forced. By inspecting the graph F that gives the upper

bound in Theorem 1.1, we can identify forced zero eigenvectors. It is crucial to know

all forced zero eigenvectors during the rounding step because a small but uncontrolled

perturbation of Qτi may result in negative eigenvalues. Flagmatic 2.0 takes care of this

by ensuring that the column space of the matrix R in (3.1) is orthogonal to all forced

zero eigenvectors of Qτi (when an extremal construction is supplied using the function

set_extremal_construction).

Lemma 3.1 can be generalized to many other problems. This idea was first used by

Razborov [21].

There are further relations that have to hold in a flag algebra proof. For i ∈ [g], call

the graph Gi sharp if (3.5) becomes an equality, that is, αi = p(Kk,Gi) − ck,l . (We know by

now that ck,l = c′
k,l .)

Lemma 3.2. Suppose that we have a flag algebra proof, as specified above, that the value

of ck,l is given by uniform expansions of a Kl-free graph F . Let n be large and let G be a

uniform expansion of F of order n. Let i ∈ [g] be such that Gi embeds into G. Then Gi is

sharp.

Proof. Let m = v(F). Note that P (Gi, G) � (n/m+ O(1))N/N!: if we take an embedding

f of Gi into F((U1, . . . , Um)), then any injection f′ : V (Gi) → V (G) with f(x) and f′(x)

belonging to the same part Uj is also an embedding. We have by (3.4) and (3.5) that

p(Kk,G) − ck,l �
∑
j∈[g]

(p(Kk,Gj) − ck,l − αj)p(Gj, G) + O(1/n)

� (p(Kk,Gi) − ck,l − αi)p(Gi, G) + O(1/n)

� p(Kk,Gi) − ck,l − αi

mN
+ O(1/n). (3.8)
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Since p(Kk,G) − ck,l = o(1) by our assumption, we conclude (by using (3.5) again) that Gi
is sharp, as required.

Flagmatic also uses the restrictions given by Lemma 3.2 for rounding (if a construction

is provided). In some cases, the large amount of data and/or the presence of tiny but

non-zero coefficients required us to reduce the number of types as much as possible

(essentially by trial and error) and to use the double-precision SDP-solver sdpa_dd.

Below we mention briefly how this process went in each solved case and what further

actions (if any) were needed.

3.2. Cases (k, l) = (4, 3) or (5, 3)

The rounding procedure worked without any issues for these two cases. In both cases, we

used the 6-vertex universe that contains 38 graphs with independence number at most 2.

3.3. Cases (k, l) = (6, 3) or (7, 3)

In these cases, we found it more convenient to work with the complements: namely, we

forbid K3 and minimize the density of Kk for k = 6, 7. These cases went through without

any problems. While c6,3 could be computed by using graphs with at most 7 vertices, it

seems that the determination of c7,3 by this method requires 8-vertex graphs.

3.4. Cases k = 3 and 4 � l � 7

One difficulty that we had to overcome is that there are some further relations that a flag

algebra proof of c3,l � (l − 1)−2 has to satisfy, in addition to those given by Lemmas 3.1

and 3.2.

Lemma 3.3. Suppose that we have a flag algebra proof that c3,l � (l − 1)−2 as above. Let

n be large and let T = T l−1(n) = Kl−1((V1, . . . , Vl−1)). Let T ′ be obtained from T by adding

one extra edge {x1, x2} between V1 and V2. If some Gi admits an embedding f into T ′, then

it is sharp.

Proof. Let ε > 0 be a small constant and let n → ∞. Let the graph G be obtained from

T by adding all edges between U1 and U2, where Ui ⊆ Vi is a set of size εn�. We have

α(G) < l and

P (K3, G) − P (K3, T ) �
(

2εn

3

)
= O(ε3n3), (3.9)

as each triangle in G but not in T has to lie inside U1 ∪U2. Let us plug this G into (3.6).

As we have just observed, the left-hand side of (3.6) is O(ε3). Since Gi embeds into T ′,

we have that p(Gi, G) � Ω(ε2). (Indeed, if we take any f′ : V (Gi) → V (G) so that f′(x) and

f(x) always belong to the same part of T l−1(n) while f′(x) ∈ Uj if and only if f(x) = xj ,

then we obtain at least (1 − o(1)) × (εn)2 × ( n
l−1

− εn)N−2 different embeddings f′.) As ε

can be arbitrarily small, it follows that Gi is sharp by a version of (3.8).



920 Oleg Pikhurko and Emil R. Vaughan

Lemma 3.3 shows that some further graphs are necessarily sharp in addition to those

that embed into T l−1(n). Likewise, by unfolding the last inequality in (3.6) for the graph

G from the proof of Lemma 3.3 and using (3.9), we conclude that a = O(ε3nN). Each of

the t summands in

a =

t∑
i=1

∑
ψ :G[ψ]∼=τi

xψQ
τixTψ (3.10)

is non-negative and is therefore at most O(ε3nN). Thus all terms in the right-hand side

of (3.10) that can have magnitude Ω(ε2nN) have to disappear. In particular, for every type

τi that embeds into T ′ but not into T , there are some further zero eigenvectors of Qτi

(that are not caught by the direct application of Lemma 3.1).

Once we understood ‘phantom’ edges, the rounding problem went through without any

problems. The option phantom_edge (see the scripts) instructs Flagmatic to take into

account all such extra sharp graphs and zero eigenvectors.

A similar phenomenon was encountered in the maximum codegree problem for 3-graphs

with independent neighbourhoods (see [7]), and a version of Lemma 3.3 was crucial for

rounding the numerical solution there.

4. Proving the Stability Property

Here we prove Theorem 1.2. Our proof is similar in spirit to the proof of Theorem 2

in [17]. Let (k, l) and F be as in the theorem. Let N = N(k, l) be the number of vertices

that was used in the flag algebra proof of Section 3; thus N(3, 4) = 5, N(3, 5) = N(4, 3) =

N(5, 3) = 6, N(3, 6) = N(6, 3) = 7, and N(3, 7) = N(7, 3) = 8.

Suppose on the contrary that there is ε > 0 such that for infinitely many n → ∞ there is

a graph G of order n such that α(G) < l and p(Kk,G) = ck,l + o(1) but G is ε
(
n
2

)
-far from

a uniform expansion of F . Let V = V (G).

Recall that Gi is sharp if we have equality in (3.5). Call an admissible graph Gi singular

if Gi is not contained as an induced subgraph in any expansion of F . Note that these

definitions apply only to the order-N graphs G1, . . . , Gg . The following observation is well

known (compare it with Lemma 3.2).

Lemma 4.1. Let i ∈ [g]. If Gi is not sharp, then p(Gi, G) = o(1).

Proof. Note that we have already established that c′
k,l = ck,l . Let us run our flag algebra

proof on G. Similarly to (3.8), we obtain that

p(Kk,G) − ck,l � (p(Kk,Gi) − ck,l − αi)p(Gi, G) + O(1/n).

Since G is almost extremal, we have that p(Kk,G) − ck,l = o(1). The lemma follows

from (3.5).

4.1. Cases (k, l) = (4, 3) or (5, 3)

Let l = 3 and k = 4 or 5. Here F is the 5-cycle C5 and N = 6.
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The scripts verify that the number of graphs of order 6 that occur with positive density

in a large expansion of F is the same as the number of sharp graphs (namely, there are

17 graphs in each list). Thus these two lists coincide by Lemma 3.2. (In other words, each

Gi is either sharp or singular.)

By Lemma 4.1, we conclude that p(Gi, G) = o(1) for every singular Gi. The Induced

Removal Lemma of Alon, Fischer, Krivelevich and Szegedy [1] implies that we can change

o(n2) edges in G and destroy all singular graphs and, additionally, preserve the property

p(K3, G) = 0. Since changing o(n2) edges affects each p(H,G) by o(1), we can assume that

G itself does not contain any singular induced subgraph. This means the following.

Claim 4.2. For any subset U ⊆ V (G) with at most 6 vertices there is a partition U =

U0 ∪ · · · ∪U4 such that G[U] = C5((U0, . . . , U4)).

By the Induced Removal Lemma we can additionally assume that either the density of

C5 in G is Ω(1) or G does not have a single induced 5-cycle. In fact, the first alternative

necessarily holds.

Claim 4.3. p(C5, G) = Ω(1).

Proof of Claim. Suppose on the contrary that G does not contain an induced pentagon.

Take a longest induced path (u1, . . . , us). By Claim 4.2, we have s � 4. Also, s � 3 for

otherwise G is the union of disjoint cliques, of which there can be at most two because

the independence number is at most 2; but then the Kk-density is at least 1/2k−1 + o(1),

contradicting the extremality of G. Take any vertex x ∈ V (G). The set X = {u1, . . . , us, x}
induces some expansion of C5 by Claim 4.2. Since we do not have an induced pentagon

and s is maximal, X in fact induces an expansion of the s-vertex path Ps. Let {x, ui} be

the part of this expansion that contains x. We assign this vertex x to the ith part, thus

obtaining a partition V (G) = U1 ∪ · · · ∪Us.

We have in fact G = Ps((U1, . . . , Us)). Indeed, if we take any two vertices x, y and apply

Claim 4.2 to {u1, . . . , us, x, y}, we see that the adjacency relation between x and y in G is

exactly as dictated by the expansion.

Thus we can make G into the union of two disjoint cliques by removing some edges

and without creating K3. This cannot increase the density of Kk and, as we have just seen,

leads to a contradiction.

Claim 4.4. Let u0, . . . , u4 ∈ V (G) induce a pentagon in G with {ui, ui+1} ∈ E(G) for i ∈ Z5,

where Z5 denotes the residues modulo 5. Let U = {u0, . . . , u4}. Then, for every u ∈ V (G) \U,

there is j ∈ Z5 such that {u, ui} ∈ E(G) if and only if i ∈ {j − 1, j, j + 1}.

Proof of Claim. Take the partition U ∪ {u} = U0 ∪ · · · ∪U4 given by Claim 4.2. For

every distinct i, j ∈ Z5, the vertices ui and uj have different neighbourhoods in U \ {ui, uj},
so they belong to different parts. Without loss of generality assume that ui ∈ Ui for each

i. If the vertex u belongs to Uj , then the neighbours of u are uj−1, uj , uj+1, as required.
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Fix some u0, . . . , u4 ∈ V (G) that induce C5 with {ui, ui+1} ∈ E(G) for i ∈ Z5; such vertices

exist by Claim 4.3. Let U = {u0, . . . , u4}. Claim 4.4 gives a partition of V (G) into 5 parts

U0, . . . , U4 where we classify vertices according to their neighbourhoods in U:

Ui = {ui} ∪ {u ∈ V (G) \U : ΓG(u) ∩U = {ui−1, ui, ui+1}}. (4.1)

Claim 4.5. For every i ∈ Z5 the induced subgraph G[Ui] is complete.

Proof of Claim. By symmetry, let i = 0. Take any distinct u, v ∈ U0. By the definition

of U0, we have that v, u1, . . . , u4 induce a 5-cycle. Also, u is adjacent to u4 and u1. By

Claim 4.4 we conclude that {u, v} ∈ E(G).

Claim 4.6. Let i, j ∈ Z5 be distinct and let vi ∈ Ui and vj ∈ Uj be arbitrary. Then vi and

vj are adjacent if and only if i = j ± 1.

Proof of Claim. Assume that vi �= ui and vj �= uj , for otherwise we are done by (4.1).

First, let i = 0 and j = 1. The vertex v1 ∈ U1 is adjacent to the vertices u1 and u2 but not

to u3 of the induced 5-cycle on v0, u1, . . . , u4. By Claim 4.4, v0 and v1 are adjacent. Next,

let i = 0 and j = 2. The vertex v2 ∈ U2 is adjacent to the vertices u1, u2 and u3 of the

induced 5-cycle on v0, u1, . . . , u4. By Claim 4.4, v0 and v2 are not adjacent. This covers all

the cases of Claim 4.6 up to symmetry.

Thus we see that G is exactly an expansion of C5 with parts U0, . . . , U4. Choose an

arbitrary subsequence of n such that each |Ui|/n approaches some limit αi. It remains to

show that each αi =
1
5
. One approach to showing this would be to argue that an explicit

degree-k polynomial, that approximates p(Kk,G), has the unique minimizer ( 1
5
, . . . , 1

5
). This

approach seems rather messy.

However, there is another way to get the desired conclusion: namely, by applying

Lemma 3.1. Let us consider type τ6 which is obtained by labelling the vertices of

the 3-edge path by 3, 1, 2, 4 as we go along the path. (It is 4:121324 in Flagmatic’s

notation.) There are exactly 8 non-isomorphic τ6-flags on 5 vertices, which we denote

by Fτ61 , . . . , F
τ6
8 . Three of these flags, labelled by Flagmatic as Fτ66 , F

τ6
7 , F

τ6
8 , do not embed

into any expansion of C5 when we view them as unlabelled graphs. Thus, by Claim 4.2,

we have that p(Fτ6i , (G,φ)) = 0 for every φ and i = 6, 7, 8. Every embedding ψ of τ6
into G = C5((U0, . . . , U4)) uses four different parts. Note that each part has size Ω(n)

by Claim 4.3. When we form the vector xψ as in (3.2), we have to count the number

of τ6-flags on 5 vertices that we obtain over all n− 4 choices of an unlabelled vertex

u ∈ V (G) \ ψ([4]). Up to symmetry, there are only 5 different choices of u depending on

which part Ui contains u. Each i contributes either |Ui| or |Ui| − 1 to some coordinate

of xψ and different i contribute to different coordinates. Thus, up to a permutation of

coordinates, xψ is equal to (α1n+ o(n), . . . , α5n+ o(n), 0, 0, 0). It follows from a version of

Lemma 3.1 that some permutation of (α1, . . . , α5, 0, 0, 0) is a zero eigenvector of Qτ6 . On

the other hand, Lemma 3.1 implies that ( 1
5
, 1

5
, 1

5
, 1

5
, 1

5
, 0, 0, 0) is a forced zero eigenvector of

Qτ6 (that comes from analysing our flag algebra proof on the uniform expansion of C5).
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Moreover, the scripts verify that the rank of the rational 8 × 8-matrix Qτ6 is exactly 7

(so its null-space has dimension 1). Since α1 + · · · + α5 = 1, we conclude that each αi =
1
5
.

This proves the desired stability property (that is, it contradicts our assumption that each

graph G is ε
(
n
2

)
-far from a uniform expansion of C5).

4.2. Cases k = 3 and 4 � l � 7

The scripts verify that the number of sharp graphs and the number of those order-N

graphs that embed into T l−1(n) with one edge added are the same: namely, 10, 20, 33,

and 55 graphs when (l, N) is respectively (4, 5), (5, 6), (6, 7), and (7, 8). Thus these lists

coincide by Lemma 3.3. By applying the Induced Removal Lemma, we can assume that

G does not contain any non-sharp N-vertex graph. In other words, the following holds.

Claim 4.7. Every subset U ⊆ G with at most N vertices admits a partition U = U1 ∪ · · · ∪
Ul−1 such that G[U] is equal to Kl−1((U1, . . . , Ul−1)) with at most one added edge.

Define an equivalence relation ∼ on vertices of G, where x ∼ y if and only if x = y or

there is a chain of intersecting triangles in G that connects x to y. Each equivalence class

is a clique by Claim 4.7 as N � 5. Let U0 be the union of equivalence classes of size 1,

that is, U0 consists of those vertices that are not contained in a triangle. Since G does

not contain Kl , we have that |U0| + 1 is at most the Ramsey number R(3, l). Remove U0

from V (G) as this will not affect the stability property.

Let U1, . . . , Us be the remaining ∼-equivalence classes. Each Ui spans a clique and has

at least three vertices.

Let us derive a contradiction by assuming that some Ui sends at least two edges to

V (G) \Ui, say {w, x} and {y, z} with w, y ∈ Ui. Take some 5-set X ⊇ {w, x, y, z} with

|Ui ∩X| = 3. Then G[X] is a subgraph that contains at least one triangle (on X ∩Ui)

plus at least two extra edges incident to it. By Claim 4.7, {w, x, y, z} spans a clique, which

contradicts the fact that x, z �∈ Ui.

Thus by removing at most one vertex from each Ui, we can eliminate all edges across

the parts. As Ui is still non-empty, we have that s < l by the Kl-freeness of G.

A simple optimization shows that, in fact, s = l − 1 and each Ui has ( 1
l−1

+ o(1))n

vertices. This proves the stability property for f(n, 3, l) with 4 � l � 7.

4.3. Cases (k, l) = (6, 3) or (7, 3)

Here N = 7 if k = 6 and N = 8 if k = 7. Let G be a K3-free graph of large order n with

p(Kk,G) = ck,l + o(1). Recall that, for notational convenience, we prefer to work with the

graph complements in these cases. Also note that an expansion corresponds to a blow-up

of a graph when we look at the complements.

The scripts verify that the numbers of the sharp graphs and of those N-vertex graphs

that appear in a blow-up of the Clebsch graph are the same (namely, 86 graphs for

(k,N) = (6, 7) and 232 graphs for (k,N) = (7, 8)). So these lists coincide by Lemma 3.2.

As before, by applying the Induced Removal Lemma we can additionally assume that G

has the following property.
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Claim 4.8. No singular graph is an induced subgraph of G, that is, every induced N-vertex

subgraph of G is a blow-up of the Clebsch graph L.

We need some further definitions before we can proceed with the proof.

Let X ⊆ V (H) be a subset of vertices in some graph H . Two vertices x, y ∈ V (H) are

X-equivalent, denoted as x ∼X y, if ΓH (x) ∩X = ΓH (y) ∩X, that is, if they are adjacent

to the same vertices of X. Note that we allow x or y to belong to X and it is possible

that some x ∈ X and y �∈ X are X-equivalent. Clearly, ∼X is an equivalence relation. Let

[x]X = {y ∈ V (H) : y ∼X x} denote the equivalence class of x.

Let C ′
5 be obtained from the 5-cycle on x1, . . . , x5 by adding an extra isolated vertex x0.

Let φ be a strong homomorphism from C ′
5 to the Clebsch graph L that maps the isolated

vertex to 00000 and maps the remaining vertices to the cyclic shifts of 00011. This φ is

injective and its image is

X = {00000, 00011, 01100, 10001, 00110, 11000}. (4.2)

Claim 4.9. Let φ and X be as above. Then the following claims hold.

(1) Let H be obtained from C ′
5 by removing at most one vertex. Then, for every strong

homomorphism ψ from H to L, there is an automorphism σ of L such that ψ = σ ◦ φ|V (H).

(In particular, ψ is injective.)

(2) The X-equivalence relation is trivial on V (L), that is, x ∼X y if and only if x = y.

(3) For every two distinct vertices x, y ∈ V (L) there is z ∈ X such that, for Z = X \ {z}, we

have x �∼Z y and the bipartite subgraph of L induced by [x]Z and [y]Z is either complete

or empty. Also, for every x ∈ V (L) there is z ∈ X such that [x]X\{z} = {x}.

Proof of Claim. First, let H = C ′
5 or let H be obtained from C ′

5 by removing a vertex

of degree 2, say H = C ′
5 − x5. Up to an automorphism of L, each strong homomorphism

ψ from H to L is as follows. By the vertex-transitivity of L, we can assume that

ψ(x0) = 00000. Thus every other vertex of H has to be mapped to a sequence of weight 2.

(No other vertex can be mapped to 00000 because x0 is the unique isolated vertex of H .)

By permuting indices 1, . . . , 5 (which gives an automorphism of L), we can assume that

ψ(x2) = 00011. Next, up to a permutation of indices 1, 2, 3, we can assume that ψ(x3) =

01100 and ψ(x1) = 11000. (Note that ψ(x3) �= ψ(x1) because of x4 ∈ ΓH (x3) \ ΓH (x1).) Up

to a transposition of 4 and 5, we can also assume that ψ(x4) = 10001. Also, if H = C ′
5,

then ψ(x5) = 00110 is uniquely determined. Thus ψ = φ|V (H) up an automorphism of L.

The remaining case H ∼= C5 can be done by a similar analysis, finishing part (1) of the

claim.

Every 5-sequence of weight 0, 4 and 2 sends respectively 0, 3, and 1–2 edges to X, so X

distinguishes vertices of different weight. An easy case analysis for each possible weight

shows part (2) of the claim. For example, 00011 is identified among all weight-2 sequences

already by the set {01100, 11000} ⊆ X.

In order to establish part (3), we use the fact that any cyclic permutation or the reversal

of the indices preserves X. Up to these symmetries, there are 12 different unordered

pairs x, y to check. The following table lists a vertex z that establishes the claim and the
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Z-equivalence classes of x and y, where Z = X \ {z}:

x y z [x]Z [y]Z

00000 00011 10001 {00000, 01010} {00011}
00000 00101 00011 {00000, 10100} {00101}
00000 01111 00011 {00000, 10100} {01111}
00011 01100 00110 {00011} {01100}
00011 00110 00011 {00011} {00110}
00011 00101 00011 {00011} {00101}
00011 01010 00110 {00011} {01010}
00011 10100 10001 {00011} {01100, 10100}
00101 01010 00110 {00101} {01010}
00101 01001 00110 {00101} {00000, 01001}
01111 10111 00011 {01111} {10111}
01111 11011 00011 {01111} {11011}

Alternatively, the Mathematica notebook Clebsch.nb, available from the ancillary folder

of [18], verifies the existence of z by the brute-force enumeration of all cases. The

remaining statement of part (3) is easy to verify: for example, we can take z to be 00000,

00011, 00011, and 00011 if x is respectively 00000, 00011, 00101, and 01111. This finishes

the proof of the claim.

Claim 4.10. P (C ′
5, G) = Ω(n6).

Proof of Claim. Suppose on the contrary that p(C ′
5, G) = o(1). By the Induced Removal

Lemma, we can additionally assume that P (C ′
5, G) = 0. We let Flagmatic prove some

lower bound on the density of Kk given that both K3 and C ′
5 are forbidden. The obtained

bound (with the certificates 63a.js and 73a.js) is strictly larger than ck,3. This contradicts

p(Kk,G) = ck,3 + o(1) for all large n, proving the claim.

Fix one embedding ψ of C ′
5 into G. Let us view C ′

5 as the subgraph of L induced by

X ⊆ V (L), where X = V (C ′
5) is defined by (4.2). Thus ψ : X → V (G). Let Y = ψ(X).

Claim 4.11. For every y ∈ V (G) there is a (unique) vertex x ∈ V (L) whose adjacencies to

X match those of y to Y , that is, ψ(ΓL(x) ∩X) = ΓG(y) ∩ Y .

Proof of Claim. The subgraph H = G[Y ∪ {y}], which has at most 7 � N vertices,

admits an embedding into a blow-up of the Clebsch graph by Claim 4.8. This implies

that there is a strong homomorphism ξ from H into L. By part (1) of Claim 4.9, we

can assume that the composition ξ ◦ ψ is the identity map IdX : X → X. Now, x = ξ(y)

satisfies the claim. The uniqueness of x follows from part (2) of Claim 4.9.
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Thus each y ∈ V (G) falls into one of at most sixteen Y -equivalence classes that are

naturally labelled as Ux for x ∈ V (L), where x = x(y) is given by Claim 4.11. In particular,

for each x ∈ X, the part containing ψ(x) is labelled by Ux.

Claim 4.12. For every adjacent x, y ∈ V (L), the induced bipartite subgraph G[Ux,Uy] is

complete. For non-adjacent x, y ∈ V (L) the induced bipartite subgraph G[Ux,Uy] is empty.

(In particular, each part Ux forms an independent set.)

Proof of Claim. Let x, y ∈ V (L) be adjacent. Let x′ ∈ Ux and y′ ∈ Uy be arbitrary.

Pick z ∈ X given by part (3) of Claim 4.9 and let Z = X \ {z}. The induced subgraph

H = G[ψ(Z) ∪ {x′, y′}] has at most 7 � N vertices. By Claim 4.8, H admits a strong

homomorphism ξ to L. By part (1) of Claim 4.9, we can assume that ξ ◦ ψ|Z is the identity

on Z . Then ξ(x′) ∈ [x]Z and ξ(y′) ∈ [y]Z . However, the bipartite subgraph induced by

[x]Z and [y]Z in L is complete by the choice of z (since {x, y} ∈ E(L)). Thus x′ and y′ are

adjacent. The second part of the claim follows in a similar manner.

Thus we know that G is a blow-up of L with parts U00000, . . . , U11110. It remains to

argue that each part Ux has ( 1
16

+ o(1))n vertices.

Let k = 7. We proceed very similarly as we did at the end of Section 4.1, so we will

be rather brief. We consider the type τ37, which is a labelling of C ′
5. It is 6:1213243545

in Flagmatic’s notation. There are 22 τ37-flags on 7 vertices. By Claim 4.10, there are

Ω(n6) embeddings ψ of τ37 into G. By parts (1)–(2) of Claim 4.9, each obtained vector xψ
consists of sixteen entries |Ux| + O(1), one for each x ∈ V (L), and six zeros. On the other

hand, the script 73.sage verifies that the 22 × 22-matrix Qτ37 from our flag algebra proof

has rank 21. Moreover, by Lemma 3.1, the matrix Qτ37 has one forced zero eigenvector

consisting of sixteen entries equal to 1/16 and six entries equal to 0. It follows in the same

way as in Section 4.1 that each Ux has size ( 1
16

+ o(1))n.

Let k = 6. We consider the type τ11 that consists of the 3-edge path plus an isolated

vertex (it is 5:121324 in Flagmatic’s notation). Since C ′
5 contains τ11 as a subgraph,

Claim 4.10 implies that there are Ω(n5) embeddings ξ of τ11 into G. Fix an embedding ξ

such that its image avoids all parts Ux of size o(n). (A typical ξ has this property.) By

part (1) of Claim 4.9, we can relabel the parts Ux so that the image Y of ξ has exactly one

vertex in each of the parts U00000, U00011, U01100, U10001, U00110. The Y -equivalence relation

on G makes each part Ux into a separate equivalence class except for the following three

Y -equivalence classes:

U00000 ∪U00101, U00011 ∪U10010, U00110 ∪U01010. (4.3)

On the other hand, the 16 × 16-matrix Qτ11 of our solution has rank 15. Moreover, it has

one forced zero eigenvector that has ten entries equal to 1/16, three entries equal to 2/16,

and three entries equal to 0 by Lemma 3.1. (This follows from (4.3) when applied to the

uniform blow-up of L.) This implies that each of the ten parts that do not appear in (4.3)

has size ( 1
16

+ o(1))n while each of the three sets in (4.3) has ( 2
16

+ o(1))n vertices.
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The graph G has other copies of τ11, for example via

U10100, U01111, U11000, U10111, U11101.

The adjacency pattern to these ( n
16

+ o(n))5 copies τ11 uniquely identifies parts U00000,

U00011, andU01010. As before, we conclude that that each of these parts has size ( 1
16

+ o(1))n.

This is enough to determine the sizes of all six parts that appear in (4.3). Thus G is o(n2)-

close to a uniform blow-up of L. The stability property has been established.

Remark. By running everything with N = 8 (see the script 63.sage and the certificate

63b.sage), it is possible to shorten the ‘human’ part of the proof of Theorem 1.2 for

(k, l) = (6, 3). (For example, part (3) of Claim 4.9 and the argument around (4.3) become

redundant.) However, we believe that the ability to solve this case within the universe

of 7-vertex graphs justifies the extra work, as the ideas introduced for this task may be

useful for other problems.

5. Exact result

First, we present a rather general Theorem 5.1 and then verify in Section 5.2 that it implies

Theorem 1.3. Theorem 5.1 could in principle be strengthened in various ways but we state

only the current version as it suffices for all the cases that we need.

5.1. A general result

We need to give some definitions first, given an arbitrary pair (k, l) and any admissible

graph F with vertex set [m].

We say that F is a stability graph for (k, l) if for every ε > 0 there are n0 and δ > 0 such

that the following holds. Let G be an arbitrary graph such that n = v(G) � n0, α(G) < l,

and p(Kk,G) � ck,l + δ. Then there is a partition V (G) = V1 ∪ · · · ∪ Vm such that the part

sizes differ at most by 1 and

|E(F((V1, . . . , Vm))) � E(G)| � ε

(
n

2

)
.

In other words, F is a stability graph for (k, l) if every large almost extremal graph for the

f(n, k, l)-problem is o(n2)-close in the edit distance to a uniform expansion of F . Clearly,

this property is preserved if we replace F by an isomorphic graph or by F((U1, . . . , Um))

with |U1| = · · · = |Um| > 0.

We give some further definitions related to the graph F , which will be illustrated in

the next paragraph. Let us call a set of vertices X ⊆ [m] legal if F −X does not contain

Kl−1. Let the gradient grad(X) of X be the probability, when we independently pick

k − 1 uniformly distributed vertices x1, . . . , xk−1 ∈ [m], that all belong to X and for every

i, j ∈ [k − 1] the vertices xi and xj are adjacent or equal. Let us call a stability graph F

strict if grad(X) > ck,l for every legal X for which there is no i ∈ [m] with X = Γ̂F (i).

Recall that

Γ̂F (i) = {i} ∪ {j ∈ V (F) : {i, j} ∈ E(F)}

is the closed neighbourhood of i.
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The above definitions are motivated by the addition of a new vertex x to F ′ =

F((V1, . . . , Vm)) with |V1| = · · · = |Vm| = n/m so that x is adjacent to precisely ∪i∈XVi. The

new graph is still Kl-free if and only if X is legal. Also, the number of k-cliques that

contain x is grad(X)
(
n
k−1

)
+ O(nk−2). If X = Γ̂F (i), then adding x is the same as enlarging

the part Vi by one vertex and, if F is a stability graph, then the number of k-cliques

increases by (ck,l + o(1))
(
n
k−1

)
; see Claim 5.4 below. Thus F is strict if the number of the

new k-cliques is by Ω(nk−1) larger for every other legal X.

Theorem 5.1. Let a pair (k, l) admit a stability graph F which is strict. Then there is n0

such that every graph G with n = v(G) � n0, α(G) < l, and P (Kk,G) = f(n, k, l) contains an

expansion of F as a spanning subgraph.

Proof. Let V (F) = [m]. Choose positive constants

ε2 � ε1 � ε0 � 1/n0 > 0, (5.1)

each being sufficiently small, depending on the previous ones. We show that n0 satisfies

the conclusion of the theorem.

Since there are finitely many different subsets X ⊆ [m], we can assume that

grad(X) � ck,l + 2kmε2 (5.2)

for every legal X that is not the closed neighbourhood of some vertex. Also, we may

assume that for every n � n0 we have

f(n, k, l) � (ck,l − ε0)

(
n

k

)
, (5.3)

Let G be an arbitrary f(n, k, l)-extremal graph with n � n0 vertices. Let V = V (G). Since

f(n, k, l) = (ck,l + o(1))
(
n
k

)
by (1.4) and F is a stability graph, we have that

|E(G) � E(F ′)| � ε0

(
n

2

)
(5.4)

for some uniform expansion F ′ = F((V1, . . . , Vm)) on V .

We are going to modify the partition V = V1 ∪ · · · ∪ Vm. Given a current partition,

let B = E(F ′) \ E(G) and S = E(G) \ E(F ′). We call the pairs in B bad and those in S

superfluous.

Iteratively repeat the following operation as long as possible (updating V1, . . . , Vm, F ′,

B and S as we proceed): if we can move some vertex x of F ′ to another part and decrease

the number of bad pairs by least ε1n, then we perform this move.

Since we had initially at most ε0
(
n
2

)
bad pairs, we perform at most ε0

(
n
2

)
/ε1n < ε1n/4

moves. Let V1, . . . , Vm, F
′, B, S refer to the final configuration. What we have achieved is

that for every vertex x ∈ Vj and every i ∈ [m]

|ΓG(x) ∩ ∪h∈Γ̂F (i)Vh| > |ΓG(x) ∩ ∪h∈Γ̂F (j)Vh| − ε1n. (5.5)

Also, the current expansion F ′ is not far from being uniform:∣∣∣∣|Vi| − n

m

∣∣∣∣ � ε1n, for all i ∈ [m]. (5.6)
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In addition, we have

|E(G) � E(F ′)| � ε0

(
n

2

)
+
ε1n

4
n < ε1

(
n

2

)
. (5.7)

Claim 5.2. The removal of any edge {x, y} from F ′ creates Kl .

Proof of Claim. First, suppose that x and y belong the same part Vi. Partition Vi =

X ∪ Y into two almost equal parts so that x ∈ X and y ∈ Y . Let F ′′ be obtained from F ′

by removing all edges between X and Y . By (5.7) we have rather roughly that

P (Kk, F
′′) � P (Kk, F

′) − 1

2

(
|Vi|
k

)

� P (Kk,G) + ε1

(
n

2

)(
n− 2

k − 2

)
− (n/m)k

4 k!
< P (Kk,G).

By the extremality of G, we conclude that F ′′ contains an independent set I of size l.

Clearly, I has exactly one vertex in each X and Y . Since any permutation of the vertices

of X (and of Y ) is an automorphism of F ′′, we can assume that x, y ∈ I , as required.

If x, y come from different parts Vi and Vj , then a similar argument works where we

remove all edges of F ′ between Vi and Vj .

Claim 5.3. For every bad pair {x1, x2} ∈ B we have dS (x1) + dS (x2) � n/(3ml−2).

Proof of Claim. Let x1 ∈ Vi1 and x2 ∈ Vi2 . By Claim 5.2, F ′ − {x1, x2} has Kl as a

subgraph. This means that we can find distinct i3, . . . , il ∈ [m] \ {i1, i2} such that no pair

of vertices i1, . . . , il except {i1, i2} is adjacent in F .

For every choice of x = (x3, . . . , xl) such that xj ∈ Vij , at least one pair {xj, xh} with

1 � j < h � l is superfluous (for otherwise we get an independent set of size l in G). It is

impossible that both j and h are at least 3 for at least half of the choices of x: otherwise,

as each superfluous pair is overcounted at most nl−4 times, we would have that

|S | � 1

2

((
1

m
− ε1

)
n

)l−2
1

nl−4
> ε1

(
n

2

)
,

which contradicts (5.7). Thus, for at least half of the choices of x there is a superfluous

pair intersecting {x1, x2}. Since each such pair is over-counted at most nl−3 times, we

obtain that

dS (x1) + dS (x2) � 1

2

((
1

m
− ε1

)
n

)l−2

× 1

nl−3
,

which implies the claim provided that ε1 = ε1(m, l) is sufficiently small.

Let K1
k be the flag obtained from Kk by labelling one vertex. Thus P (K1

k , (H, x)) is the

number of k-cliques in a graph H that contain x ∈ V (H).
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Claim 5.4. For any two vertices x, y ∈ V , we have

|P (K1
k , (G, x)) − P (K1

k , (G, y))| �
(
n− 2

k − 2

)
.

Proof of Claim. If we delete x but add a clone y′ of y (putting an edge between y and

y′), then we do not create a copy of Kl while the number of k-cliques changes by at most

P (K1
k , (G, y)) − P (K1

k , (G, x)) +
(
n−2
k−2

)
. Since G is extremal, this has to be non-negative. By

swapping the roles of x and y, we derive the claim.

Claim 5.4 and the extremality of G imply that for every x ∈ V (G) we have

P (K1
k , (G, x)) � k f(n, k, l)

n
+

(
n− 2

k − 2

)
, (5.8)

for otherwise

P (Kk,G) =
1

k

∑
y∈V (G)

P (K1
k , (G, y)) >

n

k

(
P (K1

k , (G, x)) −
(
n− 2

k − 2

))

is too large.

Suppose that B is not empty, for otherwise we are done: G contains F ′ as a spanning

subgraph.

By Claim 5.3, there is a vertex x whose S-degree is at least n/(6ml−2). Define

X = {i ∈ [m] : |Vi \ ΓG(x)| � ε2n}.

Claim 5.5. X is legal.

Proof of Claim. Suppose that this is false. Then there are distinct i1, . . . , il−1 ∈ [m] \X
that span Kl−1 in F . Let xl = x. For every choice of (x1, . . . , xl−1) with xj ∈ ΓG(x) ∩ Vij ,
the (l − 1)-set {x1, . . . , xl−1} has to span at least one edge in G (otherwise together with x it

induces Kl). This edge is necessarily in S . On the other hand, any pair in S is over-counted

at most nl−3 times. Thus |S | � (ε2n)
l−1/nl−3, contradicting (5.7).

Claim 5.6. There is i ∈ [m] such that X = Γ̂F (i).

Proof of Claim. Suppose that the claim is false. As F is strict, we have that (5.2) holds.

Let F ′′ be obtained from F ′ by changing edges at x so that the new neighbourhood of x

is exactly Y = (∪j∈XVj) \ {x}. The number of Kk-subgraphs in F ′′ via x is

P (K1
k , (F

′′, x)) � (ck,l + 2kmε2)

(
n− 1

k − 1

)
− ε1mn

(
n− 2

k − 2

)
+ O(1/n). (5.9)

(Here, the middle term corresponds to the fact that, by (5.6), we can make F ′ into a

uniform expansion by moving at most ε1mn vertices between parts.) On the other hand,

G and F ′ differ in at most ε1
(
n
2

)
edges by (5.7) while at most ε2mn edges between x and
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Y can be missing in G by the definition of X. Thus, rather roughly,

P (K1
k , (G, x)) � P (K1

k , (F
′′, x)) − ε1

(
n

2

)(
n− 3

k − 3

)
− ε2mn

(
n− 2

k − 2

)
.

However, this inequality contradicts (5.3), (5.8) and (5.9) by our choice of the constants

in (5.1).

Fix the i that is returned by Claim 5.6.

Claim 5.7. dB(x) < 2ε1n.

Proof of Claim. Suppose on the contrary that dB(x) � 2ε1n.

Consider moving x to Vi. (The following statements are also true if x is already in Vi.)

By (5.5), the new number of bad pairs at x would be at least dB(x) − ε1n > ε2mn and each

one would connect x to ∪h∈Γ̂F (i)Vh.

Hence, in the graph G, x has more than ε2n non-neighbours in some Vh with h ∈ Γ̂F (i),

meaning that X �= Γ̂F (i) and contradicting Claim 5.6.

Let x ∈ Vj (where possibly j = i). Fix a vertex y ∈ Vj that has at most the average

number of superfluous edges over the vertices of Vj . We have

dS (y) � |E(G) � E(F ′)|
|Vj |

�
ε1

(
n
2

)
(1/m− ε1)n

� ε1mn.

This and Claim 5.7 imply that

|ΓG(y) \ ΓG(x)| � dS (y) + dB(x) � ε1(m+ 2)n.

On the other hand, x sends at least dS (x)/m � n/(6ml−1) superfluous edges to some part

Vh. By (5.7), all but at most ε1
(
n
2

)
pairs of Vh are edges of G. Thus the superfluous edges

at x create at least(
n/(6ml−1)

k − 1

)
− ε1

(
n

2

)(
|Vh| − 2

k − 3

)
> (2m+ 5)ε1n

(
n− 2

k − 2

)

copies of Kk through x. We conclude that

P (K1
k , (G, x)) − P (K1

k , (G, y)) > (2m+ 5)ε1n

(
n− 2

k − 2

)
− 2ε1(m+ 2)n

(
n− 2

k − 2

)

>

(
n− 2

k − 2

)
,

contradicting Claim 5.4. This final contradiction to B �= ∅ proves Theorem 5.1.

5.2. Verifying Theorem 1.3

Theorems 1.2 and 5.1 imply Theorem 1.3 provided we can verify that the appropriately

defined F is strict. The cases F = Kl−1 or C5 are straightforward to verify. Namely, every

legal set X that is not a closed neighbourhood of a vertex has at least 2 vertices for
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Kl−1 and at least 4 vertices for C5; any such X contains some closed neighbourhood as a

proper subset and has a strictly larger gradient.

Let (k, l) = (6, 3) or (7, 3). Let us check that L satisfies Theorem 5.1. We already know by

Theorem 1.2 that L is a stability graph for (k, l). Let X ⊆ V (L) be any legal set, meaning

that Y = V (L) \X spans no edge in L. By the vertex-transitivity of L, we can assume that

00000 ∈ Y . Thus all other sequences in Y have weight 2 and, furthermore, no two such

sequences can have 1s in disjoint positions. If |Y | = 5, then up to a symmetry the only

possibility is Y = {00000, 00011, 00101, 01001, 10001} but then X is precisely the closed

neighbourhood of 11110 in L. If |Y | = 4 and X does not contain a closed neighbourhood,

then, up to an automorphism of L, we have Y = {00000, 00011, 00101, 00110}. The script

Clebsch.nb shows that, if k = 6, then grad(X) = 1437/216 > c6,3 and if k = 7, then

grad(X) = 14503/221 > c7,3. Every other Y is a subset of one of the sets that we have

already considered and the gradient of X = V (L) \ Y is strictly larger than we had before.

Thus L is strict. This finishes the remaining cases of Theorem 1.3.

6. Concluding remarks

Let us call a graph G extremal (s, t)-Ramsey if G has neither Ks nor Kt as an induced

subgraph while the order of G is R(s, t) − 1, that is, the maximum possible. Das, Huang,

Ma, Naves and Sudakov [5, page 365] asked whether, for every (k, l) and large n,

the value of f(n, k, l) is attained by an expansion of some extremal Ramsey graph.

The cases (k, l) = (6, 3) and (7, 3) that we solved here show that the answer is in the

negative. Interestingly, L is nonetheless related to Ramsey numbers, but to 3-colour ones:

Kalbfleisch and Stanton [13] showed that there are two different 3-edge-colourings of K16

without a monochromatic triangle but each colour class (in either colouring) is isomorphic

to the Clebsch graph (and thus the union of any two colour classes is isomorphic to L).

Das, Huang, Ma, Naves and Sudakov [5, page 365] mention that they ran the SDP-

solver for the cases (k, l) = (5, 3), (3, 5) and (3, 6) and the obtained floating-point bound

suggested that c5,3 = 31/625, c3,5 = 1/16, and c3,6 = 1/25, with extremal configurations

being an expansion of respectively C5, K4 and K5. Since their paper was already quite

long they did not try to convert it into a rigorous proof. The current paper makes these

statements rigorous.

It would be interesting to identify further pairs (k, l) amenable to this approach. One

promising case is f(n, 4, 4), where we make the following conjecture.

Conjecture 6.1.

c4,4 =
14 · 21/3 − 11

192
. (6.1)

The upper bound in (6.1) comes from taking expansions of the (unique) (3, 4)-Ramsey

graph F with 8 vertices and 10 edges. More specifically, let F be obtained from the 8-cycle

on 1, . . . , 8 by adding the two ‘diameters’ {1, 5} and {2, 6} as edges. Take an expansion

F ′ = F((U1, . . . , U8)) with parts U1, U2, U5, and U6 (those corresponding to degree-3
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vertices of F) having size (α+ o(1))n and the other four parts having size ( 1
4

− α+ o(1))n,

where α = 1
12

(1 − 21/3 + 22/3). Routine calculations show that the density of K4 approaches

the right-hand side of (6.1) as n → ∞. On the other hand, Flagmatic suggests that this

construction is asymptotically optimal and, perhaps, a flag algebra proof exists within the

8-vertex universe (i.e., taking N = 8). Unfortunately, we have not been able to round the

floating-point solution.
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