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Abstract

Erdős [in: Chartrand (Ed.), The Theory and Applications of Graphs, Wiley, New York, 1981,
p. 331] conjectured that the vertices of any graph with fewer than

( 2n+1
2

) − ( n
2

)
edges can be

split into two parts, both parts inducing subgraphs of maximum degree less than n. Recently, the
;rst named author [Combinatorica 21 (2001) 403–412] disproved this conjecture. In this paper
we consider further questions arising out of the conjecture.

First of all, we give couterexamples to the conjecture having only 2n+80 vertices for large n.
(The above counterexample had around n3=2=

√
2 vertices, though it had many fewer edges than

our examples.)
We also de;ne the function b(n; m) to be the minimum size of a graph G such that, for

any partition V (G) = A∪B, either 
(G[A])¿ n or 
(G[B])¿m holds. In this terminology,
Erdős’s conjecture was b(n; n) =

( 2n+1
2

) − ( n
2

)
. We prove that b(n; m) = 2nm − m2 + O(

√
m)n

for n¿m; b(n; 1) = 4n− 2 for n¿ 7, and b(n; 2) = 6n+ O(1).
Let m(n; k; j) be the minimum size of a graph G on n+ k vertices in which 
(G[A])¿ n for

every (n+ j)-set A ⊂ V (G). We prove that, if k = o(n(n+ j)= log n), then

m(n; k; j) = (1 + o(1))
(
1 +

k − j
2n+ 2j

)
(k − j + 1)n

as n→∞. The upper bound here disproves a conjecture made by Erdős, Reid, Schelp and Staton
[Discrete Math. 158 (1996) 283–286]. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Whilst investigating size Ramsey numbers, Erdős [2] conjectured that any graph of

size less than
(

2n+1
2

)
− ( n

2

)
is an edge–disjoint union of a bipartite graph and a graph
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of maximum degree less than n. This value arises from the consideration of the graph
Pn+1; n=Kn+1 + MKn, which does not admit such a representation.
This conjecture has recently been disproved by the ;rst author [6]. In fact, there

are graphs with n2 + �(n3=2) edges that are not a union of the appropriate kind,
and this size is the smallest possible. But the graph described in [6] has (1=

√
2 +

o(1))n3=2 vertices, and one might ask what happens if not so many vertices are allowed.
Counterexamples with only 3n + 1 vertices can be obtained from the methods in [6].
Clearly, all counterexamples have at least 2n + 1 vertices, and Faudree showed that
they must have at least 2n+2 (see e.g. [3] for a proof); in fact, Erdős and Faudree [4]
believed that there are no counterexamples on 2n + 2 vertices. In Section 2 we show
that there are counterexamples with only 2n+ 80 vertices if n is large.
In investigating the conjecture of Erdős, it is natural to consider also the correspond-

ing ‘oO-diagonal’ problem. To be precise, let b(n; m) be the minimum number of edges
in a graph G such that, for any partition V (G)=A∪B, at least one of 
(G[A])¿ n and

(G[B])¿m holds. Clearly, b(n; n) is the function investigated by Erdős. In Section 3
we prove that b(n; m)= 2nm−m2 +O(

√
m)n when n¿m. Note that, when n=m, this

disproves the conjecture of Erdős. For ;xed values of m we cannot give an asymptotic
formula for b(n; m) unless m6 2, though we oOer both upper and lower bounds.

A diOerent, but related, ‘one-sided’ problem was discussed by Erdős, Reid, Schelp
and Staton [3]. Let n, j and l be integers with j¿ 1 and l¿ 0. The problem is to
compute q(n; j; l), the minimum size of a graph G having n+ j+ l vertices, such that
for every (n + j)-set A ⊂ V (G) we have 
(G[A])¿ n. (This function was denoted
m(n; k; j) in [3], where k = j + l; we changed the notation because all our arguments
involve l rather than k.) The functions b() and q() are closely connected: on the one
hand, if l= n− 1 then the addition of a new vertex joined to everything in G shows
that b(n; n)6 q(n; j; n − 1) + 2n − 1 + j for all j, and on the other hand, graphs that
are extremal for the function b(n; n) show that b(n; n)¿ q(n; j; n) for some j.
It was proved in [3] that

q(n; j; l)= (l+ 1)n+
(
l+ 1
2

)
if n¿max

(
jl;

(
l+ 2
2

))
: (1)

The same equation was shown to hold whenever j=1, and it was conjectured [3,
Conjecture 1] to hold whenever n¿ j+l. The stated value arises from the consideration
of Pl+1; n together with j − 1 extra isolated vertices.
However, the conjecture is not true in general. We prove in Section 4 that

q(n; j; l)= (1 + o(1))(l+ 1)n
(
1 +

l
2n+ 2j

)
(2)

holds if l=o(n(n + j)= log n). This disproves the conjecture of Erdős, Reid, Schelp
and Staton if both j and l are �(n).
The upper bound in (2) comes from a probabilistic argument. We present also a

construction showing that the equation in (1) fails to hold when n¡ (j − 1)l.
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On the other hand, we show that the equation in (1) is true if

n¿
(
j +

1
2

)
l+

2j + l
4j − 2

;

which is an improvement on (1) if j is smaller than about l=2. This shows that the
value jl is roughly the threshold on n when the obvious construction suggesting (1)
fails to be extremal.
Of course, one can also consider q(n; j; l) when l is much bigger than n or when

n is ;xed altogether. However, it seems that for these diOerent ranges we encounter
diOerent kinds of problems, and the overall situation is not clear. For example, to
compute q(1; j; l) we must look at graphs of order 1 + j + l with no independent set
of order 1+ j; thus q(1; j; l)= (1+j+l2 )− tj(1+ j+ l), and the (unique) extremal graph
is the complement of the corresponding TurQan graph, that is, it consists of j disjoint
cliques of almost equal size.

2. Small counterexamples

The purpose of this section is to show that there are counterexamples to the conjec-
ture of Erdős [2] having only 2n+80 vertices, if n is large. Our simple construction is
based on two sparse graphs, whose existence is established in the next two lemmas by
elementary probabilistic methods. The lemmas are stated in terms of explicit constants
rather than in a general form, since we need only the stated versions.

Lemma 1. For all large even n; there exists a 19-regular graph G of order n; in
which any subgraph of minimum degree 10 has more than n=4 vertices.

Proof. The proof is an exercise in the use of the standard model for k-regular random
graphs. A graph is generated by taking a random con6guration, that is, a random
1-factor on kn vertices, these vertices being grouped into n groups of k apiece. Each
group is then identi;ed to a single vertex to produce a k-regular multigraph. This
process produces a k-regular graph with probability bounded away from zero (BollobQas
[1, Chapter II.4]). Thus, it suRces for us to prove that a random 19-regular multigraph
almost certainly satis;es the property in the lemma.
In fact, we shall do slightly more; we shall show that in almost all random 19-regular

multigraphs, every subset of l vertices spans fewer than 5l edges for all l6 n=4. Note
that l vertices span at least 5l edges precisely when there are at most 9l edges between
those l vertices and the remaining n−l vertices. Let A be some collection of l6 �n=4�
groups, and let B denote n− l groups not in A. The total number of con;gurations is
�(kn) = (kn)!2−kn=2=(kn=2)!, where k = 19. The probability that a con;guration has
exactly m edges between the kl vertices in A and the k(n−l) vertices in B (note that this
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implies that kl and m have the same parity) is(
kl

m

)(
k(n− l)
m

)
m!
�(kl− m)�(k(n− l)− m)

�(kn)

which is equal to

(
kn=2− m
kl=2− m=2

)(
kn=2

m

)(
kn

kl

)−1

2m:

Denote this probability by P(l; m). Thus, the probability that a random k-regular multi-
graph fails to satisfy the property in the lemma is at most

∑
16l6n=4

( n
l

)∑
m69l P(l; m).

Now

P(l; m+ 2)
P(l; m)

=
(kl− m)(kn− kl− m)

(m+ 1)(m+ 2)
¿ 5 for m+ 26 9l6 9n=4;

So
∑
m69l P(l; m)6 2P(l; 9l). Therefore, if we write

El = 2
(
n
l

)
P(l; 9l) =

(
n
l

)(
kn=2− 9l

5l

)(
kn=2
9l

)(
kn
kl

)−1

29l+1;

then the probability of failure is bounded by
∑

16l6n=4 El.
We now invoke the standard estimates

(a
b

)b
6

(
a
b

)
6

(ea
b

)b
and

(
a
b

)
= exp{−aH (b=a) + o(a)};

where H (x) = x log(x) + (1− x) log(1− x). These (crudely) yield the bounds

El ¡
nl(kn=2)14l(kl)kl

ll(5l)14l(kn)kl
e25l6

(
k14l4

n4

)l
and E�n = exp{−nJ (�) + o(n)};

where

J (�) = −18H (�) +
(
19
2

− 9�
)
H

(
10�

19− 18�

)
+

19
2
H

(
18�
19

)
− 9� log 2:

The ;rst bound implies El = O(n−4) for 16 l6 nk−4. Now it is straightforward
to check that J (�) is a concave function with J (0) = 0 and J (1=4) ¿ 0, so there
exists � ¿ 0 such that J (�)¿ � for k−46 �6 1=4. Therefore

∑
16l6n=4 El = O(n−3),

completing the proof of the lemma.

Lemma 2. For all large n; there exists a bipartite graph with vertex classes U and
W; where |U |= n and |W |= n+ 79; such that every vertex of U has degree 70; and
such that every subgraph with n+80 vertices containing at least �n=4� vertices from
U has a vertex lying within U of degree at most 60.
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Proof. Consider a random bipartite graph on the vertex sets U and W , in which each
vertex of U independently chooses d=70 neighbours in W . Let A be a subset of W
with |A|= �n=4� − 1. Let p be the probability that a given vertex in U has at most 9
neighbours in A. Then, for large enough n, we have

p=
9∑
j=0

( |A|
j

)( |W | − |A|
70− j

)( |W |
70

)−1

¡
20
11

(
70
9

)(
1
4

)9 (3
4

)61

¡
1
90
:

The expected number of pairs of sets B ⊂ U and A ⊂ W , such that |B|= �n=4�,
|A|= �n=4� − 1, and every vertex of B has at most 9 neighbours in A, is thus at most,
using the notation of Lemma 1,(

n
�n=4�

)(
n+ 79

�n=4� − 1

)
p�n=4� =o(1)× exp{−2nH (1=4) + (1=4)n logp}:

Since −2H (1=4) − (1=4) log 90¡ 0, there must be a graph with no such pair of sets.
Any such a graph has the properties described in the lemma.

We are now able to give a counterexample to the conjecture of Erdős.

Theorem 3. For all large n there is a graph G of order 2n + 80 and size less than
( 2n+1

2 ) − ( n2 ) − n
2 + 89 that is not an edge–disjoint union of a bipartite graph and a

graph of maximum degree less than n.

Proof. Let G have vertex set {v} ∪ U ∪ W , where |U |= n and |W |= n + 79. Join
every vertex in U to every vertex in W , and then delete the edges of a bipartite
graph described by Lemma 2. Within U , join every pair of vertices and then delete
the edges of a 19-regular graph described by Lemma 1 (if n is odd, use a 19-regular
graph of order n+1 with one vertex removed). Join v to everything in U ∪W . Clearly
|G|=2n+ 80, and the size of G is at most(

n
2

)
− 19n

2
+

19
2

+ n(n+ 9) + 2n+ 79¡
(
2n+ 1

2

)
−
(
n
2

)
− n

2
+ 89

as desired. Consider now a partition of V (G) into sets A and B, where v∈A. If
|A|¿ n + 1 then 
(G[A])¿ n. If not, then |B|¿ n + 80, and B must contain at least
one vertex of U . If B contains at least �n=4� vertices of U then, by Lemma 2, one of
these vertices has degree in G[B] at least |B| − 1− 19− 60¿ n. If B has fewer than
�n=4� vertices of U , by Lemma 1 one of these vertices has degree in G[B] at least
|B| − 1− 9− 70¿ n. Either way, 
(G[B])¿ n, which completes the proof.

It is clear that the constant 80 can be reduced by analysing a little more carefully
the diOerent kinds of set B that can arise in the proof of Theorem 3.
The counterexamples in Theorem 3 have only O(n) fewer edges than that conjectured

necessary by Erdős. As explained in Section 1, there exist counterexamples with $(n2)
fewer edges. However, such examples must have 2n + $(n) vertices: an estimate of
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how the minimum size of a counterexample varies with its order is given by Theorem
11 in Section 4.

3. The o�-diagonal function b(n; m)

It is convenient to de;ne B(n; m) to be the class of all graphs G such that, for any
partition V (G)=A ∪ B, at least one of 
(G[A])¿ n and 
(G[B])¿m holds. Thus
b(n; m)=min{e(G): G ∈B(n; m)}. Clearly, b(n; m)= b(m; n). We shall assume from
now on that n¿m. In this section we ;rst give good bounds on b(n; m) that are valid
for all n and m, and then we shall give more precise bounds for the case when m is
;xed and n is large.
Given v∈G and A ⊂ V (G) we shall denote by dA(v) the number of neighbours of v

in A. Thus, if also v∈A, then dA(v) is the degree of v in the induced subgraph G[A].

3.1. General bounds

Here is a simple algorithm that gives a good general lower bound on b(n; m).
Let G ∈B(n; m). To begin with, set A=V (G) and B= ∅. As long as |B|6m,

move to B any vertex x∈A with dA(x)¿ n. (Such a vertex exists, because obviously

(G[B])¡m.) When we ;nish, |B|=m + 1. Now swap the sets A and B each with
the other, so that |A|=m+1. If there is a vertex y∈B with dB(y)¿m, move y to A.
Repeat this step as often as possible. Since, in the end, 
(G[B])¡m, our assumption
on G implies that |A|¿ n + 1 (to allow a vertex of degree at least n). Counting the
edges encountered in this procedure, we obtain the following bound valid for all n
and m.

b(n; m)¿ (m+ 1)n+ ((n+ 1)− (m+ 1))m=2mn− m2 + n (3)

Next, we provide a general construction giving an upper bound on b(n; m).
Let m=m1 + · · · + mf and n − m= n1 + · · · + ng. We de;ne the graph

P(m1; : : : ; mf ; n1; : : : ; ng) to be the vertex disjoint union of Pmi;n, 16 i6f, and Pnj;m,
16 j6 g, together with an extra vertex x joined to everything else. (Recall that Ps;t =
Ks + MKt .) Thus P(m1; : : : ; mf; n1; : : : ; ng) has n+ 1 + fn+ gm vertices, and has size

n+ fn+ gm+ mn+ (n− m)m+
∑

16i6f

(
mi
2

)
+

∑
16j6g

(
nj
2

)
:

We claim that G=P(m1; : : : ; mf; n1; : : : ; ng) is in the class B(n; m). For let V (G)
be partitioned into two parts, A and B. If x∈A, we may assume that at least mi
vertices from each Pmi;n and at least nj vertices from each Pnj;m lie in A, for otherwise

(G[B])¿m. But then dA(x)= |A| − 1¿

∑
16i6f mi +

∑
16j6g nj = n. On the other

hand, if x∈B but 
(G[A])¡n, then from each Pmi;n at least mi vertices are in B, so
dB(x)¿

∑
16i6f mi=m, as required.
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Therefore b(n; m)6 e(P(m1; : : : ; mf; n1; : : : ; ng)). To minimize this quantity for given
n and m, we let the mi’s (and the nj’s) be nearly equal while f and g are around
m(2n)−1=2 and (n − m)(2m)−1=2; respectively. This, combined with the lower bound
(3), yields the equation claimed in the introduction, namely the following.

Theorem 4. For all n¿m¿ 1; b(n; m)= 2nm− m2 + O(
√
m)n holds.

3.2. Fixed values of m

In the extreme case when m is ;xed and n tends to in;nity, consider P(m; n1; : : : ; ng)
with g = �x�, where x = n(2m)−1=2. We have

gm+
∑

16j6g

(
nj
2

)
¡ (x + 1)m+ g

((n− m)=x + 1)n=g
2

6 n(
√
2m+ 1=2);

so we obtain the following bounds.

Theorem 5. For each 6xed m and for large n; we have

(2m+ 1)n− m26 b(n; m)6 (2m+
√
2m+ 5=2)n− m2=2:

That is, for each ;xed m¿ 1, the numbers b(n; m) lie between two functions linear
in n with slopes 2m+ 1 and 2m+

√
2m+ 5=2.

The natural question to ask now is whether limn→∞ b(n; m)=n exists and, if so, what
is its value. For the cases m=1 and 2 we can answer this question. We prove that
b(n; 1)=4n − 2 for n¿ 7 and that b(n; 2)=6n + O(1). As the reader will see, the
proofs are rather lengthy. In the next case, m = 3, the best upper bounds that we could
;nd is b(n; 3)6 9n + O(1), which is obtained by considering the following example.
Take the union of �n=3� disjoint copies of P3;3. Choose any n vertices within this
union and connect them to an external copy of K3. Finally, add a vertex x connected
to everything else. It is not hard to check that this graph has the B(n; 3)-property.
However, our methods seem to give only 8n+O(1) as a lower bound. This indicates
that making progress for other values of m might be a hard task.
We begin with the case m=1. Write n=2k + l + 1. Form the graph G from the

disjoint union of k triangles and l disjoint edges by adding two extra vertices x and y; x
is connected to every other vertex (including y) while y is connected to some n vertices
besides x, the choice being immaterial. Clearly, e(G)= 3k+3k+l+2l+n+1=4n−2.
The graph G is in the class B(n; 1). For suppose that B is an independent set in G

and that A=V (G)− B. If one of x or y belongs to B, then A contains the other plus
their n common neighbours and so 
(G[A])¿ n. If {x; y} ⊂ A, then at least 2 vertices
from each of the k triangles and at least 1 vertex from each of the l edges must lie
in A and dA(x)¿ 1 + 2k + l= n, as required.

We shall now show that the graphs just described are extremal for b(n; 1). In fact,
we believe that an inspection of the proof would reveal all extremal graphs to be of
this kind.
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Theorem 6. For all n¿ 7; b(n; 1)=4n− 2.

Proof. We have already seen that b(n; 1)6 4n−2. So we shall assume that G is a graph
in the class B(n; 1) with at most 4n− 3 edges, and we shall derive a contradiction. At
various stages we shall consider sets B ⊂ V (G); then A will denote the set V (G)− B.
Likewise if we de;ne a subset A ⊂ V (G) then B is taken to mean V (G)−A. Of course,
if B is independent then it must be that 
(G[A])¿ n, and in particular |A|¿ n + 1
must hold.
Let L be the set of vertices of G of degree at least n. Certainly L is not an inde-

pendent set, for otherwise, taking B=L, we fail to have 
(G[A])¿ n. In particular,
|L|¿ 2. Suppose that |L|¿ 4. Any four vertices from L are incident with at least 4n−6
edges. Take A to be four vertices from L plus an endvertex from each edge not incident
with these four vertices; there can be at most three such edges, so |A|6 76 n, whilst
B is independent, which is a contradiction. Therefore 26 |L|6 3.
Suppose now that |L|=3, say L= {x; y; z}. Taking A to be L together with an

endvertex of every edge not incident with L, we have that B is independent, so |A|¿ n+
1. Thus there must be at least n−2 edges not incident with L, so at most 3n−1 edges
can meet L. Now if, say, yz is not an edge, then taking B= {y; z} shows that x has at
least n neighbours outside L, in which case there would be at least 3n edges incident
with L. So L must span a triangle in G.
Now, taking B to be any vertex of L, we see that there must be a diOerent vertex

in L of degree at least n+ 1. Thus L contains at least two vertices of degree at least
n+ 1, which already implies that at least 3n− 1 edges are incident with L. Therefore
two vertices of L, say x and y, have degree exactly n+ 1, whilst z has degree n. The
neighbours of x and y must be identical, for if, say, u is a neighbour of x but not of
y then, taking B= {y; u}, we have 
(G[A])¡n. But now there must be a common
neighbour v of x and y that is not a neighbour of z, and taking B= {z; v} we again
have 
(G[A])¡n. We conclude that |L|=2.
So let L= {x; y}. Since L is not an independent set, xy is an edge. Taking B= {y}

we see that x has degree at least n+ 1, and likewise so does y.
We now apply a simple algorithm. To begin with, let A consist of x and y plus all

vertices connected neither to x nor to y. We shall increase A by moving vertices to it
from B. Note that every vertex of B has a neighbour in {x; y}.
At Stage 1, if there is a vertex a∈B with dB(a)¿ 3, move a to A. Repeat as long as

possible. At Stage 2, if a∈B has dB(a)= 2, move a to A. Repeat as long as possible.
Any edges remaining in E(G[B]) are now isolated. At Stage 3, if ab∈E(G[B]) is such
that each neighbour of a in {x; y} is also a neighbour of b, move a to A. Repeat as
long as possible.
Suppose that dA(x)¿ n when this algorithm terminates. Then at least n−1 neighbours

of x were moved to A, and for each such neighbour a we can count 3 edges of G
(namely, ax plus two edges incident to a in Stages 1 and 2, and ax; ab and bx in
Stage 3). These 3(n− 1) edges, together with n+ 1 edges incident with y, show that
e(G)¿ 4n− 2, a contradiction. Therefore 
(G[A])¡n.
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Write si; j for the number of vertices a moved to A during Stage i that were incident
with j vertices in {x; y}; j=1; 2; i=1; 2; 3. Also, let t= e(G[B]); thus t ¿ 0. Note
that each of the t edges in E(G[B]) induces a 4-cycle with {x; y}. One by one, for
each edge ab∈E(G[B]) with ax; by∈E(G), we could now move an endvertex to A as
follows: move a to A until dA(x)= n− 1, and then for the remaining edges move b to
A. Since B is now independent, y must now have at least n neighbours in A. So, after
the end of the original algorithm, before these t vertices were moved, it must have
been that

2n− 16 t + dA(x) + dA(y)= t + 2 +
3∑
i=1

(si;1 + 2si;2): (4)

There are some other edges that we have not yet taken into account. After Stage 2,
E(G[B]) consisted of a set I of s3;1 + s3;2 + t isolated edges. During Stage 2, G[B]
had maximum degree two, and we moved out s2;1 + s2;2 vertices of degree two. So
there must be r=max{0; s2;1 + s2;2 − s3;1 − s3;2 − t} other vertices in B not moved in
Stages 2 or 3 nor incident with an edge of I . Each of these vertices has a neighbour
in {x; y}. Remembering these r latter edges, we clearly have the lower bound

e(G)¿ 1 + r + 4s1;1 + 5s1;2 + 3s2;1 + 4s2;2 + 3s3;1 + 5s3;2 + 3t: (5)

Since e(G)6 4n − 3, subtracting twice inequality (5) from inequality (4), and using
the de;nition of r, we obtain

2¿ r + 2s1;1 + s1;2 + s2;1 + s3;1 + s3;2 + t¿ 2s1;1 + s1;2 + 2s2;1 + s2;2:

Adding together these two sums, each being at most 2, then doubling the result and
using (4), we ;nd 2n− 36 8, which contradicts n¿ 7.

We now turn to the case m=2. Consider ;rst a graph consisting of �n=2�−1 disjoint
4-cycles and one triangle, say on X = {x1; x2; x3}. Form a graph G from this graph by
adding some further edges: join x1 to every other vertex and join each of x2 and x3 to
some set C of n vertices chosen from the 4-cycles, the exact choice being immaterial.

The graph G is in the class B(n; 2). To see this, take a partition of V (G) into parts
A and B with 
(G[B])6 1. If X ∩ B �= ∅, then |(C ∪ X ) ∩ B|6 2, so some vertex in
X ∩ A �= ∅ has at least |C|= n neighbours in A. If X ⊂ A, then dA(x1)= |A| − 1¿ n,
because A must contain at least 2 vertices from each 4-cycle. Hence, G ∈B(n; 2) and
b(n; 2)6 e(G). The graph G has 6n − 5 or 6n − 1 edges according as n¿ 4 is even
or odd.
We now show that the graphs just described are more or less extremal for b(n; 2).

Given the dependence of the examples on the parity of n, and given also the amount of
detail needed to establish the value of b(n; 1), we do not compute b(n; 2) exactly, but
give instead a very sharp estimate. Even this estimate involves quite a bit of work. This
tends to suggest that the complexity of the estimation of b(n; m) might well increase
rapidly with m.
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Theorem 7. For all n; 6n− 1106 b(n; 2)6 6n− 1 holds.

Proof. We need only to show the lower bound. Let G ∈B(n; 2). We shall adopt the
same conventions about subsets A and B as used in the previous proof, though in this
case 
(G[B])6 1 will imply 
(G[A])¿ n.

Let L be the set of vertices with degree at least n in G. If |L|¿ 4 then let A be
four vertices in L. There are at least 4n−6 edges currently incident with A. Now keep
moving to A, as long as possible, vertices in B that have degree at least two in G[B].
When we stop, 
(G[B])6 1, so |A|¿ n+ 1 and we must have moved at least n− 3
vertices. Therefore e(G)¿ 4n− 6 + 2(n− 3)=6n− 12, as required.
So we may assume that |L|6 3. But |L|¿ 3, for otherwise by taking B=L we have

both 
(G[B])6 1 and 
(G[A])¡n. So |L|=3; let L= {x; y; z}.
As usual, we now perform an algorithm starting with A=L and B=V (G) − L.

Moreover, we de;ne C ⊂ B to be the set of vertices in G[B] that are neither isolated
nor the endvertex of an isolated edge. During the algorithm, we keep a tally of the
edges we have seen; no edge is tallied twice. We take vertices in C and move them
to A, tallying the incident edges (and sometimes others).
The idea of the proof is to carefully maintain numbers d and k such that d¿

max{dA(x); dA(y); dA(z)} and such that the tally t of edges satis;es t¿ 6d− k. Even-
tually we shall have C = ∅ or, equivalently, 
(G[B])6 1, at which point we know that
d¿ n, and so e(G)¿ 6n− k. Initially just the edges within L are tallied, and we can
take d6 2 and k =10.

We begin by moving 1∅ into A where, for each subset S ⊂ L; 1S is the set of
vertices in C whose neighbours in L are precisely the elements of S. Of course, 1S
changes as C changes, though from now on 1∅ = ∅ always. We shall abbreviate 1{x}
to 1x, 1{x;y} to 1xy and so on.
Whenever possible we perform the following: if S; T ⊂ L; S ∩ T = ∅, and there are

vertices a∈1S; b∈1T with no common neighbour in C, then we identify a and b to a
single vertex. This identi;cation will not aOect the number of edges incident with any
other vertex in L ∪ C, and it is immaterial if edges already tallied become identi;ed.
The identi;cation cannot reduce 
(G[B]), nor need we increase d, and it remains true
that 
(G[B])6 1 will imply d¿ n.

Also whenever possible, move a vertex a∈C with dC(a)¿ 5 to A; at least 6 edges
incident to a are tallied, d is increased by one and k is unchanged.
Thus we now have 
(G[B])6 4. Inside C, each vertex now has at most 16 vertices

within distance two of it. By the remarks above, we may therefore assume that, if
S ∩ T = ∅ and |1S |¿ 16, then |1T |= ∅.
We now aim to achieve that some vertex in L is joined to everything in C.
This is easy if, say, |1z|¿ 16, for then 1x =1y =1xy = ∅, as desired.
We may otherwise assume that |1x|6 |1y|6 |1z|6 16. Then move 1x ∪1y ∪1z to

A and tally the incident edges. We increase d by |1z|, whilst tallying at least 3|1z|=2
edges, and so we increase k by 72 to 82. It is now the case that 1x =1y =1z = ∅.
Let D= {b∈B: dB(b)¿ 3}. If a∈1xyz ∩ D, move a to A and increase the tally
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by 6, raising d by one and leaving k unchanged. We may repeat this until 1xyz∩D= ∅.
Suppose now a∈D, say a∈1xy. If 1xz has more than 4 vertices of degree at least 2
we may choose one, b, not adjacent to a. If also 1yz has more than 8 elements, we
may choose one, c, adjacent to neither a nor b. Moving {a; b; c} to A and tallying
their incident edges, the tally increases by at least 12, whilst d increases by 2 and
k stays the same. Repeat this exercise until one of 1xy; 1xz and 1yz has at most 8
elements, or two of 1xy; 1xz and 1yz have at most 4 vertices of degree at least 2,
or D= ∅.
If one of 1xy; 1xz and 1yz, say 1xy, has at most 8 elements, move 1xy to A. There

are at least 5|1xy|=2 incident edges that we can tally, so we increase d by |1xy| whilst
increasing k by 28 to 110. Since 1x =1y =1xy = ∅, everything in C is joined to z, as
desired.
If two of 1xy; 1xz and 1yz, say, 1xy and 1xz, each have at most 4 vertices of degree

at least 2, then move these j6 8 vertices to A, tally at least 5j=2 incident edges,
increase d by j and increase k by 28 to 110. Suppose now that b∈1xy ∪ 1xz. Then
dB(b)= 1 and (by the de;nition of C) the neighbour a of b in C has dB(a)¿ 2.
Therefore a∈1yz ∪1xyz. Move a into A and tally the two edges from b to L, the two
from a to {y; z} and the edges from a to B. Note that b moves into B− C. The tally
goes up by at least 6; increase d by one and leave k the same. Observe that there are
still at most d tallied edges incident with x (though maybe more with y) and none of
these joins x to C. Repeat this operation until 1xy ∪ 1xz = ∅; both y and z are now
joined to everything in C.
So we have achieved our aim that z is joined to everything inC, unless1x =1y =1z = ∅

and D= ∅. In the latter eventuality, 
(G[C])6 2 so C comprises disjoint paths and
cycles, and every vertex of C has at least two neighbours in L. Given a path of
order p, move �p=3� of its vertices to A so that the edges remaining in B are
disjoint, tally 3p − 1 edges lying in the path or joining it to z, and increase d by
�p=3�. Likewise for a cycle of order p, move �p=3� vertices to A so that only dis-
joint edges remain, and tally 3p edges. Since 3p − 1¿ 6�p=3� and 3p¿ 6�p=3�;
k need not change. But now C = ∅, so d¿ n, and we have shown
e(G)¿ t¿ 6d− k¿ 6n− 110.

Finally, we may assume that z is joined to everything in C, that x is not incident with
more than d tallied edges, and that either the same is true for y or else y too is joined
to everything in C. We write 6=0 in the ;rst case and 6=1 in the second. There are at
least n−d untallied edges incident with x, and also with y if 6=0; add them to the tally,
which subsequently is at least (2−6)n+(4+6)d−110. Now, if there is a vertex a∈C
with dB(a)¿ 3, move it to A and add to the tally the edge az, the edge ay if 6=1, and
the edges between a and B. Increase d by one, so the tally remains at least (2− 6)n+
(4+6)d−110. Repeat this until C once again consists of disjoint cycles and paths. Move
vertices of C to A, as in the previous paragraph, tallying the edges in C, those joining
C to z and, if 6=1, those joining C to y. Since 2p−1¿ 4�p=3� and 2p¿ 4�p=3�, the
tally remains at least (2−6)n+(4+6)d−110. But now d¿ n, so e(G)¿ 6n−110 as
desired.
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4. The one-sided function q(n; j; l)

In this section we consider q(n; j; l), the minimum size of a graph in Q(n; j; l), where
Q(n; j; l) is the class of graphs G having n+j+l vertices, such that for every (n+j)-set
A ⊂ V (G) we have 
(G[A])¿ n.
We ;rst give some fairly general lower and upper bounds on q(n; j; l) that, in par-

ticular, disprove the conjecture of Erdős, Reid, Schelp and Staton [3]. Both bounds
are established by probabilistic methods. After that, we give some constructions, which
give upper bounds for q(n; j; l) over a somewhat diOerent range. Finally, we extend the
known range of values over which the conjecture of Erdős, Reid, Schelp and Staton
does actually hold.

4.1. General bounds

In this section, the following ChernoO bound on the tail of the binomial distribution
will be used; a proof can be found in [5, Lemma 2].

Proposition 8. Let X be a random variable binomially distributed with parameters
(n; p). Then; for h¿ 0;

Pr{X 6 (p− h)n}6 e−nh
2=2p and Pr{X ¿ (p+ h)n}6 e−nh

2=2(p+h):
We start with a lower bound for q(n; j; l). As in Section 3, dA(v) will denote the

number of neighbours of the vertex v in the set A.

Theorem 9. Let 16 j= j(n); let 06 l= l(n) and let n → ∞. If l=o(n(n + j)=
log(n+ j)); then

q(n; j; l)¿ (1 + o(1))(l+ 1)n
(
1 +

l
2n+ 2j

)
:

Proof. Let G ∈Q(n; j; l) have size q(n; j; l). We apply a greedy algorithm to G.
Let A= ∅ and B=V (G). As long as 
(G[B])¿ n; move to A a vertex of G[B] of maxi-
mum degree. We perform the step at least l + 1 times, because 
(B)¡n when we
terminate. Hence, for any n; j; l; we have q(n; j; l)¿ (l+1)n; which proves the lemma
if l=o(n+ j).
So, suppose l �=o(n+j). Choose some small constant 8¿ 0. We shall show that, if n

is large, then 
(G[B])¿ (1−8)n(n+j+l−|A|)=(n+j) as long as 8l6 |A|6 (1−8)l.
Therefore G has at least

(1− 8) n
n+ j

(1−8)l∑
i=8l

(n+ j + l− i)¿ (1− 28)2nl
(
1 +

l
2n+ 2j

)

edges. The proof is completed by making 8 small.
To prove the assertion, let |A|=(1−x)l where 86 x6 1−8; let b= |B|= n+j+xl;

and let �=
√
x=l. Choose a random set Y ⊂ B by placing each vertex of B into Y

independently and with probability p=(x−�)l=b. The expected value of the binomially
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distributed variable |Y | is (x− �)l so, by Proposition 8, |Y |¡ (x− �=2)l¡ l−|A| holds
with probability at least 1− exp{−�2l=8x}=1− e−1=8.

Let Z =B\Y; let y∈B and let d=dB(y). We may assume that d6 n(n+j+l)=(n+j);
for otherwise the assertion is proved. Because l=o(n(n+j)=log(n+j)); this means that
log|G|=o(n2=d). Now dZ(y) is distributed binomially with parameters (d; q) where
q=1 − p. Thus Proposition 8 implies Pr{dZ(y)¿ qd + 8n=2}6 exp{−82n2=8d}=
o(1=|G|).
Therefore there must exist some Y such that |Y | + |A|¡l and dZ(y)¡

qdB(y) + 8n=2 for each y∈B. Thus 
(G[Z])¿ n and 
(G[Z])¡q
(G[B]) + 8n=2.
So, in view of l=o((n+ j)2); we obtain


(G[B])¿
n− 8n=2
q

=
bn(1− 8=2)
n+ j +

√
xl
¿ (1− 8) bn

n+ j
;

as claimed.

Now let us prove an upper bound for q(n; j; l).

Theorem 10. Let 16 j = j(n); let 06 l = l(n) and let n→∞. If l = o(n(n + j)),
then

q(n; j; l)6 (1 + o(1))(l+ 1)n
(
1 +

l
2n+ 2j

)
:

Proof. The consideration of Pl+1; n together with j − 1 extra isolated vertices proves
the claim if l = o(n) or if j = o(n), so we may assume throughout that l = $(n) and
j = $(n).
Suppose ;rst that l = �(j). Fix 0 ¡ � ¡ 1 so that m = ��l� ¡ (n + j)=2 and

p = (1 + �)n=(n + j) ¡ 1. Let G = Pl+m;n+j−m and let V (G) = A ∪ B, where
|A| = l + m; |B| = n + j − m and G[A] is complete. Let H be a random spanning
subgraph of G formed by choosing each edge independently with probability p. By
Proposition 8, Pr{e(H) ≥ (1+�)pe(G)}6 exp{−e(G)�2p=2(1+�)} = o(1). So almost
every subgraph H satis;es e(H)6 (1 + �)pe(G). Since � can be arbitrarily small, we
need only show that H is almost certainly in Q(n; j; l).
Fix an l-set L ⊂ A ∪ B. Let x = �� min{l=2; (n + j)=4}�. Because |A\L|¿ �l ¿ x,

we can choose X ⊂ A\L with |X | = x. Let us estimate from the above the probability
that each vertex y ∈ X has fewer than n neighbours in Z = (A ∪ B)\(L ∪ X ). Now
Pr{dZ(y)¡ n}6Pr{dZ(y)¡ p|Z |−�n=2}. Since dZ(y) is binomially distributed with
parameters (|Z | = n+j−x; p), Proposition 8 tells us that the probability of interest is at
most exp{−�2n2=8p|Z |}6 exp{−�2n=16}. Now the random variables dZ(y); y ∈ X , are
clearly independent, so the probability that 
(G − L)¡ n is at most exp{−�2nx=16}.
As there are at most 2n+j+l diOerent choices of L, we conclude that almost surely
H ∈ Q(n; j; l), as required.
Suppose now that l= o(j). Let C be a large constant, take the construction giving

an upper bound for q(n; Cl; l) and add j − Cl isolated vertices. Letting C become
arbitrarily large proves the lemma in this case also.
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It remains to consider the case l �= O(j) but l = o(n(n + j)). Let � = 4(l=(nj))1=3

and p = (1 + �)n=(n + j). Note that � = o(1); in particular we can assume p ¡ 1.
Let H be a subgraph of G = Kn+j+l, choosing edges with probability p. Once again,
Proposition 8 shows that for any ;xed c ¿ 0 we have e(H)6 (1 + c)pe(G) almost
surely. Thus it is enough to show that almost every H belongs to Q(n; j; l).

Fix an l-set L ⊂ V (G). Take some X ⊂ V (G)\L of size x = ��j=3�. Let Z =
V (G)\(X ∪ L). Let y ∈ X . Then Pr{dZ(y) ¡ n}6Pr{dZ(y) ¡ p|Z | − �n=2}, which
by Proposition 8 is at most exp{−�2n2=8p|Z |}6 exp{−�2n=16}. Hence the probability
that each y ∈ X sends fewer than n edges to Z is at most exp{−�2xn=16}. As there
are at most 2n+j+l choices of L, we conclude that almost surely H ∈ Q(n; j; l). .

Now, putting together the bounds of Theorems 9 and 10, we obtain in particular
Eq. (2) claimed in the introduction.
Here is a straightforward application of Theorem 9.

Corollary 11. Fix 0 ¡ c6 1. The minimum size of a graph G in which each set
of size at least c|G| spans a subgraph of maximum degree at least n is (1 + o(1))
[(1− c2)=2c2]n2 as n→∞.

Proof. The graph Pm;n with m = �(1 − c)n=c� + 1 establishes the upper bound. On
the other hand, any such graph G belongs to Q(n; �cv� − n; v − �cv�), where v = |G|.
By Theorem 9, e(G)¿ (1 + o(1))(1 − c2)nv=2c. Now the result follows, since
v ¿ n=c.

An important instance on its own is the case l= n because, as pointed out in the
Introduction, any G ∈B(n; n) belongs to Q(n; |G| − 2n; n). On the other hand, if we
add to G ∈Q(n; j; n − 1) a new vertex x connected to everything else, we obtain a
B(n; n)-graph. Hence, by (2) we obtain the following result.

Theorem 12. The minimum size of G ∈B(n; n) of given order v¿ 2n is

(1 + o(1)) n2
(
1 +

n
2v− 2n

)
as n→ ∞:

4.2. Explicit constructions

The upper bound in Theorem 10 was established by proving probabilistically the
existence of a suitable graph. In the case when j=n tends to a ;xed integer from above
there is a simple explicit construction achieving the same bound. For suppose that
0¡j − n(r − 1)=o(n); where r is a natural number.
Let l + 1= l1 + · · · + lr , be a partition into almost equal summands. Let G be

the disjoint union of Pli;n; 16 i6 r; plus isolated vertices to ensure that |G|= n +
j + l. (Note that j=n¿ r − 1 implies that (l + 1) + rn6 n + j + l.) Now, if we
remove at most l vertices, then there is some i such that we remove fewer than li
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vertices from the ith component, and the remainer of this component clearly contains
a vertex of degree at least n. A trivial computation shows that G has the claimed
size.
This example gives no information in the range of interest to Erdős, Reid, Schelp

and Staton namely n¿ j¿ 1; but here is another construction that does, provided
n¡ (j − 1)l.
Let G(n; l) be the graph de;ned as follows. Let n= lq + r with 06 r ¡ l. Take a

complete graph on vertex set A= {a1; : : : ; al+1} and remove the edges of the Hamil-
tonian path a1a2 : : : al+1. Take a disjoint set R of r vertices and join everything in
A to everything in R. Take a new vertex y and join it to {a2; : : : ; al}. Finally, take
disjoint sets Q1; : : : ; Ql+1; each of size q; and for 16 i6 l + 1; join vi to everything
in Qh for h �= i. Note that G(n; l) has n+ l+ 2 + q vertices, and that every vertex in
A has degree exactly n + l − 1. The size of G is smaller by one than the expression
in (1).

Theorem 13. The equation in (1) fails to hold if n¡ (j − 1)l.

Proof. If n¡ (j− 1)l then j¿ q+2. So the theorem will be proved if we show that
G(n; l); together with j−q−2 isolated vertices, is in Q(n; j; l). Suppose to the contrary
that we can remove some set L of size l so that the remaining graph has maximum
degree less than n. Since |A|¿l we have A\L �= ∅. Each vertex x∈A\L has degree
less than n in G(n; l) − L; so it must be connected to every vertex in L. Therefore
A∩L= ∅ ; for otherwise, we could choose x∈A\L and y∈A∩L such that x and y are
consecutive vertices on the path a1 : : : al+1; in which case xy would not be an edge of
G(n; l). But the set of vertices connected (in G(n; l)) to everything in A is precisely
R. Therefore L ⊂ R; which implies |L|6 r ¡ l; a contradiction.

4.3. The conjecture for small j and l

We have shown that the equation in (1) fails to hold for n¡ (j−1)l; though it does
hold for n¿max(jl; ( l+2

2 )). In fact we can show it to hold in another range, which
gives better information if j is smaller than about l=2. The proof is a strengthened
version of that of Erdős, Reid, Schelp and Staton [3].

Theorem 14. The equation in (1) holds provided

n¿
(
j +

1
2

)
l+

2j + l
4j − 2

:

Proof. The case j = 1 of (1) was proved in [3], so assume that j¿ 2. We prove the
theorem by induction on l; it is true for l=0; since clearly q(n; j; 0)= n. Let l¿ 1
and let G ∈Q(n; j; l). If 
(G)¿ n+ l then the theorem follows by induction, because
removing a vertex from G we obtain a graph in Q(n; j; l−1). So we complete the proof
by deriving a contradiction from the two assumptions that e(G)¡ (l+1)n+( l+1

2 ) and

(G)¡n+ l.
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Let H = {x∈V (G): d(x)¿ n} and h= |H |. Let us show that h is not large by ap-
plying the following algorithm to G.
We begin with A=C = ∅ and B=V (G). Now, choose some vertex x∈B having at

least n neighbours in B (if there is one), move it to A; and then perform the n-check:
that is, move to C all y∈B∩H with dB∪C(y)¡n. In fact, for every such y we have
dB∪C(y)= n− 1. Repeat this procedure as long as possible or until |A|= l+ 1.
Fix the sets A; B; C at the moment the algorithm halts, and let their sizes be a; b; c.

If a¡l+1; there must be a vertex y1 in B∪C that has at least n neighbours in B∪C.
Indeed, we may proceed to ;nd a set Y = {y1; : : : ; yl+1−a} ⊂ B ∪ C such that each yi
has at least n neighbours in (B ∪ C)\{y1; : : : ; yi−1}. As each y∈C has fewer than n
neighbours in B ∪ C; we conclude that Y ⊂ B. Let R=(B \ Y ) ∩ H and s= |C ∪ R|.
Each x∈R has at least n neighbours in C ∪ B for otherwise it would belong to C.
Note that H =A ∪ Y ∪ R ∪ C; so h= l+ 1 + s.
Counting the number of edges encountered in our investigation we obtain that

e(G)¿ an+ n|Y |+ s(n− 1)−
(
s
2

)
− s|Y |

and also, counting slightly diOerently the edges incident with R;

e(G)¿ an+ n|Y |+ s(n− 1)
2

− s|Y |
2
;

which is better if s is large.
Since a+ |Y | = l+ 1 and |Y |6 l, these inequalities imply(

l+ 1
2

)
¿ s

(
n− l− s+ 1

2

)
and

(
l+ 1
2

)
¿ s

(
n− 1
2

− l
2

)
: (6)

The ;rst inequality in (6), which is quadratic in s, means that s cannot lie between
n− l− (r + 1)=2 and n− l+ (r − 1)=2, where r = (4n2 − 4n(2l+ 1) + 1)1=2. Now the
assumption of the theorem implies that l6 3n=8 and n¿ 4, which in turn imply that
r¿ n− 3. Suppose that s¿ n− l+ (r − 1)=2. Then s¿ n− l+ (n− 4)=2¿ 9n=8− 2.
From this, and l6 3n=8, and the second inequality in (6), we obtain 9n2 + 32¡ 44n,
which cannot be satis;ed for n¿ 4.
Consequently s6 n− l− (r + 1)=2, so h = l+ 1 + s6 n− (r − 1)=2. This implies

jh6 n + j: to verify this, it is enough to check that rj¿ 2(j − 1)n − j which, by
squaring, is equivalent to n(2j − 1)¿ 2j2l + j, the assumption of the theorem. Now

(G)¡ n+ l, so for every x ∈ H we may choose a set Dx of j non-neighbours of x.
Let D = ∪x∈HDx. Then |D|6 jh6 n+j. Add to D any further n+j−jh vertices. Since
G ∈ Q(n; j; l), some x ∈ D∩H has at least n neighbours in D. But this contradicts the
fact that D has at least j non-neighbours of x, and the proof is complete. .
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