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Abstract

Let D(G) be the minimum quantifier depth of a first order sentence Φ that defines a graph G up to
isomorphism. Let D0(G) be the version of D(G) where we do not allow quantifier alternations in Φ.
Define q0(n) to be the minimum of D0(G) over all graphs G of order n.

We prove that for all n we have

log∗ n − log∗ log∗ n − 2 ≤ q0(n) ≤ log∗ n + 22,

where log∗ n is equal to the minimum number of iterations of the binary logarithm needed to bring n to 1
or below. The upper bound is obtained by constructing special graphs with modular decomposition of very
small depth.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in defining a given graph G in first order logic, being as succinct as possible.
In order to state this problem formally, we have to specify what we mean by the terms defining,
succinct, etc.

The vocabulary consists of the following symbols:

• variables (x , y, y1, etc);
• the relations = (equality) and ∼ (graph adjacency);
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• the quantifiers ∀ (universality) and ∃ (existence);
• the usual Boolean connectives (∨, ∧, and ¬);
• parentheses (to indicate or change the precedence of operations).

These can be combined into first order formulas accordingly to the standard rules. The term
first order means that the variables represent vertices so the quantifiers apply to vertices only.
In this paper, a sentence is a first order formula without free variables. On the intuitive level it
is perfectly clear what we mean when we say that a sentence Φ is true on a graph G. This is
denoted by G |H Φ; we write G 2 Φ for its negation (Φ is false on G). We do not formalize
these notions. A more detailed discussion can be found in e.g. [15, Section 1].

Of course, if G |H Φ and H ∼= G (i.e. H is isomorphic to G), then H |H Φ. On the other
hand, for any finite graph G it is possible to find a sentence Φ which defines G, that is, G |H Φ
while H 2 Φ for any H � G. Indeed, let V (G) = {v1, . . . , vn} be the vertex set of G and E(G)

be its edge set. The required sentence could read:

Φ = ∃x1 · · · ∃xn (Distinct(x1, . . . , xn) ∧ Adj(x1, . . . , xn))

∧ ∀x1 · · · ∀xn+1 ¬ Distinct(x1, . . . , xn+1), (1)

where, for the notational convenience, we use the following shorthands:

Distinct(x1, . . . , xk) =

∧
1≤i< j≤k

¬ (xi = x j )

Adj(x1, . . . , xn) =

∧
{vi ,v j }∈E(G)

xi ∼ x j ∧

∧
{vi ,v j }6∈E(G)

¬ (xi ∼ x j ).

In other words, we first specify that there are n distinct vertices, list the adjacencies and non-
adjacencies between them, and then state that the total number of vertices is at most n.

A defining sentence Φ is not unique, so we are interested in finding one which is as succinct
as possible. All natural succinctness measures of Φ are of interest:

• the length L(Φ) which is the total number of symbols in Φ (each variable symbol contributes
1);

• the quantifier depth D(Φ) which is the maximum number of nested quantifiers in Φ;
• the width W (Φ) which is the number of variables used in Φ (different occurrences of the same

variable are not counted).

For example, for the sentence in (1) we have L(Φ) = Θ(n2) and D(Φ) = W (Φ) = n +1. All
three characteristics inherently arise in the analysis of the computational problem of checking
if a Φ is true on a given graph, see e.g. Grädel [8]. They give us a small hierarchy of
descriptive complexity measures for graphs: L(G) (resp. D(G), W (G)) is the minimum of L(Φ)

(resp. D(Φ), W (Φ)) over all sentences Φ defining G. These graph invariants will be referred to
as the logical length, depth, and width of G. We have

W (G) ≤ D(G) ≤ L(G).

The former number is of relevance for graph isomorphism testing, see Cai et al. [4]. The
parameters W (G) and D(G) admit a purely combinatorial characterization in terms of the
Ehrenfeucht game, see [4,15].

Here, we address the logical depth of graphs which was recently studied in Bohman et al. [1,
9,11–13,16,18]. We focus on the following general question: How do restrictions on logic affect
the descriptive complexity of a graph? Call a sentence Φ a-alternating if it contains negations
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only in front of relation symbols and every sequence of nested quantifiers in Φ has at most a
quantifier alternations, that is, the occurrences of ∀∃ and ∃∀. Let Da(G) denote the variant of
D(G) for a-alternating defining sentences. Clearly, for any integer a ≥ 0 we have

D(G) ≤ Da+1(G) ≤ Da(G).

For example, the sentence in (1) has no alternations. Thus it shows that for any graph G we
have

D0(G) ≤ v(G) + 1, (2)

where v(G) denotes the number of vertices in G. This bound is in general best possible: for
example, D0(Kn) = D(Kn) = n + 1. In Kim et al. [9] we proved that D(G) = log2 n −

Θ(log2 log2 n) and D0(G) ≤ (2 + o(1)) log2 n for almost all graphs G of order n.
In the above results, the functions D(G) and D0(G) are the same or differ by at most

a constant factor. However, they can be very far apart in general. In [11, Corollary 5.7] we
demonstrated a superrecursive gap between D(G) and D0(G): namely, we proved that for any
total recursive function f there is a graph G with D0(G) > f (D(G)). This is not too surprising,
since the logic of 0-alternating sentences is very restrictive and provably weaker than the
unbounded first order logic. Whereas the problem of deciding if a first order sentence is satisfiable
by some finite graph is unsolvable, it becomes solvable if restricted to 0-alternating sentences.
The former of these facts is the content of Trakhtenbrot’s theorem [17], while the latter dates
from Ramsey’s logical work [14] founding the combinatorial Ramsey theory (see Nešetřil [10,
pp. 1336–1337] for historical comments on the relations between Ramsey theory and logic).

Given Ramsey’s decidability result, it is reasonable to concentrate on the first order
definability with no quantifier alternation. As our main result here (Theorem 1), we determine
the asymptotic behavior of the succinctness function q0(n), where for an integer a ≥ 0 we define

qa(n) = min {Da(G) : v(G) = n} .

Let log-star log∗ n be equal to the minimum number of iterations of the binary logarithm needed
to bring n to 1 or below.

Theorem 1. For all n we have

log∗ n − log∗ log∗ n − 2 ≤ q0(n) ≤ log∗ n + 22. (3)

The estimates (3) are in sharp contrast to the result in [11, Corollary 9.1] which shows a
superrecursive gap between

q(n) = min {D(G) : v(G) = n}

and n. Thus Theorem 1, besides being an interesting result on its own, implies that we cannot
have q0(n) ≤ f (q(n)) for some total recursive f and all n. This implies, again, a superrecursive
gap between the graph invariants D(G) and D0(G).

The upper bound in (3) improves a couple of earlier results. In [11, Theorem 7.1] a weaker
bound

q0(n) ≤ 2 log∗ n + O(1) (4)

is proved for only an infinite sequence of values of n. The best bound of this kind that was known
to hold for all n is q3(n) ≤ log∗ n + O(1). It is a direct corollary of [9, Theorem 20] saying
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that for the Erdős–Rényi evolutional random graph model G(n, p) we have D3(G(n, n−1/4)) =

log∗ n + O(1).
Note that (4) is proved in [11] by inductively constructing large asymmetric trees and

estimating D0(G) in terms of their (very small) radius. Here, our construction produces a graph
of large order that has very short modular decomposition (as defined in Brandstädt et al. [3,
Section 1.5]), starting with small complement-connected graphs. It seems feasible that many
other recursively defined constructions of graphs (see Borie et al. [2] and Brandstädt et al. [3,
Section 11] for surveys) may lead to upper bounds on q0(n) compatible with (3). However, the

proof of the upper bound in (3) required from us many delicate auxiliary lemmas, even though
we chose a construction which is, in our opinion, most suitable for our purposes. So, a general
theorem would probably be very messy and difficult to prove.

In [11, Theorem 9.3] we have shown that

log∗ n − log∗ log∗ n − 2 ≤ q(n) ≤ log∗ n + 4,

where the upper bound holds for all n while the lower bound holds, inevitably, for only infinitely
many n. Combined with Theorem 1 and the obvious inequalities

q0(n) ≥ qa(n) ≥ q(n), for any integer a ≥ 1,

this implies that for any fixed a we have qa(n) = (1 + o(1)) log∗ n for infinitely many n. We do
not even know if q1(n) = (1 + o(1)) log∗ n for all large n.

In fact, Theorem 1 holds also for digraphs, where instead of the adjacency relation ∼ we use
the relation x 7→ y to denote that the ordered pair (x, y) is an arc. For example, the digraph
version of the lower bound in (3) reads as follows.

Theorem 2. For any digraph G on n vertices we have

D0(G) ≥ log∗ n − log∗ log∗ n − 2. (5)

Let us see how these results are related. Take any graph G and a 0-alternating sentence Φ
defining it. Let the digraph G ′ be obtained from G by replacing each edge {x, y} ∈ E(G) by a
pair of arcs (x, y) and (y, x). Then the sentence

(∀x ¬ (x 7→ x)) ∧ (∀x∀y ((x 7→ y) ∧ (y 7→ x)) ∨ (¬(x 7→ y) ∧ ¬(y 7→ x))) ∧ Φ′

defines G ′, where Φ′ is obtained from Φ by replacing each occurrence of x ∼ y by x 7→ y. Thus

D0(G ′) ≤ max(2, D0(G)) = D0(G).

This shows that it is enough to prove the upper bound in Theorem 1 and the lower bound of
Theorem 2. Our proofs in fact show that for any fixed k ≥ 2 we have

log∗ n − log∗ log∗ n − O(1) ≤ q(k)
0 (n) ≤ log∗ n + O(1),

where q(k)
0 (n) is the smallest quantifier depth of a 0-alternating sentence defining an n-element

structure over a k-ary vocabulary.

2. Definitions

The abbreviation ‘iff’ means ‘if and only if.’ We denote [m, n] = {m, m + 1, . . . , n} and
[n] = [1, n]. We define the tower-function by Tower(0) = 1 and Tower(i) = 2Tower(i−1) for each
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subsequent i . Note that log∗ n ≤ i iff Tower(i) ≥ n. The notation x ∈
i X means x ∈ X for odd i

and x 6∈ X for even i . (The mnemonic rule to remember which is which is ∈
1

= ∈.)
All graphs are supposed to be finite with non-empty vertex set. We use the following graph

notation: G is the complement of G; G t H is the vertex-disjoint union of graphs G and H ;
G ⊂ H means that G is isomorphic to an induced subgraph of H (we will say that G is
embeddable into H ). For graphs (resp. sets) A and B the relation A ⊂ B does not exclude
the case of isomorphism A ∼= B (resp. equality A = B).

We call G complement-connected if both G and G are connected. An inclusion-maximal
complement-connected induced subgraph of G will be called a complement-connected
component of G or, for brevity, cocomponent of G. Cocomponents have no common vertices
and their vertex sets partition V (G).

The decomposition of G, denoted by Dec G, is the set of all connected components of G (this
is a set of graphs, not just isomorphism types). Furthermore, given i ≥ 0, we define the depth i
decomposition Deci G of G by

Dec0 G = Dec G and Deci+1 G =

⋃
F∈Deci G

Dec F .

Note that Deci G consists of connected graphs, and distinct vertices x, y of an F ∈ Deci G are
adjacent in F if and only if {x, y} ∈

i+1 E(G). Moreover,

Pi = {V (F) : F ∈ Deci G} (6)

is a partition of V (G) and Pi+1 refines Pi . The depth i environment of a vertex v ∈ V (G),
denoted by Envi (v; G), is the graph F in Deci G containing v. If the underlying graph G is clear
from the context, we will usually write Envi (v).

We define the rank of a graph G, denoted by rk G, inductively as follows:

• If G is complement-connected, then rk G = 0.
• If G is connected but not complement-connected, then rk G = rk G.
• If G is disconnected, then rk G = 1 + max {rk F : F ∈ Dec G}.

Note that for connected graphs rk G is equal to the smallest k such that Pk+1 = Pk or,
equivalently, such that Pk consists of V (F) for all cocomponents F of G.

Let G be a connected graph and let k = rk G. We call G uniform if Deck−1 G contains no
complement-connected graph, that is, every cocomponent appears in Deck G and no earlier. We
call G inclusion-free if the following two conditions are true for every 0 ≤ i ≤ k:

1. For any K ∈ Deci G, K contains no isomorphic connected components.
2. Of any two elements K , M ∈ Deci G none is properly embeddable into the other, that is,

either K ∼= M or none is an induced subgraph of the other.

Let us now describe the Ehrenfeucht game Ehrk(G, H) which will be our tool for studying
the logical depth of graphs. The board consists of two vertex-disjoint graphs G and H . There are
k rounds. The graphs G, H and the number k are known to both players, Spoiler and Duplicator
(or he and she). In each round Spoiler selects one vertex in either G or H ; then Duplicator must
choose a vertex in the other graph. Let xi ∈ V (G) and yi ∈ V (H) denote the vertices selected
by the players in the i th round, irrespectively of who selected them. Duplicator wins the game
if the componentwise correspondence between the ordered k-tuples x1, . . . , xk and y1, . . . , yk is
a partial isomorphism from G to H . Otherwise the winner is Spoiler. In the 0-alternation game
Spoiler must play all the game in the same graph he selects in the first round.
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Assume that G � H . Let D(G, H) (resp. D0(G, H)) denote the minimum of D(Φ) over all
(resp. 0-alternating) sentences Φ that are true on one of the graphs and false on the other. The
Ehrenfeucht theorem [6] (see also Fraı̈ssé [7]) relates D(G, H) and the length of the Ehrenfeucht
game on G and H . We will use the following version of the theorem: D0(G, H) is equal to the
minimum k such that Spoiler has a winning strategy in the k-round 0-alternation Ehrenfeucht
game on G and H . We will also use the fact (see [11, Proposition 3.6]) that

D0(G) = max
{

D0(G, H) : H � G
}
.

We refer the reader to [15, Section 2] which contains a detailed discussion of the Ehrenfeucht
game.

3. Proof of the upper bound in Theorem 1

3.1. Preliminaries

Lemma 1. Every complement-connected graph G of order at least 5 has a vertex v such that
G − v is still complement-connected.

Proof. Suppose that the claim is false. Take an arbitrary v ∈ V (G). This vertex does not work so
assume that, for example, G−v is disconnected. Choose a proper partition V (G)\{v} = A1∪ A2
such that no edge of G connects A1 to A2. Assume that |A1| ≥ |A2|. Since G is connected, the
graph Gi = G[Ai ∪ {v}] is connected, i = 1, 2. This implies that Ui 6= ∅ for i = 1, 2, where

Ui = {u ∈ Ai | Gi − u is connected}.

Let u ∈ U1. The graph G − u is connected because any vertex of A1 \ {u} can be connected (in
G1 −u) to v and then connected (in G2) to any vertex of A2. Since G contains all edges between
A1 and A2 (and |A1| ≥ 2), the graph G −u −v is connected. Thus the only way that u can fail to
satisfy the conclusion of the lemma is that v is adjacent (in G) to every other vertex except u (the
vertex v cannot be adjacent to u too because G is complement-connected). The latter condition
determines u uniquely and therefore U1 = {u}. If |A2| ≥ 2, then the same argument shows that
U2 should consist of the unique neighbor u of v in G, which is impossible. Thus, |A2| = 1 and
hence |A1| ≥ 3. Let w ∈ A1 be some neighbor of u and let z ∈ A1 \ {u, w}. Then G1 − z is
still connected: u is connected to v via w while any other vertex is directly adjacent to v. Hence,
z ∈ U1. This contradiction finishes the proof. �

Now we come to two strategic lemmas. The arguments of each lemma are listed in square
brackets. This is convenient when we refer back to these results and, hopefully, makes the
dependences between the lemmas easier to verify.

Lemma 2. [x, x ′, y, y′, G, H, l] Consider the Ehrenfeucht game on graphs G and H. Let
x, x ′

∈ V (G), y, y′
∈ V (H) and assume that the pairs x, y and x ′, y′ were selected by the

players in the same rounds. Furthermore, assume that all the following properties hold.

1. Envl(x) 6= Envl(x ′).
2. Envl(y) = Envl(y′).
3. V (Envl+1(y)) 6= V (Envl(y)).

Then Spoiler can win in at most l + 1 extra rounds, playing all the time in H.
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Proof. We proceed by induction on l. The induction step takes care of the base case l = 0 too.
Observe that, for every 0 ≤ i ≤ l, we have V (Envi+1(y)) 6= V (Envi (y)) so we do not have to
worry about Assumption 3 when using induction.

Let m ∈ [0, l] be the minimum number such that x ′
6∈ Envm(x). If m < l, Spoiler wins in

m + 1 ≤ l moves by induction. So suppose that m = l. Assume that y and y′ are not adjacent
in Envl(y) for otherwise Duplicator has already lost. By Assumption 3 the graph Envl(y) is
connected but not complement-connected, so its diameter is at most 2. Spoiler selects any y′′

adjacent to both y and y′ in Envl(y). If Duplicator does not lose in this round, it means that
her reply x ′′ lies outside Envl−1(x) (and that l ≥ 1). We have Envl−1(x) 6= Envl−1(x ′′) and
Envl−1(y) = Envl−1(y′′). By the induction hypothesis applied to [x, x ′′, y, y′′, G, H, l − 1],
Spoiler can win in at most l extra moves. �

Lemma 3 ([x1, y1, G, H, l]). Suppose that x1 ∈ V (G) and y1 ∈ V (H) were selected in some
round of the Ehrenfeucht game on (G, H) so that there is an l ≥ 0 satisfying the following
Assumptions 1–3.

1. G1 = Envl(x1) is not isomorphic to H1 = Envl(y1).
2. H1 is a uniform inclusion-free graph such that every cocomponent of H1 has at most c

vertices.
3. For any i ≥ 0, no member A ∈ Deci H1 is embeddable as a proper subgraph into some

B ∈ Deci G1.

Then Spoiler can win the game in at most k + c − 1 extra moves, playing all the time inside
H, where k = rk H1 + l.

Proof. Suppose that it is Spoiler’s turn to move and, in addition to x1 and y1, we have the
following configuration. Spoiler has already selected vertices y2, . . . , ys ∈ V (H1), Duplicator
has selected x2, . . . , xs ∈ V (G1), and all of the following Properties 1–4 hold, where, for j ∈ [s],
we let H j = Env j+l−1(y j ; H) and G j = Env j+l−1(x j ; G).

1. For i ∈ [2, s] we have yi ∈ V (Hi−1).
2. For i ∈ [2, s] we have xi ∈ V (Gi−1).
3. For every i ∈ [s] we have Hi � Gi .
4. For every i ∈ [2, s] the vertices yi and yi−1 belong to different components of Hi−1. (Note

that yi ∈ V (Hi−1) by Property 1.)

Let us make a few remarks. Property 1 implies that

V (H1) ⊃ · · · ⊃ V (Hs),

and for 1 ≤ i ≤ j ≤ s we have y j ∈ V (Hi ). Likewise by Property 2,

V (G1) ⊃ · · · ⊃ V (Gs), (7)

and for 1 ≤ i ≤ j ≤ s we have x j ∈ V (Gi ). Note also that H j = Env j−1(y j ; H1) and
G j = Env j−1(x j ; G1). Property 1 and 4 imply that y j 6∈ V (Hi ) for any 1 ≤ j < i ≤ s. We
stated Properties 1–4 this way in order to reduce the number of checks needed to verify them.
Also, note that we do not require that the vertices xi satisfy the analog of Property 4.

The above properties determine all H -adjacencies between the vertices y1, . . . , ys . Indeed,
take any 1 ≤ i < j ≤ s. By Properties 1 and 4, yi and y j belong to different components of Hi
so we have {yi , y j } ∈ E(Hi ). This means that {yi , y j } ∈

i+l E(H). In other words, the vertices yi
and y j are adjacent in H if and only if i + l is odd.
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If s = 1, then Properties 1, 2, and 4 are vacuously true, while Property 3 is precisely
Assumption 1 of the lemma.

We are going to show that Spoiler can either force the same situation after the next round (of
course, with s increased by one) or win by making some extra moves.
Case 1. Suppose that s ≤ k − l = rk H1.

As Hs � Gs , Assumption 3 (for i = s − 1, A = Hs , and B = Gs) implies that Hs 6⊂ Gs .
By Assumption 2, the connected graph Hs ∈ Decs−1 H1 is inclusion-free; in particular, its
complement does not contain two isomorphic components. Hence, there is a component Hs+1 of
Hs which is not isomorphic to any component of Gs .

Suppose first that ys 6∈ V (Hs+1). Spoiler chooses an arbitrary ys+1 ∈ V (Hs+1). Properties
1 and 4 hold automatically. Let xs+1 be Duplicator’s reply. Assume that xs+1 has the same
adjacencies to the previously selected vertices as ys+1 for otherwise Spoiler has already won
having made s ≤ k − l moves. (Note that we do not count y1 as a move, here or later in the
proof.) Suppose that xs+1 6∈ V (Gs), for otherwise Properties 2 and 3 hold and we are done.

Claim 1. We have l ≥ 1 and xs+1 does not belong to Envl−1(x1; G).

Proof of Claim. First we argue that xs+1 6∈ V (G1). Suppose that this is not true. In view of (7),
take the largest i ∈ [s − 1] such that xs+1 ∈ V (Gi ). By the definition of i , xs+1 6∈ V (Gi+1),
the latter being the component of Gi that contains xi+1. Thus {xs+1, xi+1} ∈ E(Gi ). On the
other hand, xs+1 is not adjacent to xi+1 in Gi because ys+1 is not adjacent to yi+1 in Hi , a
contradiction.

Next, we have {y1, ys+1} ∈
l+1 E(H), so {x1, xs+1} ∈

l+1 E(G). Since xs+1 6∈ V (G1) =

V (Envl(x1)), we have l ≥ 1. For any vertex z ∈ V (Envl−1(x1)) \ V (Envl(x1)) we have
{x1, z} ∈

l E(G), so xs+1 6∈ V (Envl−1(x1)), as required. �

At this point it is possible to argue that, if s ≥ 2, then Duplicator has already lost. However,
we still have to deal with the case s = 1 (when we have just x1 and x2). Since ruling out the case
s ≥ 2 would not make the proof shorter, we do not do this.

We have V (Envl+1(y1)) 6= V (Envl(y1)) because the latter set contains ys+1 while the former
does not (or because H1 is uniform and rk H1 = k − l ≥ s ≥ 1). Hence, Lemma 2 applies to
[x1, xs+1, y1, ys+1, G, H, l − 1], and Spoiler can win the game in at most l extra moves, having
made at most s + l ≤ k moves in total.

It remains to describe Spoiler’s strategy if ys ∈ V (Hs+1), when Spoiler cannot just choose
some ys+1 ∈ V (Hs+1) as this would violate Property 4. Here, Spoiler first selects some
ys+1 ∈ V (Hs) \ V (Hs+1). (This set is non-empty since s ≤ rk H1.) Let Duplicator reply
with xs+1. If xs+1 6∈ V (Gs), then by the argument of Claim 1 we have that l ≥ 1 and
Envl−1(x1) 6= Envl−1(xs+1). Thus Spoiler can win in at most l further moves by Lemma 2,
having made at most s + l ≤ k moves in total. Hence, let us assume that xs+1 ∈ V (Gs). In this
case, let us swap the vertices ys and ys+1 as well as xs and xs+1. It is clear that the new sequences
y1, . . . , ys+1 and x1, . . . , xs+1 satisfy Properties 1–4. This completes the description of the case
s ≤ k − l.
Case 2. Suppose that s = k − l + 1.

This means that Hs is a cocomponent of H1 (and thus has at most c vertices). Spoiler selects
all vertices in V (Hs) \ {ys}. We claim that Duplicator has lost by now. Indeed, if Duplicator
replies all the time inside Gs , then she has lost because Gs 6⊃ Hs by Assumption 3 and Property
3. Otherwise, her response to the whole set V (Hs) cannot be complement-connected because it
contains both a vertex outside of Gs and the vertex xs ∈ V (Gs). Thus Spoiler wins, having made
at most s − 1 + c − 1 ≤ k + c − 1 further moves. �
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3.2. Finishing the proof

Lemma 4 (Main Lemma). Let G be a connected uniform inclusion-free graph. Suppose that
every cocomponent of G has at most c vertices. Then D0(G) ≤ rk G + c + 1.

Proof. Let k = rk G. Since the case of k = 0 is trivial (namely we have D0(G) ≤ v(G) + 1 ≤

c + 1 by (2)), we assume that k ≥ 1. This and the assumption that G is uniform inclusion-free
imply that c ≥ 5.

Fix a graph H � G. We will design a strategy allowing Spoiler to win the 0-alternation
Ehrenfeucht game on (G, H) in at most the required number of moves. There are a few cases to
consider.
Case 1. H has a cocomponent C non-embeddable into any cocomponent of G.

If C has no more than c vertices, Spoiler selects all vertices of C . Otherwise he selects c + 1
vertices spanning a complement-connected subgraph in C which is possible by Lemma 1 (since
c ≥ 5). If Duplicator’s response A is within a cocomponent of G, then C � A by the assumption.
Otherwise A is not complement-connected and Duplicator loses anyway.
Case 2. There are an l ∈ [0, k] and an A ∈ Decl G properly embeddable into some B ∈ Decl H ,
and not Case 1.

Let H0 be a copy of A in B. Fix an arbitrary vertex y0 ∈ V (B) \ V (H0). Note that since we
are not in Case 1, the connected graph B cannot be a cocomponent of H by Property 2 in the
definition of an inclusion-free graph. Hence

V (Envl(y0; H)) 6= V (Envl+1(y0; H)). (8)

Let Z = V (B) \ V (H0). We will need the following routine claim, whose proof uses the
connectedness of H0 and the fact that B is not a cocomponent of H .

Claim 2. For any m ≥ 0 and y ∈ V (H0) we have

Envm(y; H0) = Envm+l(y; H − Z).

Proof of Claim. It is enough to prove the case m = 0 only, because the remaining cases would
follow by a straightforward induction on m. Since H0 is connected, the claim for m = 0 amounts
to proving that

H0 = Envl(y; H − Z). (9)

We will suppose that H is connected because otherwise instead of H we can consider its
component containing V (B).

Let us introduce a syntactic notion capturing the depth l decomposition of a connected graph.
We call a tree T with root r decomposing if it has the following two properties. First, all paths
from the root to a leaf have the same length l. Second, if a vertex v of T has exactly one child (a
neighbor on the way to a leaf) u, then u also has no more than one child. Let b1, . . . , bp be all
leaves of T and B1, . . . , Bp be vertex-disjoint graphs. If we assign each bi the value ν(bi ) = Bi ,
this determines evaluation of each vertex v of T as follows: If the children of v are u1, . . . , uq ,
then ν(v) = ν(u1) t . . . t ν(uq). Denote T (B1, . . . , Bp) = ν(r).

Let us make a simple but useful observation: If all B1, . . . , Bp are connected and, moreover,
Bi is complement-connected whenever bi is a single child of its parent, then H = T (B1, . . . , Bp)

is connected and Decl H = {B1, . . . , Bp}. Conversely, for every connected H with such depth l
decomposition there is a decomposing tree T of height l such that H = T (B1, . . . , Bp).
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Furthermore, assume that Z ⊂ V (B1). A simple induction on l shows that

T (B1 − Z , B2, . . . , Bp) = H − Z

for any tuple of vertex-disjoint graphs B1, . . . , Bp.
We now apply these general considerations to infer (9). Let H , l, Z , and H0 be as in (9).

Suppose that Decl H = {B1, . . . , Bp} and let T be a decomposing tree of height l such that
H = T (B1, . . . , Bp). Without loss of generality, suppose that B1 = B. Since H0 = B1 − Z ,
we have H − Z = T (H0, B2, . . . , Bp). Recall that H0 is connected. Since B1 = B is not a
cocomponent of H , the leaf b1 of T is not a single child of its parent. Thus, H0 does not need
to be complement-connected to participate in a proper decomposition. Hence Decl (H − Z) =

{H0, B2, . . . , Bp}, which immediately implies (9). �

Spoiler plays in H . At the first move he selects y0. Denote Duplicator’s response in G by x0
and set G0 = Envl(x0). There are two alternatives to consider.
Subcase 2.1. G0 � H0.

Suppose first that l < k. Since G0 and H0 are non-isomorphic copies of elements of Decl G
and G is inclusion-free, Spoiler is able to make his next choice y1 in some H1 ∈ Dec H0 with no
isomorphic graph in Dec G0. Denote Duplicator’s response by x1.

If x1 6∈ V (G0), then Lemma 2 applies to [x0, x1, y0, y1, G, H, l] in view of (8). Thus Spoiler
can win by using at most l + 3 ≤ k + 2 moves in total. So, assume that x1 ∈ V (G0). Lemma 3
applies to [x1, y1, G, H − Z , l + 1] in view of Claim 2. (For example, Assumption 3 is satisfied
because G is uniform inclusion-free and Decl G contains both G0 and an isomorphic copy of
H0.) Thus Spoiler can win in at most 2 + (k + c − 1) moves in total, as desired.

It remains to consider the case l = k. Spoiler selects all vertices of H0. There are at most c
of them because H0 is isomorphic to a cocomponent of G. If Duplicator’s replies lie in V (G0),
she has already lost in view of G0 6⊃ H0 (which holds since G is inclusion-free). Otherwise,
Duplicator’s reply to V (H0) contains both a vertex outside G0 and the vertex x0 ∈ V (G0), so it
cannot be complement-connected, and she loses. So, Spoiler wins having made at most c moves
in total.
Subcase 2.2. G0 ∼= H0.

Though the graphs are isomorphic, the crucial fact is that G0, unlike H0, contains a selected
vertex. By the definition of an inclusion-free graph, every automorphism of G0 ∼= H0 takes each
cocomponent onto itself. Therefore all isomorphisms between G0 and H0 match cocomponents
of these graphs in the same way. Let Y be the H0-counterpart of the cocomponent X =

Envk−l(x0; G0) with respect to this matching. In the second round Spoiler selects an arbitrary
y1 in Y . Denote Duplicator’s answer by x1.

Suppose first that x1 ∈ X . Spoiler selects all vertices of Y \ {y1}. At least one of Duplicator’s
replies lies outside V (X) for otherwise she has already lost having chosen some vertex in X
twice. But then Duplicator’s reply to Y cannot be complement-connected. In any case Spoiler
wins, having made at most c + 1 moves in total.

If x1 ∈ V (G0) \ X , then there is an m ≤ k − l such that Envm(x1; G0) and Envm(y1; H0) are
non-isomorphic. By Claim 2 Spoiler can apply the strategy of Lemma 3 to [x1, y1, G, H − Z , l +
m], winning in at most 2 + (k + c − 1) moves. If x1 6∈ V (G0), then Spoiler wins by Lemma 2
applied to [x0, x1, y0, y1, G, H, l], having made at most 2 + l + 1 < k + c + 1 moves in total.
Case 3. H has a component H0 isomorphic to G, and not Cases 1–2.

Spoiler plays in H . In the first round he selects a vertex y0 outside H0 and further plays exactly
as in Subcase 2.2 with G0 = G.
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Case 4. Neither of Cases 1–3.
Spoiler plays in G0 = G. His first move x0 is arbitrary. Denote Duplicator’s response in H

by y0 and set H0 = Env0(y0). Since we are not in Cases 1–3, G0 6⊂ H0. As G0 is inclusion-free,
G0 has a connected component G1 with no isomorphic component in H0.

If x0 6∈ V (G1), then Spoiler just selects any vertex x1 ∈ V (G1). Let Duplicator respond with
y1. Assume that y1 ∈ V (H0), for otherwise Duplicator has already lost: {y0, y1} 6∈ E(H) while
{x0, x1} ∈ E(G).

If x0 ∈ V (G1), then Spoiler selects any vertex x1 ∈ V (G0) \ V (G1). (The latter set is non-
empty since k ≥ 1.) Let Duplicator respond with y1. As before we can assume that y1 ∈ V (H0).
Now, let us swap x0 and x1 as well as y0 and y1.

What we have achieved in both cases is that G1 � H1, where H1 = Env1(y1; H). Also, G1 is
a uniform inclusion-free graph of rank k−1. Lemma 3 applies to [y1, x1, H, G, 1]. (For example,
Assumption 3 of the lemma holds because we are not in Cases 1–2.) This shows that Spoiler can
win the 0-alternation game in at most 2 + (k + c − 1) = k + c + 1 moves. This completes the
proof of Lemma 4. �

We will also need the following simple fact.

Lemma 5. For some integer c ≤ 10, there are 4c + 4 pairwise non-embeddable into each other
complement-connected graphs

Hi, j , c ≤ i ≤ 2c, 1 ≤ j ≤ 4,

such that Hi, j has order i .

Proof. The existence of such graphs can be easily deduced by choosing each Hi, j uniformly
at random from all graphs of order i , independently from the other graphs. Indeed, for any
(i, j) 6= ( f, g) with c ≤ i ≤ f ≤ 2c the probability that Hi j is embeddable into H f g is at
most

f !

( f − i)!
2
−

(
i
2

)

while the probability of Hi, j not being complement-connected is at most

1
2

i−1∑
h=1

(
i
h

)
2−h(i−h)+1,

where the factor 1
2 accounts for the fact that each vertex partition is counted twice.

Hence, by looking at the expected number of ‘bad’ events, we conclude that if

16
∑

c≤i≤ f ≤2c

f !

( f − i)!
2
−

(
i
2

)
+ 4 ×

1
2

2c∑
i=c

i−1∑
h=1

(
i
h

)
2−h(i−h)+1 < 1, (10)

then the required graphs exist. The exact-arithmetic calculation with Mathematica shows that
c = 10 works in (10). �

Proof of the upper bound in Theorem 1. Fix an integer c ≤ 10 and graphs H`, j , where c ≤

` ≤ 2c, 1 ≤ j ≤ 4, as in Lemma 5.
We define, inductively on i , a family Ri of graphs, starting with

R0 = {Hc,1, Hc,2, Hc,3, Hc,4}.
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Assume that Ri−1 is already specified. Given a non-empty subset S ⊂ Ri−1, we define the graph

Gi,S =

⊔
G∈S

G,

or, in words, Gi,S is the complement of the vertex-disjoint union of the graphs in S. We let

Ri =
{
Gi,S : |S| = |Ri−1|/2

}
,

where we view Ri as the set of isomorphism types of graphs. It is proved in Claim 3 below that
the graphs Gi,S are pairwise non-isomorphic. (In particular, this implies by induction on i that

|Ri | is even because
(

2m
m

)
is even for any integer m ≥ 1.) Let ri = |Ri |.

Let us list some properties of these graphs.

Claim 3. 1. For any S ⊂ Ri−1 with |S| ≥ 2, Gi,S is a connected inclusion-free uniform graph
of rank i .

2. For any S, T ⊂ Ri−1 with S 6⊂ T , the graph Gi,S is not embeddable into Gi,T .

3. ri =

(
ri−1

ri−1/2

)
.

Proof of Claim. We prove all claims by induction on i , the case i = 1 directly following from
the definition of R0. Let i ≥ 2.

First, we verify Property 1, assuming that Properties 1–3 hold for all smaller values of i . Since
|S| ≥ 2, Gi,S is connected. The components of Gi,S belong to Ri−1, each being isomorphic to
Gi−1,S′ for some S′

⊂ Ri−2. From Property 3 and the initial value r0 = 4, it is easy to deduce
that |S′

| = ri−2/2 ≥ 2. By the inductive Property 1, all components of Gi,S are uniform of rank
i − 1, so Gi,S is uniform of rank i .

Next, let us verify that Gi,S is an inclusion-free graph. For any j ∈ [i] all elements of
Dec j Gi,S belong to Ri− j ; by induction, each is inclusion-free. Let us show that none of these
graphs is properly embeddable into another. Assume that j < i for otherwise the claim follows
from the definition of R0. Take any two non-isomorphic Gi− j,S′ , Gi− j,S′′ ∈ Ri− j . We have
S′

6⊂ S′′ because S′
6= S′′ and |S′

| = |S′′
| = ri− j−1/2. By induction (Property 2), we conclude

that Gi− j,S′ 6⊂ Gi− j,S′′ , giving the stated. Since Gi,S is connected, it remains to observe that Gi,S
has no two isomorphic components, which follows from Property 2 again. Thus Gi,S is indeed
inclusion-free. We have completely finished the inductive step for Property 1.

Let us turn to Property 2. All components of Gi,S and Gi,T belong to Ri−1. Take any
H ∈ S \ T . The graph H ∈ Ri−1 appears as a component in Gi,S . By induction (Property 2) and
the definition of Ri−1, H cannot be embedded into any component of Gi,T . Thus Gi,S 6⊂ Gi,T , as
required. Property 3 follows from Property 2 which implies that the graphs Gi,S , for S ⊂ Ri−1,
are pairwise non-isomorphic. �

All graphs in Ri have the same order which we denote by ni . Thus v(Gi,S) = |S| ni−1. We
have n0 = c and, for i ≥ 1,

ni = ni−1ri−1/2.

If we denote mi = ri/2, then we have m0 = 2 and m1 = 3. Thus for i ≥ 1 we have

mi+1 =
1
2

ri+1 =
1
2

(
ri

ri/2

)
=

1
2

(
2mi

mi

)
≥ 2mi .
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We conclude that mi > Tower(i) for all i ≥ 0 and thus

ni ≥ mi−1 > Tower(i − 1). (11)

At this point we are able to prove the required upper bound on q0(n) for an infinite sequence
of n, namely,

. . . , ni−1, 2ni−1, 3ni−1, . . . , mi−1ni−1 = ni , 2ni , . . . . (12)

Indeed, by Lemma 4 for every 2 ≤ s ≤ mi−1 and an s-set S ⊂ Ri−1, we have

q0(sni−1) ≤ D0(Gi,S) ≤ i + c + 1.

Also, we have i ≤ log∗ ni−1 + 1 by (11). Thus

q0(sni−1) ≤ log∗(ni−1) + c + 2 ≤ log∗(sni−1) + 12.

It now remains to fill in the gaps in (12). We need some auxiliary notions and claims first. We
define the operation of a cocomponent replacement as follows. Suppose that A is a cocomponent
of a graph G and B is a complement-connected graph. The result of the replacement of A with
B in G is the graph G ′ with V (G ′) = (V (G) \ V (A)) ∪ V (B) such that G ′

[V (B)] = B,
G ′

− B = G − A, and every vertex in B is adjacent to a vertex v outside B in G ′ if and only if
every vertex in A is adjacent to v in G. (Here, we assume that V (G) ∩ V (B) = ∅, and we use
the fact that any two vertices x and y inside a cocomponent have the same adjacency pattern to
the rest of the graph, i.e., for every z outside the cocomponent, x and y are equally adjacent or
not adjacent to z.)

Claim 4. Let G be a uniform inclusion-free graph of rank i with all cocomponents being
isomorphic to one of Hc,l with 1 ≤ l ≤ 4. Let G ′ be obtained from G by replacing each
cocomponent A ∼= Hc,l with some H j,l , where j ∈ [c, 2c] may depend on A. Then G ′ is a
uniform inclusion-free graph of rank i .

Proof of Claim. The partitions P0, . . . , Pi defined in (6) are completely determined by the
vertex sets of the cocomponents and the adjacencies between then. This shows that G ′ is uniform
of rank i . Let us check that G ′ is inclusion-free.

Let 0 ≤ j ≤ i , K ′
∈ Dec j G ′, and C ′

1, C ′

2 be some distinct components of the complement of
K ′. Suppose on the contrary that a bijection f ′

: V (C ′

1) → V (C ′

2) establishes an isomorphism
between C ′

1 and C ′

2. The isomorphism f ′ induces a correspondence g′ between the cocomponents
of C ′

1 and C ′

2.
The description of the component replacement we made to obtain G ′ from G allows us to

point the corresponding K ∈ Dec j G, C1, G2 ∈ Dec K , and g. Since C1 � C2, there is a
cocomponent X1 of C1 such that the cocomponent X2 = g(X1) is not isomorphic to X1. It means
that, if X1 ∼= Hc,l1 and X2 ∼= Hc,l2 , then l1 6= l2. But in G ′ these are replaced by X ′

1
∼= H j1,l1 and

X ′

2
∼= H j2,l2 , which are still non-isomorphic since l1 6= l2. This contradicts the assumption that

f ′ is an isomorphism. Thus G ′ satisfies Property 1 of the definition of an inclusion-free graph.
The other property in the definition can be checked similarly. �

If n ≤ 2c ≤ 20, then the upper bound (3) follows from the trivial inequality q0(n) ≤ n +1. So
assume that n > 2c = 2n0. Choose the integer i satisfying 2ni ≤ n < 2ni+1. Since ni+1 = ni mi ,
let s ∈ [2, 2mi − 1] satisfy sni ≤ n < (s + 1)ni . Pick any s-set S ⊂ Ri and let G = Gi+1,S . We
have v(G) = sni ≤ n and, by Claim 3, the graph G is inclusion-free and uniform of rank i + 1.
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Let f : Deci+1 G → [c, 2c] be some function. We construct a new graph G f by replacing
every cocomponent A of G by a copy of H f (A), j , where j is defined by A ∼= Hc, j . If f is the
constant function assuming the value 2c, then v(G f ) = 2v(G) > n. Hence there is some choice
of f such that v(G f ) = n. By Claims 3 and 4, the graph G f is a uniform inclusion-free graph of
rank i+1. By Lemma 4, we have D0(G f ) ≤ i+2c+2. On the other hand, n > ni > Tower(i−1),
that is, log∗ n ≥ i . It means that

q0(n) ≤ log∗ n + 2c + 2 ≤ log∗ n + 22.

This finishes the proof of the upper bound in (3). �

4. Lower bound: Proof of Theorem 2

From now on we will be dealing with digraphs.
Given a first order formula Φ in which the negation sign occurs only in front of atomic

subformulas, let the alternation number of Φ, denoted by alt(Φ), be the maximum number of
quantifier alternations, i.e. the occurrences of ∃∀ and ∀∃, in a sequence of nested quantifiers of Φ.
For a non-negative integer a, we denote

Λa = {Φ : alt(Φ) ≤ a} .

We also define Λ1/2 to be the class of formulas Φ with alt(Φ) ≤ 1 such that any sequence
of nested quantifiers of Φ starts with ∃ or has no quantifier alternation. We introduce the
latter class for the sake of generality, despite it is not used to prove Theorem 2. Note that
Λ0 ⊂ Λ1/2 ⊂ Λ1 ⊂ Λ2 ⊂ . . ..

Now we somewhat extend our notation. Let F be some class of first order formulas. If
a digraph G has a defining sentence in F , let DF (G) (resp. L F (G)) denote the minimum
quantifier rank (resp. length) of such a sentence; otherwise, we let DF (G) = L F (G) = ∞.
The succinctness function is defined as

qF (n) = min {DF (G) : v(G) = n} .

Whenever the index F is omitted, it is supposed that F is the class of all first order formulas. We
also simplify notation by Da(G) = DΛa (G) and similarly with La(G) and qa(n). Clearly,

q(n) ≤ · · · ≤ q2(n) ≤ q1(n) ≤ q1/2(n) ≤ q0(n).

Lemma 6. For every a ∈ {0, 1/2, 1, 2, 3, . . .} and any digraph G we have

La(G) < Tower(Da(G) + log∗ Da(G) + 2).

An analog of this lemma for L(G) and D(G) appears in [11, Theorem 10.1]. However, the proof
of Lemma 6 we give below is not just an adaptation of the proof in [11] because the restrictions
on the class of formulas do not allow us to run the same argument directly. Moreover, if a = 1/2,
there appears another obstacle—the class of formulas Λ1/2 is not closed with respect to negation.

Lemma 6 is proved in the next section in a stronger form since the argument is presentable
more naturally in a more general situation. Here, let us show how Lemma 6 implies Theorem 2.

Given n, denote k = q0(n) and fix a digraph G on n vertices such that D0(G) = k. By
Lemma 6, G is definable by a 0-alternating sentence Φ of length less than Tower(k + log∗ k +2).
We convert Φ to an equivalent prenex ∃

∗
∀

∗-sentence Ψ , i.e. of form (13). This can be easily
done as follows. By renaming variables, ensure that each variable is quantified exactly once. Let
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the existential (resp. universal) quantifiers appear with variables x1, . . . , xl (resp. y1, . . . , ym) in
this order as we scan Φ from left to right. To obtain the required sentence Ψ simply ‘pull’ all
quantifiers at front:

Ψ = ∃x1 · · · ∃xl ∀y1 · · · ∀ym (quantifier-free part) (13)

The obtained sentence Ψ is equivalent to Φ, which can be shown by induction on L(Φ) using
the fact that Φ does not contain an ∃-quantifier in the range of a ∀-quantifier. Also, this reduction
does not increase the total number of quantifiers. Therefore, as a rather crude estimate, we have
D(Ψ) ≤ L(Φ).

It is well known and easy to see that, if a sentence of the form (13) is true on some structure H ,
then it is true on some structure of order at most l ≤ D(Ψ). (Indeed, fix any satisfying assignment
for x1, . . . , xl and take the substructure of H induced by the corresponding elements.) Since the
defining sentence Ψ is true only on G, we have

n ≤ D(Ψ) ≤ L(Φ) < Tower(k + log∗ k + 2).

This implies that

log∗ n ≤ k + log∗ k + 2. (14)

Suppose on the contrary to Theorem 2 that k ≤ log∗ n−log∗ log∗ n−3. Then log∗ k ≤ log∗ log∗ n
and (14) implies that

log∗ n ≤ (log∗ n − log∗ log∗ n − 3) + log∗ log∗ n + 2,

which is a contradiction, proving Theorem 2.
Note that identically the same argument works for a = 1/2 as well, strengthening Theorem 2

to the bound

q1/2(n) ≥ log∗ n − log∗ log∗ n − 2

for all n.

5. Length versus depth for restricted classes of defining sentences

Writing A(x1, . . . , xs), we mean that x1, . . . , xs are all free variables of A. We allow s = 0
which means that A is a sentence. A formula of type xi = x j or xi 7→ x j is called atomic. A
formula A(x1, . . . , xs) of quantifier rank k − s is normal if

• all negations occurring in A stay only in front of atomic subformulas,
• A has occurrences of variables x1, . . . , xk only,
• every sequence of nested quantifiers of A has length k − s and quantifies the variables

xs+1, . . . , xk exactly in this order (here and later we consider only maximal sequences of
nested quantifiers).

A simple inductive syntactic argument shows that any A(x1, . . . , xs) has an equivalent normal
formula A′(x1, . . . , xs) of the same quantifier rank. Such a formula A′ will be called a normal
form of A.

Below F will always denote a non-empty class of first order formulas. The class of sentences
(i.e. formulas without free variables) in F of quantifier rank k will be denoted by Fk . We call F
regular if
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• F contains all atomic formulas and Boolean combinations thereof,
• F is closed under subformulas and renaming of bound variables,
• with each A(x1, . . . , xs) in F , the class F contains a normal form of A,
• for any k ≥ 1, Fk has pattern set Pk

⊆ {∀, ∃}
k such that a normal sentence A belongs to

Fk iff every sequence of nested quantifiers of A belongs to Pk . (By the normality of A all
quantifier sequences have the same length.)

Theorem 3. Suppose that F is regular and G is definable in F. Then

L F (G) < Tower
(
DF (G) + log∗ DF (G) + 2

)
.

Note that Theorem 3 generalizes Lemma 6 because the classes Λa are regular.
When we write z̄, we will mean an s-tuple (z1, . . . , zs). If ū ∈ V (G)s , we write G, ū |H A(x̄)

if A(x̄) is true on G with each xi assigned the respective ui . Notation |H A(x̄) will mean that
A(x̄) is true on all digraphs with s designated vertices.

A formula A(x̄) in F is called an F-description of (G, ū) if

• G, ū |H A(x̄), and
• for every B(x̄) ∈ F such that G, ū |H B(x̄), we have |H A(x̄) ⇒ B(x̄), where X ⇒ Y is a

shorthand for (¬X) ∨ Y .

Lemma 7. Suppose that G is definable in F. Let A be a sentence in F. Then A defines G iff A
is an F-description of G.

Proof. Suppose that A defines G. Then G |H A. Let B ∈ F satisfy G |H B. We have to show
that H |H A ⇒ B for any H . If H 2 A, we are done immediately. If H |H A, then H ∼= G and
H |H B, as required.

For the other direction, suppose that A is an F-description of G. We have to show that H 2 A
for any H � G. Fix a sentence B ∈ F defining G. Since H 2 B and |H A ⇒ B, we conclude
that H 2 A, as required. �

Let G and H be digraphs, ū ∈ V (G)s , and v̄ ∈ V (H)s . We write G, ū ≡ H, v̄ (mod F) if,
for any A(x̄) in F , we have G, ū |H A(x̄) exactly when H, v̄ |H A(x̄).

Lemma 8. Suppose that G, ū ≡ H, v̄ (mod F) and let A(x̄) ∈ F. Then A is an F-description
of (G, ū) iff it is an F-description of (H, v̄).

Proof. As A is in F , we have G, ū |H A(x̄) iff H, v̄ |H A(x̄). Let B(x̄) ∈ F . Again G, ū |H B(x̄)

iff H, v̄ |H B(x̄). It follows that G, ū |H B(x̄) implies |H A(x̄) ⇒ B(x̄) iff H, v̄ |H B(x̄) implies
|H A(x̄) ⇒ B(x̄). �

Furthermore, we define

(G, ū) mod F = {(H, v̄) : G, ū ≡ H, v̄ (mod F)} .

Let 0 ≤ s ≤ k. The class of formulas in F with s free variables and quantifier rank k − s is
denoted by Fk,s . In particular, Fk,0

= Fk . Given K , a non-empty subset of Fk,s , we define

E(K ) =
{
(G, ū) mod K : G is a digraph, ū ∈ V (G)s} .

We will also use the following notation. Given Pk
⊆ {∀, ∃}

k and σ ∈ {∀, ∃}
s , let

Pk,s
σ =

{
ρ ∈ {∀, ∃}

k−s
: σρ ∈ Pk

}
.
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Note that, if σ ∈ Pk , then Pk,k
σ consists of the empty word only, while if σ 6∈ Pk , then Pk,k

σ is
empty. Furthermore, given a regular F with pattern set Pk , let Fk,s

σ consist of the normal formulas
in Fk,s whose sequences of nested quantifiers are in Pk,s

σ . We say that a formula A(x̄) ∈ Fk,s
σ

describes a class α ∈ E(Fk,s
σ ) if A(x̄) is an Fk,s

σ -description of some (G, ū) ∈ α. By Lemma 8,
this definition does not depend on the particular choice of a representative (G, ū) of α, and the
word some in the definition can be replaced with every.

Proof of Theorem 3. For each α ∈ E(Fk,s
σ ) we will construct a formula Aα(x̄) ∈ Fk,s

σ

describing α. We will use induction on k − s. Afterwards we will estimate the length of the
obtained Aα and show how this implies Theorem 3.

We start with s = k. Let σ ∈ {∀, ∃}
k . Assume that σ ∈ Pk , for otherwise Fk,k

σ is empty and
there is nothing to do. For any such σ , Fk,k

σ = Fk,k is exactly the class of all quantifier-free
formulas in F over the set of variables {x1, . . . , xk}. Clearly, (G, ū) ≡ (H, v̄)(mod Fk,k

σ ) iff
the componentwise correspondence between ū and v̄ gives a partial isomorphism. So, any given
class α ∈ E(Fk,s

σ ) can be described as follows. Pick any representative (G, u1, . . . , uk) of α

and let Aα(x1, . . . , xk) be the conjunction of all atomic formulas xi 7→ x j for (ui , u j ) in G, all
negations ¬(xi 7→ x j ) for (ui , u j ) not in G, all xi = x j for identical ui , u j , and all ¬(xi = x j )

for distinct ui , u j . Clearly, H, v̄ |H Aα(x̄) iff (H, v̄) ∈ α. It follows that Aα indeed describes α.
Note that L(Aα) ≤ 18k2.

Assume now that 0 ≤ s < k and that for any τ ∈ {∀, ∃}
s+1 with Fk,s+1

τ 6= ∅ and
β ∈ E(Fk,s+1

τ ) we have a formula Aβ(x̄, xs+1) ∈ Fk,s+1
τ describing β. Given a digraph G,

an s-tuple of vertices ū ∈ V (G)s , and a non-empty class of formulas K , we set

S(G, ū; K ) = {(G, ū, u) mod K : u ∈ V (G)} .

We also set S(G, ū; ∅) = ∅. Let σ ∈ {∀, ∃}
s and α ∈ E(Fk,s

σ ) (thus, Fk,s
σ 6= ∅ and hence

Fk,s+1
σ∗ 6= ∅ for at least one ∗ ∈ {∃, ∀}). To construct Aα(x̄), we fix (G, ū) being an arbitrary

representative of α and put1

Aα(x̄) =

∧
β∈S(G,ū;Fk,s+1

σ∃
)

∃xs+1 Aβ(x̄, xs+1) ∧ ∀xs+1
∨

β∈S(G,ū;Fk,s+1
σ∀

)

Aβ(x̄, xs+1).

Claim 5. Aα(x̄) ∈ Fk,s
σ .

Proof of Claim. This follows from the assumption that Aβ(x̄, xs+1) ∈ Fk,s+1
σ∗ for β ∈

S(G, ū; Fk,s+1
σ∗ ). �

Claim 6. G, ū |H Aα(x̄).

Proof of Claim. Let us show first that all conjunctive members over β ∈ S(G, ū; Fk,s+1
σ∃

) are
satisfied. Each such β is of the form (G, ū, uβ) mod Fk,s+1

σ∃
for some uβ ∈ V (G). By assumption,

G, ū, uβ |H Aβ(x̄, xs+1) and hence G, ū |H ∃xs+1 Aβ(x̄, xs+1).
It remains to show that the universal member of the conjunction is also satisfied. Consider an

arbitrary u ∈ V (G). Let βu = (G, ū, u) mod Fk,s+1
σ∀

. By assumption, G, ū, u |H Aβu (x̄, xs+1)

and hence the disjunction is always true. �

1 Here Aα has the same form as the Hintikka formula in [5, page 18]. Curiously, in a similar context in [11, Lemma
3.4] we use another generic defining formula borrowed from [15, Theorem 2.3.2], which is not usable now because F
may be not closed with respect to negation.
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Claim 7. We have |H Aα(x̄) ⇒ B(x̄) for any B(x̄) ∈ Fk,s
σ such that

G, ū |H B(x̄). (15)

Proof of Claim. Given a class of formulas K , let K |∃ (resp. K |∀) denote the class of those
formulas in K having form ∃x(. . .) (resp. ∀x(. . .)). First, we settle two special cases of the
claim.

Case 1. B ∈ Fk,s
σ |∃

Let B = ∃xs+1C(x̄, xs+1). Note that C(x̄, xs+1) ∈ Fk,s+1
σ∃

. Assume that H, v̄ |H Aα(x̄).
We have to verify that H, v̄ |H B(x̄). By (15) we can choose a vertex u ∈ V (G) such that
G, ū, u |H C(x̄, xs+1). Let

β = (G, ū, u) mod Fk,s+1
σ∃

.

We have H, v̄ |H ∃xs+1 Aβ(x̄, xs+1) and hence H, v̄, v |H Aβ(x̄, xs+1) for some v ∈ V (H).
Since we have assumed that Aβ(x̄, xs+1) is an Fk,s+1

σ∃
-description of β, we have H, v̄, v |H

C(x̄, xs+1) and hence H, v̄ |H B(x̄) as needed.

Case 2. B ∈ Fk,s
σ |∀

Let B = ∀xs+1C(x̄, xs+1). Note that C(x̄, xs+1) ∈ Fk,s+1
σ∀

. Assume that H, v̄ |H Aα(x̄).
It follows that for every v ∈ V (H) there is a βv ∈ S(G, ū; Fk,s+1

σ∀
) such that H, v̄, v |H

Aβv (x̄, xs+1). By (15) we have G, ū, u |H C(x̄, xs+1) for all u ∈ V (G). Let uv be such that

βv = (G, ū, uv) mod Fk,s+1
σ∀

.

We have G, ū, uv |H C(x̄, xs+1), and, by our assumption that Aβv describes βv , we have
H, v̄, v |H C(x̄, xs+1). Since v is arbitrary, we conclude that H, v̄ |H B(x̄), finishing the proof
of Case 2.

Finally, take an arbitrary B(x̄) ∈ Fk,s
σ . Since B is normal (and s < k), it is equivalent to

a monotone DNF formula ∨i (∧ j Bi, j ) with all Bi, j belonging to Fk,s
σ |∃ ∪ Fk,s

σ |∀. This can be
routinely shown by induction on L(B). For example, if B = B1 ∧ B2, where, by induction, Bh is
equivalent to ∨ih (∧ jh Bih , jh ), h = 1, 2, then we can take ∨i1,i2((∧ j1 Bi1, j1) ∧ (∧ j2 Bi2, j2)) for B.

Since G, ū |H B(x̄), we have G, ū |H Bi0, j (x̄) for some i0 and all j . From Cases 1–2 it
follows that H, v̄ |H Bi0, j (x̄) for all j whenever H, v̄ |H Aα(x̄). This means that H, v̄ |H B(x̄)

whenever H, v̄ |H Aα(x̄), as required. �

Let us now estimate the length of the constructed formulas. The estimates are similar to those
in [11, Theorem 10.1]. Our bound will depend on k and s only, so we define

l(k, s) = max
τ∈{∀,∃}s

max
{

L(Aβ) : β ∈ E(Fk,s
τ )

}
.

Let f (k, s) = |Ehrv(k, s)|, where Ehrv(k, s) = E(FOk,s) with FO being the class of all first
order formulas. (According to [15], the elements of Ehrv(k, s) are called digraph Ehrenfeucht
values.) The function f (k, s) is an upper bound on |E(Fk,s

τ )| for any τ ∈ {∀, ∃}
s . The number of

Ehrenfeucht values for (undirected) graphs was estimated in [15, Theorem 2.2.1]. The obvious
modifications of the proofs from [15] give the following bounds for digraphs:

f (k, k) ≤ 4k2
,

f (k, s) ≤ 2 f (k,s+1).
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We already know that l(k, k) ≤ 18k2. Our construction of Aα(x̄) shows for 0 ≤ s < k that

l(k, s) ≤ 2 f (k, s + 1)(l(k, s + 1) + 9). (16)

Let k ≥ 2. Set g(x) = 2 · 2x (x + 9). A simple inductive argument shows that

f (k, s) ≤ 2g(k−s)(18k2) and l(k, s) ≤ g(k−s)(18k2),

where g(i)(x) = g(g(· · · g(x) · · ·)) is obtained by iteratively applying g i times. Define the two-
parameter function Tower(i, x) inductively on i by Tower(0, x) = x and Tower(i + 1, x) =

2Tower(i,x) for i ≥ 1. This is a generalization of the old function: Tower(i, 1) = Tower(i). One
can prove by induction on i that for any x ≥ 5 and i ≥ 1 we have

g(i)(x) < Tower(i + 1, x)/2. (17)

Indeed, it is easy to check the validity of (17) for i = 1, while for i ≥ 2 we have

g(i)(x) < g(Tower(i, x)/2) < 2Tower(i,x)−1
= Tower(i + 1, x)/2. (18)

If k ≥ 12, then 18k2 < 2k and by (17) we have

l(k, 0) ≤ g(k)(18k2) < Tower(k + 1, 18k2)/2 < Tower(k + log∗ k + 2). (19)

Also, 18 · 112 < Tower(4)/2 and, similarly to (18), we have g(k)(18k2) < Tower(k + 4)/2 for
k ≤ 11. Thus (19) holds for k ∈ [3, 11] too. For k = 2 one can still prove (19) using (16) and the
sharper initial estimates f (2, 2) = 18 and l(2, 2) ≤ 48.

To finish the proof of Theorem 3, let k = DF (G) ≥ D(G) ≥ 2 and α = G mod Fk,0. Since
G is definable in Fk,0, the sentence Aα defines G by Lemma 7. By (19),

L F (G) ≤ L(Aα) ≤ l(k, 0) < Tower(k + log∗ k + 2),

completing the proof. �
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