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Abstract

We say that afirst order sentenceA defines a graphG if A is true onG but false onany graph
non-isomorphic toG. Let L(G) (resp.D(G)) denote the minimum length (resp. quantifier rank) of
such a sentence. We define the succinctness functions(n) (resp. its variantq(n)) to be theminimum
L(G) (resp.D(G)) over all graphs onn vertices.

We prove thats(n) andq(n) may be so small that for no general recursive functionf we can
have f (s(n)) ≥ n for all n. However, forthe functionq∗(n) = maxi≤n q(i ), which is the least
nondecreasing function boundingq(n) from above, we haveq∗(n) = (1+o(1)) log∗ n, where log∗ n
equals the minimum number of iterations ofthe binary logarithm sufficient to lowern to 1 or below.

We show an upper boundq(n) < log∗ n + 5 even under the restriction of the class of graphs to
trees. Under this restriction, forq(n) we also have a matching lower bound.

We show a relationshipD(G) ≥ (1−o(1)) log∗ L(G) and prove, using the upper bound forq(n),
that this relationship is tight.

For a non-negative integera, let Da(G) and qa(n) denote the analogs ofD(G) and q(n)

for defining formulas in the negation normal form with at mosta quantifier alternations in any
sequence of nested quantifiers. We show a superrecursive gap betweenD0(G) andD3(G) and hence
betweenD0(G) and D(G). Despite this, for q0(n) we still have a kind of log-star upper bound:
q0(n) ≤ 2 log∗ n + O(1) for infinitely manyn.
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1. Introduction

Westudy sentences about graphs expressible in the laconic first order language with two
relation symbols∼ and= for, respectively, the adjacency and the equality relations.First
order means that we are allowed to quantify only over vertices, as opposed to the second
order logic case where we can quantify over sets of vertices. The difference between the
first order and the second order worlds is essential. In the first order language we cannot
express many basic properties of graphs, such as connectedness and the property of being
bipartite (see, e.g., [28, Theorems 2.4.1 and 2.4.2]). On the other hand, the crucial fact for
us is that the first order language is powerful enough to define any individual finite graph
up to isomorphism. Indeed, a graphG with vertex setV(G) = {1, . . . , n} and edge set
E(G) is definedby the formula

∃x1 . . . ∃xn∀xn+1

( ∧
1≤i< j ≤n

¬(xi = x j ) ∧
∨
i≤n

xn+1 = xi

∧
∧

{i, j }∈E(G)

xi ∼ x j ∧
∧

{i, j }/∈E(G)

¬(xi ∼ x j )

)
.

(1)

This fact, though very simple, highlights a fundamental difference between the finite and
the infinite: there are non-isomorphic countable graphs satisfying precisely the same first
order sentences (see, e.g., [28, Theorem 3.3.2]).

The question we address is how succinctly a graphG on n vertices can be defined by
first order means. We consider two naturalmeasures of succinctness — the length of a
first order formula and its quantifier rank. The latter is the maximum number of nested
quantifiers in the formula. LetD(G) be the minimum quantifier rank of a closed first order
formula definingG, that is,being true onG and false on any other graph non-isomorphic to
G. The sentence (1) ensures thatD(G) ≤ n+ 1. This bound generally cannot be improved
as D(G) = n + 1 for G being the complete or the empty graph onn vertices. However,
for all other graphs we haveD(G) ≤ n. Thus, it is reasonable to try to lower the trivial
upper bound ofn + 1 to someu(n) ≤ n and explicitly describe all exceptional graphs
with D(G) > u(n). This is done in [21] with u(n) = n/2 + O(1) (see also [23] for a
generalization to arbitrary structures). More precisely, let us call two vertices of a graph
similar if they are simultaneously adjacent or not toany other vertex. This is an equivalence
relation and each equivalence class spans a complete or an empty subgraph. Letσ(G)

denote the maximum number of pairwise similar vertices inG. Then, as shown in [21],

σ(G) + 1 ≤ D(G) ≤ max

{
n + 5

2
, σ (G) + 2

}
.

It seems doubtful that results of this sort can be obtained with upper boundu(n) =
cn + O(1) for each constantc < 1/2. The known Cai–Fürer–Immerman construction
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[2] gives graphs with linearD(G) which may serve as counterexamples to most natural
conjectures in this direction.

While the paper [21] addresses the definability ofn-vertex graphs inthe worst case, in
[14] we treat the average case. LetG be a random graph distributed uniformly among the
graphs with vertex set{1, . . . , n}. Then, as shown in [14],

|D(G) − log2 n| = O(log2 log2 n)

with probability 1− o(1).
Wenow consider another extremal case of the graph definability problem. How succinct

can a first order definition of a graph onn vertices be in the best case? That is, we study the
succinctness functionq(n) defined as the minimum D(G) overn-vertexG. We also define
L(G) to be the minimum length of a sentence definingG ands(n) to be the minimum
L(G) overn-vertexG. Trivially, q(n) < s(n). Our first result is thats(n) andq(n) may be
so small that forno general recursive functionf can we havef (s(n)) ≥ n for all n.

The proof is based on simulation of a Turing machineM by a first order formulaAM

in which a computation ofM determines a graph satisfyingAM and vice versa. Such
techniques were developed in the classic research on Hilbert’sEntscheidungsproblemby
Turing, Trakhtenbrot, Büchi and other researchers (see [1] for survey and references). An
important feature of our simulation is that it works if we restrict the class of structures to
graphs. The key ingredient of our proof is a gadget allowing us to impose an order relation
on the vertex set of a graph.

As a by-product, we obtain another proof of Lavrov’s result [16] that the first order
theory of finite graphs is undecidable. Our proof actually shows the undecidability of the
∀∗∃p∀s∃t -fragment of this theory for somep, s, andt .

From the fact thatq(n) andn are not recursively linked, it easily follows that, if a general
recursive functionl (n) is monotone nondecreasing and tends to the infinity, then

q(n) < l (n) for infinitely manyn. (2)

Our next result establishes a general upper bound

q(n) < log∗ n + 5 for all n. (3)

Here log∗ n equals the minimum number of iterations of the binary logarithm sufficient to
lowern below 1. It turns out that this is the best possible monotonic upper bound forq(n).
Let q∗(n) = maxi≤n q(i ), which is the least monotone nondecreasing function bounding
q(n) from above. We prove that

q∗(n) ≥ log∗ n − log∗ log∗ n − O(1). (4)

As theupper bound (3) is monotonic, we obtain

q∗(n) = (1 + o(1)) log∗ n. (5)

Comparing (5) to (2) with l (n) = log∗ n, we conclude thatq(n) infinitely often deviates
from its “smoothed” versionq∗(n) and, in particular, is essentially nonmonotonic.

Proving (3) and (4), we use a robust technical tool given by the Ehrenfeucht game [5]
(these techniques were also developed by Fraïssé [7] in a different setting).
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As a matter of fact, we prove the upper bound (3) under the restriction of the class of
graphs to trees only, that is, we haveq(n) ≤ q(n; trees) < log∗ n + 5. Recall that, by
(2), q(n) is infinitely often so small that we cannot bound it from below by any “regular”
function. The proof of this fact cannot be carried through forq(n; trees) because, as a
well-known corollary of the Rabin theorem [25], the first order theories of both all and
finite trees are decidable and hence a Turing machine computation cannot be simulated
by a first order sentence about trees. In fact, forq(n; trees) we establish a matching lower
bound, thereby determining this function asymptotically, namely,

q(n; trees) = (1 + o(1)) log∗ n.

We pay special attention to defining sentences having a restricted structure. For a non-
negativeintegera, let Da(G) andqa(n) denote the analogs ofD(G) andq(n) for defining
formulas in the negation normal form with at mosta quantifier alternations in any sequence
of nested quantifiers. The superrecursive gap betweens(n) andn is actually shown even
under the restriction of the alternation number to 3. Note also that, as follows from a result
in [14], q3(n) ≤ log∗ n + O(1) and hence (5) holds with alternation number 3.

On the other hand, we show a superrecursive gap betweenD0(G) andD3(G) and hence
betweenD0(G) and D(G). Despite this, forq0(n) we also have a kind of log-star upper
bound:q0(n) ≤ 2 log∗ n + O(1) for infinitely manyn. It is worth noting that this is not the
first case where we have close results for the alternation number 0 and for the unbounded
alternation number. In [14] we prove that for a random graphD(G) andD0(G) are not so
far apart from each other — that is,D0(G) ≤ (2+o(1)) log2 n with probability 1−o(1). Yet
another result showing the same phenomenon is obtained in [21]. Given non-isomorphic
graphsG andG′, let D(G, G′) (resp.D0(G, G′)) denote the minimum quantifier rank of
a sentence(resp. in the negation normal form with no quantifier alternation) which is true
on exactly one of the graphs. As shown in [21], if both G andG′ haven vertices, then
D(G, G′) ≤ D0(G, G′) ≤ (n+5)/2 and there are simple examples of suchG andG′ with
D(G, G′) ≥ (n + 1)/2. Note that logically distinguishing non-isomorphic graphs with
equal numbers of vertices has close connections to graph canonization algorithms (see,
e.g., [2,8,21] and a monograph [12]).

RelatingD(G) andL(G) to one another, we show that

D(G) ≥ (1 − o(1)) log∗ L(G).

Using the bound (3), we show thatthis relationship is tight.
Focusingon defining formulas of restricted structure, we also consider prenex formulas.

A superrecursive gap betweens(n) andn can actually be shown under the restriction to
this class. Nevertheless, prenex formulas generally are not competitive against defining
formulas with no restriction on structure. We observe that graphs showing a huge gap
betweenD(G) andL(G) at the same time show a huge gap betweenD(G) and its version
for prenex defining formulas.

In conclusion, note that all of our results carry over to general structures over any
relational vocabulary with at least one non-unary relation symbol. For the upper bounds
this claim is straightforward because graphscan be viewed as a subclass of such structures
which is distinguishable by a single first order sentence. The lower bounds hold true with
minor changes in the proofs.
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2. Background

2.1. Arithmetics

We define thetower function T(i ) by T(0) = 1 andT(i ) = 2T(i−1) for each subsequent
i . Sometimes this function will be denoted byTower(i ). Given a function f , we will denote
by f (i ) the i -fold composition of f . In particular, f (0)(x) = x. By logn we always mean
the logarithm base 2. The inverse of the tower function, thelog-star function log∗ n, is
defined by log∗ n = min { i : T(i ) ≥ n}. For a real x, thenotation
x� (resp.�x) stands
for the integer nearest tox from above (resp. from below).

2.2. Graphs

Given a graphG, we denote its vertex set byV(G) and its edge set byE(G). Theorder
of G, thenumber of vertices ofG, will sometimesbe denoted by|G|, that is,|G| = |V(G)|.
Theneighborhoodof a vertexv consists of all vertices adjacent tov. A set S ⊆ V(G) is
called independentif it contains no pair of adjacent vertices. IfX ⊆ V(G), thenG[X]
denotes the subgraphinducedby G on X (or spannedby X in G). If u ∈ V(G), then
G − u = G[V(G) \ {u}] is the result of removing fromG the vertexu along with all
incident edges.

Thedistancebetween verticesu andv, the minimum length of a path connecting the two
vertices, is denoted byd(u, v). If u andv are in different connected components of a graph,
thend(u, v) = ∞. Theeccentricityof a vertexv is defined bye(v) = maxu∈V(G) d(v, u).
The diameterand theradiusof a graphG are defined byd(G) = maxv∈V(G) e(v) and
r (G) = minv∈V(G) e(v) respectively. A path in a graph isdiametralif its length is equal to
the diameter of the graph. A vertexv is central if e(v) = r (G).

Proposition 2.1 ([19, Theorem 4.2.2]). Let T be a tree. If d(T) is even, then T has a
unique central vertex c and all diametral paths go through c. If d(T) is odd, then T has
exactly two central vertices c1 and c2 and all diametral paths go through the edge{c1, c2}.
2.3. Logic

2.3.1. Formulas
First order formulas are assumed to be over the set of connectives{¬,∧,∨}. A sequence

of quantifiersis a finite word over the alphabet{∃,∀}. If S is a set of such sequences, then
∃S (resp.∀S) means the set of concatenations∃s (resp.∀s) for all s ∈ S. If s is a sequence
of quantifiers, then̄s denotes the result of the replacement of all occurrences of∃ by ∀ and
vice versa ins. The setS̄ consists of all̄s for s ∈ S.

Given a first order formulaA, its set ofsequences of nested quantifiersis denoted by
Nest(A) and defined by induction as follows:

(1) Nest(A) = {ε} if A is atomic; hereε denotes the empty word.

(2) Nest(¬A) = Nest(A).

(3) Nest(A ∧ B) = Nest(A ∨ B) = Nest(A) ∪ Nest(B).

(4) Nest(∃x A) = ∃ Nest(A) andNest(∀x A) = ∀ Nest(A).
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Thequantifier rankof a formulaA, denoted byqr(A), is the maximum length of a string
in Nest(A).

We adopt the notion of thealternation numberof a formula (cf. [20, Definition 2.8]).
Given a sequence of quantifierss, letalt(s) denote the number of occurrences of∃∀ and∀∃
in s. Thealternation numberof a first order formulaA, denoted byalt(A), is the maximum
alt(s) over s ∈ Nest(A). The alternation number has an absolutely clearmeaning for
formulas in thenegation normal form, where the connective¬ occurs only in front of
atomic subformulas. This number is defined for any formulaA so that, ifA is reduced to
an equivalent formulaA′ in the negation normal form, thenalt(A) = alt(A′).

Viewing a formula A as a string of symbols over the countable first order alphabet
(where each variable and each relation is denoted by a single symbol), we denote the
lengthof A by |A|. Note that if one prefers, in a natural way, to encode variable and relation
symbols in a finite alphabet, then the length will increase but stay within|A| log |A|.

We call A an∃-formula (resp.∀-formula) if any sequence inNest(A) with maximum
number of quantifier alternations starts with∃ (resp.∀). We denote the set of formulas in
the negation normal form with alternation number at mostm by Λm. By Λ∃

m (resp.Λ∀
m) we

denote the subset ofΛm consisting of formulas inΛm−1 and∃-formulas (resp.∀-formulas)
in Λm \ Λm−1. We will call formulas inΛ∃

0 andΛ∀
0 existentialanduniversalrespectively.

A prenex formulais a formula with all its quantifiers up front. In this case there
is a single sequence of nested quantifiers and the quantifier rank is just the number
of quantifiers occurring in a formula. LetΣ1 and Π1 denote, respectively, the sets of
existential anduniversal prenex formulas. Furthermore, letΣm (resp.Πm) be the extension
of Σm−1 ∪ Πm−1 with prenex formulas inΛ∃

m−1 (resp.Λ∀
m−1). Note that the classes of

formulasΛm, Λ∃
m, Λ∀

m, Σm, andΠm are defined so that they are closed with respect to
subformulas.

The following lemma is an immediate consequence of the standard reduction of a
formula to the prenex form.

Lemma 2.2. The conjunction ofΣm-formulas (resp.Πm-formulas) is effectively reducible
to an equivalentΣm-formula (resp.Πm-formula). The same holds for the disjunction.�

We write A ≡ B if A andB are logically equivalent formulas andA
.= B if A andB

are literally the same.

Lemma 2.3.

(1) Any formula inΛ∃
m is effectively reducible to an equivalent formula inΣm+1.

(2) Any formula inΛ∀
m is effectively reducible to an equivalent formula inΠm+1.

(3) Any formula inΛm is effectively reducible to an equivalent formula inΣm+2 or, as
well, to an equivalent formula inΠm+2.

Proof. Item 3 follows from Items 1 and 2 asΛm is included both inΛ∃
m+1 andΛ∀

m+1. To
prove Items 1 and 2, we proceed by induction onm.

Consider the base case ofm = 0. Assume thatA ∈ Λ∃
0 and lett = t (A) denote the

total number of quantifiers and connectives∧, ∨ in A. We prove thatA has an equivalent
formula A′ ∈ Σ1 using induction ont . If t = 0, thenA is quantifier free andhence inΣ0.
Let t ≥ 1. Assume thatA

.= ∃x B. Sincet (B) = t (A)−1, the assumption of induction ont
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applies toB. ThereforeB reduces to an equivalent formulaB′ ∈ Σ1 and we setA′ = ∃x B′.
Assume thatA

.= B ∧ C (the case whereA
.= B ∨ C is similar). Neither oft (B) andt (C)

exceedst (A)−1 and, by the assumption of induction ont , for B andC we haveequivalents
B′ andC′ in Σ1. ThenA ≡ B′ ∧ C′ reduces to an equivalent inΣ1 by Lemma 2.2.

The reducibility ofΛ∀
0 to Π1 is proved similarly.

Let m ≥ 1 and assume that Items 1 and 2 of the lemma are true for the preceding value
of m. GivenA ∈ Λ∃

m, we show how to find an equivalent formulaA′ ∈ Σm+1 (the reduction
of Λ∀

m to Πm+1 is similar). We again use induction ont = t (A). If t = 0, thenA is in Σ0.
Let t ≥ 1. If A

.= ∀x B, thenA ∈ Λ∀
m−1 and, by the assumption of induction onm, A has

an equivalentA′ ∈ Πm ⊂ Σm+1. If A
.= ∃x B, A

.= B∧C, or A
.= B∨C, thenB, C ∈ Λ∃

m
and botht (B) andt (C) are smaller thant (A). We are done by the assumption of induction
on t andLemma 2.2. �

A formula with all variables bound is called aclosed formulaor asentence.

Lemma 2.4. If A is a closed prenex formula of quantifier rank q with occurrences of h
binary relation symbols, then it can be rewritten in an equivalent form A′ with the same
quantifier prefix so that|A′| = O(hq22hq2

).

Proof. Let B(x1, . . . , xq) be the quantifier-free part ofA. TheB is a Boolean combination
of m = h

(q
2

)
atomic subformulas and hence is representable as a DNF of length

O(m2m). �

2.3.2. Structures
A relational vocabularyσ is a finite set ofrelation symbolsaugmented with theirarities.

We alwaysassume the presence of the binary relation symbol= standing for the equality
relation anddo not include it inσ . The only exception will be Section 5.4where the
presence or the absence of equality will be stated explicitly.

A structure over vocabularyσ (or an σ -structure) is a set along with relations that
are named by symbols inσ and have the corresponding arities. We mostly deal with the
vocabulary of a single binary relation symbol. A structureover this vocabulary can be
viewed as adirected graph(or digraph). We treatgraphsas structures with a single binary
relation which is symmetric and anti-reflexive. This relation will be called theadjacency
relation and denoted by∼.

If all relation symbols of a sentenceA are from the vocabularyσ andG is anσ -structure,
then A is either true or false onG. In the former caseG is called amodelof A. We also
say thatG satisfies A. We call A valid if all σ -structures satisfyA. We call A (finitely)
satisfiableif it has a (finite) model. Clearly,A is valid iff ¬A is unsatisfiable.

2.3.3. Computability
Whenever we say that something can be doneeffectively, we mean that this can be

implemented by analgorithm. No restrictions on running time or space are assumed.
Professing Church’s thesis, we here do not specify any definition of the algorithm.
Nevertheless, we will refer toTuring machines(seeSection 4.2.1) andrecursive functions
in Sections 4and5. As a basic fact, these two computational models are equally powerful,
under an effective bijection between binary words and non-negative integer numbers.
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Let X be a set of words over a finite alphabet. Thedecision problemfor X is the problem
of recognizing whether or not a given word belongs toX. If there isan algorithm that does
it, the decision problem issolvable(or X is decidable).

Thehalting problemis the problemof deciding, for given Turing machineM and input
word w, whetherM eventually halts onw or runs forever. This is a basic unsolvable
problem. It is well known that, if we fixw to be the empty word, the restricted problem
remains unsolvable.

The (finite) satisfiability problemis the problem of recognizing whether or not a given
sentence is (finitely) satisfiable (we here assume any natural encoding of formulas in a
finite alphabet). Settling Hilbert’sEntscheidungsproblem, Church and Turing proved that
the satisfiability problem is unsolvable. The unsolvability of the finite satisfiability problem
was shownby Trakhtenbrot [29].

A general recursive functionis an everywhere defined recursive function.

2.3.4. The Bernays–Schönfinkel class of formulas and the Ramsey theorem
A class offormulas has thefinite model propertyif every satisfiable formula in the class

has afinite model. By the completeness of the predicate calculus with equality, the set of
valid sentences is recursively enumerable. From here it isnot hard to conclude that, if a
class of formulas has the finite model property, the satisfiability and the finite satisfiability
problems for this class are solvable.

The Bernays–Schönfinkel classconsists of prenex formulas in which the existential
quantifiers all precede the universal quantifiers, that is, this is another name forΣ2.

Proposition 2.5 (The Ramsey Theorem [26] ).1 For each vocabularyσ there is a general
recursive function f: N → N such that the following is true: assume that aσ -sentence A
with equality is in the Bernays–Schönfinkel class. If A has a model of some cardinality
at least f(qr(A)) (possibly infinite), then it has a model in every cardinality at least
f (qr(A)). As a consequence, the Bernays–Schönfinkel class of formulas with equality
has the finite model property and hence both the satisfiability and the finite satisfiability
problems restricted to this class are solvable.

2.3.5. Definability
Let G andG′ be non-isomorphic graphs andA bea first order sentence with equality

over vocabulary {∼}. We saythat A distinguishes G from G′ if A is true onG but false on
G′. By D(G, G′) (resp.Dk(G, G′)) we denote the minimum quantifier rank of a sentence
(resp. withalternation number at mostk) distinguishingG from G′.

We say that asentenceA definesa graphG (up to isomorphism) if A distinguishesG
from any non-isomorphic graphG′. To ensure thatA has no other models except graphs,
we will tacitly assume thatA has formA

.= ∀x(x �∼ x ∧ ∀y(x ∼ y → y ∼ x)) ∧ B.
By D(G) (resp.Da(G)) we denote the minimum quantifier rank of a sentence definingG
(resp. withalternation number at mosta). By L(G) (resp.La(G)) we denote the minimum
length of a sentence definingG (resp. withalternation number at mosta).

1 The combinatorial Ramsey theorem, a cornerstone ofRamsey theory, appeared in this paper as a technical
tool.
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A sentence iscalleddefiningif it defines a graph. Note that any defining sentence must
contain the equality symbol. Let us stress that graphsG′ in the above definition may have
any cardinality.

Lemma 2.6. All finite graphs and only finite graphs possess defining sentences.

Proof. Any finite graph is indeed definable as it has at least the wasteful definition (1).
By theupward Löwenheim–Skolem theorem (see [18, Corollary 2.35]), if a sentence with
equality has an infinite model, it has a model of any infinite cardinality. For this reason, no
infinite graph has a defining sentence in the sense of our definition.�

Lemma 2.7. The classof definingΛ∃
1-sentences is decidable.

Proof. Suppose that we are given a sentenceA ∈ Λ∃
1. By Lemma 2.3(1), we can reduce it

to an equivalent formula in the Bernays–Schönfinkel class and apply the Ramsey theorem.
We are able to recognize whetherA is defining in four steps.

(1) Check whetherA is finitely satisfiable.
(2) If so, trying graphs one by one, we eventually find a graph of the smallest ordern

satisfyingA (this is actually done in the first step, if it is based directly on the Ramsey
theorem).

(3) Check whether there is any other graph of ordern satisfyingA.
(4) If not, check if aΛ∃

1-sentenceA ∧ ∃x1,...,xn+1(
∧

1≤i< j ≤n+1 xi �= x j ) is satisfiable.

If not, and only in this case,A is defining. �

3. The Ehrenfeucht game

In this section we borrow a lot of material from [28, Section 2]. To make our exposition
self-contained, we sketch some proofs that can be found in [28] in more detail.

TheEhrenfeucht gameis played on a pair of structures of the samevocabulary. We give
the definition conforming to the case of graphs.

Let G and H be graphs with disjoint vertex sets. Thek-round Ehrenfeucht game on
G andH , denoted by EHRk(G, H ), is played by two players, Spoiler and Duplicator (he
and she for brevity), withk pairwise distinct pebblesp1, . . . , pk, each given in duplicate.
Spoiler starts thegame. Around consists of a move of Spoiler followed by a move of
Duplicator. At the i -th move Spoiler takes pebblepi , selects one of the graphsG or H ,
and placespi on a vertex of this graph. In response Duplicator should place the other copy
of pi on a vertex of the other graph. It is permissible to place more than one pebble on the
same vertex.

Let ui (resp.vi ) denote the vertex ofG (resp.H ) occupied bypi , irrespectively of which
of the players placed the pebble on this vertex. If

ui = u j iff vi = v j for all 1 ≤ i < j ≤ k,

and the component-wise correspondence(u1, . . . , uk) to (v1, . . . , vk) is a partial isomor-
phism fromG to H , this is a win forDuplicator; Otherwise the winner is Spoiler.
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The a-alternation Ehrenfeucht game onG and H is a variant of the game in which
Spoiler is allowed to switch from one graph to another at mosta times during the game,
i.e., in at mosta rounds he can choose the graph other than that in the preceding round.

Let 0 ≤ s ≤ k, r = k−s, and assume that at the startof the game the pebblesp1, . . . , ps

are already on the board at verticesū = u1, . . . , us of G andv̄ = v1, . . . , vs of H . The
r -round game with this initial configuration is denoted by EHRr (G, ū, H, v̄). We write
G, ū ≡k H, v̄ if Duplicatorhas a winning strategy in this game.

It is not hard to check that≡k is an equivalence relation. Thek-Ehrenfeucht value of a
graphG with verticesu1, . . . , us marked by pebbles is the equivalence class it belongs to
under≡k. We letEhrv(k, s) denote the set of all possiblek-Ehrenfeucht values for graphs
with s marked vertices. LetEhrv(k) = Ehrv(k, 0) denote the set ofk-Ehrenfeucht values
for graphs (with no marked vertex).

Lemma 3.1. Assume that s< k. Let ū = u1, . . . , us and S(G, ū) denote the set of≡k-
equivalence classes of G with s+1 marked vertices̄u, u for all u ∈ G\{u1, . . . , us}. Then
G, ū ≡k H, v̄ iff S(G, ū) = S(H, v̄).

Proof. Consider the game EHRk−s(G, ū, H, v̄). Suppose thatS(G, ū) �= S(H, v̄); for
example, there isu ∈ V(G) suchthat G, ū, u �≡k H, v̄, v for anyv ∈ V(H ). Let Spoiler
select thisu and letv denote Duplicator’s response. From now on the players actually play
EHRk−s−1(G, ū, u, H, v̄, v), where Spoiler has a winning strategy.

Suppose thatS(G, ū) = S(H, v̄). If Spoiler selects, for example, a vertexu ∈ V(G),
then Duplicator responds withv ∈ V(H ) suchthat G, ū, u ≡k H, v̄, v and hence has a
winning strategy in the remaining part of the game.�

Lemma 3.2 ([28, Theorem 2.2.1]). For any s and k, Ehrv(k, s) is a finite set.
Furthermore, let f(k, s) = |Ehrv(k, s)|. Then

f (k, k) ≤ 4(k
2), (6)

f (k, s) ≤ 2 f (k,s+1) (7)

for s < k.

Proof. The bound (6) holds because the≡k-equivalence class ofG with markedu1, . . . , uk

is determined by the equality relation on the sequenceu1, . . . , uk and the induced subgraph
G[{u1, . . . , uk}]. The bound (7) holds because the≡k-equivalence class of an arbitraryG
with markedū = u1, . . . , us is, according toLemma 3.1, determined byS(G, ū), a subset
of Ehrv(k, s + 1). �

As a consequence, we obtain the following bound.

Lemma 3.3 ([28, Theorem 2.2.2]). |Ehrv(k)| ≤ T(k + 2 + log∗ k) + O(1). �

We say that aformula A(x1, . . . , xs) with s free variablesdefinesan Ehrenfeucht value
α ∈ Ehrv(k, s) if A is true ona graphG with variablesx1, . . . , xs assigned vertices
u1, . . . , us for exactly thoseG, u1, . . . , us which are inα.

Lemma 3.4 ([28, Theorem 2.3.2]). For any α ∈ Ehrv(k, s) there is a formula Aα with
qr(Aα) = k − s that definesα. Moreover,
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|Aα| ≤ 18

(
k

2

)
if s = k and (8)

|Aα| ≤ f (k, s + 1)
(
max

{ |Aβ | : β ∈ Ehrv(k, s + 1)
} + 10

)
if s < k. (9)

Proof. The bound (8) holds because everyα ∈ Ehrv(k, k) is definedby a formula of the
type ∧

1≤i< j ≤k

(∗(xi = x j ) ∧ �(xi ∼ x j )),

where∗ and� are¬ for some(i , j ) and nothing for the others, depending on adjacencies
among the marked vertices of aG, u1, . . . , uk in α.

Let s < k and assume that everyβ ∈ Ehrv(k, s + 1) has a defining formula
Aβ(x1, . . . , xs, x) of quantifier rankk − s − 1. Consider anα ∈ Ehrv(k, s) and choose
a representativeG, ū of α. Define S(α) = S(G, ū), where the right hand side is as in
Lemma 3.1. By this lemma, the definition does not depend on a particular choice ofG, ū.
We set

Aα(x1, . . . , xs)
.=

∧
β∈S(α)

∃x Aβ(x1, . . . , xs, x) ∧
∧

β /∈S(α)

¬∃x Aβ(x1, . . . , xs, x).

It is clear thatG with designatedū = u1, . . . , us satisfiesAα iff the set of Ehrenfeucht
values with additional designatedu is equal toS(α). By Lemma 3.1, thelatter condition is
true iff G, ū has Ehrenfeucht valueα. �

Proposition 3.5. Suppose that G and H are non-isomorphic graphs.

(1) Let R(G, H ) denote the minimum k such that G and H have different k-Ehrenfeucht
values. Then D(G, H ) = R(G, H ). In other words, D(G, H ) equals the minimum k
such that Spoiler has a winning strategy inEHRk(G, H ).

(2) Da(G, H ) equals the minimum k such that Spoiler has a winning strategy in the
a-alternationEHRk(G, H ).

We refer the reader to [28, Theorem 2.3.1] for the proof of the first claim and to [20] for
the second claim.

Proposition 3.6.

D(G) = max{D(G, H ) : H and G are non-isomorphic} ,

Da(G) = max{Da(G, H ) : H and G are non-isomorphic} .

The first equality can be restated as follows: D(G) equals the minimum k such that the
k-Ehrenfeucht value of G contains only graphs isomorphic to G.

Proof. We give a proof of the first equality that can be easily adopted for the second
equality. Denote the maximum in the right hand side byk. We havek ≤ D(G) as a matter
of definition. Conversely, letα ∈ Ehrv(k) be the class containingG. By Proposition 3.5,
G is, up to isomorphism, the only member ofα. For eachβ �= α in Ehrv(k), fix a
representativeHβ . Let Cβ be a sentence of quantifier rank at mostk distinguishingG from
Hβ. We useLemma 3.2saying thatEhrv(k) is finite. The conjunction of allCβ defines
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G and has quantifier rankk. Thus, D(G) ≤ k. (Alternatively, we could use the known
fact that, over a finite vocabulary, there are only finitely many inequivalent sentences of
bounded quantifier rank; cf.Lemma 5.6.) �

4. A superrecursive gap: simulating a Turing machine

Definition 4.1. We define thesuccinctness function s(n) (for formula length) by

s(n) = min|G|=n
L(G).

The variants with bounded alternation number are defined by

sa(n) = min|G|=n
La(G)

for eacha ≥ 0.

It turns out thats(n) can be so small with respect ton that the gap between the two
numbers cannot be bounded by any recursive function.

Theorem 4.2. There is no general recursive function f such that

f (s3(n)) ≥ n for all n. (10)

Lemma 4.3 (Simulation Lemma). Given a Turing machine M with k states, one can
effectively construct a sentence AM with single binary relation symbol∼ and equality
so that the followingconditions are met.

(1) qr(AM ) = k + 16.

(2) |AM | = O(k2).

(3) alt(AM ) = 3.

(4) AM is effectively reducible to an equivalent prenex formula PM whose quantifier prefix
has length k+ O(1), begins with k existential quantifiers, and has three quantifier
alternations.

(5) Any model of AM is a graph. If M halts on the empty input word, then AM has a unique
model GM and the order of GM is bigger than the running time of M.

(6) M halts on the empty input word iff AM has a finite model.

Proof of Theorem 4.2. Let g(k) denote the longest running time on the empty input word
ε of a k-state Turing machine (non-halting machines are excluded from consideration).
Recognizing whether or not a given Turing machine withk states halts onε easily reduces
to computation ofg(k). As this variant of the halting problem is well known to be
undecidable, the functiong(k) cannot be bounded from above by any general recursive
function. For eachk, fix a machineMk with k states whose running time attainsg(k).
Let AMk be as inthe Simulation Lemma,Gk be the model ofAMk , andnk be the order
of Gk. Let l (k) = ck2 be the upper bound for|AMk | ensured by the lemma. Note thatAMk

definesGk.
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Suppose on the contrary that (10) is true forsome general recursivef . Sinces3(nk) ≤
|AMk | ≤ l (k), for everyk we have

g(k) < nk ≤ f (s3(nk)) ≤ max
i≤l(k)

f (i ),

a contradiction. �

The proof of the Simulation Lemma takes the rest of this section.

4.1. Gadgets

We enrich our language with connectives→ and ↔ for the implication and the
equivalence. Since the alternation number was defined for formulas with connectives
¬,∧,∨, we should stress that→ and↔ are used as shorthand for their standard definitions
through¬,∧,∨. We introduce the new uniqueness quantifier∃! via

∃!x F(x)
.= ∃x F(x) ∧ ∀x∀y(F(x) ∧ F(y) → x = y)

for any formulaF with a free variablex and with no free occurrences ofy. Note that
one occurrence of the uniqueness quantifier contributes 2in the quantifier rank and 1 in
the alternation number. We use relativized versions of the existential and the universal
quantifiers in the standard way:

∃C(x)F(x)
.= ∃x(C(x) ∧ F(x)),

∀C(x)F(x)
.= ∀x(C(x) → F(x)).

To ensurethat any model ofAM is a graph, we put inAM the two graph axioms (the
irreflexivity and the symmetry of the relation∼).

4.1.1. Ordering
We give a formula P(x, x′) with two free variablesx andx′ that, in any model, shall

determine an order on the neighborhood ofx. Let X = {y : y ∼ x} andX′ = {z : z ∼ x′}.
ThenP(x, x′) is the conjunction of the following:

(P1) {x, x′}, X, X′ are all disjoint and each of them is independent.
(P2) ∀y∈X∃z∈X′ y ∼ z.
(P3) ∃y∈X∃!z∈X′ y ∼ z.
(P4) ∃y∈X∀z∈X′ y ∼ z.
(P5) ∀y1∈X∀y2∈X[∀z∈X′(y1 ∼ z → y2 ∼ z) ∨ ∀z∈X′(y2 ∼ z → y1 ∼ z)].
(P6) ∀y1∈X∀y2∈X[y1 �= y2 → ∃z∈X′(y1 ∼ z ↔ y2 �∼ z)].
(P7) ∀y∈X[∃z∈X′ y �∼ z → ∃y+∈X∃!z∈X′(y+ ∼ z ∧ y �∼ z)].
(P8) ∀y∈X[∃!z∈X′ y ∼ z ∨ ∃y−∈X∃!z∈X′(y ∼ z ∧ y− �∼ z)].
Note thatqr(P) = 4, alt(P) = 2 (contributed by (P7) and (P8)), and|P| = O(1).

Consider finite models ofP(x, x′). For y ∈ X let N∗(y) be thosez ∈ X′ adjacent to
y. The N∗(y) are distinct (P6), linearly ordered under inclusion (P5), are nonempty (P2),
include a singleton (P3) and all ofX′ (P4), and the set of all cardinalities|N∗(y)| has no
gaps (either (P7) or (P8)). So we must have|X| = |X′| and the elements can be ordered,
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x1, . . . , xs, x′
1, . . . , x′

s, so thatxi , x′
j are adjacent precisely whenj ≤ i . We induce onX a

binary relation≤ defined by

y1 ≤ y2
.= ∀z∈X′(y1 ∼ z → y2 ∼ z).

In any model (even infinite) the properties (P1)–(P8) assure that≤ is a linear order with
a least and greatest element. Furthermore, everyy has a successory+ and a predecessor
y− except wheny is the last or first element ofX respectively.

4.1.2. Coordinatization
We now give aformulaCOOR(x, x′, t, t ′, z) that shall coordinatize the neighborhood of

z. Let X, X′, T, T ′, Z denote the neighborhoods ofx, x′, t, t ′, z respectively. ThenCOOR
is the conjunction of the following:

(C1) x, x′, t, t ′, z, X, X′, T, T ′, Z are all disjoint.Z is an independent set. All neighbors
of Z are in{z} ∪ X ∪ T . There isno edge betweenX ∪ X′ andT ∪ T ′.

(C2) P(x, x′) ∧ P(t, t ′).
(C3) ∀z∈Z(∃!x∈Xz ∼ x ∧ ∃!t∈T z ∼ t).
(C4) ∀x∈X∀t∈T∃!z∈Z(z ∼ x ∧ z ∼ t).

Thus, eachz ∈ Z has a unique pair of coordinates(x, t) and each(x, t) corresponds to a
uniquez. Note thatqr(COOR) = qr(P) = 4 andalt(COOR) = alt(P) = 2.

4.1.3. New functional and constant symbols
To facilitate further description ofAM , we will use new functional symbols. In

particular, this will allow us to have new constant symbols as symbols of nullary functions.
Writing v̄, we will mean a finite sequence of variablesv1, v2, . . .. As soon as a statement

∀ȳ∃!x F(x, ȳ) is put in AM or is derivable from what is already put inAM , we may want
to denote this uniquex by φ(ȳ) and useφ as a new functional symbol in the standard way.
That is, if Q(u, z̄) is a formula with free variablesu, z̄, then

Q(φ(ȳ), z̄)
.= ∃x(F(x, ȳ) ∧ Q(x, z̄)) or

Q(φ(ȳ), z̄)
.= ∀x(F(x, ȳ) → Q(x, z̄)).

Both variants are admissible and anappropriate choice of one of them may reduce the
alternation number of a formula. Furthermore, in this way we can express compositions of
several functions (e.g. [18, Section 2.9]).

In particular, in any model ofCOOR(x, x′, t, t ′, z) we let 1, 2 denote the first two
elements ofX (under≤) and 0 (it will represent time zero) the first element ofT . The
same characterω will be used for the last element ofX or T , dependent on context. Forv
in X or T , v− andv+ are respectively its predecessor and successor (when defined). The
notation(x, t) will be used as a binary function symbol with meaning as explained in the
preceding subsection.

4.2. Capturing a computation by a formula

4.2.1. Definition of a Turing machine
For technical reasons, we prefer to use the model of a Turing machine where thetapeis

infinite in one direction. It is known (e.g. [15, Section 41]) that it is equivalent to the model
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with the tape infinite in both directions. At the start the tape consists of the special “Left
End of Tape” symbolL, followed by an input word written down in the binary alphabet
{a, b}, and followed onward by all“blank” symbolsB. A symbol occupies one cell. Let
s1, . . . , sk bestatesof a Turing machineM, with s1 the initial state andsk thefinal state.
At the startM is in states1 and its head is at the firstB. A machine is defined by a set of
instructions of the following type, whereα, β ∈ {L, a, b, B}.
si αβsj : If in statesi reading a symbolα, overwrite β and go to statesj .
si α Right sj : If in statesi reading a symbolα, move thehead one cell to the right and go

to statesj .
si α Left sj : If in statesi reading a symbolα, move thehead one cell to the left and go to

statesj .

If α = L in an instruction of the first type, thenβ = L. This is the only case whenβ = L.
There is no instruction of the third type (“move to the left”) forα = L. With this exception,
for everyi < k andα there is a unique instruction for what to do in statesi readingα. The
machine halts immediately after coming to statesk. If M halts, its running timeis the
number of instructions executed before termination.

4.2.2. Formula AM
For notational simplicity, we use the same name for variables and corresponding

semantical objects (ingredients ofM and vertices of a graphGM ). The vertexH below
shall be used to keep track of the tape header.AM is the conjunction of the two graph
axioms and a long formula of the form

∃x,x′,t,t ′,z,s1,...,sk,a,b,B,L ,H BM (x, x′, t, t ′, z, s1, . . . , sk, a, b, B, L, H ).

The formula BM whose all free variables are listed above is the conjunction of the
following subformulas, whereX, X′, T, T ′, Z denote, as before, the neighborhoods of
x, x′, t, t ′, z respectively.

(A1) x, x′, t, t ′, z, s1, . . . , sk, a, b, B, L, H, X, X′, T, T ′, Z are disjoint and consist ofall
the vertices of the graph.
(A2) COOR(x, x′, t, t ′, z).
(A3) Al l of the neighbors ofa, b, B, L, H are inZ.
(A4) For all x ∈ X andt ∈ T the vertex(x, t) is adjacent to precisely one ofa, b, B, L.
We will write VAL(x, t) for this value, which represents the symbol on the Turing machine
at position (cell of the tape)x and time t . Note that, asVAL(x, t) ranges over four
possible valuesL, a, b, B, using this functional symbol requires no extra quantification.
For example, the formulaVAL(x, t) = α reads just(x, t) ∼ α.
(A5) Al l neighbors ofH are inZ. For all t ∈ T there is auniquex ∈ X for which (x, t)
is adjacent toH . We write HP(t) for this x, which represents the header position. Thus,
HP(t) = x reads(x, t) ∼ H . We shall write VAL(t) = VAL(HP(t), t), the symbol that the
header is looking at timet . If HP is used withinVAL, it takes one extra quantifier. Note that
a subformulaVAL(t) = α has quantifier rank 2 and alternation number 0. Furthermore,
VAL(t+) = α hasquantifier rank 4 and can be written with alternation number 0.
(A6) The neighbors ofs1, . . . , sk are all inT . For all t ∈ T precisely one ofs1, . . . , sk
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is adjacent tot . We write ST(t) for this si , which represents the state at timet . Note that
ST(t) = s

.= t ∼ s.

We want the Turing machine to start in the standard position:
(A7) VAL(1, 0) = L ∧ ∀x �=1VAL(x, 0) = B ∧ HP(0) = 2 ∧ ST(0) = s1.
We want the Turing machine to end in the final state and not be there before that:
(A8) ∀t∈T (ST(t) = sk ↔ t = ω).
We want valueson the tape not to change except (possibly) at the header position:
(A9) ∀t∈T,t �=ω∀x∈X(x �= HP(t) → VAL(x, t+) = VAL(x, t)).
We want the rightmost spot on the tape to be used (we need this for uniqueness of the
model; we do not want to allow superfluous blanks):
(A10) ∃t∈TVAL(ω, t) �= B.
We need that the instructions would not push the Turing machine to the right ofx = ω. For
everysi , α such that when at statesi and valueα the instruction would push the header to
the rightwe have
(A11) ¬∃t∈T (VAL(t) = α ∧ ST(t) = si ∧ H P(t) = ω).

We are down to the core workings of the Turing machine. For each instruction of the
first type we have
(A12) ∀t∈T∀x∈X(ST(t) = si ∧ HP(t) = x ∧ VAL(t) = α → ST(t+) = sj ∧ VAL(t+) =
β ∧ HP(t+) = x).
For each instruction of the second type we have
(A13) ∀t∈T∀x∈X(ST(t) = si ∧ HP(t) = x ∧ VAL(t) = α → ST(t+) = sj ∧ HP(t+) =
x+ ∧ VAL(x, t+) = α).
For each instruction of the third type we have
(A14) ∀t∈T∀x∈X(ST(t) = si ∧ HP(t) = x ∧ VAL(t) = α → ST(t+) = sj ∧ HP(t+) =
x− ∧ VAL(x, t+) = α).

4.2.3. Proof of the Simulation Lemma

Straightforward inspection shows thatqr(BM ) = 6, contributed, for example, by (A9).
This gives Item 1 of the lemma. Since we treat a variable as a single symbol, (A1) and
(A6) have lengthO(k2), (A11)–(A14) have lengthO(k), and all the others have constant
length. This gives Item 2. Straightforward inspection shows thatalt(BM ) = 2, contributed
by (A2). This gives Item 3.

Item 4 requires a bit of extra work. AsAM ∈ Λ∃
3, Lemma 2.3implies that AM is

reducible to an equivalent prenex formula with quantifier prefix∃∗∀∗∃∗∀∗. We make a
stronger claim that one can achieve the prefix∃∗∀O(1)∃O(1)∀O(1). Note that BM has a
constant number of conjunctive members withconstant length and hence they contribute
a constant number of quantifiers. (A1) and (A6), though they have length dependent onk,
contain a constant number of quantifiers. The remainder, (A11)–(A14), should be tackled
with more care as every one of these components, though it has a constant number of
quantifiers, occurs inBM in O(k) variantsfor various pairssi , α. Fortunately, all these
occurrences can be replaced by a single formula with a constant number of quantifiers.
For example, introducing two new variabless andc, wecan replace the conjunction of all
variantsof (A11) by
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¬∃t∈T∃s∃c

[∨
si ,α

(s = si ∧ c = α) ∧ VAL(t) = c ∧ ST(t) = s ∧ HP(t) = ω

]
,

where thedisjunction is over the specified pairssi , α.
Let us turn to Items 5 and 6. It should be clear that, ifM halts, its computation is

converted to a graph satisfyingAM , whose order exceeds the running time. Such a graph is
unique up to isomorphism because the adjacencies of any finite model ofAM must mirror
the actions of the Turing machine. For the same reason, any finite model ofAM is converted
into a halting computation ofM and hence, ifAM has a finite model, thenM halts onthe
empty input. It remains to note that, ifM halts, thenAM has no infinite model. Letm
be the running time ofM. In any model of AM , the firstm values oft mustsimulatem
steps ofM ’s computation. By (A8), the setT is therefore finite. By (A10), the cardinality
of X cannot exceed the cardinality ofT and henceX is finite too. It immediately follows
that the other components of the model,X′, T ′, and Z, are finite as well. The proof is
complete.

5. Other consequences of the Simulation Lemma

5.1. There are succinct definitions by prenex formulas

Due to (1), any graph of ordern is definable by a prenex formula of quantifier rank
n + 1 with alternation number 1. Though the class of prenex formulas may appear rather
restrictive, it turns out that, if one is allowed to increase the alternation number to 3, then
there are graphs definable by prenex formulas with very small quantifier rank.

Definition 5.1. Let Lprenex
a (G) denote the minimum length of a closed prenex formula with

alternation number at mosta that defines a graphG. Furthermore,

sprenex
a (n) = min|G|=n

Lprenex
a (G).

Theorem 5.2. There is no general recursive function f such that f(sprenex
3 (n)) ≥ n for

all n.

Proof. We proceed precisely as in the proof ofTheorem 4.2but using, instead ofAM ,
the prenex formula PM given by the Simulation Lemma. We will need a recursive bound
|PMk | ≤ l (k). Wecan takel (k) = ck24k2

owing toLemma 2.4. �

5.2. The set of defining sentences is undecidable

Theorem 5.3. The classof defining sentences is undecidable.

Proof. Given a Turing machineM, consider a sentenceAM as in the Simulation Lemma.
If M halts on the empty input,AM is defining. Suppose thatM never halts. Then either
AM has no model or it has an infinite model. ByLemma 2.6, AM is not defining in both
cases. We have thereby reduced the halting problem (for the empty input) to the decision
problem for the set of defining sentences.�

Note a partial positive result given byLemma 2.7.
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5.3. D0(G) and D(G) are not recursively related

Obviously,D(G) ≤ D0(G) for all graphsG. How far apart from each other can these
two values be? Is there a converse relationD0(G) ≤ f (D(G)), for somegeneral recursive
function f ? The answer is “no”. We will actually prove a stronger fact. LetD1/2(G) denote
the minimum quantifier rank of aΛ∃

1-sentence that definesG. Notice the hierarchy

D(G) ≤ D3(G) ≤ D2(G) ≤ D1(G) ≤ D1/2(G) ≤ D0(G).

We are able to show a superrecursive gap even betweenD3(G) andD1/2(G).

Theorem 5.4. There is no general recursive function f such that

D1/2(G) ≤ f (D3(G))

for all graphs G.

Lemma 5.5. The finite satisfiability of aΛ∃
1-sentence is decidable.

Proof. By Lemma 2.3, a Λ∃
1-sentence effectively reduces to an equivalent formula in the

Bernays–Schönfinkel class. The finite satisfiability of the latter is decidable by the Ramsey
theorem. �

The next lemma is related to the well-known fact that, over a finite vocabulary,
there are only finitely many pairwise inequivalent sentences of bounded quantifier rank
(cf. [2, Lemma 4.4]).

Lemma 5.6. Given m ≥ 0, one can effectively construct a finite set Um consisting of
Λ∃

1-sentences of quantifier rank m so that everyΛ∃
1-sentence of quantifier rank m has an

equivalent in Um.

Proof. Any sentenceA of quantifier rankm can be rewritten in an equivalent formA′
so thatA′ uses at mostm variables, where different occurrences of the same variable are
not counted (see e.g. [21, Proposition 2.3]). Referring to this fact, we will put inUm only
sentences over the variable set{x1, . . . , xm}. We now prove the lemma in a stronger form
saying that, for eachm andk such that 0 ≤ k ≤ m, one can construct a finite setUm,k

which is universal for the class ofΛ∃
1-formulas of quantifier rankk over the variable set

{x1, . . . , xm} with preciselyk variables bound.
We proceed by induction onk. Consider the base case ofk = 0. There area = 2

(m
2

)
atomic formulasxi ∼ x j and xi = x j . Any quantifier-free formula is a Boolean
combination of these and can be represented by a perfect DNF (except the totally false
formula for which we fix representationx1 = x1 ∧ x1 �= x1). The setUm,0 consists of all
22a

such expressions.
Um,k will consist of two parts,U∃

m,k andU∀
m,k, the former for formulas with at least one

existential quantifier and the latter for formulas with no existential quantifier. Ifk = 0,
we haveU∃

m,0 = ∅ andU∀
m,0 = Um,0. Assume thatk ≥ 1 andUm,k−1 has already been

constructed. We constructUm,k in four steps.

(1) Put inU∃
m,k the formulas∃xi A for all A ∈ Um,k−1 andi ≤ m such that no occurrence

of xi in A is bound.
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(2) Put inU∀
m,k the formulas∀xi A for all A ∈ U∀

m,k−1 andi ≤ m such that no occurrence
of xi in A is bound.

(3) Put inU∃
m,k all monotone Boolean combinations of formulas fromU∃

m,k andU∀
m,k as

constructed in Steps 1 and 2 with at least one formula fromU∃
m,k involved.

(4) Put inU∀
m,k all monotone Boolean combinations of formulas fromU∀

m,k as constructed
in Step 2.

Finally, to obtainUm exactly as claimed in the lemma, we setUm = Um,m. �

Proof of Theorem 5.4. Suppose on the contrary that such anf exists. Using thef , we will
design an algorithm for the halting problem, contradicting the unsolvability of the latter.

Given a Turing machineM, we construct the sentenceAM as in the Simulation Lemma.
Recall that

• alt(AM ) = 3;
• if M halts on the empty input, thenAM defines a finite graphGM ;
• if M does not halt, thenAM has no finite model.

Write k = qr(AM ) andm = maxi≤k f (i ). Thus, if GM exists, thenD3(GM ) ≤ k and, by
the assumption,D1/2(GM ) ≤ m.

Construct Um as in Lemma 5.6and add to every sentence inUm the two graph
axioms. We know thatUm contains a sentence definingGM and this will help us to con-
struct this graph (if it exists). Remove fromUm all finitely unsatisfiable formulas. This task
is tractable byLemma 5.5. For every remaining sentence, by brute-force search we eventu-
ally find a finite graph satisfying it (we need one model for every sentence and do not care
that some sentences may have other models). LetG1, . . . , Gl be the list of these graphs.

If M halts, one of theGi ’s coincides withGM and satisfiesAM . If M does not, none
of the Gi ’s satisfies AM . Thus, the verification of whetherAM is true onone of theGi ’s
allows us to recognize whetherM halts on the empty input.�

Corollary 5.7.

(1) There is no general recursive function f such that D0(G) ≤ f (D(G)) for all
graphs G.

(2) There is no general recursive function f such that D0(G, G′) ≤ f (D(G, G′)) for all
non-isomorphic G and G′.

Proof. (1) Suppose on the contrary that such anf exists. Then we would haveD1/2(G) ≤
D0(G) ≤ f (D(G)) ≤ maxi≤D3(G) f (i ), contradictory toTheorem 5.4.

(2) Again, suppose that such anf exists. By Proposition 3.6, D0(G) = D0(G, G′)
for someG′. It follows thatD0(G) ≤ f (D(G, G′)) ≤ maxi≤D(G) f (i ), contradictory to
Item 1. �

It is also worth noting thefollowing fact.

Theorem 5.8. D0(G) and D1/2(G) are computable functions of graphs.

Proof. We prove the theorem for D1/2(G); for D0(G) the proof is similar. Starting from
m = 2, we trace through the universal setUm given byLemma 5.6and, for each sentence
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A ∈ Um, check whetherG satisfiesA and, if so, whetherA is defining. The latter can be
done on account ofLemma 2.7. If no suchA is found, we conclude thatD1/2(G) > m and
increasem by 1. �

Remark 5.9. A variant of Theorem 5.4for the formula length is also true, even with a
simpler proof (no reference toLemma 5.6is needed).

5.4. An undecidable fragment of the theory of finite graphs

Given a class ofσ -structuresC, let Sat(C) (resp.Sat=(C)) be the set of formulas over
σ without equality (resp. with equality) that have a model inC. Furthermore, letSatfin(C)

(resp.Sat=fin(C)) be the set of formulas overσ without equality (resp. with equality) that
have a finite model inC. If X is one of the aforementioned sets andF is a class of formulas
overσ , wecall the intersectionF ∩ X the F-fragment of X. We will be interested in the
case whereF is aprefix class, that is, consists of prenex formulas whose quantifier prefix
agrees with a given pattern. Describing such a pattern, we use∀∗ or ∃∗ to denote a string
of all ∀ or all ∃ of any length.

Let D (resp.S) denote the class of structures consisting of a single binary relation
(resp. symmetric binary relation). In other words,D is the class of directed graphs. ByG
we denote the class of graphs, i.e., structures consisting of a single irreflexive symmetric
relation.

On the basis ofChurch and Turing’s solution of Hilbert’sEntscheidungsproblem,
Kalmár [13] proved thatSat(D) is undecidable. Following the Kalmár result and the
Trakhtenbrot theorem [29], Vaught [30] proved that the setSatfin(D) and the set of formulas
not in Sat(D) are recursively inseparable, that is,no decidable set contains the former
and is disjoint with the latter. In particular, bothSatfin(D) andSat(D) are undecidable.
Currently a complete classification of prefix fragments ofSat(D), Satfin(D), Sat=(D), and
Sat=fin(D) is known (see [1], a reference book on the subject).

Church and Quine [3] established the undecidability ofSat(S). Note that this result is
easily extended toSat=(G) (see also [24] whose method works also forSat=fin(G)). The
undecidability ofSat(G) was proved by Rogers [27]. Lavrov [16] (see also [6, Theorem
3.3.3]) improved this by showing the recursive inseparability ofSatfin(G) and the set of
formulas not inSat(G).

Lavrov’s proof provides us with a reduction of the decision problem forD to the
decision problem forG. If combined with the known results on undecidable fragments of
Satfin(D), this givesus some undecidable fragments ofSatfin(G), for example,∀9∃∗∀∗∃∗.
However, this method apparently cannot give undecidable fragments with less than two
star symbols. Gurevich [9,10] proves that the∀5∃∗-fragments ofSatfin(G) andSat(G) are
undecidable. Our Simulation Lemma has relevance to this circle of questions.

Theorem 5.10. For some l, m, and n, the∃∗∀l ∃m∀n-fragment of Sat=fin(G) is undecidable.

Proof. By the Simulation Lemma, a Turing machineM halts on the empty input iff the
formulaAM has a finite graph as a model. Thus, the conversion ofAM to a prenex formula
according to Item 4 of the Simulation Lemma reduces this variant of the halting problem
to the satisfiability problem for∃∗∀l ∃m∀n-formulas over finite graphs.�
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The theorem should be contrasted with the decidability of the∃∗∀∗-fragment, which
follows from the Ramsey theorem and the factthat the class of graphs is definable by
a ∀2-formula. We do not try to specify numbersl , m, n since the values derivable from
our proof are, though not so big, surely improvable by extra technical efforts. Note that a
variant of thetheorem forSatfin(D) is known tobe true with best possiblel = m = n = 1
(see [1, Theorem 3.3.2], which is Surányi’s theorem extended to the finite satisfiability by
Gurevich).

Note another equivalent form ofTheorem 5.10. LetTh=
fin(G) denote thefirst order theory

of finite graphs with equality, i.e., the set of first order sentences with relation symbols∼
and= that are true on all finite graphs. Observe that a sentenceA is in Th=

fin(G) iff ¬A is
not inSat=fin(G). It follows that the∀∗∃l ∀m∃n-fragment ofTh=

fin(G) is undecidable.

6. The succinctness function over trees: upper bound

We define a variant of the succinctness function for a class of graphsC (with respect to
the quantifier rank) by

q(n; C) = min{D(G) : G ∈ C, |G| = n} .

We here prove a log-star upper bound for the class of trees.

Theorem 6.1. q(n; trees) < log∗ n + 5.

The proof takes the rest of this section.

6.1. Rooted trees

A rooted treeis a tree with one distinguished vertex, which is called theroot. If T is a
tree andv ∈ V(T), thenTv denotes the treeT rooted atv. An isomorphism of rooted trees
should not only preserve the adjacency relation but also map one root to the other. Thus,
for distinct u, v ∈ V(T), rooted treesTu andTv, though having the same underlying tree
T , may be non-isomorphic.

An automorphismof a rooted tree is an isomorphism from the tree onto itself.
Obviously, any automorphism leaves the root fixed. We call a rooted treeasymmetricif
it has no non-trivial automorphisms, thatis, no automorphisms except the identity.

The depthof a rooted treeTv, which isdenoted bydepthTv, is the eccentricity of its
root. If (v, . . . , u, w) is a path inTv , thenw is called achild of u. We define the relation of
being adescendantto be the transitive and reflexive closure of the relation of being a child.

If w ∈ V(Tv), thenTv(w) denotes the subtree ofTv spanned by the set of all descendants
of w and rooted atw. If w is a child ofu ∈ V(Tv), thenTv(w) is called au-branchof Tv .

6.2. Diverging trees

We call Tv divergingif, for every vertexu ∈ V(Tv), all u-branches ofTv are pairwise
non-isomorphic.

Lemma 6.2. A rooted tree Tv is diverging iff itsv-branches are pairwise non-isomorphic
and each of them is diverging.
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Proof. Assume thatTv is diverging. Its v-branches are pairwise non-isomorphic by the
definition. Furthermore, letTv(w) be av-branch ofTv and u ∈ V(Tv(w)). Note that
anyu-branch ofTv(w) is also au-branch ofTv . Therefore, all of them are pairwise non-
isomorphic andTv(w) is diverging.

For theother direction, consider a non-root vertexu of Tv and letTv(w) be thev-branch
of Tv containingu (w = u is possible). Note that anyu-branch ofTv is also au-branch
of Tv(w). Therefore, all of them are pairwise non-isomorphic and we conclude thatTv is
diverging. �

Lemma 6.3. A rooted tree Tv is diverging iff it is asymmetric.

Proof. We proceed by induction ond = depthTv. Thebase case ofd = 0 is trivial. Let
d ≥ 1.

Assume thatTv is diverging. By Lemma 6.2, no automorphism ofTv can map one
v-branch onto anotherv-branch. By the same lemma and the induction assumption, no
non-trivial automorphism can map av-branch onto itself. Thus,Tv has no non-trivial
automorphism.

Assume now thatTv is asymmetric. Hence allv-branches are pairwise non-isomorphic
and each of them is asymmetric. By the induction assumption, eachv-branch is diverging.
By Lemma 6.2we conclude thatTv is diverging. �

We now carry over the notion of a diverging tree to (unrooted) trees. Clearly, any
automorphism of a treeT either leaves central verticesc1 andc2 fixed or transposes them
(c1 = c2 if the diameterd(T) is even). If d(T) is odd,Lemma 6.3implies thatTc1 andTc2

are simultaneously diverging or not. This makes the following definition correct: a treeT
is divergingif the rooted treeTc for a central vertexc is diverging. It is not hard to see that
T is diverging iff one of the following conditions is met:

(1) T has no non-trivial automorphism.
(2) T has exactly one non-trivial automorphism and this automorphism transposes two

central vertices ofT .

6.3. Spoiler’s strategy

In this section we exploit the characterization of the quantifier rank of a distinguishing
formula as the length of the Ehrenfeucht game (seeProposition 3.5).

Lemma 6.4. Suppose that in the Ehrenfeucht game on(G, G′) some twovertices x, y ∈
V(G) at distance k were selected so that their counterparts x′, y′ ∈ V(G′) are at a strictly
larger distance (possibly infinity).

ThenSpoiler can win in at most
logk� extra moves, playing all the time inside G.

Proof. Spoiler setsu1 = x, u2 = y, v1 = x′, v2 = y′, and places a pebble on the middle
vertexu in a shortest path fromu1 to u2 (or either of the two middle vertices ifd(u1, u2) is
odd). Letv ∈ V(G′) be selected by Duplicator in response tou. By thetriangle inequality,
we haved(u, um) < d(v, vm) for m = 1 or m = 2. For suchm Spoiler resetsu1 = u,
u2 = um, v1 = v, v2 = vm and applies the same strategy once again. Therewith Spoiler



96 O. Pikhurko et al. / Annals of Pure and Applied Logic 139 (2006) 74–109

ensures that, in each round,d(u1, u2) < d(v1, v2). Eventually, unless Duplicator loses
earlier,d(u1, u2) = 1 while d(v1, v2) > 1, that is, Duplicator fails to preserve adjacency.

To estimate the number of moves made, notice that initiallyd(u1, u2) = k and for each
subsequentu1, u2 this distance becomes at mostf (d(u1, u2)), where f (α) = (α + 1)/2.
Therefore the number of moves does not exceed the minimumi suchthat f (i )(k) < 2. As
( f (i ))−1(β) = 2i β − 2i + 1, the latter inequality is equivalent to 2i ≥ k, whichproves the
bound. �

Note that the bound ofLemma 6.4is tight; more precisely, it cannot be improved to

logk� − 1. For example, letCn denote a cycle of lengthn and 2Cn the disjoint union
of two such cycles. It is known (e.g. [28, Proof of Theorem 2.4.2] or [4, Example2.3.8])
that Duplicator can survive in the Ehrenfeucht game onC2k+1 andC2k+2 in more than
logk + 1 rounds for any strategy of Spoiler, in particular, when Spoiler begins with
selecting two antipodal vertices inC2k+2. Furthermore, ifd(x′, y′) = ∞, Duplicator can
be persistent as well. For example, she can survive in the game onC2k and 2C2k during
�log(2k − 1) rounds for any strategy of Spoiler, in particular, when Spoiler’s first move is
in one component of 2C2k and his second move is in the other component of 2C2k (e.g. [4,
Example 2.3.8]).

Lemma 6.5. If graphs G and G′ have different diameters (including the case where G is
connected and G′ is disconnected), then D1(G, G′) ≤ 
logd(G)� + 2.

Proof. Assume thatd(G) < d(G′). Spoiler begins by selecting two vertices at distance
d(G) + 1 in G′, then jumps toG, anduses the strategy ofLemma 6.4. �

Lemma 6.6. If G is a tree, G′ is a connected non-tree, and d(G) = d(G′), then
D0(G, G′) < 
logd(G)� + 4.

Proof. Denotek = d(G) = d(G′). Let C be a shortestcycle in G′. Notice thatC has
length at most 2k + 1. Spoiler begins by selecting inC a vertexz′ along with its neighbors
x′ andy′. Let z, x, andy be the corresponding responses of Duplicator inG. The vertex
z cannot be a leaf ofG, or else Duplicator has lost. From now on Spoiler plays all the
time in H ′ = G′ − z′ and Duplicator is forced to play inH = G − z. In thesegraphs
d(x′, y′) ≤ 2k − 1 andd(x, y) = ∞. Therefore the strategy ofLemma 6.4applies and
Spoiler wins in at most
log(2k − 1)� extra moves. �

Lemma 6.7. Let T and T′ be two non-isomorphic diverging trees with d(T) = d(T ′) (and
hence r(T) = r (T ′)). Then D(T, T ′) ≤ r (T) + 1.

Proof. In the first move Spoiler selectsx, a central vertex ofT . Duplicator’s response,
x′, should be a central vertex ofT ′ because otherwise Spoiler selects a vertexy′ in T ′
with d(x′, y′) > r (T) and applies the strategy ofLemma 6.4. We will denote the vertices
selected by the players inT and T ′ during thei -th round byxi and x′

i ; in particular,
x1 = x andx′

1 = x′. Spoiler will play so that(x1, . . . , xi ) and(x′
1, . . . , x′

i ) are always
paths. Another condition that will be obeyed by Spoiler is thatTx(xi ) andT ′

x′(x′
i ) are non-

isomorphic.
Assume that thei -th round has been played. If exactly one of the verticesxi andx′

i is a
leaf (we will call such a situation terminal), then Spoiler prolongs that path for which this



O. Pikhurko et al. / Annals of Pure and Applied Logic 139 (2006) 74–109 97

is possible and wins. Assume that neither ofxi andx′
i is a leaf and thatTx(xi ) andT ′

x′(x′
i )

are non-isomorphic (in particular, this is so fori = 1). By the definition of a diverging
rooted tree, allTx(u) with u a child of xi are pairwise non-isomorphic. The same concerns
all T ′

x′(u′) with u′ a child of x′
i . It follows that there is aTx(u) not isomorphic to any of the

T ′
x′(u′)’s or there is aT ′

x′(u′) not isomorphic to any of theTx(u)’s. Spoiler selects suchu
for xi+1 or u′ for x′

i+1. Clearly, Spoiler has an appropriate move until a terminal situation
occurs. Thelatter occurs in ther (T)-th round at latest. �

Lemma 6.8. Let T and T′ be two trees with d(T) = d(T ′) (and hence r(T) = r (T ′)).
Suppose that T is diverging but T′ is not. Then D(T, T ′) ≤ r (T) + 2.

Proof. In the first move Spoiler selectsx′, acentral vertex ofT ′. Similarly to the preceding
proof, we may suppose that Duplicator’s responsex is a central vertex ofT . Let y′
be a vertex ofT ′ suchthat T ′

x′(y′) is not diverging but, for any childz′ of y′, T ′
x′(z′)

is. Note that y′ must have two children z′
1 and z′

2 such that T ′
x′(z′

1) and T ′
x′(z′

2) are
isomorphic.

In subsequent moves Spoiler selects the pathP′ = (x′, . . . , y′, z′
1). Let P =

(x, . . . , y, z) be Duplicator’s response inT . If Tx(z) and Tx′(z′
1) have different depths

d andd′, sayd > d′, then Spoiler prolongsP with d′ + 1 new vertices and wins. It is clear
that the prolonged path has at mostr (T) + 1 vertices.

Suppose now thatd = d′. If Tx(z) andTx′(z′
1) are non-isomorphic, then Spoiler adopts

the strategy ofLemma 6.7and wins having made in total at mostr (T) + 1 moves. IfTx(z)
and T ′

x′(z′
1) are isomorphic, then Spoiler selectsz′

2. In response Duplicator must select
a child of y different fromz. Denote it byz∗. The subtreeTx(z∗) is non-isomorphic to
Tx(z) and hence toT ′

x′(z′
2). Now Spoiler is able to proceed withTx(z∗) andT ′

x′(z′
2) as was

described and wins having made in total at mostr (T) + 2 moves (one extra move was
made to switch fromz′

1 to z′
2). �

Lemma 6.9. Let T be a diverging tree of radius at least 6. Then D(T) ≤ r (T) + 2.

Proof. Let T ′ be a graph non-isomorphic toT . Thepair T, T ′ satisfies the condition of
one ofLemmas 6.5–6.8. These lemmas provide us with boundD(T, T ′) ≤ r (T) + 2. By
Proposition 3.6, we thereby have the bound forD(T). �

We have shown that diverging trees are definable with quantifier rank not much larger
than the radius. It remains to show that, given the radius, there are diverging trees
with large order and, moreover, the orders of these large trees fill long segments of
integers.

Lemma 6.10. Given i ≥ 0, let Mi denote the total number of (pairwise non-isomorphic)
diverging rooted trees of depth at most i . Then Mi = T(i ).

Proof. Let mi denote the number of diverging rooted trees of depth preciselyi . Thus,
m0 = 1 andMi = m0 + · · · + mi . By Lemma 6.2, a depth-(i + 1) treeTv is uniquely
determined by the set of itsv-branches, which are diverging rooted trees of depth at mosti .
Vice versa, any set of diverging rooted trees of depth at mosti with at least onetree ofdepth
preciselyi determines a depth-(i + 1) tree. It follows thatmi+1 = (2mi − 1)2Mi−1, where
weput M−1 = 0. By induction, we obtainmi = T(i ) − T(i − 1) andMi = T(i ). �
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Note that a divergingrooted tree of depthi can have the minimum possible number of
verticesi + 1 (a path).

Lemma 6.11. Let Ni denote the maximum order of a diverging rooted tree of depth i . Then
Ni > T(i − 1).

Proof. The largest diverging rooted treeTv of depthi has every one ofMi−1 diverging
rooted trees of depth at mosti − 1 as av-branch. Thus,Ni > Mi−1 = T(i − 1). �

Lemma 6.12. For every n such that i+ 1 ≤ n ≤ Ni there is a diverging rooted tree of
depth i and order n.

Proof. We proceed by induction oni . Thebase case ofi = 0 is trivial. Let i ≥ 1. For
n = i +1 we are done with a path. We will prove that any diverging rooted treeTv of depth
i except the path can be modified so that it remains a diverging rooted tree of the same
depth but the order becomes 1 smaller.

Let l be the smallest depth of av-branch ofTv and fix a branchTv(w) of this depth with
minimal order. IfTv(w) is a path, we delete its leaf. If not, we reduce it by the induction
assumption. �

Lemma 6.13. Let i ≥ 2. For every n such that2i + 2 ≤ n ≤ 2Ni , there isa diverging tree
of order n and radius i+ 1.

Proof. If n = 2m is even, consider the diverging rooted treeTc with two c-branches, one of
orderm, theother of orderm−1, and both of depthi (excepting the case wheren = 2i +2
when the smaller branch has depthi − 1). Such branches do exist byLemma 6.12. If
n = 2m + 1 is odd, we add the third single-vertexc-branch. Since the rootc is a central
vertex of the underlying tree, the latter is diverging.�

Proof of Theorem 6.1. Let n > 32 = 2T(3) and leti ≥ 3 be such that 2T(i ) < n ≤
2T(i + 1). By Lemma 6.11, we have 2i + 6 < n < 2Ni+2. Owing toLemma 6.13, there
exists a diverging treeT of ordern and radiusi + 3. Lemma 6.9givesD(T) ≤ i + 5 <

log∗ n + 5.
For everyn ≤ 32 the required bound is provided byPn, thepath onn vertices. It is not

hard to derive fromLemma 6.5thatD1(Pn) < logn+3 for all n, which satisfies ourneeds
for n in the range. �

7. The succinctness function over trees: zero alternations

Theorem 6.1assumes no restriction on the alternation number. We now prove an analog
of this theorem forq0(n; trees) = min|T |=n D0(T), the succinctness function over trees
with the strongest restriction on the alternation number. This is somewhat surprising in
view of Corollary 5.7(1) asserting thatD0(G) and D(G) may be very far apart from one
another.

Theorem 7.1. For infinitely many n we have q0(n; trees) ≤ 2 log∗ n + O(1).

The proof takes the rest of the section.
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Fig. 1. R∗
0.

7.1. Ranked trees

We will modify the approach worked outin the preceding section. The proof
of Theorem 6.1was based on Lemmas 6.5–6.8. Note that the alternation number in
Lemma 6.6is 0. In Lemma 6.5it is 1, but the bound of this lemma is actually stronger
than we need and, at the cost of some relaxation, we will be able to improve the
alternation number to 0 (seeLemmas 7.6and7.8below). The real source of non-constant
alternation number isLemma 6.7(Lemma 6.8reduces toLemma 6.7and itself makes
no new complication). To tackle the problem, we restrict the class of diverging trees so
that we will still have relationD0(T) = O(r (T)) and there will still exist trees with
Tower(r (T) − O(1)) vertices.

We begin by introducing some notions and notation concerning rooted trees. Given
a rooted treeTv , let B(Tv) denote the set of allv-branches ofTv. Given rooted trees
T1, . . . , Tm, we defineT = T1 �· · · � Tm to be the rooted tree withB(T) = {T1, . . . , Tm}.
By Lemma 6.2, if all Ti are pairwise non-isomorphic and diverging, thenT is diverging as
well. Obviously,depthT = 1 + maxi depthTi .

Let T ′
v′ and Tv be rooted trees. We callT ′

v′ a rooted subtreeof Tv if v′ = v and
V(T ′) ⊆ V(T).

For eachi ≥ 0, we now define the class of rooted treesR∗
i as follows. LetR∗

0 =
{T∗

1 , T∗
2 , T∗

3 , T∗
4 }, the set of four rooted trees depicted inFig. 1. Observe the following

properties of this set.

(Z1) |T∗
i | ≤ 8 for all i .

(Z2) depthT∗
i = 4 for all i .

(Z3) All T∗
i are diverging.

(Z4) No T∗
i is isomorphic to a rooted subtree of any otherT∗

j .

Assume thatR∗
i−1 is already specified. We will need a large enoughFi ⊂ 2R∗

i−1, a family
of subsets ofR∗

i−1 which is an antichain with respect to the inclusion (i.e. no member of
Fi is included in anyother member ofFi ). As one of suitable possibilities (which actually
maximizes|Fi | by Sperner’s theorem), we fix
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Fi =
(

R∗
i−1

�|R∗
i−1|/2

)
,

the family of all�|R∗
i−1|/2-element subsets ofR∗

i−1. Now

R∗
i =

{⊙
T∈S

T : S ∈ Fi

}
.

Note that|R∗
i | = |Fi |.

It is clear that, ifT ∈ R∗
i , thenB(T) consists of pairwise non-isomorphic rooted trees

in R∗
i−1. By easy induction, we have the following properties of the classR∗

i for i ≥ 1.

(R1) If T ∈ R∗
i , thenr (T) = depthT = i + 4.

(R2) If T ∈ R∗
i , thend(T) = 2i + 8.

(R3) If T ∈ R∗
i , then the central vertex ofT is equal to the root.

(R4) All T ∈ R∗
i are diverging.

(R5) If T andT ′ are different members ofR∗
i , then we have neither B(T) ⊂ B(T ′) nor

B(T ′) ⊂ B(T).

We defineRi to be the set of underlying trees of rooted trees inR∗
i . Note that for

differentT, T ′ ∈ R∗
i their underlying trees are non-isomorphic. Ifi = 0, this is evident.

If i ≥ 1, we use the fact that, as any isomorphism between the unrooted trees takes one
central vertex to the other, it is also an isomorphism between the rooted trees. Note also
that trees inRi are diverging.

We will call trees inR = ⋃∞
i=1 Ri ranked. If T ∈ Ri , we will say thatT hasrank i and

write rk T = i .

Lemma 7.2. Let Ni denote the minimum order of a tree of rank i . Then Ni ≥ T(i − O(1)).

Proof. DenoteMi = |Ri |. By the construction, we have

M0 = 4, Mi+1 =
(

Mi

�Mi /2
)

=
√

2 + o(1)

π Mi
2Mi ,

and

Ni+1 ≥ 1 + �Mi /2Ni > Mi .

The lemma follows by simple estimation.�

7.2. Spoiler’s strategy

Consider the Ehrenfeucht game on rooted trees(Tv, T ′
v′). Let xi denote the vertex ofTv

selected in thei -th round. We call a strategy for Spoilercontinuousif he plays all the time
in Tv and, for eachi , the induced subgraphT[{v, x1, . . . , xi }] is connected.

Lemma 7.3. Let Tv and T′
v′ be non-isomorphic rooted trees in R∗

i . ThenSpoiler has a
continuous winning strategy inEHRi+7(Tv, T ′

v′) and hence D0(Tv, T ′
v′) ≤ i + 7.
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Proof. Weproceed by induction oni . In thebase case ofi = 0, Spoiler selects all non-root
vertices ofTv in a continuous manner and wins by Property (Z4). Leti ≥ 1. In the first
move Spoiler selectsw, a child of v such that, for anyw′, a child of v′, branchesTv(w)

andT ′
v′(w′) are not isomorphic. This is possible owing to Property (R5). Letw′ denote

Duplicator’s response. BothTv(w) and T ′
v′(w′) have ranki − 1. Spoiler now invokes

a continuous strategy winning EHRi+6(Tv(w), T ′
v′(w′)), which exists by the induction

assumption. �

Lemma 7.4. Let T , T′ be trees of the same even diameter andv, v′ be their central
vertices. Assume that Spoiler selectsv but Duplicator responds with a vertex different
fromv′. ThenSpoiler is able to win in the next d(T) moves, playing all the time in T .

Proof. In a continuous manner, Spoiler selects the vertices of a diametral path inT . Let
u �= v′ be the vertex selected by Duplicator in response tov. Duplicator should now
exhibit a path of lengthd(T ′) = d(T) with u at the middle, which is impossible by
Proposition 2.1. �

Lemma 7.5. Let T and T′ be non-isomorphic ranked trees of the same rank. Then
D0(T, T ′) ≤ 2rk T + 9.

Proof. Let v andv′ be central vertices ofT andT ′ respectively. Spoiler starts by selecting
v. If Duplicator does not respond withv′, Spoiler applies the strategy ofLemma 7.4
and wins in the nextd(T) moves. If Duplicator responds withv′, Spoiler applies the
strategy of Lemma 7.3and wins in the nextrk T + 7 moves. In any case Spoiler wins
in 1 + max{d(T), rk T + 7} = 2rk T + 9 moves. �

Lemma 7.6. Let T be a ranked tree and G be either a tree of different diameter or a
connected non-tree. Then D0(T, G) ≤ 2rk T + 10.

Proof. If G is a tree, thend(T) + 2 moves are enough for Spoiler to win. In this case, he
selects a path of length min{d(T), d(G)} + 1 in the graph of larger diameter.

Suppose thatG is a connected non-tree. IfG has a cycle on at mostd(T) + 2 vertices,
Spoiler selects it and wins. OtherwiseG must have a cycle on at leastd(T) + 3 vertices.
Spoiler wins by selecting a path ond(T) + 2 vertices of this cycle. �

Lemma 7.7. Let T be a ranked tree and G be a non-ranked tree. If d(T) = d(G), then
D0(T, G) ≤ 2rk T + 9.

Proof. Let v andc denote the central vertices ofT andG respectively. The tree in which
Spoiler plays will be specified below. In the first move Spoiler selects the central vertex of
this tree. If Duplicator does not respond with the central vertex of the other tree, he loses
in the nextd(T) moves byLemma 7.4. Assume that she responds with the central vertex.
Further play depends on which of three categoriesG belongs to. Letk = rk T . For any
w ∈ V(G) at distancek from c, we will call Gc(w) anapexof Gc.

Case 1: Gc has an apex Gc(w) which isnot a rooted subtree of any of the four rooted
trees in R∗0. Spoiler plays inG. In the next k moves he selects the path fromc to w.
Duplicator is forced to select the path fromv to a vertexu suchthatTv(u) ∈ R∗

0. Spoiler is



102 O. Pikhurko et al. / Annals of Pure and Applied Logic 139 (2006) 74–109

now able to win by selecting at most eight vertices ofGc(w). The total number of moves
does not exceed 1+ k + 8 = k + 9.

Case 2:G has a vertexw such that B(Gc(w)) properly contains B(Hw) for some
Hw ∈ R∗

i , where i = k − d(c, w). Spoiler plays inG. In the next d(c, w) moves he
selects the path fromc to w. Let u denote the vertex selected by Duplicator in response to
w and Fu = Tv(u). Clearly, Duplicator must ensure the equalityd(v, u) = d(c, w) and
henceFu ∈ R∗

i .
If Fu andHw are not isomorphic, then Spoiler restricts further play toHw following a

continuous strategy. Of course, Duplicator is forced to play inFu. Spoiler is able to win in
the nexti + 7 movesaccording toLemma 7.3.

Suppose now thatFu andHw are isomorphic. In the next move Spoiler selects a child of
w which is not inHw. Duplicator must respond with a child ofu in Fu. Denote it byx and
let y be the vertex of Hw corresponding tox under the isomorphism fromFu to Hw. Recall
that, byLemma 6.3, diverging trees are asymmetric and therefore such an isomorphism is
unique. In the next move Spoiler selectsy. Duplicator must respond withz, another child
of u in Fu. Note that Fu(z) andHw(y) are not isomorphic since the latter is isomorphic to
Fu(x) but the former is not. From now on Spoiler restricts play toFu(z) andHw(y) using
the strategy ofLemma 7.3, and wins in the nexti + 6 moves. The totalnumber of moves
is at most 1+ d(c, w) + i + 8 = k + 9.

Case 3: Neither 1 nor 2.Spoiler plays all the time inT . We will denote the vertices
selected by him in the nextk moves byx1, . . . , xk subsequently. Lety1, . . . , yk denote the
corresponding vertices selected inG by Duplicator. Put alsox0 = v andy0 = c. Spoiler
will play so thatx0, x1, . . . , xk will be a path. Let 1≤ i ≤ k. Suppose that the preceding
x0, . . . , xi−1 are already selected. Assume thatTv(xi−1) andGc(yi−1) are non-isomorphic
(note that this is so fori = 1). As we are not in Case 2,xi−1 has achild x suchthat
Tv(x) /∈ B(Gc(yi−1)). Spoiler takes thisx for xi thereby ensuring thatTv(xi ) andGc(yi )

are non-isomorphic again, whateveryi is selected by Duplicator. The final stage of the
game goes on non-isomorphicTv(xk) andGc(yk). Spoiler selects all vertices ofTv(xk).

Note thatTv(xk) ∈ R∗
0 andGc(yk) is an apex ofG. As we are not in Case 1,Gc(yk) is

a rooted subtree of someT∗
j ∈ R∗

0. If T∗
j = Tv(xk), Gc(yk) must be a proper subtree of

Tv(xk) and hence Spoiler has won. Otherwise, note thatTv(xk) cannot be a rooted subtree
of Gc(yk) by Property (Z4). Again, this is Spoiler’s win. The total number of moves equals
1 + k + 7 = k + 8.

In any of the three cases Spoiler wins in max{1 + d(T), k + 9} = 2k + 9 moves. �

Note that, ifT is a ranked tree of rankk, thenLemmas 7.5–7.7provide Spoiler with a
winning strategy in the 0-alternation EHR2k+10(T, G) wheneverG is a connected graph
non-isomorphic toT .

Lemma 7.8. Let T be a ranked tree and H be a disconnected graph. Then D0(T, H )

≤ 2rk T + 10.

Proof. We distinguish two cases.
Case1: No component of H is isomorphic to T .
Subcase 1.1: H has a component G such that Spoiler is able to winEHR2k+10(T, G)

playing all the time in G.Spoiler plays exactly this game.
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Subcase 1.2: H has no such component.In the first move Spoiler selects the central ver-
tex of T . Suppose that Duplicator’s response is in a componentG of H . By Lemmas 7.5–
7.7, we are either in the situation ofLemma 7.6(with G a tree of diameterd(G) < d(T)) or
in the situation ofLemma 7.7(namely, in Case 3). In both situations Spoiler has a contin-
uous winning strategy for EHR2k+10(T, G) allowing him to play all the time inT starting
from the central vertex. Spoiler applies it and wins as Duplicator is forced to stay inG.

Case2: H has a component T′ isomorphic to T .Spoiler plays inH . His first move is
outsideT ′. Let x ∈ V(T) be Duplicator’s response. Letx′ be the counterpart ofx in T ′
(recall that ranked trees are asymmetric and hencex′ is determined uniquely). Denote the
central vertices ofT andT ′ by v andv′ respectively. In the second move Spoiler selectsv′.
If Duplicator does not respond withv, Spoiler applies the strategy ofLemma 7.4and wins
in the nextd(T) moves. Assume that Duplicator responds withv. Starting from the third
move, Spoiler selects the vertices on the path betweenv′ andx′, one by one, starting from
a child of v′. If Duplicator follows the path fromv to x, she loses asx is already selected.
Assume that Duplicator deviatesat some point, selecting a vertexy not on the path, and let
y′ be the vertex on the path betweenv′ andx′ selected in this round by Spoiler. Note that
the rooted subtreesTv(y) andT ′

v′(y′) are non-isomorphic. Spoiler can therefore apply the
continuous strategy ofLemma 7.3and win in the nexti +7 moves, wherei = k−d(v, y).
The total number of moves is at most 1+max{1+d(T), 1+d(x, y)+(i +7)} = 2k+10. �

Lemma 7.8completes our analysis: ifT is a ranked tree of rankk andG is an arbitrary
graph non-isomorphic toT , then we have a winning strategy for Spoiler in the 0-alternation
EHR2k+10(T, G). By Proposition 3.6, we conclude thatD0(T) ≤ 2rk T + 10.

To complete the proof of Theorem 7.1, let Ti be a tree of ranki and orderNi as in
Lemma 7.2. We haveq0(Ni ; trees) ≤ D0(Ti ) ≤ 2i + 10 ≤ 2 log∗ Ni + O(1), the latter
inequality due toLemma 7.2.

8. The succinctness function over trees: lower bound

Complementing the upper bound given byTheorem 6.1we now prove a nearly tight
lower bound onq(n; trees).

Theorem 8.1. q(n; trees) ≥ log∗ n − log∗ log∗ n − O(1).

It will be helpful to work with rooted trees. The first order language for this class of
structures has a constantR for the root and the parent–child relationP(x, y). Let Tv andT ′

u
be rooted trees and suppose thatTv ≡k T ′

u. By Proposition 3.5, Tv andT ′
u satisfy the same

sentences of quantifier rankk. ThenT ≡k T ′ for the underlying trees. Indeed, take any
sentence in the language for trees and replace the adjacencyx ∼ y with P(x, y)∨ P(y, x).
We get a sentence with the same truth value in the language of rooted trees.

Let g(k) be the number of≡k-equivalence classes of rooted trees. Similarly to
Lemma 3.3, we haveg(k) ≤ T(k + 2 + log∗ k) + O(1). Set

U(k) =
g(k)−1∑

i=0

(kg(k))i .
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Lemma 8.2. Let Tv be a finite rooted tree. Then, for any k≥ 1, there exists a finite rooted
tree T′

u with at most U(k) vertices such that Tv ≡k T ′
u.

Proof of Theorem 8.1. Consider an arbitrary treeT of ordern and letk = D(T). Rooting
it at an arbitrary vertexv, consider a rooted treeTv. Let T ′

u be as inLemma 8.2. Thus, we
haveT ≡k T ′ and |T ′| ≤ U(k). By the choice ofk, T andT ′ must be isomorphic. We
therefore have

n ≤ U(k) < (kg(k))g(k) ≤ T(k + log∗ k + 4) + O(1),

which impliesk ≥ log∗ n − log∗ log∗ n − O(1). �

Lemma 8.2follows from a series of lemmas.

Lemma 8.3. Let Tv be a rooted tree andw a non-root vertex of Tv. Suppose that
T ′

w ≡k Tv(w). Let T′
v be the result of replacing Tv(w) by T′

w. Then Tv ≡k T ′
v.

Proof. Duplicator wins the Ehrenfeucht game onTv, T ′
v by playing it onTv(w), T ′

w (since
the root is a constant symbol she automatically plays root for root) and the identical vertices
elsewhere. �

Lemma 8.4. Let Tv be a rooted tree withw1, . . . , ws the children of the root v, and
α1, . . . , αs the k-Ehrenfeucht values of the trees Tv(wi ). Then the k-Ehrenfeucht value
of T is determined by theαi’s.

Proof. If Tv andT ′
u have the sameα1, . . . , αs we reachT ′

u from Tv in s applications of
Lemma 8.3. �

Lemma 8.5. Suppose, in the notation ofLemma8.4, that some valueα appears asαi more
than k times. Let T−v be Tv but with only k of those subtrees. Then Tv ≡k T−

v .

Proof. The game has onlyk moves so Spoiler cannot go in more thank of these
subtrees. �

Lemma 8.6. If Tv is a representative of a given≡k-equivalence class with minimum
possible order, then each vertex of Tv has at most kg(k) children.

Proof. This easily follows fromLemmas 8.5and8.4by induction on the depth.�

Lemma 8.7. If Tv is a representative of a given≡k-equivalence class with minimum
possible order, then it has depth at most g(k) − 1.

Proof. Take a longest path from the root to a leaf. If it has more thang(k) vertices, it
contains two verticesw and u suchthat u is a descendant ofw and Tv(u) ≡k Tv(w).
ReplacingTv(w) by Tv(u), weobtain a smaller tree in the same≡k-class. �

Lemma 8.2immediately follows fromLemmas 8.6and8.7.

9. The smoothed succinctness function

Let q(n) = q(n; all) denote the succinctness function for the class of all graphs. Since
there are only finitely many pairwise inequivalent sentences of bounded quantifier rank,
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q(n) → ∞ as n → ∞. We will show that q(n) grows very slowly and, in a sense,
irregularly. We first summarize information given byTheorems 4.2and6.1.

Corollary 9.1.

(1) There is no general recursive function f such that f(q(n)) ≥ n for all n.
(2) There is no general recursive function l(n) such that l(n) is monotone nondecreasing,

l (n) → ∞ as n→ ∞, and l(n) ≤ q(n) for all n.
(3) q(n) < log∗ n + 5.

Proof. (1) Note thatq(n) ≤ s(n) ≤ s3(n). Now, if there were a general recursive function
f such that f (q(n)) ≥ n, then we would have maxi≤s3(n) f (i ) ≥ n contradictory to
Theorem 4.2.

(2) Assume that such anl (n) exists. Let f (m) be the first value ofi suchthatl (i ) > m.
Then f (q(n)) > n contradictory to Item 1.

(3) As any upper bound onq(n; C) is stronger if it is proved for a smaller class of graphs,
this item is an immediate consequence ofTheorem 6.1. �

Definition 9.2. We define thesmoothed succinctness function q∗(n) (for quantifier rank)
to be the least monotone nondecreasing integer function boundingq(n) from above, that
is, q∗(n) = maxm≤n q(m).

Theorem 9.3. log∗ n − log∗ log∗ n − O(1) < q∗(n) < log∗ n + 5.

Proof. Since the upper bound onq(n) given byCorollary 9.1(3) is monotone, this is a
bound onq∗(n) as well. The lower bound is derivable fromLemma 3.3. This lemma states
that |Ehrv(k)| ≤ T(k + 2 + log∗ k) + c for a constantc. Givenn > c + T(3), let k be
suchthat T(k + 2 + log∗ k) + c < n ≤ T(k + 3 + log∗(k + 1)) + c. Assuming thatn
is sufficiently large, we havek > log∗ n − log∗ log∗ n − 4. According toProposition 3.6,
at most|Ehrv(k)| graphs are definable with quantifier rank at mostk. By the pigeonhole
principle, there will be somem ≤ |Ehrv(k)|+1 ≤ n for which no graph of order precisely
m is defined with quantifier rank at mostk. We conclude thatq∗(n) ≥ q(m) > k and hence
q∗(n) ≥ log∗ n − log∗ log∗ n − 2. �

We definedq∗(n) to be the monotone function “closest” toq(n). Notice thatq(n) itself
lacks the monotonicity.

Corollary 9.4. q(i + 1) < q(i ) for infinitely many i .

Proof. Setl (n) = log∗ n − log∗ log∗ n − 2. We have just shown thatq∗(n) ≥ l (n) for all
n large enough. ByCorollary 9.1(2), we haveq(n) < l (n) for infinitely manyn. For each
suchn, let mn < n be such thatq(mn) ≥ l (n). Thus,q(mn) > q(n) and a desiredi must
exist betweenmn andn. �

For each non-negative integera and fora = 1/2, defineqa(n) = min|G|=n Da(G) and
q∗

a(n) = maxm≤n qa(m). As is easily seen,Corollary 9.1(1) holds true forq3(n) as well.
Note a strengthening ofCorollary 9.1(3) that follows from a result in another of our papers.
Let G(n, p) denote a random graph onn vertices distributed so that each edge appears with
probability p and all edges appear independently from each other.
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Theorem 9.5 ([14] ). With probabilityapproaching1 as n goes to the infinity,

D3(G(n, n−1/4)) = log∗ n + O(1).

Corollary 9.6. q3(n) ≤ log∗ n + O(1) and hencelog∗ n − log∗ log∗ n − O(1) ≤ q∗
3(n) ≤

log∗ n + O(1).

10. Depth vs. length

Theorem 10.1. L(G) ≤ T(D(G) + log∗ D(G) + O(1)).

Proof. Given an Ehrenfeucht valueα, let l (α) denote the shortest length of a formula
definingα in the sense ofSection 3. Definel (k) to be the maximuml (α) overα ∈ Ehrv(k)

and l (k, s) the maximuml (α) over α ∈ Ehrv(k, s). Of course,l (k) = l (k, 0). As in
Section 3, f (k, s) = |Ehrv(k, s)|.

It is not hard to see thatL(G) ≤ l (D(G)) and therefore it suffices to prove the bound
l (k) ≤ T(k + log∗ k + O(1)) for all k ≥ 2.

On account ofLemma 3.4, we have

l (k, k) < 18

(
k

2

)

and

l (k, s) ≤ f (k, s + 1)(l (k, s + 1) + 10)

if s < k. We will use these relations along with the bounds ofLemma 3.2for f (k, s). Set
g(x) = x2x+1. A simple inductive argument shows that

f (k, s) ≤ 2g(k−s)(9k2) and l (k, s) ≤ g(k−s)(9k2).

Sinceg(x) ≤ 4x, we havel (k, 0) ≤ T4(k + 2+ log∗ k) ≤ T(k + log∗ k + O(1)), whereT4
stands for the variant of the tower function built from 4’s instead of 2’s.�

Remark 10.2. Theorem 10.1generalizes to structures over an arbitrary vocabulary. The
proof requires only slight modifications.

We nowobserve that the relationship between the optimum quantifier rank and length
of defining formulas is nearly tight.

Theorem 10.3. There are infinitely many pairwise non-isomorphic graphs G with L(G) ≥
T(D(G) − 6) − O(1).

Proof. The proof is given by a simple counting argument which can be naturally presented
in the framework of Kolmogorov complexity (applications of Kolmogorov complexity for
proving complexity-theoretic lower bounds can be found in [17]).

Denote the Kolmogorov complexity of a binary wordw by K (w). Let 〈G〉 denote the
lexicographically first adjacency matrix of a graphG. Define the Kolmogorov complexity
of G by K (G) = K (〈G〉). Notice that

K (G) ≤ L(G) + O(1).
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By Theorem 6.1, there isa graphGn onn vertices with

D(Gn) < log∗ n + 5. (11)

The boundK (w) < k can hold for less than 2k words.It follows that for somen ≤ 2k we
haveK (G) ≥ k for all graphsG onn vertices. For this particularn we have

L(Gn) ≥ logn − O(1). (12)

Combining (11) and (12), we see thatGn is as required. �

Of course, we could run the same argument directly withL(G) in place ofK (G). An
advantage of using the Kolmogorov complexity is in avoiding estimation of the number of
formulas of length at mostk.

In Section 5.1we showed that prenex formulas are sometimes unexpectedly efficient
in defining a graph. We are now able to show that, nevertheless, they generally cannot be
competitive against defining formulas with no restriction on structure. LetDprenex(G) (resp.
Lprenex(G)) denote the minimum quantifier rank (resp. length) of a closed prenex formula
defining a graphG.

Theorem 10.4. There are infinitely many pairwise non-isomorphic graphs G with
Dprenex(G) ≥ T(D(G) − 8).

Proof. Let G be as inTheorem 10.3. We have

Lprenex(G) ≥ L(G) ≥ T(D(G) − 6) − O(1).

On the other hand, byLemma 2.4we have

Lprenex(G) ≤ f (Dprenex(G)), where f (x) = O(x24x2
).

It follows that

Dprenex(G) ≥
(

1√
2

− o(1)

)√
T(D(G) − 7) ≥ T(D(G) − 8),

providedD(G) (or the order ofG) is sufficiently large. �

11. Open questions

1. Let D′(G) be the minimum quantifier rank of a first order sentence distinguishing
a graphG from any non-isomorphic finite graphG′. Clearly, D′(G) ≤ D(G). Can the
inequality be sometimes strict?

2. Improve on the alternation number inTheorem 4.2. Note that this cannot be done
with alternation number 0. By the Ramsey theorem, Turing machines cannot be simulated
by 0-alternation formulas as this would contradict the unsolvability of the halting problem.
In fact, we were recently able to show [22] thatq0(n) ≥ log∗ n − log∗ log∗ n − O(1).

3. Classify the prefix classes with respect to solvability of the finite satisfiability problem
over graphs. Such a classification does exist by the Gurevich classifiability theorem
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[1, Section 2.3]. In particular, can the prefix∃∗∀O(1)∃O(1)∀O(1) in Theorem 5.10be
shortened to∃∗∀O(1)∃O(1)? Shortening to∃∗∀∗ is impossible due to the Ramsey theorem.

Note that for digraphs the complete classification is known (see [1] and references
there). In thenotation ofSection 5.4, the minimal undecidable classes forSat=fin(D) are

∀∗∃, ∀∃∀∗, ∀∃∀∃∗, ∀∃∗∀, ∃∗∀∃∀, ∃∗∀c+1∃, ∀c+1∃∗, while the maximal decidable classes are
∃∗∀∗ and∃∗∀c∃∗, wherec = 1. ForSatfin(D) the classification is the same but withc = 2.
If we considerSat=(D) instead ofSat=fin(D) andSat(D) instead ofSatfin(D), nothing in the
classification changes. The reasons are that the maximal decidable classes have the finite
model property and that theundecidability of the minimal undecidable classes is proved
by reductions which preserve the finiteness of models.

4. How close to oneanother areD1(G) and D0(G)? At least, are they recursively
linked? The same question forD(G) and Da(G) (for any a = o(n)) is also of interest.
How far apart from one another canD(G) andD1(G) be?

5. Estimate the succinctness functionq(n; C) for other classes of graphs (in particular,
graphs of bounded degree, planar graphs). Note that Herre [11] proves theunsolvability of
the first order theory of finite planar graphs with maximum degree 4. Thus, the possibility
thatourTheorem 4.2has an analog for this class of graphs is not excluded.

6. Is q(n) a non-recursive function? IsD(G) an uncomputable function of graphs
(T. Łuczak)? Of course, the former implies the latter. The same can be asked forqa(n)

andDa(G) exceptinga ∈ {0, 1/2} (seeTheorem 5.8).
7. We know thatq∗

3(n) = (1 + o(1)) log∗ n. Thecases of alternation numbers 0, 1, and
2 areopen.

8. |q(n + 1) − q(n)| = O(1)? Note that q(n + 1) − q(n) ≤ 1 but this difference is
negative infinitely often byCorollary 9.4.
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