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Abstract

We say that dirst order sentencé\ defines a grapls if A is true onG but false omany graph
non-isomorphic tdG. Let L(G) (resp.D(G)) denote the minimum length (resp. quantifier rank) of
such a sentence. We define the succinctness funstigr(resp. its variant|(n)) to be theminimum
L(G) (resp.D(G)) over all gaphs om vertices.

We prove thats(n) andq(n) may be so small that for no general recursive functfowe can
have f(s(n)) > n for all n. However, forthe functiong*(n) = max <, q(i), which isthe least
nondecreasing function boundiggn) from above, we have*(n) = (1+0(1)) log* n, where log n
equals the minimum number of iterationstbé binary logarithm sufficient to lowerto 1 or below.

We show an upper boundi(n) < log* n + 5 even under the restriction of the class of graphs to
trees. Under this restriction, for(n) we also have a matching lower bound.

We show a redtionshipD(G) > (1—o0(1)) log* L (G) and prove, using the upper bound &gn),
that this relationship is tight.

For a non-negative integaa, let Da(G) and ga(n) denote the analogs db(G) and q(n)
for defining formulas in the netjon normal form with at most quantifier dternations in any
sequence of nested quantifiers. We show a superrecursive gap b&g&nand D3(G) and hence
betweenDg(G) and D(G). Despte this, for qg(n) we still have a kind of log-star upper bound:
go(n) < 2log* n 4+ O(2) for infinitely manyn.
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1. Introduction

We study sentences about graphs expressible in the laconic first order language with two
relaion synbols~ and= for, respectively, the adjacency and the equality relatibinst
order means that we are allowed to quantify only over vertices, as opposed to the second
order logic case where we can quantify over sets of vertices. The difference between the
firstorder and the second order worlds is essential. In the first order language we cannot
express many basic properties of graphs, such as connectedness and the property of being
bipartite (see, e.9.,48 Theorems 2.4.1 and 2.4.2]). On théher hand, the crucial fact for
us is that the first order language is powerful enough to define any individual finite graph
up to isomorphism. Indeed, a graghwith vertex setV(G) = {1,...,n} and edge set
E(G) is definedby the formula

Ixg... EanVXn+1< /\ (X = X)) A \/ Xn+1 = Xi

1<i<j=<n i<n (1)
A /\ Xi~Xjp A /\ (X ~ x,-)).
{i,j}eE(G) {i,i}¢EG)

This fact, though very simple, highlights a fundamental difference between the finite and
the infinite: there are non-isomorphic countable graphs satisfying precisely the same first
order sentences (see, e.@8[Theorem 3.3.2]).

The question we address is how succinctly a gr@pbn n vertices can be defined by
first order means. We consider two natumaasures of succinctness — the length of a
first order formula and its quantifier rank. The latter is the maximum number of nested
quantifiers in the formula. LeD (G) be the minimum quantifier rank of a closed first order
formula definingG, that is,being true orG and false on any other graph non-isomorphic to
G. The satence L) engires thaD(G) < n+ 1. This bound generally cannot be improved
asD(G) = n + 1 for G being the comlgete or the empty graph am vertices. However,
for all other graphs we hav®(G) < n. Thus, it is reasonable to try to lower the trivial
upper bound ofh + 1 to someu(n) < n and explicitly describe all exceptional graphs
with D(G) > u(n). This is done in 21] with u(n) = n/2 + O(1) (see also %3] for a
generalizéion to arbitrary structures). More precisely, let us call two vertices of a graph
similar if they are simultaneously adjacent or notitoy other vertex. This is an equivalence
relation and each equivalence class spans a complete or an empty subgrap(G) et
denote the maximum number of pairwise similar vertice&imThen, as shown inZ1],

+5

#(G)+1<D(G) < max{n ,o(G)+2}.

It seems doubtful that results of this sort can be obtained with upper bo(md =
cn + O(1) for each constant < 1/2. The known Cai—Firer—-Immerman construction
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[2] gives gaphs with linearD(G) which may serve as counterexamples to most natural
conjectures in this direction.

While the paperZ1] addresses the definability af-vertex graphs ithe worst case, in
[14] we treat the average case. L@the a random graph distributed uniformly among the
graphs with vertex sdtl, .. ., n}. Then, as sbwn in [14],

ID(G) — log, n| = O(log, log, n)

with probability 1— o(1).

We now condder another extremal case of the graph definability problem. How succinct
can a first order definition of a graph arvertices be in the best case? That is, we study the
sueeinctness functiog(n) defined as te minmum D (G) overn-vertexG. We also define
L(G) to be the minimum length of a sentence definBgands(n) to be the minimum
L (G) overn-vertexG. Trivially, g(n) < s(n). Our first result is thats(n) andq(n) may be
so small that fono general recursive functioh can we havef (s(n)) > n for all n.

The proof is based on simulation of a Turing machimeby a first order formulay
in which a computation oM deternines a graph satisfyind\yy and vice versa. Such
techniques were developed in the classic research on Hillkartscheidungsprobleiny
Turing, Trakhtenbrot, Blichi and other researchers ($gff survey and eferences). An
important feature of our simulation is that it works if we restrict the class of structures to
graphs. The key ingredient of our proof is a gadget allowing us to impose an order relation
on the vertex set of a graph.

As a by-product, we obtain another proof of Lavrov’s resdlf] that the first order
theory of finite graphs is undecidable. Our proof actually shows the undecidability of the
v*3PvyS3t-fragment of this theory for somp, s, andt.

From the fact thafj(n) andn are not recursively linked, it easily follows that, if a general
recursive functior(n) is monotone nondecreasing and tends to the infinity, then

g(n) < I(n) for infinitely manyn. (2)
Our next result establishes a general upper bound
gin) <log*n+5 for all n. 3)

Here log n equals the minimum number of iterations of the binary logarithm sufficient to
lowern below 1. It turns out that this is the best possible monotonic upper bouidripr

Let g*(n) = max<nq(i), which is the least monotone nondecreasing function bounding
q(n) from above. & prove that

g*(n) > log* n — log*log“n — O(1). (4)
As the upper bound3) is monotonic, we obtain
a*(n) = (1 +o(1)) log" n. 5)

Comparing §) to (2) with I(n) = log* n, we @mnclude thaty(n) infinitely often deviates
from its “smoothed” versiog*(n) and, in particular, is essentially nonmonotonic.

Proving @) and @), we use a robust technical tool given by the Ehrenfeucht g&ine [
(these techniques were also developed by Fra@sg & different setting).
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As a matter of fact, we prove the upper bourf) (inder the restriction of the class of
graphs to trees only, that is, we hagé) < q(n;tree9 < log*n + 5. Recall that, by
(2), q(n) isinfinitely often so small that we cannot bound it from below by any “regular”
function. The proof of this fact cannot be carried throughdaon; treeg because, as a
well-known corollary of the Rabin theorer24], the first order theories of both all and
finite trees are decidable and hence a Turing machine computation cannot be simulated
by a first order sentence about trees. In factgfor; tree9 we establish a matching lower
bound, thereby determining this function asymptotically, namely,

q(n; treeg = (1 + o(1)) log* n.

We pay special attention to defining sentences having a restricted structure. For a non-
negativantegera, let D,(G) andga(n) denote the analogs & (G) andq(n) for defining
formulas in the egaion normal form with at most quantifier alternations in any sequence
of nested quantifiers. The superrecursive gap betwéenandn is actually shown even
under the restriction of the alternation numb®3. Note also that, as follows from a result
in[14], g3(n) < log* n 4+ O(1) and henceY) holds with alternation number 3.

On the other hiad, we show a superrecursive gap betwBgtG) andD3(G) and hence
betweenDo(G) and D(G). Desjite this, forgp(n) we also have a kind of log-star upper
bound:gp(n) < 2log* n+ O(1) for infinitely manyn. It is worth noting that his is not the
first case where we have close results for the alternation number 0 and for the unbounded
alternation number. In1f4] we prove that for a random grapb(G) andDg(G) are not so
far apart from each other — thati8o(G) < (2+0(1)) log, n with probability 1—-o0(1). Yet
another result showing the same phenomenon is obtainednGiven non-isomorphic
graphsG andG/, let D(G, G’) (resp.Do(G, G')) denote the minimum quantifier rank of
a sentencéresp. in the negation normal form with no quantifier alternation) which is true
on exactly one of the graphs. As shown 21, if both G and G’ haven vertices, then
D(G, G) < Do(G, G') < (n+5)/2 and there are sin@examples of suck andG’ with
D(G,G’) > (n + 1)/2. Note that logically distinguishing non-isomorphic graphs with
equal numbers of vertices has close connections to graph canonization algorithms (see,
e.g., R.8,21] and a monographl[?)).

RelatingD (G) andL (G) to one another, we show that

D(G) > (1— o(1)) log* L(G).

Using the bound 8), we show thathis relationship is tight.

Focusingon defining formulas of restited structure, we also consider prenex formulas.

A superrecursive gap betwesain) andn can actually be shown under the restriction to
this class. Nevertheless, prenex formulas generally are not competitive against defining
formulas with no restriction on structure. We observe that graphs showing a huge gap
betweenD(G) andL (G) at the same time show a huge gap betwbé6) and its version

for prenex defining formulas.

In conclusion, note that all of our resultsroaover to general structures over any
relational vocabulary with at least one non-unary relation symbol. For the upper bounds
this claim is straightforward because graphs be viewed as a subclass of such structures
which is dstinguishable by a single first order sentence. The lower bounds hold true with
minor changes in the proofs.
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2. Background
2.1. Arithmetics

We defire thetower function Ti) by T(0) = 1 andT (i) = 2T(-D for each subsequent
i . Someimes this function will be denoted Byower(i ). Given a finction f , we will denote
by f @ thei-fold composition off . In paticular, f @ (x) = x. By logn we always mean
the logarithm base 2. The ims®= of the tower function, thivg-star function log' n, is
defined by lo§n = min{i : T(i) > n}. Fora realx, thenotation[x] (resp.|x]) stands
for the integer nearest tofrom above (resp. from below).

2.2. Graphs

Given a grapli, we denote its vertex set by (G) and its edge set bl (G). Theorder
of G, thenumber of vertices oB, will sometimede denoted byG|, thatis,|G| = |V (G)|.
Theneighborhoof a vertexv consists of all vertices adjacent#oA setS € V(G) is
calledindependenif it contains no pair of adjacent vertices. ¥ € V(G), thenG[X]
denotes the subgraphducedby G on X (or spannedby X in G). If u € V(G), then
G —u = G[V(G) \ {u}] is the result of removing fronG the vertexu along with all
incident edges.

Thedistancebetween vertices andv, the mhimum length of a path connecting the two
vertices, is denoted by(u, v). If uandv are in different connected components of a graph,
thend(u, v) = co. Theeccentricityof a vertexv is defired bye(v) = max,ev(c) d(v, ).
The diameterand theradiusof a graphG are defined byd(G) = max,cv(c) €(v) and
r (G) = min,ev(c) €(v) respectively. A path in a graphdametralif its length is equal to
the diameter of the graph. A vertexs centralif e(v) =r (G).

Proposition 2.1 ([19, Theorem 4.2.2). Let T be a tree. If dT) is even,then T has a
unique central vertex ¢ and all diametral paths go through c.(If dis odd, then T has
exadly two central vertices cand ¢ and all diametral paths go through the edgs, c;}.

2.3. Logic

2.3.1. Formulas

First order formulas are assumed to be over the set of connegtives v}. A sequence
of quantifierds a finite word ovethe aphabet{3, v}. If Sis a set of such spiences, then
3S (resp.VS) means the set of concatenatidsyresp.vs) forall s € S. If sis a seuence
of quantifiers, thes denotes the result of the replacement of all occurrencg$gfv and
vice versa irs. The setSconsists of als for s € S.

Given a first oder formulaA, its set ofsequences of nested quantifigssdenoted by
Nest A) and defined by induction as follows:

(1) NestA) = {e} if Alis atomic; here denotes the empty word.
(2) Nest—A) = NestA).

(3) NestA A B) = NestA v B) = NestA) U NestB).

(4) Nestax A) = 3 Nest A) andNestVx A) =V NestA).
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The quantifier rankof a formulaA, denoted bygr(A), is the maimum length of a string
in NestA).

We adopt the notion of thalternation numbef a formula (cf. RO, Definition 2.8]).
Given a squence of quantifiers, let alt(s) denote the number of occurrences¥gfandv3
in s. Thealternation numbeof a first order formula, denoted byalt(A), is the maimum
alt(s) overs € NestA). The dternation number has an sdiutely clearmeaning for
formulas in thenegation normal formwhere the onnective— occurs only in front of
atomic subformulas. This number is defined for any formilso that, ifA is reduced to
an equivalent formul@'’ in the negation normal form, theait( A) = alt(A').

Viewing a formula A as a string of symbols over the countable first order alphabet
(where each variable and each relation &ated by a singleysnbol), we denote the
lengthof Aby|A|. Note hat if one prefers, in a natural way, to encode variable and relation
symbols in a finite alphabet, then the length will increase but stay wiithitog | A|.

We call A an3-formula (resp.v-formulg) if any sequence inNest A) with maximum
number of quantifier alt@ations strts with3 (resp.v). We denote the set of formulas in
the negation normal form with alternation number at mogty Apy,. By A2, (resp.4y,) we
denote the subset dif,, consisting of formulas inly,—1 and3-formulas (respy-formulas)
in Am \ Am—1. We will call formulas in /13 and/l‘g exigentialanduniversalrespectively.

A prenex formulais a formula with all its quantifiers up front. In this case there
is a single squence of nested quantifiers and the quantifier rank is just the number
of quantifiers occurring in a formula. Le¥; and II; denote, respectively, the sets of
exigential anduniversal prenex formulas. Furthermore, It (resp.Ily) be the exension
of Yin—1 U II;m—1 with prenex formulas in/l?m1 (resp.Amfl). Note that the classes of
formulas An, A?n, A‘r’n, Ym, and Iy, are defined so that they are closed with respect to
subformulas.

The following lemma is an immediate catpience of the standard reduction of a
formula to the prenex form.

Lemma 2.2. The onjunction ofXy,-formulas (resplin-formulas) is effectively reducible
to an ejuivalentXy-formula (resp.in-formula). The same holds for the disjunctiori]

We wiite A = B if A andB are logically equivalent formulas ard = B if AandB
are literally the same.

Lemma2.3.

(1) Any formula in43, is effectively reducible to an equivalent formulasi 1.

(2) Any formula in4y, is effectively reducible to an equivalent formulalig,.1.

(3) Any formula inAp, is effectively reducible to an equivalent formulaii, 2 or, as
well, to an equivalent formula ity 2.

Proof. Item 3 follows fran Items 1 &ad 2 asAn, is includad both in A%H and/l;H. To
prove Items 1 and 2, we proceed by inductioman

Consider the hse case ofn = 0. Assume thatA < Ag and lett = t(A) denote the
total nunber of quantifiers and connectives v in A. We prove thatA has an equivalent
formula A’ € X1 using induction ori. If t = 0, thenA is quantifier fre andhence inXjy.
Lett > 1. Assume thafA = 3x B. Sincet (B) = t(A) — 1, the assumption of induction ¢n
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applies toB. Therdore B reduces to an equivalent formBa € ¥; and we seA’ = Ix B'.
Assume thatA = B A C (the case wheré = B v C is similar). Neither ot (B) andt (C)
exceedd (A)—1 and, by the assumption of induction brfor B andC we havesquivalents
B’ andC’ in X1. ThenA = B’ A C’ reduces to an equivalent ¥y by Lemma 2.2

The reducibility of/l‘g to 111 is proved similarly.

Letm > 1 and assume that Items 1 and 2 of the lemma are true for the preceding value
of m. GivenA e A3, we show how to find anciivalent formulad’ € Y1 (the reduction
of /1}’n to Ilmy1 is similar). We again use induction dn=t(A). If t = 0, thenAis in Xp.
Lett > 1. If A= VxB, thenA e A;’n_l and, by the assumption of induction on A has
an equivalent\’ € Iy C Yme1. If A=3xB,A=BAC,orA=BVvC,thenB,C ¢ /lﬁ1
and botht (B) andt (C) are smaller thah(A). We ae done by the assumption of induction
ont andLemma 2.2 O

A formula with all variables bound is callecclbbsed formulaor asenence

Lemma 2.4. If A is a closed prenex formula of quantifier rank g with occurrences of h
binary relation symbols, then it can be rewritten in an equivalent forhwith the same

quantifier prefix so thatA'| = O(hg22"e®).

Proof. Let B(xy, ..., Xq) be the quantifier-free part &. The B is a Boolean combination
of m = h(g) atomic subformulas and hence is representable as a DNF of length
om2m. O

2.3.2. Structures

A relational vocabulary is a finite set ofelation symbolaugmented with thearities.
We alwaysassume the presence of the binary relation symbsianding for the equality
relaion anddo not include it inoc. The only excepion will be Section 5.4where the
presence or the absence of equality will be stated explicitly.

A structue over vocabularys (or ano-strudure) is a set along with relations that
are named by symbols it and have the corresponding arities. We mostly deal with the
vocabulary of a single binary relation symb@l structureover this vocablary can be
viewed as airected graph(or digraph). We treatgraphsas structures with a single binary
relaion which is symmetric and anti-reflexive. This relation will be called @ldgacency
relation and denoted by.

If all relation symbols of a sentendeare from the vocabulary andG is anc -strudure,
then A is either true or false ofs. In the famer caseG is called amodel of A. We also
say thatG saisfies A We call A vdid if all o-strudures satisfyA. We call A (finitely)
sdisfiableif it has a (finite) model. ClearlyA is valid iff —A is unsatisfiable.

2.3.3. Computability

Whenever we say that something can be deffectively we mean that this can be
implemented by aralgorithm No restrictions on running time or space are assumed.
Professing Church’s thesis we here do not specify any definition of the algorithm.
Nevertheless, we will refer tduring machinegseeSection 4.2.1andrecursive functions
in Sectons 4and5. As a basicéct, these two computational models are equally powerful,
under an effective bijection between binary words and non-negative integer numbers.
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Let X be a set of words over a finite alphabet. Teeision problenfor X is the problem
of recognizing whether or not a given word belong¥tdf there isan algorithm that does
it, the decisbn problem issohable (or X is decidablg.

Thehalting problemis the problenof deciding, for given Turing machinil and input
word w, whetherM eventally halts onw or runs forever. This is a basic unsolvable
problem. It is well known that, if we fixv to be the empty wordhe restricted problem
remains unsolvable.

The (finite) satisfiability problems the problem of recognizing whether or not a given
sentence is (finitely) satisfiable (we hergsame any atural encoding of formulas in a
finite alphabet). Settling HilbertEntscheidungsproblenChurch and Turing proved that
the satisfiability problem is unsolvable. The unsolvability of the finite satisfiability problem
was showrby Trakhtenbrot29].

A general ecursive functiofis an everywhee defined recursive function.

2.3.4. The Bernays—Schonfinkel class of formulas and the Ramsey theorem

A class offormulas has thénite model propertyf every satisfiable formula in the class
has afinite model. By the completeness of the predicate calculus with equality, the set of
valid sentences is recursively enumerable.rirrioere it isnot hard to conclude that, if a
class of formulas has the finite model property, the satisfiability and the finite satisfiability
problems for this class are solvable.

The Bernays—Schonfinkel clag®nsists of prenex formulas in which the existential
guantifiers all precede the universal gtifiers, that is, this is another name fBp.

Proposition 2.5 (The RamseyHeorem P6]).! For each vo@bularyo there is a general
recursive function £ N — N such that the following is true: assume that ssentence A

with equality is in the Bernays—Schonfinkel class. If A has a model of some cardinality
at least f(grn(A)) (possibly infinite), then it has a model in every cardinality at least
f(gr(A)). As a consequence, the Bernays—Schonfinkel class of formulas with equality
has the finite model property and hence both the satisfiability and the finite satisfiability
problems restricted to this class are solvable.

2.3.5. Definability

Let G andG’ be non-isomorphic graphs aflbe a first order sentence with equality
over vocablary {~}. We saythat A distinguishes G from Gf A s true onG but false on
G'. By D(G, G') (resp.Dk(G, G")) we denote the minimum quantifier rank of a sentence
(resp. withalternation number at mokj distinguishingG from G’.

We say that aenenceA ddinesa graphG (up to isomaphism) if A distinguishesG
from any non-isomorphic grap®’. To ensire thatA has no other models except graphs,
we will tacitly assume thaf\ has formA = Vy(X # X AVy(X ~y — y ~ X)) A B.

By D(G) (resp.Da(G)) we denote the minimum quantifier rank of a sentence defiring
(resp. withalternation number at moaj. By L (G) (resp.La(G)) we denote the minimum
length of a sentence definir@ (resp. withalternation number at moaj.

1 The combinatorial Ramsey theorera correrstone ofRamsey theoryappeared in this paper as a technical
tool.
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A sentencesd calleddefiningif it defines a graph. Note that any defining sentence must
contain the equality symbol. Let us stress that grdphim the above definition may have
any cardinality.

Lemma 2.6. All finite graphs and only finite graphs possess defining sentences.

Proof. Any finite graph is indeed definable as it has at least the wasteful definitjon (
By theupward Lowenheim—-Skolem theorem (s&8, [Comllary 2.35]), ifa sentace with
equality has an infinite model, it has a model of any infinite cardinality. For this reason, no
infinite graph has a defing sentence in the sense of our definitiofl

Lemma 2.7. The clasf definingAj-sentences is decidable.

Proof. Suppose that we are given a senterice Ai. By Lemma 2.81), we can reduce it
to an equivalent formula in the Bernays—Schdnfinkel class and apply the Ramsey theorem.
We are able to recognize whethAris defining n four seps.

(1) Check whetheA is finitely satisfiable.

(2) If so, trying graphs one by one, we eventually find a graph of the smallest order
satisfyingA (this is actually done in the first step, if it is based directly on the Ramsey
theorem).

(3) Check whether there is any other graph of orsatisfying A.

(4) If not, check if a47-sentenceA A e (N\1<i<j<nt1 Xi # X)) is satisfiable.

If not, and only in this caseA is defiing. O

3. The Ehrenfeucht game

In this section we borrow a lot of material fror8§, Section 2]. To make our exposition
sdf-contained, we sketch some proofs that can be founé&hih more cetail.
TheEhrenfeucht gamis played on a pair of structusef the sam&ocabulary. We give
the definition conforming to the case of graphs.
Let G and H be graphs with disjoint vertex sets. Tkeround Ehrenfeucht game on
G andH, denoted by ERk(G, H), is played by two players,@iler and Duplicator (he
and she for brevity), wittk pairwise distinct pebbleps, ..., pk, each given in duplicate.
Spoiler stars thegame. Around consists of a move of Spoiler followed by a move of
Duplicabr. At thei-th move Spoiler takes pebbig, sekcts one of the graphs or H,
and place9; on a vertex of this graph. In response Duplicator should place the other copy
of p; on a vertex of the other graph. It is permissible to place more than one pebble on the
same vertex.
Letu; (resp.vi) denote the vertex ofs (resp.H) ocaupied byp;, irrespectively of which
of the players placed the pebble on this vertex. If

ui = uj iff vj = vj foralll<i < j <Kk,

and the component-wise correspondeqeg. . ., ux) to (v1, ..., vk) is a partial isomor-
phism fromG to H, this is a win forDuplicator; Otherwise the winner is Spoiler.
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The a-dternation Ehrenfeucht game o6 and H is a variant of the game in which
Spoiler is allowed to switch fim one graph to another at mastimes during he game,
i.e., in at most rounds he can choose the graph other than that in the preceding round.

Let0 < s < k,r = k—s, and asume that at the stastthe game the pebblgs, ..., ps
are already on the board at vertiges= us, ..., us of G andv = v1,...,vs of H. The
r-round game with this initial configuration is denoted byrg (G, U, H, v). We write
G, G =k H, v if Duplicatorhas a winning strategy in this game.

It is not hard to check thaty is an equivéence reléion. Thek-Ehrenfeucht value of a
graphG with verticesuy, .. ., us marked by pebbles is the equivalence class it belongs to
under=k. We letEhrv (k, s) denote the set of all possibkeEhrenfeucht values for graphs
with s marked vertices. LeEhrv(k) = Ehrv(k, 0) denote the set d-Ehrenfeucht values
for graphs (with no marked vertex).

Lemma3.1. Assume that s< k. Letld = uy, ..., us and S§G, 0) denote the set cEi-
equivalence classes of G with-sl marked verticesi, u forallu € G\ {us, ..., us}. Then
G, U= H, 0iff S(G, 0) = S(H, 7).

Proof. Consider the game HRk_s(G, 0, H, v). Suppose thatS(G, 0) # S(H, v); for
exampe, there isu € V(G) suchthatG, 0, u #, H, v, v foranyv € V(H). Let Soailer
select thisu and letv denote Duplicator’s response. From now on the players actually play
EHRk_s-1(G, 0, u, H, v, v), where Poiler has a winning strategy.

Suppose thaB(G, ) = S(H, v). If Spaler selects, for example, a vertexe V(G),
then Duplicator responds with € V(H) suchthatG, 0, u =¢ H, v, v and hence has a
winning strategy in the remaining part of the gameél

Lemma3.2 ([28 Theorem 2.2.1]. For any s and k, Ehrk,s) is a finite set.
Furthermore, let f(k, s) = |Ehrv(k, s)|. Then
f(k, k) < 40, (6)
f(k,s) < 2fkstD @
fors < k.

Proof. The bound®) holds because thex-equivalence class & with markeduy, .. ., ug

is determined by the equality relation on the sequence. . , ux and the induced subgraph
G[{ug, ..., ux}]. The bound 7) holds because they-equivalence class of an arbitra®/
with markedd = uy, ..., Us is, according td.emma 3.1 deermined byS(G, 0), a subset
of Ehrv(k,s+1). O

As a mnsequence, we obtain the following bound.

Lemma3.3 ([28 Theorem 2.2.2]. |Ehrv(k)| < T(k+ 2+ log*k) + O(1). O

We say that dormula A(xy, . . ., Xs) with s free variableslefinesan Ehrenfeucht value
a € Ehrv(k,s) if Ais true ona graphG with variablesxs, ..., Xs assigned vertices
ui, ..., Us for exaadly thoseG, uy, ..., us which are ina.

Lemma3.4 ([28 Theorem 2.3.2]. For anyx € Ehrv(k, s) there is a formula 4 with
gr(Ay) = k — s that defines.. Moreover,
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Ayl < 18(2) ifs = k and (8)
|Aql < f(k,s+1) (max{|Agl: B € Ehrv(k,s+ 1)} + 10) ifs < k. 9)

Proof. The bound §) holds because evety € Ehrv(k, k) is definedby a formula of the
type

/\ 06 = X)) A*0 ~ X)),

1<i<j<k

wherex andx are— for some(i, j) and nothing for the otherslepending on adjacencies

among the marked verticesofa u1, ..., Uk in a.
Let s < k and assume that every € Ehrv(k,s + 1) has a defining formula
Ag(Xq, ..., Xs, X) of quantifier rankk — s — 1. Consider ax € Ehrv(k, s) and choose

a represetative G, U of «. Define S(o) = S(G, 0), where the ight hand side is as in
Lemma 3.1 By this lemma, the definition does not depend on a particular choi¢ af
We set

Ac(X %) = [\ A X ) A\ m T AL X, X).
BeS(@) BES(@)

It is clear thatG with desgnatedl = ug, ..., us satisfiesA, iff the se of Ehrerfeucht
values with additional designatedlis equal toS(«). By Lemma 3.1thelatter condition is
true iff G, G has Ehrenfeuchtvalue 0O

Proposition 3.5. Suppose that G and H are non-isomorphic graphs.

(1) Let R(G, H) denote the minimum k such that G and H have different k-Ehrenfeucht
values. Then G, H) = R(G, H). In other words, G, H) equals the minimum k
such hat Spoiler has a winning strategy EHR, (G, H).

(2) Da(G, H) equals the minimum k such that Spoiler has a winning strategy in the
a-dternationEHRk (G, H).

We rdfer the reader to48, Theorem 2.3.1] for the proof of the first claim and t&(] for
the second claim.

Proposition 3.6.

D(G) = max{D(G, H): H and G are non-isomorphjc
Da(G) = max{Da(G, H) : H and G are non-isomorphjc

The first equality can be restated as follows(@® equals the minimum k such that the
k-Ehrenfeucht value of G contains only graphs isomorphic to G.

Proof. We give a proof of the first equality that can be easily adopted for the second
equality. Denote the maximum in the right hand sid&kbWe havek < D(G) as a matter

of definition. Conversely, lek € Ehrv(k) be the class containin@. By Proposition 3.5

G is, up b isomophism, the only member af. For eachg # « in Ehrv(k), fix a
representativéls. Let Cg be a sentence of quantifier rank at mioslistinguishingG from

Hg. We useLemma 3.2saying thatEhrv (k) is finite. The conjunction of alCg defines
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G and has quantifier rank. Thus,D(G) < k. (Alternatively, we ould use the known
fact that, over a finite vocabulary, there areyofiihitely many inequivalent sentences of
bounded quantifier rank; dtemma5.6) O

4. A superrecursive gap: smulating a Turing machine
Definition 4.1. We defire thesuccinctness function(g) (for formula length) by

s(n) = |(ryli:nn L(G).

The variants with bounded alternation number are defined by
Sa(n) = min La(G)
|G|=n
for eacha > 0.

It turns out thats(n) can be so small with respect tothat the gap between the two
numbers cannot be bounded by any recursive function.

Theorem 4.2. There is no general recursive function f such that
f(ss(n)) > n forall n. (10)

Lemma4.3 (Simulaion Lemma. Given a Turing nachine M with k states, one can
effectively construct a sentenceyAwith single nary relation symbok and equality
so that the followingonditions are met.

(1) gnAm) = k + 16.

(2) |Am| = O(K?).

(3) alt(Am) = 3.

(4) Aw is effectively reducible to an equivalent prenex formulawhose quantifier prefix
has length k+ O(1), bedns with k existential quantifiers, and has three quantifier
alternations.

(5) Any model of A& isa graph. If M halts on the empty input word, theyAas a unique
model Gy and the order of Gy is bigger than the running time of M.

(6) M halts on the empty input word iff\has a finite model.

Proof of Theorem 4.2. Let g(k) denote the longest running time on the empty input word
€ of a k-state Turing machine (non-halting mackéare excluded from consideration).
Recognizing whether or not a given Turing machine vitstaes halts orr easily reduces

to computation ofg(k). As this variant of the halting problem is well known to be
undecidable, the functiog(k) cannot be bounded from above by any general recursive
function. For eaclk, fix a machineMy with k states whose running time attaiggk).

Let Ay, be as inthe Simulation LemmaGk be the model ofAy,, andng be the order

of Gy. Letl (k) = ck? be the upper bound fdAm, | ensured by the lemma. Note thaiy,
definesGy.
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Suppose on the contrary thdiQ) is true forsome geeral recursivef . Sincesz(nk) <
[Am| < I (k), for everyk we have

gk) < ng < f(s3(nK)) < irg% f(),

a oontradiction. O
The proof of the Simulation Lemma takes the rest of this section.
4.1. Gadgets

We enrich our language with connectives and < for the inplication and the
equivalence. Since the alternation number was defined for formulas with connectives
=, A, V, we should stress that> and< are used as shorthand for their standard definitions
through—, A, v. We introduce the new uniqueness quantifievia

A F () = IF () A VeV (FOO A F(Y) = X =)

for any formulaF with a free variablex and with no free occurrences gf Note hat
one occurrence of the uniqueness quantif@rtdbutes 2in the quantifier rank and 1 in
the alternation number. We use relativizedsiens of the existential and the universal
quantifiers in the standard way:

Jcoo F(X) = Ix(C(X) A F (X)),
Ve F(X) = Vx(C(X) = F(X)).

To ensurghat any model ofAy is a graoh, we put inAy the two graph gioms (the
irreflexivity and the symmetry of the relation).

4.1.1. Ordering

We give a brmulaP(x, x") with two free variablex andx’ that, in any model, shall
determine an order on the neighborhoodoket X = {y : y ~ x} andX' = {z: z~ x}.
ThenP(x, x’) is the conjunction tthe fdlowing:

(P1) {x, x'}, X, X" are all disjoint and each of them is independent.
(P2) YyexTzex ¥y ~ Z

(P3) yexTlzex Y ~ 2.

(P4) JyexVzex' Y ~ Z.

(PB) Yy exVyoex[Vzex/ (Y1~ Z— Y2 ~ 2) V Vzexi (Y2 ~ 2 — Y1 ~ 2)].
(P6) VyiexVy,exly1 # Y2 = Jzex: (Y1~ Z < ¥2 # 2)].

(P7) Vyex[Jzexr Y # 2 — 3y+eX3!zeX’(y+ ~ZAYF 2]

(P8) Vyex[lzexr Yy~ ZV E|y*e><£”zeX’(y ~ZAYT #* 2]

Note thatgr(P) = 4, alt(P) = 2 (contributed by7) and (B)), and|P| = O(1).

Consider finite models oP(x, x’). Fory € X let N*(y) be thosez € X’ adjacent to
y. The N*(y) are distinct (P6), linearly ordered under inclusion (P5), are nonempty (P2),
include a singleton (P3) and all & (P4), and the set of all cardinalitiegN*(y)| has no
gaps (either (P7) or (P8)). So we must ha¥e = |X’| and the elements can be ordered,
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X1, ..., Xs, Xq, ..., X, SO thatx;, xj are adjacent precisely whgn< i. We induce onX a
binary rdation < defined by

Y1 < Y2 =Veex (Y1~ Z— Y2~ 2).

In any model (even infinite) the properties (P1)—(P8) assureths linear order with
a least and greatest element. Furthermore, eyergs a sacessoryt and a predecessor
y~ except whery is the last or first element of respectively.

4.1.2. Coordinatization

We now give gormulaCOOR(x, x/, 1, t/, z) that shall coordinatize the neighborhood of
z. Let X, X', T, T/, Z denote the neighborhoodsxfx’, t,t’, z respectively. TheOOR
is the conjunction bthe fdlowing:

(C1) x, X, t,t',z, X, X', T, T', Z are all disjoint.Z is an independent set. All neighbors
of Z are in{z} U X U T. There isno edge betweeK U X’ andT U T'.

(C2) P(x,x') A P(t, 1),

(C3) Vzez@lxexZ ~ X A AlteTZ ~ 1).

(C4) YxexVietIlzez(Zz~ X AZ~1).

Thus, eaclz € Z has a unique pair of coordinatés, t) and eachx, t) corresponds to a
uniquez. Note hatqgriCOOR = gn(P) = 4 andalt(COOR) = alt(P) = 2.

4.1.3. New functional and constant symbols
To facilitate further description oAy, we will use new finctional symbols. In
particular, this will allow us to have new constant symbols as symbols of nullary functions.
Writing v, we will mean a finite sequence of variables, v, . . .. AS 0n as a statement
Vy3AIXF(X, ¥) is put in Ay or is derivable from what is already put Ay, we may want
to denote this uniquex by ¢ () and usep as a new functional symbol in the standard way.
Thatis, if Q(u, 2) is a formula with free variables, z, then

Q@ (¥), 2) = IX(F(X, ¥) A Q(X,2)) or
Q@ (¥, 2) = Yx(F(x, y) = Q(X, 2)).

Both variants are admissiland anappropriate choice of one of them may reduce the
alternation number of a formula. Furthermore, in this way we can express compositions of
several finctions (e.g.18, Sedion 2.9]).

In particular, in any model o£COORX, x/,t,t’, z) we let 1, 2 denote the first two
elements ofX (under<) and O (it wll represent time zero) the first element Bf The
same chracteiw will be used for the last element &f or T, dependent on context. Far
in X or T, v~ andv™ are respectively its predecessodassuccessor (when defined). The
notation(x, t) will be used as a binaryuhction symbol with meaning as explained in the
preceding subsection.

4.2. Capturing a computation by a formula

4.2.1. Definition of a Turing machine
For tednical reasons, we prefer to use the model of a Turing machine whetagtbis
infinite in one direction. It is known (e.glp, Setion 41]) that it is equivalent to the model
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with the tape infinite in both directions. At the start the tape consists of the special “Left
End of Tape” symboL, followed by an input word written down in the binary alphabet
{a, b}, and fdlowed onward by ali'blank” symbolsB. A symbol occupies one cell. Let

s, ..., & bestatesof a Turing machineM, with s; theinitial state andx thefinal stae.

At the startM is in states; and its head is at the fir&®. A machine is defined by a set of
instructions of thedllowing type, wherey, 8 € {L, a, b, B}.

sapfsj: Ifin states reading a symbalk, overwite g and go to stats;.

s Rights: Ifin states reading a symbak, move thenead one cell to the right and go
to states;.

saLefts: Ifin states reading a symbak, move thehead one cell to the left and go to
states;.

If @ = L in an instruction of the first type, theh= L. This is tie only case whefd = L.
There is no instruction of the third type (“move to the left”) foe= L. With this exception,
for everyi < k anda there is a unique instruction for what to do in stgteeadinge. The
machine halts immediatglafter coming to statex. If M hdts, its running timeis the
number of instructions executed before termination.

4.2.2. Formula Ay

For notational simplicity, we use the same name for variables and corresponding
semantial objects (ingredients dfl and vertices of a grapBy). The vertexH below
shall be useda keep track of the tape headexy is the conjunction bthe two graph
axioms and a long formula of the form

EI><,x’,t,t’,z,51,4.4,sk,a,b,B,L,H Bm(x, X, t,t',z,,...,%,a,b, B, L, H).

The formulaBy whose all free variables are listed above is the conjunction of the
following subformulas, whereX, X', T, T’, Z denote, as before, the neighborhoods of
X, X', t,t/, zrespectively.

(A x,x',t,t',z,51,...,%,a,b, B, L, H, X, X, T, T/, Z are disjoint and consist @l

the vertices of the graph.

(A2) COORX, X/, 1,1, 2).

(A3) All of the neighbors o, b, B, L, H are inZ.

(A4) For allx € X andt € T the vertex(x, t) is adjacent to precisely one afb, B, L.

We will write VAL(x, t) for this value, which represents the symbol on the Turing machine
at position (cell of the tapex and timet. Note hat, asVAL(x,t) ranges over four
possible valued , a, b, B, using ths functional symbol requires no extra quantification.
For example,iie formulaVAL(x, t) = « reads justx, t) ~ «a.

(A5) All neighbors ofH are inZ. For allt € T there 5 auniquex € X for which (x, t)

is adjacent toH. We write HP(t) for this x, which represents the header position. Thus,
HP(t) = x reads(x, t) ~ H. We sh#l write VAL(t) = VAL(HP(t), t), the synbol that the
header is looking at time If HP is used withinVAL, it takes one extra quantifier. Note that

a wbformulaVAL(t) = o« has quantifier rank 2 and alternation number 0. Furthermore,
VAL(t") = o has quantifier rank 4 and can be written with alternation number 0.

(A6) The neighbors 0§, ..., s are all inT. For allt € T precisely one ofq, ..., &
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is adjacent td. We write ST(t) for this s, which represents thetate at timet. Note hat
STt)y=s=t ~s.

We want the Tiring macline to start in the standard position:
(A7) VAL(L, 0) = L A Vx£1VAL(X,0) = B AHP(0) = 2A ST(0) = s1.
We want the Tiring macline to end in the final state and not be there before that:
(AB) VieT(ST) = < t = w).
We want valuesn the tape not to change except (possibly) at the header position:
(A9) VieT t20Vxex (X # HP(t) — VAL(X, t¥) = VAL(X, 1)).
We want the ightmost spot on the tape to be used (we need this for uniqueness of the
model; we do not want to allow superfluous blanks):
(A10) JteT VAL(w, 1) # B.
We reed that the instructions would not push the Turing machine to the rightof. For
everys, « such ttat when at statg and valuex the instruction woud push the header to
the rightwe have
(Al11) =3tcT(VALR) =a AST(t) =S5 A HP(1) = w).

We are down to the core workings of the Tig machine. For each instruction of the
first type we have
(A12) VieTVxex (STt) = 5 AHP(t) = X A VALL) = « — STtT) =55 A VAL(T) =
B AHP@ET) = x).
For each instruction of the second type we have
(A13) VieTVxex(STt) = s AHP(t) = x A VALt) = @ — STt") = sj AHP(t') =
Xt AVALKX, t1) = ).
For each instruction of the third type we have
(A14) VieTVxex(STt) = s AHP(t) = x A VALt) = @ — STt") = sj AHP(t') =
X~ A VALKX, t1) = o).

4.2.3. Proof of the Simulation Lemma

Straightforward inspection shows that(By ) = 6, contributed, for example, by (A9).
This gives Item 1 of the lemma. Since we treat a variable as a single symbol, (A1) and
(AB) have lengthO(k?), (A11)—(A14) have lengti®(k), and all he others have constant
length. This gives Item 2. Straightforward inspection shows &figBy) = 2, contributed
by (A2). This gives Item 3.

Item 4 requires a bit of extra work. A8y € 432, Lemma 2.3implies that Ay is
reducible to an equivalent prenex formula with quantifier prafix*3*v*. We make a
stronger claim that one can achieve the prefiw©130MyOMD  Note hat By has a
constant number of conjunctive members witinstant length and hence they contribute
a monstant number of quantifiers. (A1) and (A6), though they have length dependient on
contain a constant number of quantifiers. The remainder, (A11)—(A14), should be tackled
with more care as every one of these components, though it has a constant number of
quantifiers, occurs iBy in O(k) variantsfor various pairss, «. Fortunatdy, all these
occurrences can be replaced by a single fdanwith a constant number of quantifiers.

For example, introducing two new variablesndc, we can replace the conjunction of all
variantsof (A11) by
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—Jret3sTe |:\/(s =5 AC=a) AVALL) = cA STt) = SA HP(t) = a):| ,
S.,x
where thedisjunction is over the specified pass «.

Let us turn to Items 5 and 6. It should be clear thatMifhdts, its computation is
converted to a graph satisfyirf, whose order exceeds the running time. Such a graph is
unique up to isomorphism because the adjacencies of any finite modgl afiust mirror
the actions of the Turing machine.Rbe samegason, any finite model &y is converted
into a halting computation d¥1 and hence, ifAy has a fiite model, therM halts onthe
empty input. It remains to note that, M halts, thenAy has no infinite model. Letn
be the running time oM. In any nodel of Ay, the firstm values oft mustsimulatem
steps ofM’s conputation. By (A8), the seT is therefore finite. By (A10), the cardinality
of X cannot exceed the cardinality ®fand henceX is finite too. It immediately follows
that the other components of the modxl, T’, and Z, are firite as well. The proof is
complete.

5. Other consequences of the Simulation Lemma
5.1. There are succinct definitions by prenex formulas

Due to (), any graph of orden is definable by a gnex formula of quantifier rank
n + 1 with alternation number 1. Though the class of prenex formulas may appear rather
restrictive, it turns out thatf ione is allowed to increase the alternation number to 3, then
there are gnhs definable by prenex formulas with very small quantifier rank.

Definition 5.1. Let LE*"®{G) denote the minimum length of a closed prenex formula with
alternation number at moatthat defines a grap®. Furthermore,

sgrenein) — lérllrn LgreneXG)_

Theorem 5.2. There is no general recursive function f such thasbf""*(n)) > n for
alln.

Proof. We proceed precisely as in the proof ®heorem 4.2but ushg, instead ofAy,
the pren& formula Py given by the Simulation Lemma. We will need a recursive bound

IPw| < 1(K). We can takd (k) = ck?4<” owing toLemma 2.4 0
5.2. The set of defining sentences is undecidable

Theorem 5.3. The dassof defining sentences is undecidable.

Proof. Given a Turing machin, consider a sentenc&y as in the Simulation Lemma.
If M halts on the empty inputiy is defining. Suppose thd#l never h#ts. Then either
Am has no model or it has an infinite model. Bgmma 2.6 Ay is not defining in both
cases. We have thereby reduced the haltiredplem (for the empty input) to the decision
problem for the set of defining sentencesl

Note a partial positive result given lhyemma 2.7
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5.3. (G) and D(G) are not recursively related

Obviously, D(G) < Do(G) for all graphsG. How far apart from each other can these
two values be? Is there a converse relatiyiG) < f(D(G)), for somegeneral recursive
function f ? The answer is “no”. We will actually prove a stronger fact. Dat»(G) denote
the minimum quatifier rank of a/l?-sentence that defin€s. Notice the hierarchy

D(G) < D3(G) < D2(G) < D1(G) < D1/2(G) < Do(G).
We are at# to show asperrecursive gap even betweBp(G) andDy/2(G).
Theorem 5.4. There is no general recursive function f such that
D1/2(G) < f(D3(G))
for all graphs G.

Lemma 5.5. The finite satisfiability of ali-sentence is decidable.

Proof. By Lemma 2.3a/1§-sentence effectively reduces to an equivalent formula in the
Bernays—Schdonfinkel class. The finite satisiligpof the latter is decidable by the Ramsey
theorem. O

The next lemma is related to the well-known fact that, over a finite vocabulary,
there are only finitely many pairwise inequivalent sentences of bounded quantifier rank
(cf.[2, Lemma 4.4]).

Lemmab5.6. Given m > 0, one can effectively construct a finite set, \donsisting of
Ai-sentences of quantifier rank m so that evﬁﬁysentence of quantifier rank m has an
equivalent in U,.

Proof. Any sentenceA of quantifier rankm can be rewritten in an equivalent fordy

so thatA’ uses at mosin variables, wiere different occurrences of the same variable are
not counted (see e.q2], Proposition 2.3]). Referring to this fact, we will put Iy, only
senteges over the variable séty, ..., Xn}. We now prove the lemma in a stronger form
saying that, for eachm andk such tlat 0 < k < m, one can construct a finite s «
which is universal for the class ofi-formulas of quantifier rank over the variable set

{X1, ..., Xm} with preciselyk variables bound.
We proceed by induction ok. Consider the base case lof= 0. There ara = 2(';‘)
atomic formulasx; ~ xj; andx; = xj. Any quantifier-free formula is a Boolean

combination of these and can be represeriig a peréct DNF (except the totally false
formula for which we fix representation = X1 A X1 # X1). The setUn o consists of all
22" such &pressions.

Um k Will consist of two partsU K andUm «» the famer for formulas with at least one
exigential quantifier and the Iatter for formulas with no existential quantifiek. 4 0,
we haveU,§'1O =0 andUmo = Um,0. Assume thak > 1 andUmk—1 has already been
constructed. We construt:l;n k in four steps.

(1) Put inUr?],k the formulasix; A for all A € Uy k—1 andi < m such that no occurrence
of xj in Alisbound.
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(2) Put inUr\;,k the formulasyx; Afor all A € Ur\;ykfl andi < msuch that no occurrence
of xj in Alisbound.

(3) PutinUZ , all monotone Boolean combinations of formulas frorg , andUy  as
constructed in Steps 1 and 2 with at least one formula Irkjm involved.

(4) Put inU,‘{1 « allmonotone Boolean combinations of formulas frum « as constructed
in Step 2.

Finally, to obtainUp, exadly as claimed in the lemma, we 98fy = Upnm. O

Proof of Theorem 5.4. Suppose on the contrary that suchfaexigs. Using thef , we will
design an algorithm for the halting problem, contradicting the unsolvability of the latter.

Given a Turing machin®, we @nstruct the sentena®, as in the Simulation Lemma.
Recall that

e alt(Anm) = 3;
o if M halts on the empty input, thefyy defines a finite grapBu;
e if M does not halt, theiy has no finite model.

Write k = grlAm) andm = max < f(i). Thus, if Gy exids, thenD3(Gm) < k and, by
the assumptiorD1,2(Gm) < m.

ConstructUy, as in Lemmab5.6and add to every sentence Wy, the two graph
axioms. We know thaly, contains a sentence defini@y and this will help us to con-
struct this graph (if it exists). Remove frody, all finitely unsatisfiable formulas. This task
is tractable by emma 5.5For every emaining sentence, by brute-force search we eventu-
ally find a finite graph satisfying it (we need one model for every sentence and do not care
that some sentences may have other models)Ghet. ., G; be the list of these graphs.

If M halts, one of thé5;’s coincides withGy, and satisfieAy. If M does not, none
of the Gj’s sdisfies Ay. Thus, the verification of whetheky, is true onone of theGi's
allows us to recognize whethbt halts on the empty input.

Corollary 5.7.

(1) There is no general recursive function f such thag(G) < f(D(G)) for all
graphs G.

(2) There is no general recursive function f such tha{®, G’) < f(D(G, G')) for all
non-isomorphic G and G

Proof. (1) Suppose on the contrary that suchfaexigts. Then we wuld haveD1,2(G) <
Do(G) < f(D(G)) < max<p,c) f(i), contradictory toTheorem 5.4

(2) Again, suppose that such d@nexigs. By Proposition 3.6 Do(G) = Do(G, G')
for someG'. It follows thatDo(G) < f(D(G, G’)) < max<p(g) f (i), contradictory to
tem1. O

It is also worh noting thefollowing fact.
Theorem 5.8. Do(G) and Dy/2(G) are computable functions of graphs.

Proof. We prove the therem for D1/2(G); for Do(G) the proof is similar. Starting from
m = 2, we trace through the universal $&t given byLemma 5.6and, for each sentence



O. Pikhurko et al. / Annals of Pure and Applied Logic 139 (2006) 74-109 93

A € Up, check whethelG satisfiesA and, if so, whetheA is definhg. The latter can be
done on account dfemma 2.71f no suchA is found, we conclude thdd;,>(G) > mand
increasenby 1. O

Remark 5.9. A variant of Theorem 5.4for the formula length is also true, even with a
simpler poof (no reference themma 5.6s needed).

5.4. An undecidable fragment of the theory of finite graphs

Given a class of-struduresC, let Sat(C) (resp.Saf(C)) be the set of formulas over
o without equality (resp. with equality) that have a modefirFurthemore, letSatn(C)
(resp.Saf,(C)) be the set ofdrmulas overo without equality (resp. with equality) that
have a finite model ig. If X is one of the aforementioned sets dnds a class of formulas
overo, we call the intersectiorr N X the F-fragment of X. We will be interested in the
case wherd- is aprefix classthat is, onsists of prenex formulas whose quantifier prefix
agrees with a given pattern. Describing such a pattern, w&*ise3* to denote a string
of all v or all 3 of any length.

Let D (resp.S) denote the class of structures corisig of a single binary relation
(resp. symmetric binary tation). In other wordsD is the class of d&cted graphs. Bg
we danote the class of graphs, i.e., structures consisting of a single irreflexive symmetric
relaion.

On the basis ofChurch and Turing’s solution of Hilbert'€ntscheidungsproblem
Kalmar [L3] proved thatSat(D) is undecidable. Following the Kalmar result and the
Trakhtenbrottheoren?[9], Vaught [30] proved thathe seSat, (D) and the set of formulas
not in Sat(D) are recursively inseparable, that i) decidable set contains the former
and is disjoint with the latter. In particular, bo8at, (D) and Sat(D) are undecidable.
Currently a complete classification of prefix fragmentSaf(D), Sati,(D), Sat (D), and
Sag; (D) is known (see ]], a reference book on the subject).

Church and Quined] established the undecidability &at(S). Note hat this result is
easily extended t&at" (G) (see also 34 whose method works also f@af,(G)). The
undecidability of Sat(G) was poved by Rogersd7]. Lavrov [16] (see also §, Theorem
3.3.3]) improved this by showing the recursive inseparability &at,(G) and the set of
formulas not inSat(G).

Lavrov’s proof provides us with a reduction of the decision problemZoto the
decision problem fog. If combined with the known results on undecidable fragments of
Sati\(D), this givesus some undecidable fragmentsSHt,(G), for e><amp|e,V9£I*V*El*.
However, this method apparently cannot give undecidable fragments with less than two
star symbols. Gurevict9[10] proves thathe V°3*-fragments ofSat,(G) andSat(G) are
undecidable. Our Simulation Lemma has relevance to this circle of questions.

Theorem 5.10. For some |, mand n, the3*V! 3IMv"-fragment of Sgf,(G) is undecidable.

Proof. By the Simulation Lemma, a Turing machiié halts on the empty input iff the
formula Ay has a finite graph as a model. Thus, the conversichpto a preng formula
according to Item 4 of the Simulation Lemma reduces this variant of the halting problem
to the satisfiability problem fo#*v! 3Mv"-formulas over finite graphs.O
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The theorem should be contrasted with the decidability offh& -fragment, which
follows from the Ramsey theorem and the féwat the class of @phs is definable by
a V2-formula. We do not try to specify numbelrsm, n since he values derivable from
our proof are, though not so big, surely improvable by extra technical efforts. Note that a
variant of thetheorem forSati, (D) is known tobe true with best possible=m=n=1
(see [, Theorem 3.3.2], which is Suranyi's theorem extended to the finite satisfiability by
Gurevich).

Note another equivalent form oFheorem 5.10Let Th;,,(G) denote théirst order theory
of finite graphs with equalityi.e., the set of first order sentences with relation symbols
and= that are true on all finite gpns. Observe that a sentenges in Thy,(G) iff —Ais

not in Saf (G). It follows that thev*3' v™3"-fragment ofTh. (G) is undecidable.

6. Thesuccinctness function over trees: upper bound

We defire a variant of the stcinctness function for a class of graghéwith respect to
the quantifér rank) by

an;C) =min{D(G) : G e, |G| =n}.
We here prove a log-star upper bound for the class of trees.
Theorem 6.1. q(n; trees < log*n+ 5.

The proof takes the rest of this section.
6.1. Rooted trees

A rooted treds a tree with one distinguished vertex, which is called thet If T is a
tree andv € V(T), thenT, denotes the tre€ rooted at. An isomophism of rooted trees
should not only preserve the adjacency relatiut also map one root to the other. Thus,
for distinct u, v € V(T), rooted treed, andT,, though having the same underlying tree
T, may be non-isomorphic.

An automorphismof a rooted tree is an isomorphism from the tree onto itself.
Obviously, any automorpbim leaves the root fixedVe call a rooted treeasymmetricif
it has no non-trivial automorphisms, thiat no automorphisms except the identity.

The depthof a rooted treeTl,, which isdenoted bydepthT,, is the eccentricity of its
root. If (v, ..., u, w) is a path inT,, thenw is called achild of u. We define theelation of
being adescendartb be the transitive and reflexive closure of the relation of being a child.

If w e V(T,), thenT,(w) denotes the subtree ©f spained by the set of all descendants
of w and rooted atv. If w is a child ofu € V (T,), thenT, (w) is called au-branchof T,.

6.2. Diverging trees

We call T, divergingif, for every vertexu € V(T,), all u-branches ofl,, are pairwise
non-isomorphic.

Lemma 6.2. A rooted tree T is diverging iff itsv-branches are pairwise non-isomorphic
and each of them is diverging.
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Proof. Assume thafT, is divergng. Its v-branches are pairwise non-isomorphic by the
definition. Furthermore, leT,(w) be av-branch of T, andu € V(T,(w)). Note hat
any u-branch ofT, (w) is also au-branch ofT,. Therefore, all of them are pairwise non-
isomorphic andT, (w) is diverging.

For theother direction, consider a non-root vertegf T, and letT, (w) be thev-branch
of T, containingu (w = u is possble). Note that any-branch ofT, is also au-branch
of T,(w). Therefore, all of them are pairwise non-isomorphic and we concludelthiat
diverging. O

Lemma 6.3. A rooted tree T is diverging iff it is asymmetric.

Proof. We proceed by induction od = depthT,. Thebase case al = 0 is trivial. Let
d=>1.

Assume thafT, is divergng. By Lemma 6.2 no aubmorphism ofT, can map one
v-branch onto another-branch. By the same lemma and the induction assumption, no
non-trivial automorphism can map @branch onto itself. ThusT, has no non-trivial
automorphism.

Assume nw that T, is asymmetric. Hence ali-branches are pairwise non-isomorphic
and each of them is asymmetric. By the induction assumption,eacanch is diverging.

By Lemma 6.2ve conclude thaf, is diverging. O

We now cary over the notion of a diverging tree to (unrooted) trees. Clearly, any
automorphism of a tre€ either leaves central vertices andc; fixed or transposes them
(c1 = cpif the diameted(T) is ever). If d(T) is odd,Lemma 6.3mplies thatT., andT,
are simultaneously diverging or not. This makes the following definition correct: atree
is divergingif the rooted tredl for a central vertex is divergng. It is not hard to see that
T is diverging ff one of the following conditions is met:

(1) T has no non-trivial automorphism.
(2) T has exactly one non-trivial automorphism and this automorphism transposes two
central vertices oT .

6.3. Spoiler’s strategy

In this section we exploit the characterization of the quantifier rank of a distinguishing
formula as the length of the Ehrenfeucht game @emposition 3.h

Lemma 6.4. Suppose that in the Ehrenfeucht game(@7 G’) some twovertices xy €
V (G) at distance k were selected so that their counterparty’xe V (G’) are at a stictly
larger distance (possibly infinity).

ThenSpoiler can win in at mogilogk] extra mwes, playing all the time inside G.

Proof. Spoiler setai; = x, uz =y, v1 = X/, v2 = Y/, and places a pebble on the middle
vertexu in a shortest path from; to u; (or ether of the two middle vertices d(uy, up) is

odd). Letv € V(G’) be selected by Duplicator in responseit®y thetriangle inequality,

we haved(u, un) < d(v, vm) for m = 1 orm = 2. For suchm Spoiler resetsi; = u,

Uz = um, v1 = v, v2 = vy and applies the same strategy once again. Therewith Spoiler
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ensures that, in each roundi(uy, up) < d(v1, v2). Eventally, unless Duplicator loses
earlier,d(uy, u2) = 1 while d(v1, v2) > 1, that is, Duplicator fails to preserve adjacency.

To estimate the number of moves made, notice that init@dly;, uz) = k and for each
subsequentis, uy this distance becomes at mdsid(us, up)), wheref (o) = (@ + 1)/2.
Therefore the number of moves does not exceed the miniimswrohthat f ) (k) < 2. As
(fM~1(B) = 2B — 2' + 1, the latter inequality is equivalent td 2 k, whichproves the
bound. O

Note that the bound ot.emma 6.4is tight; more precisely, it cannot be improved to
[logk] — 1. For example, le€, denote a cycle of length and Z2, the disjoint union
of two such cycles. It is known (e.g28, Proof of Theorem 2.4.2] or4, Example2.3.8])
that Duplicator can survive in the Ehrenfeucht gameGap,1 and Cok2 in more than
logk + 1 rounds for any strategy of Spoiler, in particular, when Spoiler begins with
sdecting two antipodal vertices i@+2. Furthermore, id(x’, y') = oo, Duplicator can
be persistent as well. For example, she can survive in the gariaxoand ZCox during
llog(2k — 1) | rounds for any strategy of Spoiler, in particular, when Spoiler’s first move is
in one component of@ and his second move is in the other component@%Ze.g. @,
Example 2.3.8]).

Lemma 6.5. If graphs G and G have different diameters (including the case where G is
connected and Gs disconnected), thenDG, G’) < [logd(G)] + 2.

Proof. Assume thatd(G) < d(G’). Spaler begins by selecting two vertices at distance
d(G) + 1in G/, then pmps toG, anduses tle strategy oLemma 6.4 O

Lemma6.6. If G is a tree, G is a connected non-tree, and(@) = d(G’), then
Do(G, G') < [logd(G)] + 4.

Proof. Denotek = d(G) = d(G’). Let C be a shortestycle in G’. Natice thatC has
length at most R+ 1. Spoiler kegins by saicting inC a vertexz’ along with its neighbors
x" andy'. Let z, x, andy be the corresponding responses of Duplicatd&iriThe vertex

z cannot be a leaf o5, or else Duficator has lost. From now on Spoiler plays all the
time inH" = G’ — Z and Duplicator is forced to play il = G — z. In thesegraphs
d(x’,y) < 2k — 1 andd(x, y) = oo. Therdore the strategy oEemma 6.4applies and
Spoiler wins in at mosflog(2k — 1) extra moves. O

Lemma6.7. Let T and T be two non-isomorphic diverging trees witkild = d(T’) (and
hence(T) =r(T")). Then OT,T) <r(T) + 1L

Proof. In the first move Poiler selects, a central vertex ofT . Duplicator’s response,
x’, should be a central vertex of’ because otherwise Spoiler selects a vestein T’
with d(x’, y") > r(T) and applies the strategy bémma 6.4 We will denote the vertices
selected by the players i and T’ during thei-th round byx; andx{; in paticular,
x1 = x andx; = x’. Spdler will play so that(xy, ..., %) and(x], ..., x{) are always
pahs. Another condition that will be obeyed by Spoiler is tiatx;) andT;, (x/) are non-
isomorphic.

Assume that the-th round has been played. If exactly one of the vertigendx; is a
leaf (we will call such a situation terminal), then Spoiler prolongs that path for which this
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is possble and wins. Assume that neitherxgfandx; is a leaf and thalx(x) and T, (X))

are non-isomorphic (in particular, this is so foe= 1). By the definition of a diverging
rooted tree, allly (u) with u a child of x; are pairwise non-isomorphic. The same concerns
all Ty, (u) with u” a child of x/. It follows that there is dx(u) notisomorphic to any of the
T)Q,(u’)’s or there is al/,(u’) not isomorphic to any of th& (u)'s. Spaler selects suchi

X

for xi+1 or u’ for x/_ ;. Clearly, Spoiler has an appropriate move until a terminal situation

occurs. Thdatter occurs in the(T)-th round at latest. O

Lemma6.8. Let T and T’ be two tees with dT) = d(T’) (and hence (T) = r(T")).
Suppose that T is diverging but 1 not. Then BT, T') <r(T) 4+ 2

Proof. Inthe first move Poiler selects’, acentral vertex off ’. Smilarly to the preceding
proof, we may suppose that Duplicator’s respomsis a central vertex ofl. Let y

be a vertex ofT’ suchthat T;,(y’) is not diverging but, for any child’ of y', T/, (Z)

is. Note thaty’ must have tw chidren z; and z, suchthat T/, (z;) and T,(z,) are
isomorphic.

In subsequent moves Spoiler selects the path= (x',...,y’, 7). Let P =
(X,...,Y,2) be Duplicator's response ifi. If Tyx(z) and Ty/(z;) have different depths
d andd’, sayd > d’, then Spoiler prolong® with d’ + 1 new vertces and wins. It is clear
that the prolonged path has at mo¢T) + 1 vertices.

Suppose now thad = d'. If Tx(z) and Ty (z;) are non-isomorphic, then Spoiler adopts
the strategy of emma 6.7and wins having made in total at masiT ) + 1 moves. If Ty (2)
andT,,(z}) are isomorphic, then Spoiler seleds In response Duplicator must select
a child of y different fromz. Denote it byz*. The sbtreeTx(z*) is hon-isomorphic to
Tx(2) and hence td, (z,). Now Spoiler is able to proceed wiffx (z*) andT,,(z,) as was
described and wins having made in total at ma&t) + 2 moves ¢ne extra move was
made to suich fromz; to z,). O

Lemma6.9. Let T be a divaging tree of radius at least 6. Then(D) < r (T) + 2.

Proof. Let T’ be a graph non-isomorphic 6. The pair T, T’ satisfies the condition of
one ofLemmas 6.56.8 These lemmas provide us with boubdT, T") < r(T) + 2. By
Proposition 3.6we thereby have the bound f@(T). O

We have shownhat diverging trees are definable with quantifier rank not much larger
than the radius. It remains to show thatyegi the raius, there are diverging trees
with large order and, moreover, the ordarf these larg trees fill long segments of
integers.

Lemma6.10. Given i > 0, let M; denote the total number of (pairwise non-isomorphic)
diverging rooted trees of depth at mosti. ThenMT ().

Proof. Let m; denote the number of diverging rooted trees of depth preciseus,
mp = 1andM; = mg + --- + m;. By Lemma 6.2 a depth-(i + 1) tree T, is uniquely
deternined by the set of its-branches, which are diverging rooted trees of depth at most
Vice vers, any set of diverging rooted trees of depth at mesth at least onéree ofdepth
preciselyi deternines a depthi + 1) tree. It follows thatm; 1 = (2™ — 1)2Mi-1, where
we putM_1 = 0. By induction, we obtaim; = T(i) — T({ — 1) andM; =T(). O
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Note that a divergingooted tree of depth can have the minimum possible number of
verticesi + 1 (a path).

Lemma 6.11. Let N denote the maximum order of a diverging rooted tree of depthi. Then
Ni > TG —1).

Proof. The largest diverging rooted trée of depthi has every one oM;_1 diverging
rooted trees of depth at mdst- 1 as av-branch. ThusN; > Mj_1 =T(@{ —1). O

Lemma 6.12. For every n such that + 1 < n < N; there is a divergig rooted tree of
depthi and order n.

Proof. We proceed by induction oh. The base case df = 0 is trivial. Leti > 1. For
n =i+ 1 we ae done with a path. We will prove that any diverging rooted rgef depth
i except the path can be modified so that it remains a diverging rooted tree of the same
depth but the order becomes 1 smaller.

Letl be the smallest depth oftabranch ofT, and fix a brancf, (w) of this depth with
minimal order. IfT,(w) is a path, we delete its leaf. If not, we reduce it by the induction
assumption. O

Lemma 6.13. Leti > 2. For every n such tha?i + 2 < n < 2N;, there isa diverging tree
of order n and radius i+ 1.

Proof. If n = 2mis even, consider thewkrging rooted tred with two c-branches, one of
orderm, theother of ordem— 1, and both of depth(excepting the case whene= 2i 42
when the smaller tanch has depth — 1). Such branches do exist lhemma 6.12 If
n = 2m+ 1 isodd, we add the third single-vertexbranch. Since the roatis a central
vertex of the underlying tree, the latter is diverging.

Proof of Theorem 6.1. Letn > 32 = 2T(3) and leti > 3 be suchthatP(i) < n <
2T(i +1). By Lemma6.11we have 24+ 6 < n < 2N;j;2. Owing toLemma 6.13there
exigs a diveging treeT of ordern and radius + 3. Lemma 6.9givesD(T) <i +5 <
log* n + 5.

For everyn < 32 the required bound is provided B, thepath onn vertices. It is not
hard to derive fronhemma 6.83hatD; (P,) < logn-+ 3 for all n, which sdisfies oumeeds
for nin the range. O

7. The succinctness function over trees: zero alternations

Theorem 6.J1ssumes no restriction on the alternation number. We now prove an analog
of this theorem forgg(n; treeg = minjti=n Do(T), the scinctness function over trees
with the grongest restriction on the alternation number. This is somewhat surprising in
view of Corollary 5.7(1) asserting thaDo(G) and D(G) may be very far apart from one
another.

Theorem 7.1. For infinitely many n we havey(n; treeg < 2log*n + O(1).

The proof takes the rest of the section.
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Fig. 1. Rj.

7.1. Ranked trees

We will modify the approach worked ouin the preceding section. The proof
of Theorem 6.1was baed onLemmas 6.56.8 Note hat the alternation number in
Lemma 6.6is 0. In Lemma 6.5it is 1, but the bound of this lemma is actually stronger
than we need and, at the cost of some relaxation, we will be able to improve the
alternation number to 0 (séeemmas 7.@and7.8below). The real source of hon-constant
alternation number itemma 6.7(Lemma 6.8reduces toLemma 6.7and itself makes
no new complication). To tackle the problem, we restrict the class of diverging trees so
that we will still have relationDo(T) = O(r(T)) and there will still exist trees with
Tower(r (T) — O(1)) vertices.

We begin by introducing some notions and notation concerning rooted trees. Given
a rooted treeT,, let B(T,) denote the set of alb-branches ofT,. Given ooted trees
T1, ..., Tm, we defineT = T1©--- © Ty to be the rooted tree witB(T) = {T1, ..., Tm}.
By Lemma 6.2if all T; are pairwise non-isomorphic and diverging, tiers diverging as
well. Obviously,depthT = 1+ max depthT;.

Let T/, and T, be rooted trees. We call/, a rooted subtreeof T, if v = v and
V(T') € V(T).

For eachi > 0, we now define the class of rooted treRS as follows. LetRj =
{T. T, T3, T}, the set 6four rooted trees depicted ifg. 1L Observe tk fdlowing
properties of this set.

(Z21) |T*| < 8foralli.

(Z2) depthT* = 4 for alli.

(Z3) All T are diverging.

(Z4) No T;* is isomophic to a rooted subtree of any oth‘q’r.

Assume thaR"_; isalready specified. We will need a large enolghc 2Rt1a family
of subsets oR"_; which is an antichain with respect to the inclusion (i.e. no member of
Fi is included in anyother member of). As one of suitable possibilities (which actually
maximizeg Fi | by Sperner’s theorem), we fix
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h = (uaﬁlba)’

the family of all | |R"_,|/2]-element subsets d¥"_,. Now

R = {QT: Se Fi}.
TeS
Note that| R"| = |Fi|.
Itis clear that, ifT € R*, thenB(T) consists of pairwise non-isomorphic rooted trees
in R*_;. By easy induction, we have the following properties of the cRséori > 1.

(RD) If T e R, thenr (T) = depthT =i + 4.

(R2) If T € R*, thend(T) = 2i + 8.

(R3) If T e R¥, then he central vertex of is equal to the root.

(R4) All T e R* are diverging.

(R5) If T andT’ are different members d®*, then we hae néther B(T) c B(T') nor
B(T) c B(T).

We defineR; to be the set of underlying trees of rooted treesRh Note hat for
differentT, T’ € R* their underlying trees are non-isomorphici It= 0, this is evident.
If i > 1, we use the fact that, as any isomorphism between the unrooted trees takes one
central vertex to the other, it is also an isomorphism between the rooted trees. Note also
that trees inR; are diverging.

We will call trees inR = Ui"il R rankedIf T € R, we will say thatT hasrankiand
write rk T =1i.

Lemma 7.2. Let N denote the minimum order of a tree of rank i. Thgn>NT (i — O(1)).

Proof. DenoteM; = |R;|. By the onstruction, we have

_ S M _ 2+ 0(1) M
Mo =4 M'“_(LMi/ZJ)_\/ VA

Nij1 > 1+ [Mj/2]N > M;.

and

The lemma follows by simple estimation
7.2. Spoiler’s strategy

Consider tle Ehrenfeicht game on rooted tre€s,, Tv’,). Letx; denote the vertex of,
sekcted in tha-th round. We call a strategy for Spoileontinuousf he plays all the time
in T, and, for each, the induced subgraph[{v, X1, ..., X;}] iS connected.

Lemma7.3. Let T, and T/, be non-isomorphic rooted trees i RThenSpoiler has a
continuous winning strategy BHR; 7(T,, T]j,) and hence (T, T]j,) <i+7.
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Proof. We proceed by induction on In thebase case af= 0, Spoiler selects all non-root
vertices of T,, in a cntinuous manner and wins by Property (Z4). Let 1. In the first
move Spoiler selects, a child of v such that, for anyw’, a child of v/, brantesT, (w)
andT/,(w’) are not isomorphic. This is possible owing to Property (R5). &:etienote
Duplicator’s response. Botfi,(w) and T/, (w’) have ranki — 1. Spoiler mw invokes
a mntinuous strategy winning HR; +6(T, (w), Tv’,(w’)), which exists by the induction
assumption. O

Lemma7.4. Let T, T be trees of the same even diameter and’ be their central
vertices. Assume that Spoiler selectbut Duplicator responds with a vertex different
fromv’. ThenSpoiler is able to W in the next dT) moves, playing athetime in T.

Proof. In a continuous manner, Spoiler selects the vertices of a diametral pathLiet

u # v be the vertex selected by Duplicator in response.t®uplicator should now
exhibit a path of lengthd(T") = d(T) with u at the middle, which is impossible by
Proposition 2.1 O

Lemma7.5. Let T and T be non-isomorphic ranked trees of the same rank. Then
Do(T, T)) <2rkT + 9.

Proof. Let v andv’ be central vertices of andT’ respectively. Spoiler starts by selecting
v. If Duplicator does not respond withl, Spdler applies the strategy diemma 7.4
and wins in the nextd(T) moves. If Duplicator responds witl', Spaler applies the
stratgy of Lemma 7.3and wins in the nextk T + 7 moves. In ay case Spoiler wins
in1+ maxXd(T), rkT +7} =2rkT + 9 moves. O

Lemma7.6. Let T be a anked tree and G be either a tree of different diameter or a
connected non-tree. ThenpO', G) < 2rkT + 10.

Proof. If G is a tree, theml(T) 4+ 2 moves ae enough for Spoiler to win. In this case, he
sekcts a path of length mid(T), d(G)} + 1 in the graph ofdrger diameter.

Suppose tha6 is a mnnected non-tree. [ has a cycle on at mosg(T) + 2 vertices,
Spoiler selects it and wins. Otherwi§emust have a cycle on at leatT) + 3 vertices.
Spoiler wins by selecting a path @idT) + 2 vertices of this cycle. O

Lemma?7.7. Let T be a ranked tree and G be a non-ranked tree.(f§l = d(G), then
Do(T,G) < 2rkT + 9.

Proof. Let v andc denote the central vertices ©fandG respectively. The tree in which
Spoiler plays will be specified below. In thedimove Spoilesekcts the central vertex of
this tree. If Duplicator does not respond with the central vertex of the other tree, he loses
in the nextd(T) moves byLemma 7.4 Assune that she responds with the central vertex.
Further play depnds on which of three categori€sbelongs to. Lek = rkT. For any
w € V(G) at distance from ¢, we will call G¢(w) anapexof Ge.

Case 1: G has an apex &(w) which isnot a rooted subtree of any of the four rooted
trees in K. Spoiler plays inG. In the nextk moves he selects the path framo w.
Duplicator is forced to select the path franto a vertexu suchthatT, (u) € Rj. Spdler is
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now able to win by selecting at most eight vertices3g{w). The tdal number of moves
does notexceedt k+8=k+ 9.

Case 2:G has a vertexw such hat B(G¢(w)) properly contains BH,,) for some
Hy, € R, where i = k — d(c, w). Spoiler plays inG. In the nextd(c, w) moves he
sekcts the path froms to w. Let u denote the vertex selected by Duplicator in response to
w andF, = T,(u). Clearly, Duplicator must ensure the equalityv, u) = d(c, w) and
henceF, € R".

If Fy, andH,, are not isomorphic, then Spoiler restricts further playtp following a
continuous strategy. Of course, Duplicator is forced to plalyinSpaler is able to win in
the next 4+ 7 movesaccording td.emma 7.3

Suppose now thafE, andH,, are isomorphic. In the next move Spoiler selects a child of
w which is notinH,,. Duplicator must respond with a child afin F,. Denote it byx and
let y be the vetex of H,, corresponding ta under the isomorphism frotf, to H,,. Recall
that, byLemma 6.3 diverging trees are asymmetric and therefore such an isomorphism is
unique. In the next move Spoiler selegtsDuplicator must respond with, another child
of uin K. Note hatF,(z) andH,,(y) are not isomorphic since the latter is isomorphic to
Fu(x) but the famer is not. From now ongiler restricts play toF,(z) andH,,(y) using
the strategy oLemma 7.3and wis inthe nexti + 6 moves. The totahumber of moves
isatmost 14+-d(c, w) +i + 8=k + 9.

Case 3: Neitbr 1 nor 2.Spoiler plays all the time iT. We will denote the vertices
sekcted by him in the nexd moves byxi, . . ., Xk subsequently. Leys, ..., yk denote the
corresponding vertices selected@by Duplicator. Put alsxg = v andyp = c¢. Spdler
will play so thatxo, X1, ..., Xk will be a path. Let 1< i < k. Suppose that the preceding
Xo, - .., Xi—1 are already selected. Assume thigtx; —1) andG¢(y;—1) are non-isomorphic
(note that this is so for = 1). As we are not in Case %;_; has achild x suchthat
T,(X) ¢ B(Gc(yi—1)). Spdler takes thisx for x; thereby engring thatT,(x;) andG¢(Y;)
are non-isomorphic again, whatewgris selected by Duplicator. The final stage of the
game goes on non-isomorphig(xk) andG¢(yk). Spdler selects all vertices oF, (Xk).

Note thatT, (xk) € R; andGc(yk) is an apex ofs. As we ae notin Case 1G¢(yk) is
a rooted subtree of somE* € Rj. If Tj* = T,(Xx), Ge(yk) must be a proper subtree of
T,(Xk) and hence Spoiler has won. Otherwise, note Thétx) cannot be a rooted subtree
of Ge(yk) by Property (Z4). Again, this is Spoiler’s win. The total number of moves equals
1+k+7=k+8.

In any of the three cases Spoiler wins in rilex d(T), k + 9} = 2k + 9 moves. O

Note that, ifT is a rankedree of rankk, thenLemmas 7.57.7 provide Spder with a
winning strategy in the 0-alternationH&ok+10(T, G) wheneverG is a connected graph
non-isomorphic tor .

Lemma7.8. Let T be a ranked tree and H be a disconnected graph. ThetrDH)
<2rkT +10.

Proof. We distinguish two cases.

Casel: No component of H is isomorphicto T.

Subcase 1.1: H has a component G such that Spoiler is able t&EmMak10(T, G)
playing dl the time in G.Spoiler plays exactly this game.
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Subcase 1.2: H has no such componbnthe first move Spoiler selects the central ver-
tex of T. Suppose that Duplicator’s response is in a componf H. By Lemmas 7.5
7.7, we are @her in the situation oEemma 7.qwith G atree of dameterd(G) < d(T)) or
in the situation oLemma 7.7namely, in Case 3). In both sations Spoiler has a contin-
uous winning strategy for Rk +10(T, G) allowing him to play all the time ifT starting
from the central vertex. Spoil@pgdies it and wins as Duplicator is forced to stayGn

Case2: H has a component‘Tisonorphic to T.Spoiler plays inH. His firstmove is
outsideT’. Let x € V(T) be Duplicator’s response. L&t be the counterpart of in T’
(recall that ranked trees are asymmetric and hetii® determined umjuely). Denote the
central vertices of andT’ by v andv’ respectively. In the second move Spoiler seletts
If Duplicator does not respond with Spdler applies the strategy afemma 7.4and wins
in the nextd(T) moves. Assume that Duplicator responds wittStating from the third
move, Spoiler selects the vertices on the path betwéandx’, one by one, starting from
a child of v'. If Duplicator follows the path from to x, she loses as is already selected.
Assume that Duplicator deviatassome point, selecting a vertgxot on the path, and let
y’ be the vertex on the path betweg€randx’ sdected in this round by Spoiler. Note that
the ooted subtrees, (y) andT,,(y’) are non-isomorphic. Spoiler can therefore apply the
continuous strategy dfemma 7.3and win in the next + 7 moves, wheré = k—d(v, y).
The total number of movesis at mostax1+d(T), 1+d(x, y)+({+7)} = 2k+10. O

Lemma 7.8&ompletes our analysis: T is a ranked tree of rarkkandG is an arbitrary
graph non-isomorphic td, then we have a wning strategy for Spoiler in the 0-alternation
EHR2k+10(T, G). By Proposition 3.6we conclude thaDo(T) < 2rkT + 10.

To complée the poof of Theorem 7.1let T; be a tree of rank and orderN; as in
Lemma 7.2 We haveqo(N;; treeg < Do(T) < 2i + 10 < 2log" N; + O(1), the later
inequality due td.emma 7.2

8. Thesuccinctness function over trees; lower bound

Complementing the upper bound given Bheorem 6.1we now pove a nedy tight
lower bound omy(n; trees.

Theorem 8.1. q(n; trees > log* n — log* log* n — O(1).

It will be helpful to work with rooted trees. The first order language for this class of
structues has a constaftfor the root and the parent—child relati®ix, y). Let T, andT,;
be rooted trees and suppose tiatsi T,. By Proposition 3.5T, and T} satisfy the same
senteres of quantifier rank. ThenT = T’ for the underlying trees. Indeed, take any
sentence in the language foees and replace the adjacemcy y with P(x, y) v P(y, X).
We get a sentence with the same truth value in the language of rooted trees.

Let g(k) be the number of=¢-equivalence classes obated trees. i&ilarly to
Lemma 3.3we haveg(k) < T(k + 2+ log* k) + O(1). Set

gk -1 _
Udo= > (kgk))'.
i=0
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Lemma 8.2. Let T, be a finite rooted tree. Then, for anyk 1, there eists a finite rooted
tree T, with at most UK) vertices such that,T=¢ T;.

Proof of Theorem 8.1. Consider an arbitrary tre€ of ordern and letk = D(T). Roding
it at an arbitrary vertex, consider a rooted tre€,. Let T, be as inLemma 8.2 Thus, we
haveT =¢ T’ and|T’| < U (k). By the coice ofk, T and T’ must be isomorphic. We
therefore have

n<UK) < (kgk)9® < T(k + log*k + 4) + O(1),
which impliesk > log* n — log*log*n — O(1). O
Lemma 8.Zollows from a series of lemmas.

Lemma8.3. Let T, be a rooted tree andv a non-root vertex of J. Suppose that
T, =« Ty(w). Let T, be the result of replacing,Tw) by T,,. Then T =« T,.

Proof. Duplicabr wins the Ehrenfeucht game ap, T, by playing it onT, (w), T, (since
the rootis a onstant symbol she automatically plays root for root) and the identical vertices
elsewhere. O

Lemma8.4. Let T, be a rooted tree withwy, ..., ws the children of theroot v, and
a1, ..., as the k-Ehrenfeucht values of the treegw;). Then he k-Ehrenfeucht value
of T is determined by tha’s.

Proof. If T, and T, have the sames, ..., as we reachT; from T, in s applications of
Lemma8.3 O

Lemma 8.5. Suppose, in the notation bémma8.4, that some value appears as; more
than k times. Let T be T, but with only k of those subtrees. Thep £« T, .

Proof. The game has onlk moves so Spoiler cannot go in more thknof these
subtrees. O

Lemma8.6. If T, is a representative of a givesk-equivalence clgs with minimum
possible order, then each vertex qf fas at most k¢k) children.

Proof. This easily follows from_emmas 8.5.and8.4 by induction on the depth.O

Lemma8.7. If T, is a representative of a givesk-equivalence clgs with minimum
possible order, then it has depth at mogkg— 1.

Proof. Take a longest path from the root to a leaf. If it has more thigh) vertices, it
contains two verticesv andu suchthat u is a descedant ofw and T, (u) =¢ T, (w).
RephcingT, (w) by T,(u), we obtain a smaller tree in the samag-class. O

Lemma 8.2mmediately follows fromLemmas 8.@&nd8.7.

9. The smoothed succinctness function

Letq(n) = q(n; all) denote the succinctness function for the class of all graphs. Since
there are only finitely many pairwise inequivalent sentences of bounded quantifier rank,
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qn) — oo asn — oo. We will show thatq(n) grows very slowly and, in a sense,
irregularly. We first summarize information given biieorems 4.2nd6.1

Corollary 9.1.

(1) There is no general recursive function f such that@)) > n forall n.

(2) There is no general recursive functiofm) such hat I(n) is monotone nondecreasing,
I(n) - oo as n— oo, andl(n) < q(n) forall n.

(3) q(n) < log*n+5.

Proof. (1) Note thatg(n) < s(n) < s3(n). Now, if there wee a general recursive function
f suchthat f(g(n)) > n, then we would have mayg,m f(@i) > n contradictory to
Theorem 4.2

(2) Assume that such din) exigs. Let f (m) be the first value of suchthatl (i) > m.
Then f (q(n)) > n contradictory to Item 1.

(3) As any upper bound ai(n; C) is stronger if it is proved for a smaller class of graphs,
this item is an immedite consequence dheorem 6.1 O

Definition 9.2. We defire thesnmpothed succinctness functiori(@) (for quantifier rank)
to be the least monotone nondecreasing integer function boudimgrom above, that
is, g*(n) = MaXn<n q(M).

Theorem 9.3. log* n — log* log*n — O(1) < g*(n) < log* n + 5.

Proof. Since the upper bound om(n) given by Corollary 9.1(3) is monotone, this is a
bound ormg*(n) as well. The lower bound is derivable frdremma 3.3 This lanma states
that|Ehrv(k)| < T(k + 2 + log* k) + c for a constant. Givenn > ¢ + T(3), letk be
suchthat T(k + 2 + log*k) + ¢ < n < T(k+ 3 + log*(k + 1)) + ¢. Assuming thanh

is sufficiently large, we havk > log* n — log* log* n — 4. According toProposition 3.6
at most|Ehrv (k)| graphs are definable with quantifier rank at masBy the pigeonhole
principle, there will be somen < |Ehrv(k)|+ 1 < n for which no graph of order precisely
m s defined with quantifier rank at mdstWe conclude that*(n) > q(m) > k and hence
g*(n) > log"*n —log*log*n—2. O

We definedy*(n) to be the monotone function “closest” ¢gn). Notice thatq(n) itself
lacks the monotonicity.

Corollary 9.4. q(i + 1) < q(i) for infinitely many i.

Proof. Setl(n) = log* n — log*log* n — 2. We have just shown thgt(n) > I(n) for all

n large enough. ByCorollay 9.1(2), we havey(n) < |(n) for infinitely manyn. For each
suchn, letmy < n be such thaj(mp) > 1(n). Thus,q(m,) > q(n) and a desired must
exist ketweermp andn. O

For each non-negative integarand fora = 1/2, definega(n) = minigj=n Da(G) and
g;(N) = Maxn<n da(mM). As is easily seenCorollary 9.1(1) holds true forgz(n) as well.
Note a stragthening ofCorollary 9.1(3) that follows from a result in another of our papers.
Let G(n, p) denote a random graph orvertices distributed so that each edge appears with
probability p and all edges appear independently from each other.
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Theorem 9.5 ([14]). With probability approachingl as n goes to the infinity,
D3(G(n, n~Y4) = log* n + O(1).

Corollary 9.6. gz(n) < log* n+ O(1) and hencéog* n — log* log*n — O(1) < g3 (n) <
log*n + O(1).

10. Depth vs. length
Theorem 10.1. L(G) < T(D(G) + log* D(G) + O(1)).

Proof. Given an Ehrerfieucht valuew, let | («) denote the shortest length of a formula
defininge in the sense dBection 3 Definel (k) to be the maximur(«) overa € Ehrv(k)
andl (k, s) the maximuml («) overa € Ehrv(k,s). Of course,l(k) = I(k,0). As in
Section 3 f (k, s) = |Ehrv(k, s)|.

Itis not hard to see thdt(G) < I(D(G)) and therefore it suffices to prove the bound
(k) < T(k+ log*k + O(1)) forall k > 2.

Onaccount ol.emma 3.4we have

o <19(%)

I(k,s) < fk,s+Ddk,s+1)+10

and

if s < k. We will use these relations along with the boundsefmma 3.2for f (k, s). Set
g(x) = x2**t1, A simple inductive argument shows that

fk,s) <29“7GD  and Ik, s) < gk I (9k3).

Sinceg(x) < 4%, we havd (k, 0) < Ta(k+ 2+ log* k) < T(k+log* k + O(1)), whereT,
stands for the variant of the tower function built from 4’s instead of 2'§]

Remark 10.2. Theorem 10.1generalizes to structures over arhtrary vocabulary. The
proof requires only slight modifications.

We nowobserve that the relationship between the optimum quantifier rank and length
of defining formulas is nearly tight.

Theorem 10.3. There are infinitely many pairwise non-isomorphic graphs G witis). >
T(D(G) —6) — O(D).

Proof. The proof is given by a simple counting argument which can be naturally presented
in the framework of Kolmogorov complexity (applications of Kolmogorov complexity for
proving complexity-theoretic lower bounds can be foundLin).

Denote the Kolmogorov complexity of a binary wotdby K (w). Let (G) denote the
lexicographically first adjacency matrix of a gra@h Define the Kolmogorov complexity
of G by K(G) = K((G)). Notice that

K(G) = L(G) + O(D).
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By Theorem 6.1there isa graphGy, onn vertices with
D(Gp) < log*n+5. (11)

The boundK (w) < k can hold for less thanawords.It follows that for somen < 2% we
haveK (G) > k for all graphsG onn vertices. For this particular we have

L(Gp) > logn — O(1). (12)
Combining (L1) and (L2), we see thaGy, is as reuired. O

Of course, we could run the same argument directly Witks) in place ofK (G). An
advantage of using the Kolmogorov complexity is in avoiding estimation of the number of
formulas of length at modt.

In Section 5.1we showed that prenex formulassasomémes unexpectedly efficient
in defining a graph. We are now able to show that, nevertheless, they generally cannot be
competitive against defining formulas with no restriction on structureDPEF{G) (resp.
LPe"®{G)) denote the minimum quantifier rank (resp. length) of a closed prenex formula
defining a graplt.

Theorem 10.4. There are infinitely many pairwise non-isomorphic graphs G with
DPreNeXG) > T(D(G) — 8).
Proof. Let G be as inTheorem 10.3We have
LPE™(G) > L(G) = T(D(G) — 6) — O(D).
On the otler hand, byLemma 2.4ve have
LPeMe(G) < f(DP"®{(G)), wheref (x) = O(x24%°).

It follows that

DPrenexG) > (% - 0(1)> T(DG) —7) = T(D(G) - 8),

providedD(G) (or the order ofG) is sufficiently large. O
11. Open questions

1. Let D’(G) be the minimum quantifier rank of a first order sentence distinguishing
a graphG from any non-isomorphic finite grap@’. Clearly, D’'(G) < D(G). Can the
inequality be sometimes strict?

2. Improve on the alternation number theorem 4.2 Note that this cannot be done
with alternation number 0. By the Ramsey theorem, Turing machines cannot be simulated
by 0-alternation formulas as this would contradict the unsolvability of the halting problem.
In fact, we were recently able to sho2Z thatqgo(n) > log* n — log* log* n — O(1).

3. Classify the prefix classes with respect to solvability of the finite satisfiability problem
ove graphs Such a classification does exist by the Gurevich classifiability theorem
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[1, Setion 2.3]. In particular, can the prefig*yO@®30MyOD) in Theorem 5.10be
shortened ta*vOD30M2 dhortening tad*v* is impossible due to tnRamseyheorem.

Note that for digraphs the complete classification is known (4¢eard rderences
there). In thenotation ofSection 5.4the mhimal undecidable classes f&af, (D) are

v*3, vav*, vavas, va*y, 3vay, 3*vetlg ve+13 while the maximal decidable classes are

I*v* and3*v°3*, wherec = 1. ForSati,(D) the classification is the same but with= 2.

If we consideiSat™ (D) instead ofSaf;, (D) andSat(D) instead ofSatin (D), nothing in the
classification changes. The reasons are that the maximal decidable classes have the finite
model property and that thendecidability of the minimal undecidable classes is proved

by reductions which preserve the finiteness of models.

4. How close to oneanother areD1(G) and Do(G)? At least, are they recursively
linked? The samquestion forD(G) and Da(G) (for anya = o(n)) is also of interest.
How far apart from one another c&h(G) andD1(G) be?

5. Estimate the succinctness functigtm; C) for other classes of graphs (in particular,
graphs of bounded degree, planar graphs). Note that Hefyefoves the unsolvability of
the first order theory of finite planar graphs with maximum degree 4. Thus, the possibility
thatour Theorem 4.2has an analog for this class of graphs is not excluded.

6. Is g(n) a non-recursive function? 1H(G) an uncomputable function of graphs
(T. Luczak)? Of course, the former implies the latter. The same can be askgglfior
andD;(G) exceptinga € {0, 1/2} (seeTheorem 5.8

7. We know thatg; (n) = (1+ 0(1)) log* n. Thecases of alternation numbers 0, 1, and
2 areopen.

8.1q(n+ 1) — q(n)|] = O(1)? Note hatq(n + 1) — q(n) < 1 but ths difference is
negative infitely often byCorollary 9.4.
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