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Given a hereditary family G of admissible graphs and a 
function λ(G) that linearly depends on the statistics of order-κ
subgraphs in a graph G, we consider the extremal problem of 
determining λ(n, G), the maximum of λ(G) over all admissible 
graphs G of order n. We call the problem perfectly B-stable for 
a graph B if there is a constant C such that every admissible 
graph G of order n � C can be made into a blow-up of B by 
changing at most C(λ(n, G) −λ(G))

(
n
2
)

adjacencies. As special 
cases, this property describes all almost extremal graphs of 
order n within o(n2) edges and shows that every extremal 
graph of order n � C is a blow-up of B.
We develop general methods for establishing stability-type 
results from flag algebra computations and apply them to 
concrete examples. In fact, one of our sufficient conditions 
for perfect stability is stated in a way that allows automatic 
verification by a computer. This gives a unifying way to obtain 
computer-assisted proofs of many new results.
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1. Introduction

By the term graph, we mean finite simple graph, that is, without loops and multiple 
edges. For a graph G, we refer to the cardinality of its vertex set as the order of G and 
we denote it by v(G). Moreover, for a subset X of the vertex set V (G) of G, we denote 
by G[X] the subgraph induced by X in G, that is, the graph having X as the vertex set 
and two nodes x, y ∈ X are connected in G[X] if and only if they are connected in G.

Let F and G be graphs of orders v(F ) � v(G). Call F a subgraph of G if there is 
a subset X of V (G) such that G[X] is isomorphic to F . (Thus a subgraph means an 
induced subgraph.) Let P (F, G) be the number of v(F )-subsets of V (G) that induce a 
subgraph isomorphic to F . Also, let

p(F,G) := P (F,G)
/(

v(G)
v(F )

)

be the (induced) density of F in G; equivalently, p(F, G) is the probability that a random 
v(F )-subset X of V (G) induces a subgraph isomorphic to F .

Suppose that we have a (possibly infinite) family F of forbidden graphs. Call a graph 
G admissible or F-free (and denote this by G ∈ Forb(F)) if no F ∈ F is a subgraph 
of G. Let G := Forb(F) be the family of all admissible graphs; clearly, G is a hereditary 
graph property, that is, every subgraph of some member of G belongs to G, too.

Let κ be a positive integer. We denote by G0
κ the set obtained by taking one represen-

tative from each isomorphism class of graphs in G of order κ. Clearly G0
κ is a finite set. 

Let γ be a function from G0
κ to the reals. It gives rise to two other functions defined on 

graphs G with v(G) � κ:

Λ(G) :=
∑

H∈G0
κ

γ(H)P (H,G),

λ(G) :=
∑

H∈G0
κ

γ(H)p(H,G) =
(
v(G)
κ

)−1

· Λ(G).
(1)

One can view λ(G) as the expected value of γ(G[X]), where X is a random κ-subset of 
V (G).

Under the above conventions, consider the problem of maximising Λ(G) over admis-
sible graphs G of given order n. Namely, we define the extremal function

Λ(n,G) := max{Λ(G) : G ∈ G, v(G) = n} (2)

and its density version λ(n, G) := Λ(n, G)/
(
n
κ

)
. It is not hard to show (see Lemma 2.2) 

that the sequence (λ(n, G))∞n=κ is non-increasing and therefore the following limit exists:

λ(G) := lim λ(n,G). (3)

n→∞
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This is a rather general setting. As an illustration, here is one example (and the reader 
is encouraged to consult other concrete examples that can be found in Section 1.1).

Example 1.1 (Turán function). Let κ = 2, γ(K2) = 0 and γ(K2) = 1, where by Km we 
denote the complete graph of order m and by G the complement of a graph G. (Thus 
Λ(G) = e(G) is the number of edges in G.) If H is any family of graphs and H↑ ⊇ H
consists of all graphs that can be obtained from H ∈ H by adding some missing edges, 
then Λ(n, Forb(H↑)) is the well-known Turán function ex(n, H).

Fix a graph B with vertex set [m] := {1, . . . , m}. For pairwise disjoint sets V1, . . . , Vm

(some of which may be empty), let the blow-up B(V1, . . . , Vm) be obtained from the empty 
graph on V1 ∪ . . . ∪ Vm by adding for every edge {i, j} ∈ E(B) the complete bipartite 
graph with parts Vi and Vj . Note that no part Vi spans an edge. Let B() be the family 
of all possible blow-ups of B. It consists of graphs that can be obtained from B by a 
sequence of vertex duplications and vertex deletions.

Suppose that B() ⊆ G. Trivially, we get the lower bound Λ(n, G) � Λ(n, B()) valid 
for every integer n � κ, where, in accordance with our general notation, Λ(n, B()) is the 
maximum value of Λ over all blow-ups of B of order n. For a vector a = (a1, . . . , am) in 
the m-simplex

Sm := {x ∈ Rm : x � 0, x1 + ... + xm = 1},

define

λ(B(a)) := lim
n→∞

λ(B(V1,n, ... , Vm,n)), (4)

where |Vi,n| = ain +O(1) for each i ∈ [m]. In other words, we look at the limiting value 
of the function λ evaluated on a blow-up G of B of order n → ∞ where the i-th part 
occupies (ai +O(1/n))-fraction of all vertices. It is easy to see that the limit in (4) exists 
(and does not depend on the choice of the sizes |Vi,n|). In fact, λ(B(a)) is a polynomial 
in a of degree at most κ, so the rate of convergence in (4) is O(1/n). An easy argument 
based on the compactness of Sm and the continuity of λ(B(a)) as a function of a ∈ Sm

shows that

λ(B()) = max{λ(B(x)) : x ∈ Sm}. (5)

By our assumption, B() ⊆ G so λ(B()) is a lower bound on λ(G).
Here is an illustration. In Example 1.1, if H = H↑ = {Kt} consists of the t-clique, 

then a good choice is to take B = Kt−1. Then B() is a subset of G = Forb(F) and 
λ(B(a)) = 2 

∏
1�i<j�t−1 aiaj . This is clearly maximised if all entries ai are equal to 

each other, giving λ(B()) = (t − 2)/(t − 1), which is a lower bound on the Turán density 
of Kt. The classical results of Mantel [28] (for t = 3) and Turán [43] (for any t) imply 
that this is an equality. More strongly, they showed that Λ(n, G) = Λ(n, B()) for all n, 



132 O. Pikhurko et al. / Journal of Combinatorial Theory, Series B 135 (2019) 129–178
while an easy optimisation shows that Λ(n, B()) is attained by the (unique) blow-up of 
B of order n with parts as equal as possible.

In general, there is no hope for a theory that allows to determine λ(G) for every λ
and G. Namely, as it was shown by Hatami and Norin [22], the question if λ(G) � c

on input (G, Λ, c) is undecidable in general (even if G consists of all graphs). However, 
one can determine λ(G) for various concrete examples of interest. Many of these proofs 
utilise the powerful flag algebra approach of Razborov [38,39], where a computer can be 
used to generate a certificate C proving λ(G) � c.

We will discuss certificates in more detail in Section 3. For the time being, let us 
just remark that the desired inequality λ(G) � c follows by symbolically representing 
c − λ(G), for G ∈ G0

n as a sum of squares within error term of order O(1/n) as n → ∞. 
One illustrative example of such a sum is s(G) :=

(
n
3
)−1 ∑

x∈V (G)(dG(x) − dG(x))2, 
where dH(x) is the degree of x in a graph H. Clearly, s(G) is non-negative while it 
is routine to see that s(G) = 6p(K3, G) + 6p(K3, G) − 2p(P3, G) − 2p(P3, G) + O(1/n), 
where Pi is the path with i vertices. This gives an asymptotic inequality that always holds 
between 3-vertex subgraph densities. One advantage of the flag algebra approach is that it 
allows us to generate and manipulate such equalities automatically; here finding optimal 
coefficients amounts to solving a certain semi-definite programme (which is independent 
of n). We refer the reader to Section 3 for details and formal definitions.

Thus, if a flag algebra calculation proves λ(G) � c while we can find an order-m graph 
B with B() ⊆ G and a ∈ Sm with λ(B(a)) = c, then we know λ(n, G) within an error 
term of O(1/n):

c−O(1/n) � λ(n,B(a)) � λ(n,G) � c + O(1/n).

In addition to determining λ(G), it is often desirable to obtain information on the 
structure of all large admissible graphs G for which the value λ(G) is close to the maximal 
possible. In particular, we look for sufficient conditions establishing that every such G is 
necessarily close to a blow-up of B, in which case we regard the problem as stable. This 
paper will consider a few non-equivalent versions of stability, with the corresponding 
definitions following shortly. The stability is a very useful property in extremal graph 
theory as it is often indispensable in determining the exact value of λ(n, G) as well as 
the set of all extremal graphs of large order n. Besides being an important property on 
its own, stability also helps in solving the randomised or counting versions of extremal 
results.

We will use only one notion of distance on graphs. Namely, the (edit) distance between 
two graphs G and H of the same order n is

Δedit(G,H) := min
σ

∣∣∣E(G) �
{
{σ(u), σ(v)} : uv ∈ E(H)

} ∣∣∣,
where the minimum is taken over all bijections σ : V (H) → V (G). In other words, 
Δedit(G, H) is the minimum number of adjacencies that one needs to change in G in 
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order to obtain a graph isomorphic to H. We define the normalised (edit) distance to 
be δedit(G, H) := Δedit(G, H)/

(
n
2
)
. For a family H of graphs we define Δedit(G, H) :=

min{Δedit(G, H) : H ∈ H0
n} and δedit(G, H) := min{δedit(G, H) : H ∈ H0

n}.
We say that our problem (2) is robustly B-stable (resp. perfectly B-stable) if there is 

C > 0 such that for every graph G ∈ G of order n � C we have

δedit(G,B()) � C max (1/n, λ(n,G) − λ(G)) ,

(resp. δedit(G, B()) � C(λ(n, G) −λ(G))). For comparison, the classical B-stability states 
that for every ε > 0 there is δ > 0 such that δedit(G, B()) � ε for every G ∈ G with 
n � 1/δ vertices and λ(G) � λ(G) − δ. Clearly, the perfect stability implies the robust 
stability which in turn implies the classical stability. (Our Theorem 1.11 will in particular 
show that these notions of stability are not equivalent, already for such a natural problem 
as the Turán function.) Also, if the problem is perfectly stable, then for all n � C we 
have Λ(n, G) = Λ(n, B()) and every extremal graph is a blow-up of B (which one may 
call an exact result).

For example, for the Turán function ex(n, F), the classical stability was established 
independently by Erdős [10] and Simonovits [41]. The perfect (and thus also robust) 
stability in the case when F consists of a clique Kt follows from results of Füredi [15]
(who considered the distance to being (t − 1)-partite instead of complete (t − 1)-partite 
as we do in this paper). Very recently, Roberts and Scott [40] improved on Füredi’s result 
by extending it to all colour critical graphs and giving a sharper bound on the distance.

As far as we know, the above results in [15,40] and some recent work of Norin and 
Yepremyan [33,34] (who considered the Turán problem for hypergraphs) are the only 
known examples where perfect stability was established for a non-trivial problem. Fur-
thermore, almost all proofs where the classical stability and the exact result were derived 
from a flag algebra computation were rather ad-hoc and tailored to a particular problem.

The purpose of this paper is to present some general sufficient conditions that imply 
some version of stability. This allows us to give a unified proof of many previous stability 
and exactness results. Also, we can establish perfect stability (a new result) for a number 
of problems.

More specifically, Theorem 4.1 gives a sufficient condition for robust stability and 
Theorems 5.8, 5.13, and 7.1 give various sufficient conditions for perfect stability. Fur-
thermore, all assumptions of Theorem 7.1 are stated in a way that allows automatic 
verification by a computer. We also present an openly available computer code (written 
in sage by adopting the flagmatic package of Emil Vaughan [44]) that allows us to both 
generate and verify certificates for general problems based on Theorem 7.1. In all the 
cases where we could verify assumptions of Theorem 7.1 and derive perfect stability, the 
procedure was essentially mechanical and the final high-level code is very short (having 
6–10 lines, each invoking some function).

Even if one knows that λ(G) = λ(B()) for a concrete B, the determination of asymp-
totically optimal part ratios (namely, finding all a ∈ Sm with λ(B()) = λ(B(a))) may 
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still be a non-trivial task that amounts to polynomial maximisation. While the com-
bination of Lagrange multipliers and Gröbner bases provides a general computational 
framework, in an extremal problem one often has a candidate a ∈ Sm and wishes to 
prove that this is the only vector (up to a symmetry of B) that achieves λ(B()). Clearly, 
if a flag algebra certificate C proves that λ(G) � λ(B(a)) then this automatically implies 
that a is a maximiser and it is possible that the information in C is enough to imply the 
uniqueness of a. We present such a sufficient condition on C in Lemma 6.2 which can be 
automatically verified by a computer and seems to work very well in practice.

The exact statements of the above sufficient conditions rely on understanding flag 
algebra certificates, so we postpone them until later. Here, let us list the extremal prob-
lems for which our method gives perfect stability. In almost all cases, Theorem 7.1 and 
Lemma 6.2 apply directly, immediately giving perfect stability and implying the unique-
ness of asymptotically optimal part ratios.

However, there are a few natural problems where the assumptions of Theorem 7.1 are 
not satisfied. As the test case that our method can still give perfect stability, we chose 
the inducibility function for the paw graph, see Theorem 1.10. The asymptotic value of 
this function was determined by Hirst [24] but the classical stability and the exact result 
were not known. By utilising our other results (Theorem 5.8) we derive perfect stability 
for the inducibility problem for the paw graph. Since the proof is rather long and was 
meant mainly as an illustration of the flexibility of our method, we decided to include 
only one such example in this paper.

1.1. Examples of extremal problems for which we can prove perfect stability

1.1.1. Minimising the number of independent sets in triangle-free graphs
Erdős [9] asked for the value of f(n, k, l), the minimum number of independent sets 

of size k in a Kl-free graph of order n.
Consider first the case l = 3, when we forbid a triangle. Goodman [17] determined 

f(2n, 3, 3); his bounds also give the asymptotic value of f(2n + 1, 3, 3). Lorden [26]
showed that, for n � 12, the value of f(n, 3, 3) is attained by taking K�n/2�,�n/2	 and 
removing any (possibly empty) matching from it. Some partial results were obtained by 
Nikoforov [32,31]. The problem for k � 4 remained open until recently when the classical 
stability and the exact result were established independently by Das, Huang, Ma, Naves 
and Sudakov [7] (for k ∈ {4, 5}) and Pikhurko and Vaughan [36] (for k ∈ {4, 5, 6, 7}) 
when n is sufficiently large: if k ∈ {4, 5}, then all extremal graphs are blow-ups of C5 and 
if k ∈ {6, 7}, then all extremal graphs are blow-ups of the Clebsch graph L. The Clebsch 
graph L has, as vertices, binary 5-sequences of even weight (that is, the number of ones), 
with two vertices being adjacent if the point-wise sum modulo 2 of the corresponding 
sequences has weight 4. It easily follows from this description that the graph L has 16 
vertices and is triangle-free and 5-regular.

This question of Erdős is a special case of our general problem. It turns out that 
our computer codes can prove the perfect stability in the following cases. (Note that 
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the f(n, 3, 3)-problem is not perfectly stable by the above mentioned result of Lor-
den [26].)

Theorem 1.2. Let

• k ∈ {4, 5} and B = C5, or
• k ∈ {6, 7} and B = L.

Let F = {K3} (thus G consists of all triangle-free graphs) and let γ(H) be 0 except 
γ(Kk) = −1. Then the corresponding problem Λ(n, G) (that is, Erdős’ problem of deter-
mining f(n, k, 3)) is perfectly B-stable. Furthermore, for each k ∈ {4, . . . , 7} the unique 
probability vector a ∈ Sv(B) that maximises λ(B(a)) is the uniform vector.

If l � 4, then the asymptotic value of f(n, k, l) is known only for k = 3 and l � 7, 
see [7,36]. The papers [7,36] also showed that in each of these cases the problem is 
classically B-stable, where B = Kl−1, and the value of f(n, k, l) is attained by a blow-up 
of B for all large n. However, the problem is not perfectly B-stable since it is possible to 
remove a few edges from the blow-up of B (e.g. a matching between two parts) so that 
the number of copies of K3 does not change.

The above results and our Theorem 5.13 imply that, in fact, the f(n, 3, l)-problem is 
not robustly stable for l ∈ {3, 4, 5, 6, 7}. Alternatively, the same conclusion can be derived 
directly by taking the optimal blow-up Kl−1(V1, . . . , Vl−1), fixing some sets X ⊆ V1 and 
Y ⊆ V2 each of size εn, where ε is a small constant, and then flipping all pairs between 
X and Y . (Such transformation is done in the proof of Theorem 5.13 and is carefully 
analysed there.)

1.1.2. Maximising the number of pentagons in triangle-free graphs
Erdős [11] asked if c(5m) � m5 for every natural number m, where c(n) is the max-

imum number of 5-cycles that a triangle-free graph of order n can have. Note that this 
bound is sharp for every m ∈ N which is witnessed by the balanced blow-up of C5.

Some partial progress on this problem was obtained by Győri [19] who proved 
c(n) � 1.03 (n/5)5 and Füredi (unpublished) who proved c(n) � 1.01 (n/5)5. Recently, 
Grzesik [18] and independently Hatami et al. [21] proved that, as n → ∞, there can be 
at most (1/55 + o(1))n5 copies of C5. Furthermore, Hatami et al. [21] proved the exact 
result for all large n (and the classical stability can also be derived from their method). 
In fact, the validity of Erdős’ conjecture follows from the asymptotic result by a simple 
blow-up trick (see [21, Corollary 3.3]). Interestingly, if n = 8, there is another extremal 
example which is not a blow-up of C5 that was discovered by Michael [29]. Very recently, 
the value of c(n) and the description of all extremal graphs for every n was obtained by 
Lidický and Pfender [25].

This problem fits into our general framework and we can prove (again in a completely 
automated way) that it is perfectly stable.
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Theorem 1.3. Let F = {K3}, κ = 5, and γ(H) be zero, except γ(C5) = 1. Let B = C5. 
Then the corresponding problem is perfectly B-stable (with the unique maximiser for 
λ(B(a)) being the vector a ∈ S5 with each entry equal to 1/5).

1.1.3. Inducibility
Given a graph F , the inducibility problem for F asks for the maximal possible (in-

duced) density of the graph F among all graphs of order n. In our general notation, 
it can be expressed as follows. Let κ = v(F ), F = ∅ and let γ take the value 0 on 
every graph with κ vertices except F , where it takes value 1. Thus we are interested in 
i(n, F ) := Λ(n, G). We call i(F ) := λ(G) the inducibility of F . Equivalently,

i(F ) := lim
n→∞

max{p(F,G) : v(G) = n}.

Observe that the inducibility of each graph is equal to the inducibility of its complement. 
The inducibility problem has drawn a considerable amount of interest, see for example 
[2–4,6,13,14,16,20,23,24,42].

Before we look at concrete examples, let us mention the following general result of 
Brown and Sidorenko [6, Proposition 1]: if F is complete partite (i.e. a blow-up of some 
clique), then for every n ∈ N at least one i(n, F )-extremal graph is complete partite. The 
proof in [6] uses the symmetrisation method and it is not clear how to extract a stability-
type result from it. Also, Even-Zohar and Linial [13, Table 2] systematically looked at 
the inducibility of 5-vertex graphs but without trying to convert the numerical bounds 
coming from flag algebra calculations into computer-verifiable mathematical proofs.

1.1.4. Inducibility of the cycle on four vertices
The inducibility of the 4-cycle, denoted by C4, follows from the above mentioned 

result of Brown and Sidorenko [6]. Previously, Pippenger and Golumbic [16] determined 
i(n, Kk,l) for all k, l with |k−l| � 1, observing that the complete balanced bipartite graph 
is an extremal graph. Here we prove perfect stability for this problem (by invoking our 
computer code).

Theorem 1.4. Let F = ∅, κ = 4, and γ(H) be zero, except γ(C4) = 1. Let B = K2 be a 
single edge. Then the corresponding problem is perfectly B-stable (with λ(G) = i(C4) =
3/8 and the unique maximiser for λ(B(a)) being the vector a = (1/2, 1/2)).

1.1.5. Inducibility of K4 minus an edge
Let K−

4 be the graph obtained by removing an edge from the complete graph on four 
vertices. The inducibility problem for K−

4 was considered by Hirst [24], who determined 
i(K−

4 ) using the flag algebra method. Our new result is that this problem is perfectly 
stable (and, in particular, that i(n, K−

4 ) is attained by a blow-up of the complete graph 
on five vertices K5, for all large n).
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Fig. 1. The graph Y .

Theorem 1.5. Let F = ∅, κ = 4, and γ(H) be zero, except γ(K−
4 ) = 1. Also let B = K5. 

Then the corresponding problem is perfectly B-stable (with λ(G) = i(K−
4 ) = 72/125 and 

the unique maximiser for λ(B(a)) being the vector a ∈ S5 with each entry equal to 1/5).

1.1.6. Inducibility of K3,2

The function i(n, K3,2) was calculated by Golumbic and Pippenger in [16], where the 
complete balanced bipartite graph is an extremal graph. We show that the problem is 
perfectly stable.

Theorem 1.6. Let F = ∅, κ = 5, and γ(H) be zero, except γ(K3,2) = 1. Also let B = K2. 
Then the corresponding problem is perfectly B-stable (with λ(G) = i(K3,2) = 5/8 and the 
unique maximiser for λ(B(a)) being the vector a = (1/2, 1/2)).

1.1.7. Inducibility of K2,2,1

The function i(n, K2,2,1) can be derived from the results of Brown and Sidorenko [6]. 
Here we prove perfect stability for the corresponding problem.

Theorem 1.7. Let F = ∅, κ = 5, and γ(H) be zero, except γ(K2,2,1) = 1. Also let B = K3. 
Then the corresponding problem is perfectly B-stable (with λ(G) = i(K2,2,1) = 10/27 and 
the unique maximiser for λ(B(a)) being the vector a = (1/3, 1/3, 1/3)).

1.1.8. Inducibility of P3 ∪K2

We consider the inducibility problem for the disjoint union of a path on 3 vertices and 
an edge, which we denote by P3 ∪K2. We prove the following.

Theorem 1.8. Let F = ∅, κ = 5, and γ(H) be zero, except γ(P3 ∪ K2) = 1. Also let 
B = K3∪K3, that is, the disjoint union of two triangles. Then the corresponding problem 
is perfectly B-stable (with λ(G) = i(P3 ∪ K2) = 5/18 and the unique maximiser for 
λ(B(a)) being the vector a ∈ S6 with each entry equal to 1/6).

1.1.9. Inducibility of the “Y” graph
We consider the inducibility problem for the graph depicted in Fig. 1, which we denote 

by Y. We prove the following.
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Theorem 1.9. Let F = ∅, κ = 5, and γ(H) be zero, except γ(Y) = 1. Also let B = C5. 
Then the corresponding problem is perfectly B-stable (with λ(G) = i(Y ) = 24/125 and 
the unique maximiser for λ(B(a)) being the vector a ∈ S5 with each entry equal to 1/5).

1.1.10. Inducibility for the paw graph
Let us denote by Fpaw the graph obtained by adding to a triangle a pendant edge. 

Using flag algebras, Hirst [24] determined the value of i(Fpaw). Here, it is more convenient 
to work with the (equivalent) complementary problem. Thus we consider the inducibility 
problem of the disjoint union of a path on three vertices and a single node, that we 
denote by P3 ∪ K1. Unfortunately, the perfect stability does not follow directly from 
Theorem 7.1. However, it can be proved using our methods combined with additional 
work, see Section 8.1 for the proof.

Theorem 1.10. Let F = ∅, κ = 4, and γ(H) be zero, except γ(P3 ∪ K1) = 1. Also let 
B = K2 ∪K2, that is, the disjoint union of two edges. Then the corresponding problem 
is perfectly B-stable (with λ(G) = i(P3 ∪K1) = i(Fpaw) = 3/8 and the unique maximiser 
for λ(B(a)) being the vector a ∈ S4 with each entry equal to 1/4).

1.1.11. Turán problem
Recall that the Turán problem was introduced in Example 1.1. Given a family of 

graphs H we consider H↑, the collection of graphs obtained by adding missing edges to 
the graphs in H. While our computer code can automatically prove the perfect stability 
when H = {Kt} with t � 7, this is superceded by the following result whose proof does 
not require a computer. For integer q � 1 denote by Kq

m the balanced blow up of Km

on qm vertices (i.e. Km(V1, . . . , Vm) with |V1| = . . . = |Vm| = q).

Theorem 1.11. Let H be a family of graphs and let

m := min{χ(H) : H ∈ H} − 1 � 2,

where by χ(H) we denote the chromatic number of the graph H, that is, the minimum 
number of colours needed in a colouring of the vertex set with no adjacent vertices of the 
same colour. Then the following hold.

1. The Turán problem ex(n, H) is perfectly Km-stable if and only if there is an integer 
q such that Kq

m plus one edge is not H↑-free.
2. Assuming in addition that H is finite, we have the following. The Turán problem 

ex(n, H) is robustly Km-stable if and only if there is an integer q such that Kq
m plus 

some forest in one of the parts of Kq
m is not H↑-free.

As we learned later, the non-trivial implication in Part 1 of the above theorem is 
apparently a folklore result. Since it follows from [40, Lemma 2.3], we omit its proof. 
The second part of Theorem 1.11 is proved in Section 9 of this paper.
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2. Notation and preliminaries

Some of the definitions and proofs of this paper will be more natural when stated in 
a more analytic way. For example, the definition of λ(B(a)) in (4) would not require 
a limit if instead we were working with vertex-weighted graphs. Such objects are quite 
common in extremal graph theory nowadays (appearing, for example, in the definition of 
the Lagrangian of a graph that goes back to Motzkin and Straus [30]) and, of course, they 
are generalised in a powerful and far-reaching way by graphons (see, for example, the 
excellent book by Lovász [27]). However, we believe that by staying within the universe 
of simple unweighted graphs, we make the paper and its ideas better accessible to a 
wider audience.

As usual, for each positive integer n, we denote by [n] the set {1, ..., n}. Let E(X)
denote the expected value of a random variable X. We will often abbreviate a pair {i, j}
as ij. For a finite set A and a positive integer k we denote by 

(
A
k

)
the set of all k-subsets 

of A.
Recall that Km denotes the complete graph of order m and G := (V (G), 

(
V (G)

2
)
\E(G))

denotes the complement of a graph G. Let Km,n be the complete bipartite graph with 
part sizes m and n. For a vertex x ∈ V (G), let ΓG(x) = {y ∈ V (G) : {x, y} ∈ E(G)}
denote the neighbourhood of x in G. We write G ∼= H if G and H are isomorphic graphs.

We call a graph B λ-minimal if λ(B()) strictly decreases when we remove any vertex 
of B. By (5), B is λ-minimal if and only if no point on the boundary of Sm achieves the 
maximum.

A graph B is twin-free if it contains no two vertices x and y with identical neighbour-
hoods (i.e., for all distinct x, y ∈ V (B) we have ΓB(x) �= ΓB(y)).

Recall that the (edit) distance Δedit(G, H) between two graphs G and H of the same 
order n is the minimum of adjacencies one has to edit in G to make it isomorphic to H. 
Also, the (edit) distance Δedit(G, H) from a graph G to a family H of graphs is the 
minimum of Δedit(G, H) over all H ∈ H that have the same order as G; this is the 
minimum number of adjacency edits needed to transform G into a graph in H. The 
respective normalised distances are δedit(G, H) := Δedit(G, H)/

(
n
2
)

and δedit(G, H) :=
Δedit(G, H)/

(
n
2
)
.

Throughout this paper we will work under the following assumptions which are col-
lected together for future reference.

Assumption 2.1. Let κ, m be positive integers and F a family of graphs.

1. Set G = Forb(F).
2. Let γ : G0

κ → R be a function and define Λ and λ as in (1).
3. Let B be a graph on [m] such that B() ⊆ G.

The next lemma provides some basic information on the behaviour of the sequence 
(λ(n, G))∞n=κ.
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Lemma 2.2. Let G be a graph property closed under taking induced subgraphs. Then for 
κ � q � n with q → ∞ we have

0 � λ(q,G) − λ(n,G) � oq(1).

Furthermore, if G is closed under taking blow-ups, then the error term is O(1/q).

Proof. Take an optimal graph G for λ(n, G). Let X be a random q-subset of V (G) and 
G′ := G[X]. Then G′ ∈ G. Thus λ(q, G) � E(λ(G′)). Clearly, if we take a uniform 
X ∈

(
V (G)

q

)
and then a uniform Y ∈

(
X
κ

)
, then Y is uniformly distributed among all 

κ-subsets of V (G). Thus E(λ(G′)) equals λ(G) = λ(n, G), giving λ(q, G) � λ(n, G). Thus 
λ(q, G) is non-increasing in q and tends to a limit, implying the other desired inequality 
λ(n, G) � λ(q, G) + oq(1).

Finally, assume that G is also closed under taking blow-ups. To show λ(q, G) �
λ(n, G) + O(1/n), take an optimal graph G for λ(q, G) on [q]. Consider a random map 
φ : [n] → [q] with all qn choices being equally likely and let G′ be the graph on [n] with 
E(G′) = φ−1(E(G)). Take any κ-subset X ⊆ [n]. With probability 1 −O(1/q), the map 
φ is injective on X. If we condition on this, then φ(X) ∈

([q]
κ

)
is uniform and the average 

of γ(G′[X]) = γ(G[φ(X)]) is λ(G). Thus

λ(n,G) � Eφ(λ(G′)) = (1 −O(1/q))λ(G) −O(1/q),

giving the desired. �
3. Flag algebra method

As we have already mentioned in the introduction of this paper, the flag algebra 
method is a powerful technique pioneered by Razborov [38,39]. In this section, we define 
what a certificate is and how it implies an upper bound on λ(G). Recall that we always 
work under Assumption 2.1.

3.1. Types and flags

A type is a pair of the form (H, φ), where H is an admissible graph and φ : [v] → V (H)
is a bijection with v = v(H). Given a type τ = (H, φ) as above, a τ -flag is a pair of the 
form (G, ψ), where G is an admissible graph and ψ : [v] → V (G) is an injection such 
that ψ ◦ φ−1 : V (H) → V (G) is an embedding (that is, an injection that preserves both 
edges and non-edges). Informally, a τ -flag (G, ψ) is a partially labelled graph such that 
the labelled vertices induce τ . The order v((G, ψ)) of the flag is v(G), the number of 
vertices in it.

For two τ -flags (G1, ψ1) and (G2, ψ2) with respectively n1 � n2 vertices, let the 
sub-flag count P ((G1, ψ1), (G2, ψ2)) be the number of n1-subsets X of V (G2) such that 
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X ⊇ ψ2([v]) (i.e. X contains all labelled vertices) and the τ -flags (G1, ψ1) and (G2[X], ψ2)
are isomorphic, meaning that there is a graph isomorphism that preserves the labels. 
Also, define the (flag) density as

p((G1, ψ1), (G2, ψ2)) := P ((G1, ψ1), (G2, ψ2))(
n2−v
n1−v

) . (6)

The latter quantity can be viewed as the probability that a random n1-subset X of 
V (G2) with X ⊇ φ2([v]) induces a copy of the flag (G1, ψ1) in (G2, ψ2).

We will also need a variation of the above notion. Let F1 = (G1, ψ1), F2 = (G2, ψ2)
and (G, ψ) be three τ -flags with respectively n1, n2 and n vertices. We define the joint 
sub-flag count P (F1, F2, (G, φ)) to be the number of pairs (X, Y ) such that X, Y are 
subsets of V (G) with n1 and n2 elements respectively, X ∩ Y = ψ([v]) and the τ -flags 
(G[X], ψ) and (G[Y ], ψ) are isomorphic to F1 and F2, respectively.

The type with no vertices will be denoted by 0. Thus 0-flags are just unlabelled graphs. 
In this case, the 0-flag density as defined by (6) coincides with the notion of subgraph 
density from the Introduction.

3.2. Certificates

Definition 3.1. A (flag algebra) certificate is a triple

C = (N, T , (Qτ )τ∈T ), (7)

where

• N � κ is an integer;
• T = (τ1, . . . , τt) is an ordered list of some types such that N−v(τi) is a positive even 

integer for each i ∈ [t];
• Qτi is an arbitrary positive semi-definite gi× gi-matrix for i ∈ [t], where we fix some 

enumeration (F τi
1 , . . . , F τi

gi ) of all τi-flags with exactly (N + v(τi))/2 vertices, up to 
isomorphism of flags (and thus gi is the number of these flags).

Note that the third component of the certificate C consists of exactly t matrices, one 
per each of the types τ1, . . . , τt; one can view the rows/columns of Qτi as indexed by the 
τi-flags of order (N + v(τi))/2.

To describe the upper bound of λ(G) that a certificate C witnesses, we need to intro-
duce several quantities.

Let G1, . . . , Gg be the enumeration in some fixed order of all (up to an isomorphism) 
admissible N -vertex graphs. Thus G0

N = {G1, . . . , Gg} with no two listed graphs being 
isomorphic. For each q ∈ [g] (that is, for each Gq), we define real numbers
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aq :=
t∑

i=1

gi∑
h=1

gi∑
j=1

cτih,j,qQ
τi
h,j , where cτij,h,q :=

∑
φ

P (F τi
j , F τi

h , (Gq, φ)) (8)

and the sum in the definition of cτih,j,q is taken over all injective maps φ : [v(τi)] → V (Gq)
that induce a copy of the flag τi in G. Also, let

bq := λ(Gq) =
∑

H∈G0
κ

γ(H)p(H,Gq),

and

uλ(C) := max{aq + bq : q ∈ [g]}.

A graph Gq ∈ G0
N is called (C, λ)-sharp (or C-sharp, or just sharp) if aq + bq = uλ(C). 

The following lemma motivates the above definitions.

Lemma 3.2. Under the above notation, for every admissible graph G of order n ≥ N we 
have that

uλ(C) − λ(G) + O(1/n) =
g∑

q=1
(uλ(C) − bq)p(Gq, G) + O(1/n) (9)

�
g∑

q=1
aqp(Gq, G) + O(1/n) � 0. (10)

In particular, we have that λ(n, G) � uλ(C) + O(1/n) and λ(G) � uλ(C).

Proof. Let G be an arbitrary admissible graph of order n ≥ N . We have

λ(G) =
∑

H∈G0
κ

γ(H)p(H,G) =
∑

H∈G0
κ

γ(H)
g∑

q=1
p(H,Gq)p(Gq, G) =

g∑
q=1

bqp(Gq, G), (11)

proving (9).
Next, we define a non-negative quantity a in the following way. Initially, we set a = 0. 

For each non-negative integer v such that N − v is a positive even integer we work as 
follows. We enumerate all n(n −1) . . . (n −v+1) injections ψ : [v] → V (G). If the induced 
type (G[ψ([v])], ψ) is equal to some τi ∈ T , then we add the quantity xQτixT to a, where

x :=
(
P (F τi

1 , (G,ψ)), ... , P (F τi
gi , (G,ψ))

)
. (12)

Since each matrix Qτi is positive semi-definite, we have that each xQτix � 0 and that 
the final a is non-negative.
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Let i ∈ [t] and set v = v(τi). Take any j, h ∈ [gi]. Notice that the sum of the products 
P (F τi

j , (G, ψ)) P (F τi
h , (G, ψ)) over all injections ψ : [v] → V (G) such that (G[ψ([v])], ψ)

is isomorphic to τi, is equal to

g∑
q=1

cτij,h,qP (Gq, G) + O(nN−1),

where cτij,h,q is defined in (8), see e.g. [38, Lemma 2.3]. (Informally speaking, we just 
count in two different ways the number of embeddings of F τi

j and F τi
h into G so that the 

corresponding labelled vertices coincide; the error term O(nN−1) comes from embeddings 
where some unlabelled vertices happen to collide.) Thus, summing over i ∈ [t], as well as, 
over injections ψ and expanding each quadratic form xQτxT , we get the representation

0 � a(
n
N

) = O(1/n) +
g∑

q=1
aqp(Gq, G), (13)

where aq’s are as in (8). Adding this to (11), we obtain that

λ(G) + O(1/n) �
g∑

q=1
(aq + bq)p(Gq, G) � uλ(C)

g∑
q=1

p(Gq, G) = uλ(C). (14)

The inequalities in (10) follow readily by (13) and (14). �
Lemmas 2.2 and 3.2 have the following immediate consequence.

Corollary 3.3. Suppose that Assumption 2.1 holds. Let a be a vector in Sm and C a 
certificate such that λ(B(a)) � uλ(C). Then λ(G) = λ(B(a)) = uλ(C). Moreover, if G is 
closed under taking blow-ups, then λ(n, G) = uλ(C) + O(1/n). �

Finally, we close this section with the following lemma.

Lemma 3.4. Under Assumption 2.1, suppose that G is closed under taking blow-ups and 
that a certificate C and a vector a = (a1, . . . , am) ∈ Sm with no zero entry satisfy uλ(C) =
λ(B(a)). Fix i ∈ [t] and set v := v(τi). Also, let n be a large positive integer, V1, . . . , Vm

a partition of [n] with |Vi| = ain + O(1) and G := B(V1, . . . , Vm). Finally, let ψ :
[v] → V (G) be an injection such that (G, ψ) is a τi-flag. Define x as in (12). Then 
xQτixT = O(nN−v−1).

Proof. Observe that any modification of the injection ψ such that its values stay in the 
same parts Vi is an embedding. These new injections give the same vector x. There 
are Ω(nv) such injections since each part Vi has size ain + O(1) = Ω(n). Let a be the 
quantity defined in the proof of Lemma 3.2 when applied to G. Note that a is the sum 
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of non-negative quantities, some of which correspond to the above Ω(nv) embeddings of 
τi into G. Thus

0 � Ω(nv) · xQτixT � a. (15)

Also, observe that λ(G) = λ(B(a)) + O(1/n). Since uλ(C) = λ(B(a)), by (10) and (13)
we have that a = O(nN−1). Invoking (15), the result follows. �
4. Robust stability from flag algebra proofs

The main result of this section is Theorem 4.1 below that provides a sufficient con-
dition for a problem to be robustly stable. Let H, G be two graphs. We say that a map 
f : V (H) → V (G) is a strong homomorphism if it preserves both adjacency and non-
adjacency. Observe that a strong homomorphism, in contrast to an embedding, does not 
need to be injective, allowing pairwise non-adjacent vertices to be mapped to the same 
image. Moreover, let us note that a graph H admits a strong homomorphism in a graph 
B if and only if H is a blow-up of B.

Theorem 4.1 (Robust stability). Suppose that in addition to Assumption 2.1 the following 
holds.

1. We have a vector a ∈ Sm and a certificate C = (N, T , (Qτ )τ∈T ) with uλ(C) �
λ(B(a)).

2. There is a graph τ of order at most N − 2 satisfying the following.
(a) λ(Forb(F)) > λ(Forb(F ∪ {τ})).
(b) There exists a unique (up to automorphisms of τ and B) strong homomorphism 

f from τ into B.
(c) For every distinct x1 and x2 in V (B) we have ΓB(x1) ∩ f(V (τ)) �= ΓB(x2) ∩

f(V (τ)).
3. Every C-sharp graph of order N admits a strong homomorphism into B.

Then the problem is robustly B-stable.

Proof. By Corollary 3.3, we know that λ(G) = λ(B(a)) = uλ(C). For notational con-
venience, assume that V (τ) = [q]. Choose large constants in the order C1 � C. In 
particular, we assume that C > 2/(λ(G) − λ(Forb(F ∪ {τ}))). Take any F-free graph G
of order n > C. Note that Condition 2(c) of Theorem 4.1 implies that B is twin-free.

We can assume that λ(G) � (λ(G) + λ(Forb(F ∪ {τ})))/2 for otherwise

C(λ(G) − λ(G)) � C(λ(G) − λ(Forb(F ∪ {τ})))/2 > 1 � δedit(G,B()),

and there is nothing to do.
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Since G is F-free but λ(G) is strictly larger than λ(Forb(F∪{τ})), the supersaturation 
argument of Erdős and Simonovits [12] or an application of the Removal Lemma shows 
that

p(τ,G) � 1/C1, (16)

that is, G has at least 
(
n
q

)
/C1 copies of τ .

For every embedding ψ : τ → G, we define the following. For each binary string 
b = (b1, ..., bq) of length q, let Vψ,b consist of those vertices x ∈ V (G) such that the 
neighbourhood of x in ψ([q]) is given by b, that is, {i ∈ [q] : {x, ψ(i)} ∈ E(G)} = {i ∈
[q] : bi = 1}. Thus, the sets Vψ,b, b ∈ {0, 1}q, form a partition of V (G). Observe that, if 
we apply the above definition to the (fixed) map f : τ → B (instead of ψ : τ → G), then 
each part in the obtained partition of V (B) = [m] has at most one vertex by Condition 2. 
Let bj ∈ {0, 1}q be the binary sequence corresponding to the part {j} for each j ∈ [m]; 
thus bj encodes the adjacencies of j ∈ V (B) to the fixed copy of τ in B. We call all other 
length-q binary sequences singular. Also, we call a part Vψ,b singular if b is singular, 
that is, not one of b1, . . . , bm. Finally, we call a pair of distinct vertices x1, x2 ∈ V (G)
singular if at least one of them is in a singular part or both of them are in non-singular 
parts but the adjacency relations between x1, x2 in G and between j1, j2 in B mismatch 
(that is, one is an edge and the other is a non-edge), where jl is the unique element of 
[m] satisfying xl ∈ Vψ,bjl for l = 1, 2. Note if we have j1 = j2 above, then {x1, x2} is 
singular if and only if x1 and x2 are connected in G.

Observe that due to Condition 2, we have that the union of ψ([q]) with every singular 
pair {x1, x2} induces a graph that does not embed into a blow-up of B. For example, 
if x1 is in a singular part then already ψ([q]) ∪ {x1} spans a subgraph in G that does 
not belong to B(). If we add an arbitrary disjoint (N − |X|)-set Y of vertices to X :=
ψ([q]) ∪ {x1, x2}, we get a subgraph of G of order N that does not belong to B(). 
Condition 3 and inequality (10) give that the total number of such subgraphs in G
is at most C1

(
n
N

)
max(1/n, λ(G) − λ(G)), where we assume that 1/C1 is smaller than 

min{uλ(C) − aq − bq : Gq is non-sharp}. Also, each such subgraph H of G can arise for 
at most N ! triples (ψ, {x1, x2}, Y ), a rough bound on the number of ways to embed τ
into H, then choose two more vertices in H and let Y be the rest of V (H). Thus, the 
number of triples (ψ, {x1, x2}, Y ) as above is at most C1

(
n
N

)
max(1/n, λ(G) −λ(G)) ×N !. 

Clearly, if we fix the first two entries, namely (ψ, {x1, x2}), then any choice of Y will do 
and there are at least 

(
n

N−q−2
)

choices of Y (as |X| is always at most q + 2). Thus the 
total number of possible choices of (ψ, {x1, x2}) as above is at most

C1

(
n

N

)
max(1/n, λ(G) − λ(G)) ×N !/

(
n

N − q − 2

)
.

Choose ψ for which the number of singular pairs is at most the average. By (16) and 
Corollary 3.3, it is at most
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C1
(
n
N

)
max(1/n, λ(G) − λ(G)) ×N !/

(
n

N−q−2
)

(
n
q

)
/C1

< C

(
n

2

)
max(1/n, λ(n,G) − λ(G)).

Observe that one can convert G into a blow-up of B by flipping all singular pairs between 
non-singular parts of G and merging the singular parts into non-singular ones in an 
arbitrary way. Thus, for every (and in particular this) ψ, the number of singular pairs is 
at least Δedit(G, B()), which is by definition the minimum number of pairs that one needs 
to change in G to make is a blow-up of B. This finishes the proof of the theorem. �
5. Sufficient conditions for perfect stability

The aim of this section is to present sufficient conditions for perfect stability. To state 
our results, we need the notions of strictness and flip-aversion. Their definitions require 
several other concepts that we introduce in the next section.

5.1. Notation and some preliminary results

Throughout this section we work under the following set of assumptions.

Assumption 5.1. In addition to Assumption 2.1, we assume the following.

1. Each graph in F is twin-free and
2. λ(G) = λ(B()).

Observe that a trivial consequence of twin-freeness of each F ∈ F is the following.

Lemma 5.2. The set of admissible graphs G is closed under taking blow-ups. �
We will also need the following pieces of notation. If G is a graph and x, y is a pair 

of distinct nodes of G, then by G ⊕ xy we denote the graph obtained by flipping the 
adjacency of x and y, while by G −x we denote the graph obtained by deleting the node 
x in G. Moreover, if κ is a positive integer, for a graph G of order n � κ and a vertex x
of G, we define

Λ(G, x) :=Λ(G) − Λ(G− x) and

λ(G, x) :=
(
n− 1
κ− 1

)−1

· Λ(G, x).
(17)

The value of Λ(G, x) can be determined by summing γ(G[X]) over all κ-subsets X of 
V (G) containing x. Also, λ(G, x) is the conditional expectation of γ(G[X]) where X is 
a random κ-subset of V (G) conditioned on X � x.
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Let a = (a1, ..., am) in Sm be arbitrary. Consider a blow-up B′ := B(V1, . . . , Vm) of 
order n, where |Vi| = ain +O(1). Let B′′ be obtained from it by adding a new vertex w. 
Then Λ(B′′, w) is determined within additive error O(nκ−2) by the vector of ratios

y :=
(

|ΓB′′(w) ∩ V1|
|V1|

, ... ,
|ΓB′′(w) ∩ Vm|

|Vm|

)
∈ [0, 1]m. (18)

In fact, we have

λ(B′′, w) = Ra(y) + O(1/n), (19)

where Ra = RB,λ,a is some real polynomial in y. One can write Ra explicitly as follows.
First, for a (not necessarily injective) map φ : [t] → [m] and a (binary) vector b =

(b1, . . . , bt) in {0, 1}t, let B(φ, b) be the graph on [t + 1] such that two elements i and j
of [t] are adjacent if and only if φ(i) and φ(j) are adjacent in B, and {i, t +1} is an edge 
if and only if bi = 1. Informally speaking, B(φ, b) is a graph that we can form from a 
blow-up of B on [t] by adding a new vertex whose neighbourhood in [t] is given by the 
binary vector b. Then the value of the polynomial Ra at y = (y1, ..., ym) is

∑
φ:[κ−1]→[m]

∑
b∈{0,1}κ−1

(κ−1)!γ(B(φ, b))
m∏

p=1

1∏
q=0

(ap(qyp + (1 − q)(1 − yp)))|{i:φ(i)=p, bi=q}|

|{i : φ(i) = p, bi = q}| ! .

Let us call a vector y ∈ [0, 1]m admissible if for every t ∈ N, every map φ : [t] → [m], 
and every binary vector b = (b1, . . . , bt) ∈ {0, 1}t such that yφ(i) = 0 implies bi = 0 and 
yφ(i) = 1 implies bi = 1 (while bi can be arbitrary if 0 < yφ(i) < 1), the graph B(φ, b) is 
F-free. In other words, this condition says that if we take a blow-up B(V1, . . . , Vm) with 
each |Vi| large and add a vertex w with yi|Vi| neighbours in Vi for each i ∈ [m], then 
the obtained graph is still F-free. Clearly, whether y = (y1, . . . , ym) is admissible or not, 
depends only on the sets {i ∈ [m] : yi = 0} and {i ∈ [m] : yi = 1} and therefore the next 
claim follows easily.

Claim 5.3. The set of the admissible vectors forms a closed subset of [0, 1]m. �
Let us point out that, since F is twin-free, it suffices to check the condition in the 

definition of an admissible y only for those choices of t, φ, b for which B(φ, b) is twin-free. 
In particular, it suffices to consider t to be at most 2m.

The following vectors will play a special role. For every i ∈ [m], we define vi =
(vi,1, ..., vi,m) in {0, 1}m by setting vi,j = 1 if ij belongs to E(B) and vi,j = 0 otherwise 
for all j ∈ [m]. Informally speaking, the assignment y = vi corresponds to adding 
one extra vertex in part Vi. Thus each vector vi ∈ [0, 1]m is admissible. Under this 
terminology, we have, in particular, for each i0 ∈ [m] and x ∈ Vi0 that

Ra(vi0) = λ(B′, x) + O(1/n). (20)
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Indeed, both sides of (20) measure the (normalised) change in the objective function 
λ when we remove one vertex from the i0-th part of an (a + O(1/n))-blow-up of B of 
order n.

There is the following connection between λ(B′, x) and ∂
∂ai0

λ(B(a)).

Claim 5.4.

Ra(vi0) = λ(B′, x) + O(1/n) = 1
κ

∂

∂ai0
λ(B(a)).

Proof. First, for every positive integer t and map φ : [t] → [m] we define B(φ) to be the 
graph having [t] as the vertex set with i and j being adjacent if and only if φ(i) and φ(j)
are adjacent. For each H ∈ G0

κ we define

ΦH := {φ : [κ] → [m] : B(φ) ∼= H}

and

Φi0
H := {φ ∈ ΦH : i0 ∈ φ([κ])}.

Then we have that

λ(B(a)) =
∑

H∈G0
κ

γ(H)κ!
∑

φ∈ΦH

m∏
i=1

a
|φ−1(i)|
i

|φ−1(i)|! . (21)

On the other hand, we have that

λ(B′, x) =
∑

H∈G0
κ

γ(H)(κ− 1)!
∑

φ∈Φi0
H

a
|φ−1(i0)|−1
i0

(|φ−1(i0)| − 1)!

m∏
i=1
i�=i0

a
|φ−1(i)|
i

|φ−1(i)|! + O(1/n)

(21)= 1
κ

∂

∂ai0
λ(B(a)). �

Let us illustrate some of the above concepts in the special case of Example 1.1
with H = {Kt} (namely, the Turán function ex(n, Kt)). Here m = t − 1 and 
B = Km. Ignoring rounding errors, if we create B′ from the complete m-partite graph 
Ka1n,... ,amn = B(V1, . . . , Vm) by adding a new vertex w having y1a1n, . . . , ymamn neigh-
bours in V1, . . . , Vm respectively, then Λ(B′, w) is just 

∑m
i=1 yiain, the number of edges 

at w. Thus Ra(y) = limn→∞ Λ(B′, w)/n =
∑m

i=1 yiai. Since we forbid Km+1, a vector y
is admissible if and only if at least one yi is 0. Here vi is the y-vector corresponding to 
w being a twin of the vertices in Vi, that is, vi consists of 1s except one 0 at position i. 
Note that a = (1/m, . . . , 1/m) is the (unique) maximiser of λ(B(x)) for x ∈ Sm. If 
we fix this a and maximise Ra(y) over admissible y ∈ [0, 1]m, then trivially the set of 
maximisers is {v1, . . . , vm}. The following lemma states that one part of this inclusion 
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(namely, that each vi is a maximiser) holds whenever a has no zero entries. This makes 
a perfect combinatorial sense: in every extremal configuration B(V1, . . . , Vm) all vertices 
must make asymptotically the same contribution to Λ.

Lemma 5.5. Fix any a ∈ Sm that maximises λ(B(·)). Suppose that a has no zero entries. 
Then the maximum of Ra(y) over admissible y ∈ [0, 1]m is λ(G) and, furthermore, 
Ra(vi) = λ(G) for each i ∈ [m] (that is, each of the vectors vi is a maximiser).

Proof. Since a achieves a maximum and lies in the interior of Sm, we have that 
∂
∂i
λ(B(a)) = ∂

∂j
λ(B(a)) for all i, j ∈ [m]. Denote this common value by R. By Claim 5.4, 

we have R = 1
kRa(vi) for all i ∈ [m]. Since λ(B(a)) is a homogeneous polynomial of 

degree κ, we have that

λ(B(a)) = 1
κ

m∑
i=1

ai
∂

∂ai
λ(B(a)).

This, the fact that a maximises λ(B(a)), Claim 5.4, and equality 
∑m

i=1 ai = 1 imply 
that

λ(G) = λ(B(a)) = 1
κ

m∑
i=1

ai
∂

∂ai
λ(B(a)) =

m∑
i=1

aiRa(vi) = R.

Thus Ra(vi) = λ(G) for all i ∈ [m].
To prove the first part of the lemma, we derive a contradiction by assuming that some 

admissible y ∈ [0, 1]m achieves a strictly greater value. Let c := Ra(y) − λ(G) > 0 and 
pick some real ε with 0 < ε � c.

Here we can start with B′ = B(V1, . . . , Vm) of order n → ∞ with |Vi|/n → ai and 
form B′′ by adding a set Y of εn new vertices that span an independent set with the 
identical adjacencies to V1, . . . , Vm governed by y. Since the vector y is admissible, the 
obtained graph is F-free. Indeed, B(V1, . . . , Vm) plus one vertex v ∈ Y is F-free by the 
admissibility of y; by blowing up the vertex v we cannot violate F-freeness because each 
member of F is twin-free.

The contribution of the new vertices to λ is cε − O(ε2). Indeed, if we take a random 
κ-subset X of V (B′′), then with probabilities respectively 1 − κε + O(ε2), κε + O(ε2), 
and O(ε2), the set X intersects Y in zero, one and at least two vertices; thus

λ(B′′) = (1 − κε)λ(B′) + κε(λ(B′) + c) + O(ε2) = λ(B′) + cκε + O(ε2).

So we see that λ(B′′) − λ(B′) can be made strictly positive by choosing small constant 
ε � c. Thus the (a+ o(1))-blow-up B′ of B is not asymptotically optimal, contradicting 
the optimality of a. �
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Let us say that B is (λ, a)-strict if the set of maximisers of Ra(y) over the admissible 
y’s in [0, 1]m is exactly {v1, . . . , vm}. Call the graph B λ-strict if B is λ-minimal and B
is (λ, a)-strict for every a ∈ Sm that maximises λ(B(a)).

Recall that B is λ-minimal if λ(B′()) is strictly smaller than λ(B()) for any proper 
subgraph B′ of B. It trivially follows that such B is necessarily twin-free and every max-
imiser a ∈ Sm has all coordinates non-zero (and by compactness at least one maximiser 
a exists). Thus, if B is λ-strict, then, for each optimal a, each of v1, . . . , vm ∈ [0, 1]m is 
a maximiser of Ra by Lemma 5.5 while the strictness property requires that there are 
no other maximisers.

Lemma 5.6. If B is λ-strict, then for every ε > 0 there is δ > 0 such that if a ∈ Sm

and admissible y ∈ [0, 1]m satisfy λ(B(a)) � λ(G) − δ and Ra(y) � λ(G) − δ, then y is 
ε-close to some vi.

Proof. Suppose there is ε > 0 that violates the lemma, that is, for every j ∈ N there 
are aj and yj that violate the conclusion for δ = 1/j. By passing to a subsequence, 
we may assume that these vectors converge to a and y respectively. By the continuity 
of λ(B(x)), a is a maximiser. By λ-minimality of B we have that each ai > 0. By 
Claim 5.3, we have that y is admissible, while by Lemma 5.5 and Assumption 5.1 we 
have that Ra(y) = λ(G). Since B is λ-strict, we have that y is equal to vi for some 
i ∈ [m]. But then yj has to get ε-close to vi leading to a contradiction. �

Here is another easy consequence of the compactness of Sm.

Lemma 5.7. If B is λ-minimal, then there is δ > 0 such that for every a ∈ Sm satisfying 
λ(B(a)) � λ(G) − δ we have that each ai is at least δ. �

Finally, we call a graph B λ-flip-averse if there is δ > 0 such that the following 
holds. If we take a blow-up B′ = B(V1, . . . , Vm) with n � 1/δ vertices such that λ(B′) �
λ(B()) − δ and obtain B′ ⊕ xy by changing the adjacency between a pair of distinct 
nodes x, y ∈ V (B′) (possibly from the same part), then either B′ ⊕ xy contains some 
H ∈ F with v(H) � m + 2 as a subgraph or we have that

Λ(B′) − Λ(B′ ⊕ xy) � δnκ−2. (22)

By compactness, the property of being flip-averse can be equivalently re-formulated in 
terms of the polynomial λ(B(x)), where n disappears from the definition but then its 
combinatorial meaning will be less clear.

5.2. Main results for perfect stability

This section consists of two results, each providing a sufficient condition for perfect 
stability. The first one is the following.
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Theorem 5.8 (Perfect stability I). Suppose that, in addition to Assumptions 2.1 and 5.1, 
the following assumptions hold.

1. The problem is classically B-stable.
2. The graph B is λ-strict.
3. The graph B is λ-flip-averse.

Then the problem is perfectly B-stable.

Proof. Given λ, B, F , we fix sufficiently small positive constants c6 � c5 � c4 � c3 �
c2 � c1. To prove the perfect stability we pick some large enough real number C (de-
pending on the previous constants). In this proof, let asymptotic notation such as O(1) or 
Ω(1) hide constants that depend on F , κ, γ(·), and B only (but not on the constants ci).

Let n be an integer with n > C. Choosing C large enough, we may assume that 
λ(G) + c1/2 � λ(n, G). Let G be an arbitrary admissible graph on [n]. Assume that 
λ(G) � λ(n, G) − c1/2 for otherwise the result follows trivially, since Cc1/2 > 1 and the 
normalised distance δedit is always bounded by 1. By Condition 1, that is, the classical 
B-stability, there is a partition [n] = V1 ∪ . . . ∪ Vm such that

|W | � c2

(
n

2

)
, (23)

where W := E(G) �E(B′) and B′ := B(V1, . . . , Vm). We call pairs in W wrong. Assume 
that the parts V1, . . . , Vm were chosen so that |W | is minimum. Clearly, this choice of 
parts Vi implies that (23) still holds. Since the number of κ-subsets X of [n] such that 
G[X] � B′[X] is at most |W |

(
n

κ−2
)
, we conclude that

Λ(B′) � Λ(G) − |W |
(

n

κ− 2

)
· 2‖γ‖∞ � (λ(G) −O(c2))

(
n

κ

)
, (24)

where ‖γ‖∞ := max{|γ(H)| : H ∈ G0
κ}.

Let us call a vertex x special if λ(G, x) < λ(G) − c4. We set S to be the set of special 
vertices and σ := |S|/n.

For each i ∈ [m], we set bi := |Vi|/n. By (24), the continuity of λ(B(·)), and the 
compactness of Sm, we can assume that the vector b = (b1, . . . , bm) is c3-close to a 
maximiser a of λ(B(·)), that is,

‖a− b‖1 � c3. (25)

By Lemma 5.7, we can assume that each ai � c6; thus we conclude that bi � c6−c3 � c6/2
for each i ∈ [m].

At this point, we can give an informal overview of the rest of the proof. First, Claim 5.9
shows that, for every vertex x of G, the normalised contribution λ(G, x) of a vertex x to 
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λ(G) is less than λ(G) +c2 for otherwise the addition of an appropriate number of clones 
of x to G will bring λ(G) well over λ(G), which is impossible. It follows that, in order 
to avoid λ(G) being too small, we have that σ = O(c2/c4). Furthermore, the adjacency
of each vertex x ∈ [n] \ S essentially follows the ideal adjacency of part-i vertices, for 
some i ∈ [m], as this is the only possibility to have λ(G, x) close to λ(G) by the assumed 
λ-strictness. Since our choice of the parts Vi minimises the number of wrong adjacencies, 
this vertex x has to belong to Vi and thus its wrong degree |ΓW (x)| is necessarily small, 
see (29). (Also, somewhat conversely, each vertex x ∈ S has high wrong degree, just to 
account for the drop λ(x, G) < λ(G) − c4.) This, the near-optimality of b, the fact that 
|S| = σn is small and the λ-flip-aversion give that every edge-flip inside [n] \S has negative 
effect on λ (Claim 5.11), not only with respect to G but also with respect an arbitrary 
graph G̃ obtained from G by changing some adjacencies inside W (Claim 5.12). Thus if 
we flip W ′, all wrong pairs outside S, and “fix” each vertex of S, then Λ increases by at 
least Ω(c4nκ−2) per one changed edge. (Note that, since all vertices of high W -degree 
are inside the small set S, the “pairwise” effects can be shown to be negligible.) On the 
other hand, |W ′| + n|S| is clearly an upper bound on the edit distance from G to the 
family B(). These two estimates give the perfect stability.

Let us provide all the remaining details now.

Claim 5.9. For every vertex x, we have that λ(G, x) < λ(G) + c2.

Proof of Claim. We assume on the contrary that there exists a node x0 satisfying 
λ(G, x0) � λ(G) + c2. Set ε = c2

2. Consider G′ obtained from G by adding εn clones 
of x0. We view λ(G′) as the expectation of γ(G′[X]) for a random κ-set X. With prob-
ability at least 1 − κε, the set X is disjoint from the added clones and its conditional 
expectation is exactly λ(G). With probability κε + O(ε2), the set X has exactly one 
element from the added clones and avoids x0. Conditioned on the latter event, G′[X] is 
the same as G[Y ] where we take a random κ-subset Y of V (G) conditioned on Y � x0; 
thus the conditional expectation of γ(G′[X]) is exactly λ(G, x) (which we assumed to be 
at least λ(G) + c2). Finally, the contribution from the remaining sets is in the absolute 
value at most 2‖γ‖∞ times their probability O(ε2). Also, note our choice of G such that 
λ(G) � λ(n, G) − c1/2 � λ(G) − c1. Thus

λ(G′) � (1 − κε)λ(G) + κελ(G, x) + O(ε2)

� (1 − κε)(λ(G) − c1/2) + κε(λ(G) + c2) −O(ε2)

� λ(G) + κc2
3 − c1 −O(c24).

This is strictly larger than λ(G). On the other hand, by Lemma 5.2, we have that G′ is 
admissible and therefore, invoking Lemma 2.2, we get that λ(G′) � λ(G) + O(1/n) �
λ(G) + O(1/C), a contradiction. �
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If we pick a uniform random x ∈ [n], then the difference λ(G) −λ(G, x) is never below 
−c2 by Claim 5.9, while with probability σ it is at least c4. On the other hand, the 
average of λ(G) −λ(G, x) over x ∈ V (G) is λ(G) −λ(G) � c1. Thus −(1 −σ)c2 +σc4 � c1
and, roughly, σ � 2c2/c4.

Take any x ∈ [n]. Let B′
x be obtained from B′ by changing adjacencies at x so that 

ΓB′
x
(x) = ΓG(x). We have that λ(B′

x, x) = Rb(yx) +O(1/n), where yx = (yx,1, ..., yx,m)
is an element of [0, 1]m defined by yx,i := |ΓG(x) ∩ Vi|/|Vi| for all i ∈ [m]. We also define 
another element y′

x = (y′x,1, ..., y′x,m) of [0, 1]m by setting y′x,i := yx,i unless if yx,i � c3/m

(resp. yx,i � 1 − c3/m), then we set y′x,i := 0 (resp. y′x,i := 1). Clearly,

‖yx − y′
x‖1 � c3. (26)

Claim 5.10. The vector y′
x is admissible.

Proof of Claim. Suppose that the claim does not hold. Let this be witnessed by a vector 
b ∈ {0, 1}v and a map φ : [v] → [m]. Then y′x,φ(i) ∈ {0, 1} implies bi = y′x,φ(i), while the 
graph B(φ, b) is of order v + 1 and not F-free. As we observed after the definition of an 
admissible vector, one can assume that v � 2m. If y′x,i does not belong to {0, 1}, then 
yx,i is c3/m-far from 0 and 1. Also, we know that each Vi has at least c6n/2 vertices.

Let us show that B′
x has at least Ω((c3c6n)v) copies of B(φ, b) via x. In fact, it is 

enough to consider only the copies where the vertex v + 1 of B(φ, b) is mapped into x. 
For i ∈ [v], let Ti be Vi \ΓG(x) if bi = 0 and Vi∩ΓG(x) if bi = 1; note that Ti always has 
at least |Vi| × c3/m −O(1) vertices. Now, if we map each i ∈ [v] arbitrarily into Ti, then 
these vertices together with x form a copy of B(φ, b) in B′

x, giving at least the stated 
number of copies.

Each of the above copies contains a wrong pair which is not adjacent to x. (Recall 
that G is F-free but B(φ, b) is not and that the vertex x has the same neighbourhoods 
in G and B′

x.) On the other hand, each wrong pair disjoint from x can be counted at 
most nv−2 times. This gives at least Ω((c3c6n)v)/nv−2 wrong pairs, contradicting (23)
since c2 is sufficiently small with respect to c3 and c6 (and v � 2m). �

By (25) we also have that |Rb(yx) − Ra(yx)| � O(c3). On the other hand, there 
are at most |W |

(
n−3
κ−3

)
κ-subsets X of [n] satisfying x ∈ X and G[X] � B′

x[X], because 
each such set must contain a wrong pair disjoint from x. Thus by (23), we have that 
|λ(G, x) − λ(B′

x, x)| � O(c2). Also, observe that λ(B′
x, x) = Rb(yx) + O(1/n). By (26), 

we get that |Ra(yx) −Ra(y′
x)| � O(c3). By the Triangle Inequality, we derive that

|λ(G, x) −Ra(y′
x)| � O(c3).

Suppose furthermore that x ∈ [n] \ S. By the definition of S, we have that λ(G, x) �
λ(G) − c4 and therefore

Ra(y′
x) � λ(G, x) −O(c3) � λ(G) −O(c4). (27)
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By Assumption 2, Lemma 5.6 and Inequality (27), we conclude that y′
x is (c5/2)-close 

(in the L1-norm) to the “adjacency vector” vi of some i ∈ [m]. By (26),

‖yx − vi‖1 � c5. (28)

Next, let us show that x belongs to Vi. Suppose on the contrary that x belongs to Vj

for some j �= i. By the twin-freeness of B (which trivially follows from the λ-minimality 
of B), there is some h ∈ [m] which is adjacent to exactly one of i and j, say ih ∈ E(B)
but jh /∈ E(B). The vertex x is adjacent in G to yx,h|Vh| vertices of Vh. But we know 
that |Vh| � c6n/2 and, by (28), yx,h � vi,h − c5 = 1 − c5. On the other hand, B′ has no 
edges between Vi � x and Vh. Thus x belongs to at least (1 −c5)c6n/2 wrong pairs having 
an endpoint in Vh. Let as denote this set of edges by A. Consider changing the partition 
V1 ∪ . . . ∪Vm by moving x to Vi. Observe that the new set of wrong pairs will differ from 
the old one only on edges containing x. By (28), at most c5n edges can be introduced 
into the set of wrong pairs, while every edge in A will not be contained, anymore, in 
the new set of wrong pairs. Thus the number of wrong pairs will strictly decrease. This 
contradicts the choice of the partition V1 ∪ . . . ∪ Vm and, in particular, the minimality 
of |W |. Thus indeed x ∈ Vi, as claimed.

Thus, again by (28), we have that

|ΓW (x)| � c5n, ∀x ∈ [n] \ S. (29)

Claim 5.11. For every pair xy in W ∩
([n]\S

2
)
, the graph B′ ⊕ xy (which is obtained from 

B′ by changing the adjacency of xy) is F-free and satisfies Λ(B′) −Λ(B′⊕xy) � c6n
κ−2.

Proof of Claim. Suppose on the contrary that B′ ⊕ xy contains a forbidden subgraph 
H ∈ F . Since F consists of twin-free graphs and B′ ⊕ xy has at most m + 2 pairwise 
non-twin vertices, we can assume that H has v � m + 2 vertices. In fact, we must have 
at least 

((c6/2−σ)n
v−2

)
copies of H on [n] \ S via xy in B′ ⊕ xy, since |Vi| � c6n/2 for each 

i ∈ [m]. Notice that the vertex set of each such copy contains a pair from W different 
from xy. By (29), we have at most 2c5n wrong pairs adjacent to xy, each in at most 
nv−3 copies of H; while every other wrong pair appears in at most nv−4 copies of H. 
This gives that the total number of H-subgraphs on [n] \ S via xy is at most

2c5n · nv−3 + |W | · nv−4 � 4c5nv−2,

where we used (23). This is strictly less than 
(
c6n/2
v−2

)
, a contradiction. This contradiction 

shows that no such H exists, proving the first part of the claim.
The second part follows from Assumption 3 of the theorem. �

Claim 5.12. Let G̃ be an arbitrary (not necessarily F-free) graph having [n] as a vertex 
set and such that W̃ ⊆ W , where W̃ := E(G̃) � E(B′). Then for every pair xy in 
W̃ ∩

([n]\S) we have
2
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Σ′ :=
∑

X∈
([n]\S

κ

)
(
γ((G̃⊕ xy)[X]) − γ(G̃[X])

)
> c6n

κ−2/2. (30)

Proof of Claim. Let us estimate Σ′ − Σ′′, where we define

Σ′′ :=
∑

X∈
([n]\S

κ

) (γ(B′[X]) − γ((B′ ⊕ xy)[X])) .

Let X be a κ-subset of [n] \ S that contributes different amounts to Σ′ and Σ′′. Clearly, 
both x and y belong to X; also X has to contain at least one further pair ab ∈ W̃ . The 
number of the κ-subsets X containing a pair ab ∈ W̃ satisfying {a, b} ∩ {x, y} = ∅ is 
at most |W̃ | � |W | (the number of choices of ab) times 

(
n−4
κ−4

)
(the number of choices 

of X \ {a, b, x, y}). Likewise, the number of the κ-subsets X containing a pair ab ∈ W̃

satisfying {a, b} ∩ {x, y} �= ∅ is at most the number of wrong pairs adjacent to x or y, 
which by (29) satisfies

|Γ
W̃

(x)| + |Γ
W̃

(y)| � |ΓW (x)| + |ΓW (y)| � 2c5n,

times 
(
n−3
κ−3

)
. Thus, (23) gives that |Σ′ − Σ′′| � O(c5nκ−2). On the other hand, the sum

Σ′′′ :=
∑

X∈
([n]

κ

)
\
([n]\S

κ

) (γ(B′[X]) − γ((B′ ⊕ xy)[X]))

has at most |S|nκ−3 non-zero terms (all such X have to contain the pair xy as well as 
intersect S). Observe that Σ′′+Σ′′′ = Λ(B′) −Λ(B′⊕xy) is at least c6nκ−2 by Claim 5.11. 
Thus Σ′ � c6n

κ−2/2, as desired. �
Enumerate W ′ := W ∩

([n]\S
2

)
as {e1, . . . , ew}. Let G0 := G and for i = 1, . . . , w, let 

Gi = Gi−1 ⊕ ei; that is, we flip the wrong pairs on [n] \S in some order. The final graph 
Gw coincides with B′ on [n] \ S. By using Claim 5.12 to estimate the effect of each of 
the w flips, we conclude that

∑
X∈

([n]\S
κ

) (γ(B′[X]) − γ(G[X])) � wc6n
κ−2/2. (31)

On the other hand, we have that
∑

X∈
([n]

κ

)
X∩S �=∅

(γ(B′[X]) − γ(G[X])) �
∑
x∈S

(Λ(B′, x) − Λ(G, x)) −O(|S|2nκ−2). (32)

For each vertex x ∈ S, the value λ(G, x) is at most λ(G) − c4 by the definition of S. By 
Claim 5.4, the value λ(B′, x) is equal to 1 ∂ λ(B(b)) +O(1/n) where i ∈ [m] is the index 
κ ∂i
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of the part Vi that contains x. Since b is c3-close to an optimal vector (namely, a vector 
a ∈ Sm that satisfies λ(B(a)) = λ(G)), we have that

1
κ

∂

∂i
λ(B(b)) � 1

κ

∂

∂i
λ(B(a)) −O(c3) = λ(B()) −O(c3).

Thus λ(B′, x) − λ(G, x) � c4 −O(c3) � c4/2 for each x ∈ S and invoking (31) and (32), 
we get

Λ(B′) − Λ(G) � |W ′|c6nκ−2/2 + |S|c42

(
n− 1
κ− 1

)
−O(|W ′|σnκ−2 + |S|2nκ−2). (33)

By (33) (and our bounds on |W ′| � |W | � c2
(
n
2
)

and |S|/n = σ � 2c2/c4 � min(c6, c4)), 
we have that, for example,

Λ(n,G)−Λ(G) � Λ(B′)−Λ(G) � |W ′|c6nκ−2/4 + |S|c44

(
n− 1
κ− 1

)
� c3(|W ′|+ |S|n)

(
n
k

)(
n
2
) .

Observing that |W ′| + |S|n � |W | and δedit(G, B()) = |W |/
(
n
2
)
, we derive the perfect 

stability. �
Theorem 5.13 (Perfect stability II). Suppose that Assumptions 2.1 and 5.1 are satis-
fied, the problem is robustly B-stable and B is λ-minimal. Then the problem is perfectly 
B-stable.

Proof. Clearly, the perfect stability will follow by Theorem 5.8 if we show that its As-
sumptions 1, 2 and 3 are satisfied. Assuming that the problem is robustly B-stable, we 
trivially have that the problem is classically B-stable, that is, Assumptions 1 of Theo-
rem 5.8 is satisfied. Thus it is enough to verify Assumptions 2 and 3 of Theorem 5.8.

Roughly speaking, our proof is based on the following idea. For example, suppose that 
Assumption 2 (the strictness of λ) fails. Let this be witnessed by a vector y ∈ [0, 1]m. 
Then we take a blow-up G = B(V1, . . . , Vm) of order n with optimal part ratios and add 
a set Z of εn twin vertices, each attached to G according to y. Since y is Ω(1)-far from 
each canonical attachment vi, the new graph G′ has normalised edit distance Ω(ε) to the 
family B(). On the other hand, if we take a random κ-subset X ⊆ V (G′) then it either is 
disjoint from Z (and the conditional expectation of γ(G′[X]) is exactly λ(G)), or contains 
exactly one vertex of Z (and the conditional expectation of γ(G′[X]) is λ(G) + o(1) by 
the choice of y), or contains at least two vertices of Z (which has probability O(ε2)). We 
conclude that |λ(G′) − λ(G)| = O(ε2), a contradiction to the robust stability. Likewise, 
if some edge flip violates Assumption 3 (the flip aversion of λ), then one “magnifies” this 
by flipping all pairs between two appropriately placed sets of size εn.

Let us continue with the formal proof. Let the robust stability of the problem be 
satisfied with constant C. Given λ, B and C, we choose a small enough quantity c > 0.
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In order to prove that the problem is strict, we assume on the contrary that there 
exist a maximiser a in Sm of λ(B(·)) and an admissible y in [0, 1]m violating λ-strictness. 
Since B is λ-minimal, we have that each ai � c. We set

δ := min
i∈[m]

‖y − vi‖1 > 0,

and we pick some positive real ε satisfying ε � min(c, δ).
Let G be a blow-up B(V1, . . . , Vm) on n → ∞ vertices with |Vi|/n → ai. Let G′ be 

obtained from G by adding a set Z of εn twins whose attachment to V (G) is given by the 
vector y+ o(1), where we insist that if yi = 0 (resp. yi = 1), then each z ∈ Z is adjacent 
to no vertex in Vi (resp. every vertex in Vi). Since y is admissible and the graphs in F are 
twin-free, G′ is F-free. Since Ra(y) = λ(G), we have that the average of γ(G′[X]) over 
the κ-subsets X of V (G′) with |X∩Z| = 1 is λ(G) +o(1). Thus it follows that λ(G) −λ(G′)
is at most O(ε2). By robust stability, the normalised distance from G′ to some blow-up 
B′ = B(U1, . . . , Um) of B is O(ε2). Clearly, λ(B′) � λ(G′) −O(ε2) � λ(G) −O(ε2).

Recall that we have partitions V1 ∪ . . . ∪ Vm ∪ Z = U1 ∪ . . . ∪ Um. We have that each 
|Ui| � cn for otherwise we obtain the contradiction that

λ(B′) � λ′ + O(c) < λ(B()) −O(ε2),

where λ′ < λ(B()) is the maximum of λ over all blow-ups of proper subgraphs of B. 
Similarly, each Vi has at least cn elements.

Claim 5.14. There is an automorphism σ : [m] → [m] of B such that for each i

|Uσ(i) � Vi| � 2εn/c. (34)

Proof of Claim. We show first that for each i ∈ [m] there exists σ(i) ∈ [m] satisfying 
(34) (and then observe that the map σ : [m] → [m] is an automorphism of B). Take any 
i ∈ [m]. Suppose that there is no choice of σ(i) satisfying (34). We pick x ∈ [m] such 
that |Ux ∩ Vi| � |Vi|/m � cn/m > εn/cm. We distinguish the following two cases.

Case I: There exists y ∈ [m] such that y �= x and |Uy ∩ Vi| > εn/cm.

Since B is twin-free (which follows by the λ-minimality of B), pick h ∈ [m] such that 
exactly one of x, y is a B-neighbour of h. Then, every v ∈ Uh \ Z is incident to at 
least εn/cm pairs on which the graphs G′ and B′ differ, because each v ∈ Uh \ Z has 
different B′-adjacencies to Vi ∩Ux and Vi ∩Uy but the same G′-adjacency to all vertices 
of Vi ⊇ (Vi ∩Ux) ∪ (Vi ∩Uy). Thus Δedit(G′, B′) � (1/2) · |Uh \Z| · (εn/cm) which is not 
O(ε2n2), a contradiction.

Case II: For every y ∈ [m] such that y �= x we have that |Uy ∩ Vi| � εn/cm.

It holds that |Vi \ Ux| � εn/c. Since we work under the assumption that there is no 
appropriate choice of σ(i), we have, in particular, that |Ux � Vi| > 2εn/c and therefore 
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|Ux \ Vi| > εn/c. We pick j ∈ [m] with j �= i such that Ux ∩ Vj > εn/cm. Arguments 
similar to the ones used in Case I lead to a contradiction.

To complete the proof we show that σ is an automorphism of B. Let us observe that 
σ is an injection. Indeed, suppose on the contrary that there exist i, j and x in [m] such 
that i �= j and σ(i) = σ(j) = x. Then we have that

|Ux � Vj | � |Ux \ Vj | � |Ux ∩ Vi|
(34)
� |Vi| − 2εn/c � cn− 2εn/c

contradicting (34). To prove that σ is edge and non-edge preserving, we assume on the 
contrary that there exists a pair of nodes ij such that σ does not preserve adjacency. 
Then the graphs G′ and B′ differ on every pair uv with u ∈ Vi ∩Uσ(i) and v ∈ Vj ∩Uσ(j)
generating at least ((c − 2ε/c)n)2 � ε2n2 such pairs. The latter is a contradiction to 
Δedit(G′, B′) = O(ε2n2). The claim is proved. �

By relabelling U1, . . . , Um, we can assume that the bijection σ of Claim 5.14 is the 
identity map. We expand (Vi)mi=1 to a partition (V ′

i )mi=1 of the vertex set of G′ setting 
V ′
i = Vi ∪ (Ui ∩ Z) for each i ∈ [m]. Clearly

|V ′
i � Ui| � 2εn/c (35)

for all i ∈ [m]. Finally, we set

Δ1 := E(G′) � E(B(V ′
1 , ... , V

′
m)) and Δ2 := E(B′) � E(B(V ′

1 , ... , V
′
m)).

Each vertex v ∈ Z is adjacent to at least δn/2 pairs in Δ1, because y is δ-far from 
v1, . . . , vm, and at most 2εmn/c pairs in Δ2. Thus the symmetric difference between G′

and B′ is at least εn × (δ/2 − 2εm/c)n � ε2v(G′)2, a contradiction which shows that 
the graph B is λ-strict.

Next, let us prove the λ-flip-aversion of B. We pick some positive real ε � c and 
towards a contradiction we assume that there exists some integer n with n > 1/ε3, an 
almost optimal blow-up B′ = B(V1, . . . , Vm) on [n] and some pair x, y of distinct nodes 
such that the graph B′ ⊕ xy contains no forbidden graph of order at most m + 2 and

Λ(B′) − Λ(B′ ⊕ xy) < ε3nκ−2. (36)

Let i, j ∈ [m] be such that x ∈ Vi and y ∈ Vj . We pick subsets X and Y of Vi and Vj

respectively with cardinality εn each. If i = j then we choose X and Y to be disjoint. 
Let B be the set of all pairs of nodes with one node in X and one in Y . Also let G be 
the graph obtained by flipping the adjacency between each pair in B. Since each of X
and Y consists of twins, G does not contain any forbidden subgraph.

Let us show that

λ(B′) − λ(G) � O(ε3). (37)



O. Pikhurko et al. / Journal of Combinatorial Theory, Series B 135 (2019) 129–178 159
Indeed, let A be the set of all κ-element subsets of V = V1 ∪ ... ∪ Vm. We partition A
into A0, A1 and A�2, the set of all Z ∈ A containing respectively zero, one and at least 
two pairs of B. Finally, for each e ∈ B, we set Ae

1 and Ae
�2 to be the set of all Z ∈ A1

and A�2 respectively, containing e. Note that if Z ∈ A�2, then |Z ∩ (X ∪ Y )| � 3 and 
thus |A�2| = O(ε3nκ). We are going to use this fact a couple of times in the following 
chain of equalities.

Λ(B′) − Λ(G) =
∑
Z∈A

(λ(B′[Z]) − λ(G[Z]))

=
∑
e∈B

∑
Z∈Ae

1

(λ(B′[Z]) − λ(G[Z])) + O(ε3nκ)

=
∑
e∈B

∑
Z∈Ae

1

(λ(B′[Z]) − λ((B′ ⊕ e)[Z])) + O(ε3nκ)

=
∑
e∈B

(Λ(B′) − Λ(B′ ⊕ e)) + O(ε3nκ)

=
∑
e∈B

(Λ(B′) − Λ(B′ ⊕ xy)) + O(ε3nκ)
(36)
� O(ε3nκ).

Therefore, by the almost-optimality of B′ we have that |λ(G) − λ(G)| � O(ε3). By the 
assumed robust stability, there exists some blow-up B′′ = B(U1, ..., Um) of B such that 
δedit(B′′, G) = O(ε3). Following arguments as in the proof of Claim 5.14, we can assume 
that |Vh � Uh| � εn/c for every h ∈ [m].

Then we distinguish the following three (non-exclusive) cases.

(i) |X \ Ui| � εn/2.
(ii) |Y \ Uj | � εn/2.
(iii) |X ∩ Ui| > εn/2 and |Y ∩ Uj | > εn/2.

We complete the proof by showing that each case leads to a contradiction and, in partic-
ular, we show that each case yields that δedit(G, B′′) = Ω(ε2). Indeed, let us assume (i). 
Then there is i′ �= i such that |X∩Ui′ | � εn/2m. Pick h ∈ [m] such that the B-adjacencies 
of {h, i} and {h, i′} differ. We have at least (cn − ε/c)n vertices in Uh ∩ Vh. Thus the 
symmetric difference between G and B′′ is at least (cn −ε/c)n ×εn/2m � ε2n. Likewise, 
case (ii) leads to a contradiction. Finally assuming case (iii) we have that G and B′′ differ 
on every pair with one node in X ∩Ui and one in Y ∩Uj . Thus the symmetric difference 
between G and B′′ is at least (εn/2)2. �
6. Finding optimal asymptotic part ratios

In this section, we provide some analysis related to the values of a in Sm that maximise 
the function λ(B(·)).
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While in all examples from Section 1.1 the optimal vector a was uniform, this is not 
always the case. For example, it was conjectured in [36] (based on the numerical evidence 
from Flagmatic) that the asymptotically extremal value for Erdős’ f(n, 4, 4)-problem is 
attained by a blow-up of a specific 8-part graph B. If the conjecture is true, then the 
optimal blow-up of B that minimises the number of K4-subgraphs is not uniform (in 
fact, the optimal part ratios are some irrational numbers). Alternatively, here is a simple 
although rather artificial example that illustrates the point.

Example 6.1 (Simple problem with a non-uniform optimal vector). Let F consist of all 
odd cycles plus the graph with 3 vertices and one edge. Then F-free graphs on [n] are 
exactly complete bipartite graphs, that is, blow-ups of B = K2. Let κ = 6. Let γ(H) = 0
except one defines γ(H) for H ∈ {K0,6, K1,5, K2,4, K3,3} so that λ(Kxn,(1−x)n) = p(x) +
o(1), where, e.g.

p(x) = 12(x− 1/2)6 − 217(x− 1/2)4 + 24(x− 1/2)2.

This polynomial p is symmetric around 1/2 and its maximum on [0, 1] is attained at 
x0 = (3 −

√
2)/6 = 0.264... and 1 − x0. Finding the maximum of λ(Forb(F)) = λ(B())

over S2 = {(x, 1 − x) : x ∈ [0, 1]} amounts to optimising p(x) over x ∈ [0, 1] which is not 
attained for (1/2, 1/2). �

Let us prove a sufficient condition that implies the uniqueness of the maximiser and 
happens to apply to many concrete problems.

Lemma 6.2. Let all assumptions of Theorem 4.1 apply. View the graph τ from Assump-
tion 2 also as a type and assume additionally that the flag algebra certificate C includes 
a matrix Qτ of co-rank 1 associated to τ . Then the vector a is the unique maximiser of 
λ(B(·)) in Sm.

Proof. Let b ∈ Sm be a maximiser of λ(B(·)). By Assumption 2(b), we have λ(Forb(F) ∪
{τ}) < λ(Forb(F)) = λ(B(b))). Thus there is a strong homomorphism f from τ into 
B[{i ∈ [m] : bi > 0}]. Fix one such f .

For large n, let G = B(V1, . . . , Vm) with |Vi| = bin + O(1) and take an (injective) 
embedding ψ : V (τ) → V (G) such that ψ(x) ∈ Vf(x) for every x ∈ V (τ). Define xb

to be the limit as n → ∞ of the vector x from (12) normalised so that the sum of 
entries is 1. Clearly, the limit does not depend on the choice of ψ. Arguing as in the 
proof of Lemma 3.4, we conclude that xb is a zero eigenvector of Qτ . Of course, the 
same applies to the vector xa. Since Qτ is of co-rank 1, we have that xb = xa. However, 
b is uniquely determined from xb. Namely, by Assumption 2(c), the i-th entry bi is the 

-th root, 
 := (N − v(τ))/2, of the entry of xb that corresponds to the τ -flag obtained 
by adding some 
 new vertices from Vi to the ψ-image of τ ; this follows by recalling 
that the vector xb encodes the limiting distribution of the τ -subflag of G induced by a 
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random κ-subset containing ψ(V (τ)). Thus b = a and a is indeed the unique maximiser 
of λ(B(·)) in Sm. �
7. Computer implementation

Combining Theorems 4.1 and 5.13 we obtain the following result, which provides 
sufficient conditions for perfect stability. The verification of these conditions can be 
carried out by a computer. In the next section we include such applications.

Theorem 7.1. Let Assumption 2.1 and Part 1 of Assumption 5.1 apply. Also, we assume 
all of the following.

1. We have a vector a ∈ Sm with no zero entries and a certificate C on N vertices that 
proves λ(G) � λ(B(a)). (Thus, by Assumption 2.1.3, we know that λ(G) = λ(B(a)).)

2. There is a graph τ of order at most N − 2 satisfying the following.
(a) λ(Forb(F)) > λ(Forb(F ∪ {τ})).
(b) There exists the unique (up to automorphisms of τ and B) strong homomorphism 

f from τ into B.
(c) For every distinct x1 and x2 in V (B) we have ΓB(x1) ∩ f(V (τ)) �= ΓB(x2) ∩

f(V (τ)).
3. Every C-sharp graph of order N admits a strong homomorphism into B.

Additionally, suppose that at least one of the following two statements holds:

(i) the certificate C contains (as a type) the graph τ from Assumption 2 above and the 
corresponding matrix Qτ in C is of co-rank 1, or

(ii) λ(Forb(F ∪ {B})) < λ(Forb(F)).

Then the problem is perfectly B-stable.

Proof. Clearly, all assumptions of Theorem 4.1 are satisfied, so the problem is robustly 
B-stable. By Theorem 5.13, it is enough to check only that B is λ-minimal.

If Condition (i) holds, then the λ-minimality of B follows from Lemma 6.2 (and the 
assumption that a has no zero entries). So assume that Condition (ii) holds. Let B′ be 
an arbitrary proper subgraph of B and let B′′ be any blow-up of B′ on n → ∞ vertices. 
Since B is twin-free by Condition 2(c), we have that B′′ is B-free and thus B′′ belongs 
to Forb(F ∪ {B}). Thus

λ(B′′) � λ(Forb(F ∪ {B})) + O(1/n) < λ(Forb(F)) + O(1/n).

Again, we conclude that B is λ-minimal, as desired. �
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Remark. If Assumptions 1, 2, 3 and (i) of Theorem 7.1 are satisfied, then we have 
that λ(B(·)) admits a as a unique maximiser (see Lemma 6.2). This is not the case 
if Assumptions 1, 2, 3 and (ii) of Theorem 7.1 are satisfied, when the uniqueness of a
as a maximiser of λ(B(·)) is not guaranteed. In this case, one has to investigate the 
uniqueness of a by other means.

8. Applications of the general theorems

Below is a list of results that directly follow by Theorem 7.1 by running our computer 
code. The ancillary folder of the arxiv version of this paper contains, for each problem 
except f(n, 6, 3) and f(n, 7, 3) problems discussed in Section 1.1.1, the flagmatic script
*.sage which was used to generate the certificate and the transcript of the session *.txt
when the code is run. Due to arxiv’s file size limitations, ancillary folder only contains 
some certificates *.js. All certificate files are in Flagmatic’s Github directory at:

https://github .com /jsliacan /flagmatic /tree /master /certificates.

For example, for the f(n, 4, 3)-problem discussed in Section 1.1.1, these are the files
f43.sage, f43.txt and f43.js respectively.

The reader who would like to verify these results has the following options.

Generate certificates from scratch using flagmatic: For this the reader would need to 
install our version of Flagmatic (which is built upon version 2.0 of Emil Vaughan), 
the Sage environment, and an SDP solver such as CSDP or SDPA/SDPA-DD. The 
required version of Flagmatic can be downloaded from this URL:

https://github .com /jsliacan /flagmatic

which in particular contains a README.md file with directions on how to install it and 
run our scripts.

Run our verifier script inspect_certificate.py: This stand-alone script (which is 
written in Python/Sage and uses exact arithmetic) can be used to verify the bound 
given by each certificate. It is available at the above URL. Its source code is rela-
tively short and well-documented. (Also, the Appendix to the arXiv version of this 
paper [35, Appendix] contains some further notes on our implementation.) For exam-
ple, the complete verification of the certificates f43.js, f43_stab.js can be invoked 
with the following shell command:

sage -python inspect_certificate.py f43.js –stability 3/25 "4:121324" "5:1223344551" f43_stab.js

The full details on how to use the inspect_certificate.py verification script can 
be found at the end of the README.md file at https://github .com /jsliacan /flagmatic.

https://github.com/jsliacan/flagmatic/tree/master/certificates
https://github.com/jsliacan/flagmatic
https://github.com/jsliacan/flagmatic
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Write an independent verifier: The information on how the data inside our certificate 
files are organised can be found in [35, Appendix].

In the following, we describe some of the input values (such as N and a) that determine 
λ(G) and prove perfect stability in Theorems 1.2–1.9.

Minimising the number of independent sets in triangle-free graphs (Theorem 1.2): Re-
call that k ∈ {4, ..., 7}, F = {K3}, κ = k and γ is equal to zero except 
γ(Kk) = −1. Theorem 1.2 for k = 4, 5 follows by Theorem 7.1 for N = 5, B = C5, 
a = (1/5, . . . , 1/5) ∈ S5 and τ = K2 ∪K1, that is, the disjoint union of an edge and 
a single node (see scripts f43.sage and f53.sage).
Unfortunately, our code could not generate certificates when k ∈ {6, 7}. This compu-
tationally demanding task (with N = 8) seems to be very sensitive to the obtained 
numerical SDP solution and the version of Sage. However, the corresponding certifi-
cates have already been produced by Pikhurko and Vaughan [36] and we include them 
in the arxiv version of this paper. By running our script inspect_certificate.py
on them, one can confirm that the problem is perfectly stable in these two cases, 
where we let B be the Clebsch graph, a = (1/16, . . . , 1/16) ∈ S16, and τ be the 
5-cycle C5 with one isolated vertex added. (Interestingly, the correct asymptotic of 
f(n, 6, 3) can be obtained already for N = 7 but we could not satisfy Condition 2 of 
Theorem 7.1 with this N .) In all the cases above, the uniqueness of a follows from 
Lemma 6.2, since the corank of Qτ is 1 for each k ∈ {4, . . . , 7}.

Maximising the number of pentagons in triangle-free graphs (Theorem 1.3): Recall
that the problem is defined by F = {K3}, κ = 5, and γ(H) equals zero, except 
γ(C5) = 1. Theorem 1.3 follows by Theorem 7.1 for N = 5, B = C5, a the vector in 
S5 having each entry equal to 1/5 and τ = K2 ∪ K1, that is, the disjoint union of 
an edge and a single node. The uniqueness of a follows from Lemma 6.2, since the 
co-rank of Qτ is 1.

Inducibility of the cycle on four vertices (Theorem 1.4): Recall that the problem is de-
fined by F = ∅, κ = 4, and γ(H) equals zero, except γ(C4) = 1. Theorem 1.4 follows 
by Theorem 7.1 for N = 5, B = K2, a = (1/2, 1/2) and τ = K1. The uniqueness of 
a follows from Lemma 6.2, since the co-rank of Qτ is 1.

Inducibility of K4 minus an edge (Theorem 1.5): Recall that the problem is defined by 
F = ∅, κ = 4, and γ(H) equals zero, except γ(K−

4 ) = 1. Theorem 1.5 follows by 
Theorem 7.1 for N = 7, B = K5, a the vector in S5 having each entry equal to 1/5
and τ = K5. The uniqueness of a follows from Lemma 6.2, since the co-rank of Qτ

is 1.
Inducibility of K3,2 (Theorem 1.6): Recall that the problem is defined by F = ∅, κ = 5, 

and γ(H) equals zero, except γ(K3,2) = 1. Theorem 1.6 follows by Theorem 7.1 for 
N = 6, B = K2, a = (1/2, 1/2) and τ = K2. The uniqueness of a follows from 
Lemma 6.2, since the co-rank of Qτ is 1.
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Fig. 2. Sharp graphs that are not a blow of K2 ∪ K2.

Inducibility of K2,2,1 (Theorem 1.7): Recall that the problem is defined by F = ∅, 
κ = 5, and γ(H) equals zero, except γ(K2,2,1) = 1. Theorem 1.7 follows by The-
orem 7.1 for N = 6, B = K3, a = (1/3, 1/3, 1/3) and τ = K2. The uniqueness of a
follows from Lemma 6.2, since the co-rank of Qτ is 1.

Inducibility of P3 ∪K2 (Theorem 1.8): Recall that the problem is defined by F = ∅, 
κ = 5, and γ(H) equals zero, except γ(P3 ∪ K2) = 1. Theorem 1.8 follows by 
Theorem 7.1 for N = 6, B = K3 ∪K3, that is, the disjoint union of two triangles, 
a the vector in S6 having each entry equal to 1/6 and τ = K2 ∪ K2, that is, the 
disjoint union of two edges. The uniqueness of a follows from Lemma 6.2, since the 
co-rank of Qτ is 1.

Inducibility of the “Y” graph (Theorem 1.9): Recall that the problem is defined by F =
∅, κ = 5, and γ(H) equals zero, except γ(Y) = 1. Theorem 1.8 follows by Theorem 7.1
for N = 6, B = C5, that is, the cycle on 5 vertices, a the vector in S5 having each 
entry equal to 1/5 and τ = P4, that is, the path on 4 vertices. The uniqueness of a
follows from Lemma 6.2, since the co-rank of Qτ is 1.

8.1. Inducibility of the Paw graph

The value i(Fpaw) has been calculated by Hirst [24], where Fpaw is the paw graph, 
that is, the graph obtained by adding a pendant edge to a triangle. We work on the 
complementary problem. We set F = ∅ and γ the map taking the value 0 on every graph 
of order 4 except the disjoint union of P3 and a single vertex, that we denote by F , where 
it takes the value 1. From Hirst’s work it follows that i(F ) = 3/8 and an asymptotically 
extremal construction is a balanced blow-up of the graph consisting of two disjoint edges. 
In this section, we show that the problem is K2 ∪K2-perfectly stable.

Unfortunately, our result does not follow directly by Theorem 7.1, since Condition 3 
does not hold for our flag algebra certificate. In particular, according to our certificate 
the sharp graphs consist of the blow-ups of K2∪K2 on 5 vertices and the graphs listed in 
Fig. 2. Let us denote by S the set of sharp graph on 5 vertices and by NS the set of the 
non-sharp ones. However, letting B = K2 ∪K2, N = 5 and τ be the disjoint union of an 
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edge and a single vertex, we have that Assumptions 1 and 2 of Theorem 7.1 are satisfied. 
We refer to them as P1 and P2 respectively. The perfect stability of the problem follows 
by a sequence of lemmas.

Lemma 8.1. The graph K2 ∪K2 is λ-minimal.

Proof. Let a = (a1, a2, a3, a4) in S4 and set B = K2 ∪K2. It is easy to see that

λ(B(a)) = 12(a2
1a2(a3 + a4) + a1a

2
2(a3 + a4) + (a1 + a2)a2

3a4 + (a1 + a2)a3a
2
4)

= 12(a1a2 + a3a4)(a1 + a2)(a3 + a4).

To prove the λ-minimality of B, it suffices by symmetry to show that the maximum 
value achieved by λ(B(a)) for a = (a1, a2, a3, a4) in S with a4 = 0 is strictly less than 
λ(B((1/4, 1/4, 1/4, 1/4))) = 3/8. Equivalently, it suffices to show that the maximum of 
the map

f(x1, x2) = 12x1x2(x1 + x2)(1 − x1 − x2)

for (x1, x2) in D = {(x1, x2) : x1, x2 � 0 and x1 + x2 � 1}, is strictly less than 3/8.
Indeed, observe that f vanishes on the boundary of D and therefore the maximum is 

achieved in the interior of D. The partial derivatives of f at the maximum satisfy the 
following:

∂f

∂x1
= 12(x2(x1 + x2)(1 − x1 − x2) + x1x2(1 − 2x1 − 2x2)) = 0 (38)

and

∂f

∂x2
= 12(x1(x1 + x2)(1 − x1 − x2) + x1x2(1 − 2x1 − 2x2)) = 0. (39)

Subtracting (38) and (39), we obtain that x1 = x2. Plugging it into (38), we get that f
achieves a maximum at (3/8, 3/8). Thus the maximum of f is 81/256, which is strictly 
smaller that 3/8 and the proof of the lemma is complete. �
Lemma 8.2. The problem is classically K2 ∪K2-stable.

Proof. Let ε be a positive real. By the Induced Removal Lemma of Alon et al. [1] there 
exists a positive real η such that for every graph G of order at least 1/η satisfying 
p(H, G) � η for all H ∈ NS, we have that there exists a graph G′ of the same order as 
G such that δedit(G′, G) � ε and each induced subgraph of G′ belongs to S. By (14), 
there exists a positive real δ such that for each graph G of order at least 1/δ satisfying 
λ(G) −λ(G) � δ, we have that p(H, G) � η for all H ∈ S and therefore there exists some 
graph G′ of the same order as G such that δedit(G, G′) � ε and each induced subgraph 
of G′ belongs to S.
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Since G′ is close to G and λ(G) is close to λ(G), we get that λ(G′) is close to λ(G)
and therefore, by P2(a), we have that τ embeds into G′. Recall that τ is the disjoint 
union of an edge and a single vertex. Without loss of generality, we may assume that 
V (τ) = [3] and {1, 2} forms an edge in τ . Since G′ admits an induced copy of τ , there 
exists an injective strong homomorphism ψ : [3] → V (G′) between τ and G′. For every 
s ∈ 2[3], where we view 2[3] as the set of maps from [3] to {0, 1}, we define

V ′
s = {x ∈ V (G′) \ Im(ψ) : {x, ψ(j)} ∈ E(G′) iff s(j) = 1, for all j ∈ [3]}. (40)

Clearly, (V ′
s )s∈2[3] forms a partition of V (G′) \ Im(ψ). Let G′′ be the graph obtained 

by deleting the nodes of G′ that belong to some V ′
s of cardinality at most 3. Finally, 

set Vs = V ′
s ∩ V (G′′) for all s ∈ 2[3]. Thus we have that (Vs)s∈2[3] forms a partition 

of V (G′′) \ Im(ψ), each Vs is either empty or contains at least four elements and every 
induced subgraph of G′ on five vertices belongs to S.

Claim 8.3. The graph G′′ is a blow-up of the disjoint union of two edges, or a disjoint 
union of a complete graph and a blow-up of an edge, or the disjoint union of a complete 
graph and an empty graph, or the disjoint union of two complete graphs.

Before we give the proof of Claim 8.3, let us show how it implies Lemma 8.2. Ob-
serve that an isolated clique can contain at most one vertex of an F -subgraph. Thus 
if we remove all edges inside such cliques in G′′, then we do not decrease the number 
of F -subgraphs. By Claim 8.3, the resulting graph G′′′ is a blow-up of K2 ∪ K2. By 
Lemma 8.1, G′′′ cannot be a blow-up of K2 ∪K1. This easily implies that G′′ itself is a 
blow-up of K2 ∪K2. Since G and G′′ are close to each other, Lemma 8.2 follows.

Proof of Claim 8.3. To prove the claim, it suffices to show that

1. V(1,1,1) is empty,
2. both V(1,0,1) and V(0,1,1) are empty,
3. G′′[V(1,1,0)] is complete,
4. both G′′[V(1,0,0)] and G′′[V(0,1,0)] are empty graphs,
5. G′′[V(0,0,1)] is either complete or empty graph,
6. G′′[V(0,0,0)] is an empty graph,
7. for every (z1, z2) ∈ V(1,0,0) × V(0,1,0), we have that z1, z2 form an edge in G′′,
8. for every (z1, z2) ∈ V(1,0,0) × V(0,0,0), we have that z1, z2 do not form an edge in G′′,
9. for every (z1, z2) ∈ V(0,0,0) × V(0,0,1), we have that z1, z2 form an edge in G′′,

10. for every (z1, z2) ∈ V(0,1,0) × V(0,0,0), we have that z1, z2 do not form an edge in G′′,
11. there is no edge between V(1,0,0) and V(0,0,1), as well as, between V(0,1,0) and V(0,0,1),
12. for every (z1, z2) ∈ V(0,0,0) × V(1,1,0), we have that z1, z2 do not form an edge in G′′,
13. for every (z1, z2) ∈ V(0,0,1) × V(1,1,0), we have that z1, z2 do not form an edge in G′′,
14. if V(0,0,0) �= ∅, then G′′[V(0,0,1)] is an empty graph and
15. if V(0,1,0) �= ∅ or V(1,0,0) �= ∅ then V(1,1,0) = ∅.
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Fig. 3. Non-sharp graphs that are used in the proof of Claim 8.3.

To prove 1, we assume, on the contrary, that V(1,1,1) is non-empty. Thus V(1,1,1) contains 
at least four elements. We pick distinct z1 and z2 in V(1,1,1). There are two cases: either 
z1 and z2 form an edge in G′′ or not. The induced subgraphs G′′[Im(ψ) ∪{z1, z2}] of G′′

are the graphs G1 and G2 in Fig. 3 respectively. Neither of them belongs to S.
Concerning 2, the arguments justifying that V(1,0,1) and V(0,1,1) are empty are identi-

cal. So we only show that V(1,0,1) is empty. Again we assume the contrary and pick two dis-
tinct elements z1 and z2 in V(1,0,1). Then the induced subgraph of G′′ on Im(ψ) ∪{z1, z2}
is either G3 or G4 in Fig. 3, depending on whether z1z2 forms an edge or not in G′′. 
Neither G3 nor G4 belongs to S.

Towards 3, assuming the contrary, we pick distinct z1, z2 and z3 in V(1,1,0) that do not 
form a triangle. Then the induced subgraph of G′′ on {ψ(1), ψ(2), z1, z2, z3} is either the 
graph G5 or G6 or G7 from Fig. 3, depending on whether z1, z2, z3 span zero, one or two 
edges respectively. None of these graphs belongs to S.

Concerning 4, the arguments justifying that G′′[V(1,0,0)] and G′′[V(0,1,0)] are empty 
graphs are identical. So we only show that G′′[V(1,0,0)] is an empty graph. Assume on 
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the contrary that there exist distinct z1 and z2 in V(1,0,0) that form an edge in G′′. Then 
G′′[Im(ψ) ∪ {z1, z2}] is the graph G8 in Fig. 3 and does not belong to S.

To see 5, recall that V(0,0,1) is either empty or contains at least four elements. If V(0,0,1)
is empty then our claim holds trivially. So let us assume that V(0,0,1) is of cardinality at 
least 4 and pick z1, z2, z3, z4 ∈ V(0,0,1). Let H = G′′[{ψ(3), z1, z2, z3, z4}]. Observe that 
ψ(3) is of degree 4 in H. The only graphs in S that contain a node of degree 4 are the star 
and the complete graph. Thus H has to be isomorphic to one of these two, yielding that 
G′′[{z1, z2, z3, z4}] is either an empty or a complete graph, respectively, on 4 vertices, 
and G′′[V(0,0,1)] is either an empty or a complete graph, respectively.

To prove 6, we assume the contrary and pick z1, z2 in V(0,0,0) that form an edge in G′′. 
Then the induced subgraph of G′′ on Im(ψ) ∪ {z1, z2} is the graph G9 in Fig. 3, which 
does not belong to S.

To prove 7, assuming the contrary, we pick z1 in V(1,0,0) and z2 in V(0,1,0) that do not 
form an edge. Then graph G10 in Fig. 3 is the induced subgraph of G′′ on Im(ψ) ∪{z1, z2}
and does not belong to S.

To prove 8, assuming the contrary, we pick z1 in V(1,0,0) and z2 in V(0,0,0) that form 
an edge. Then graph G11 in Fig. 3 is the induced subgraph of G′′ on Im(ψ) ∪ {z1, z2}
and does not belong to S.

Similarly, to prove 9, assuming the contrary, we pick z1 in V(0,0,0) and z2 in V(0,0,1)
that do not form an edge. Then graph G12 in Fig. 3 is the induced subgraph of G′′ on 
Im(ψ) ∪ {z1, z2} and does not belong to S.

To prove 10, assuming the contrary, we pick z1 in V(0,1,0) and z2 in V(0,0,0) that form 
an edge. Then graph G13 in Fig. 3 is the induced subgraph of G′′ on Im(ψ) ∪ {z1, z2}
and does not belong to S.

Both assertions in 11 follow by identical arguments. So let us show that there is no 
edge between V(1,0,0) and V(0,0,1). First, we show that there is no vertex in one of these 
sets having more than one neighbour in the other. There are two cases and the arguments 
are similar. So we show that there is no vertex in V(0,0,1) having at least two neighbours 
in V(1,0,0). Indeed, assuming the contrary, we have that there exists z ∈ V(0,0,1) having at 
least two neighbours in V(1,0,0), say x1, x2. Then G′′ induces on {ψ(1), ψ(2), x1, x2, z} the 
graph G14, which does not belong to S. Finally, assuming that there is an edge between 
V(1,0,0) and V(0,0,1), we can find x1, x2 ∈ V(1,0,0) and z1, z2 ∈ V(0,0,1) such that x1, z1 form 
an edge, while x2, z2 do not. Then G′′ induces on {ψ(1), x1, x2, z1, z2} the graph G15, 
which does not belong to S.

To prove 12, assuming the contrary, we pick z1 in V(0,0,0) and z2 in V(1,1,0) that form 
an edge. Then the graph G16 in Fig. 3 is the induced subgraph of G′′ on Im(ψ) ∪{z1, z2}
and does not belong to S.

Similarly, to prove 13, assuming the contrary, we pick z1 in V(0,0,1) and z2 in V(1,1,0)
that form an edge. Then the graph G17 in Fig. 3 is the induced subgraph of G′′ on 
Im(ψ) ∪ {z1, z2} and does not belong to S.

Towards 14, we assume on the contrary that V(0,0,0) is non-empty and G′′[V(0,0,1)] is 
not an empty graph. Thus there exist z1, z2 ∈ V(0,0,1) that form an edge in G′′. Pick 
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distinct x1, x2, x3 ∈ V(0,0,0). Invoking Items 6 and 9, we have that induced subgraph of 
G′′ on {x1, x2, x3, z1, z2} is the graph G18 in Fig. 3, which does not belong to S.

Concerning 15, the arguments yielding that V(1,1,0) = ∅ assuming V(1,0,0) �= ∅ are 
identical to the ones yielding that V(1,1,0) = ∅ assuming V(0,1,0) �= ∅. So let us show the 
first implication. Assume on the contrary that both V(1,1,0) and V(1,0,0) are non-empty. 
We pick x1, x2 ∈ V(1,0,0) and z ∈ V(1,1,0). By item 4, we have that x1, x2 do not form 
an edge in G′′. Thus the induced subgraph of G′′ on {ψ(1), ψ(2), x1, x2, z} is either the 
graph G19 or G20 or G21 from Fig. 3, depending on whether z, x1, x2 span zero, one 
or two edges respectively. None of these graphs belongs to S. This finishes the proof of 
Claim 8.3 (and thus of Lemma 8.2). �

We have the following strengthening of Lemma 8.1.

Lemma 8.4. The only maximiser of λ(K2 ∪K2(·)) is the vector (1/4, 1/4, 1/4, 1/4).

Proof. Let a = (a1, a2, a3, a4) in S4 and set B = K2∪K2. As we have already mentioned

λ(B(a)) = 12(a1a2 + a3a4)(a1 + a2)(a3 + a4).

To prove that the only maximiser of λ(B(·)) is the vector (1/4, 1/4, 1/4, 1/4), we show, 
equivalently, that the map

f(x1, x2, x3) = 12(x1x2 + x3(1 − x1 − x2 − x3))(x1 + x2)(1 − x1 − x2)

with (x1, x2, x3) in D = {(x1, x2, x3) : x1, x2, x3 � 0 and x1 + x2 + x3 � 1} admits the 
vector (1/4, 1/4, 1/4) as the unique maximiser. By Lemma 8.1, no maximiser of f is on 
the boundary of D. Thus, we are interested in the points belonging to the interior of D, 
where all the partial derivatives of f vanish. Hence, the following equations should be 
satisfied.

∂f

∂x1
= 12

(
(x2 − x3)(x1 + x2)(1 − x1 − x2)

+ (x1x2 + x3(1 − x1 − x2 − x3))(1 − 2x1 − 2x2)
)

= 0, (41)
∂f

∂x2
= 12

(
(x1 − x3)(x1 + x2)(1 − x1 − x2)

+ (x1x2 + x3(1 − x1 − x2 − x3))(1 − 2x1 − 2x2)
)

= 0 (42)

and

∂f

∂x3
= 12(1 − x1 − x2 − 2x3)(x1 + x2)(1 − x1 − x2) = 0. (43)

By (43) and recalling that we are only interested in points that belong to the interior 
of D, we get that x3 = 1 − x1 − x2 − x3, while by subtracting (41) from (42), we get 
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that x1 = x2. Combining these two we get, in particular, that x1 + x3 = 1/2. Plugging 
the last three equalities into (41), we have that

0 = 12
(
(2x1 − 1/2)2x1(1 − 2x1) + (x2

1 + (1/2 − x1)2)(1 − 4x1)
)

= 3(1 − 4x1)3.

Thus x1 = 1/4 and the result follows readily. �
Lemma 8.5. The graph K2 ∪K2 is λ-flip-averse.

Proof. Set B = K2 ∪K2 and let B′ = B(V1, V2, V3, V4) be a blow-up of B on n vertices, 
with |Vi| = n/4 + O(1) for all i = 1, 2, 3, 4. Let i, j ∈ [4], x ∈ Vi and y ∈ Vj , with x �= y. 
It suffices to distinguish the following three cases.

If ij forms an edge in B, then the number of F -subgraphs in B′ (resp. B′ ⊕ xy) that 
use the pair xy is n2/4 + O(n) (resp. n2/16 + O(1)) and we have that

Λ(B′) − Λ(B′ ⊕ xy) = n2/4 − n2/16 + O(n) = 3n2/16 + O(n). (44)

If i �= j and ij do not form an edge, then

Λ(B′) − Λ(B′ ⊕ xy) = 3n2/16 − n2/8 + O(n) = n2/16 + O(n). (45)

If i = j, then B′ ⊕ xy has no copies via xy and

Λ(B′) − Λ(B′ ⊕ xy) = n2/8 + O(n). (46)

By (46), (44) and (45), the result follows. �
Lemma 8.6. The graph K2 ∪K2 is λ-strict.

Proof. We set a = (1/4, 1/4, 1/4, 1/4) and B = K2 ∪K2. By Lemma 8.4, we have that 
a is the unique maximiser of λ(B(·)). Thus it suffices to check that B is (λ, a)-strict. 
Indeed, let us fix some y in [0, 1]4 that maximises Ra(·). We will show that y has exactly 
one non-zero entry which is equal to 1.

Let B′ be a balanced blow-up of B of order n. Let us denote by G the graph obtained 
by attaching to B′ a new node w not belonging to V (B′) with adjacencies governed by y. 
In particular, if yi = 0 (resp. yi = 1) for some i ∈ [4], then w is attached to no vertex 
(resp. to all vertices) in Vi. We also define H to be the set of all graphs H on 5 vertices 
satisfying H ∼ G[X] for some X ∈

(
V (G)

5
)

with w ∈ X. We have the following claim.

Claim 8.7. H ⊆ S.

Proof of Claim 8.7. Let ε be a positive real. We denote by G′ the graph obtained by 
adding εn twins of w in G. Set V = V (B′) and V ′ = V (G′) \ V . Let A0 =

(
V
)
, A1
5
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Fig. 4. The graphs G1 and G2 used in the proof of Lemma 8.6.

to be the set of all X in 
(
V (G′

5
)

having exactly one element in V ′ and A2 the set of all 
X ∈

(
V (G′

5
)

having at least two elements in V ′. Since y maximises Ra(·), by Lemma 5.5, 
we have that Ra(y) = λ(G). Therefore,

λ(G′) =
(
n + εn

k

)−1 ∑
X∈

(V (G′)
k

)λ(G′[X])

= |A0|(
n+εn

k

) ∑
X∈A0

λ(G′[X]) + |A1|(
n+εn

k

) ∑
X∈A1

λ(G′[X]) + |A2|(
n+εn

k

) ∑
X∈A2

λ(G′[X])

� (1 − kε)λ(G) + kε(1 − kε)λ(G) + O(ε2) + O(1/n)

(47)

and hence we get

λ(G) − λ(G′) � O(ε2) + O(1/n). (48)

By (14), there exists some positive real η independent from ε and n satisfying

λ(G) − λ(G′) � ηp(H,G′) + O(1/n) (49)

for all H ∈ NS. Finally, observe that for every H ∈ H we have that p(H, G′) = Ω(ε). 
Thus by (48), (49) and a choice of a sufficiently small ε, H and NS are disjoint. �

Since Ra(0, 0, 0, 0) = 3/16, y has at least one non-zero coordinate. Next, let us ob-
serve that y cannot have two positive coordinates corresponding to adjacent nodes of 
B. Indeed, assuming the contrary, we pick four nodes in V (B′) adjacent to w and in-
ducing a balanced complete bipartite graph. Together with w, they induce the graph 
G1 in Fig. 4, which does not belong to S, though it belongs to H by definition of H, 
contradicting Claim 8.7. Hence, y has either one positive coordinate, or two positive 
coordinates that correspond to non-adjacent nodes i, j in B. Assuming that the second 
case occurs, picking two nodes adjacent to w from Vi, one node adjacent to w from Vj

and one node non-adjacent to w from Vi′ , where i′ is the element of V (B) adjacent to i in 
B, we have that these nodes together with w induce the graph G2 from Fig. 4 that once 
again does not belong to S though it belongs to H, contradicting Claim 8.7. Therefore, y
has exactly one positive coordinate. Finally, we observe that the non-zero coordinate of 
y is equal to 1. Indeed, let us assume the contrary and let yi be the non-zero coordinate 
of y. Also let i′ be the adjacent node to i in B. Picking two nodes in Vi adjacent to w, 
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a non-adjacent node to w in Vi and a node in Vi′ , together with w we induce the graph 
G2 in Fig. 4 that belongs to H and not to S contradicting Claim 8.7. �

By Lemmas 8.2, 8.5 and 8.6, the assumptions of Theorem 5.8 are satisfied and therefore 
the problem is perfectly K2 ∪K2-stable.

9. Turán problem

This section is devoted to the proof of Theorem 1.11. As we have already mentioned 
Part 1 of Theorem 1.11 is known (see [40, Lemma 2.3]), we focus on the proof of the 
second part of Theorem 1.11. Let

v0 := max{v(H ′) : H ′ ∈ H}, (50)

which is finite as H was assumed to be finite. Recall that we defined H↑ to be the 
collection of graphs obtained by adding missing edges to the graphs in H. Before we 
start the proof, we provide an equivalent reformulation of the property in Part 2 of 
Theorem 1.11. As in the theorem, let m = min{χ(H) : H ∈ H} − 1. Then the following 
two statements are equivalent.

(i) There is a constant D such that for every q if we add at least Dq edges into a part 
of Kq

m then the obtained graph is not H↑-free.
(ii) There is a forest W such that the graph obtained from Kq0

m , q0 := v(W ), by adding 
W into one part is not H↑-free.

Let us first assume (i) and prove (ii). Let Z be a graph with minimum degree at least 
2D and girth strictly greater than v0. Set q := v(Z). Also, let V1, ..., Vm be disjoint sets, 
each of cardinality q, and let G to be the graph obtained from Km(V1, ..., Vm) by adding 
a copy of Z in V1. Since Z is of minimum degree 2D, we have that Z contains at least 
Dq edges. By (i), G has a (not necessarily induced) subgraph H ∈ H. Since v(H) � v0, 
we conclude that H[V1] contains no cycle and thus H is as desired.

Assuming (ii), we claim that (i) holds with D := q0. This is a consequence of the 
well-known fact that if G is a graph with |E(G)| > (q0 − 1)v(G), then G contains a copy 
of the forest W (not necessarily as an induced subgraph). Indeed, by e.g. [5, Theorem 2.5], 
G contains a non-empty subgraph G′ of minimum degree at least q0 where the required 
copy of W can be easily found.

Moreover, we will need the following result, which follows by the Ramsey Theorem 
[37] and elementary probabilistic estimates (see e.g. [8, Lemma 2.7] for a proof).

Lemma 9.1. Let ε, θ be reals with 0 < θ < ε and 
1, 
2 be positive integers with 
1 < 
2. 
Then there exists a positive integer 
3 with the following property. For every probability 
space (Ω, Σ, μ) and every sequence (Aj)
3j=1 such that μ(Aj) � ε for all j ∈ [
3], we have 
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that there exists a subset L of [
3] of cardinality 
2 such that for every subset K of L of 
cardinality 
1 we have that

μ
( ⋂

j∈K

Aj

)
� θ
1 . �

An iterated use of the above lemma yields the following, which we will use in the 
proof of the second part of Theorem 1.11.

Lemma 9.2. Let ε, θ be reals with 0 < θ < ε and q, 
 be positive integers. Then there exists 
a positive integer k = k(q, 
, θ, ε) with the following property. Let (Ω1, Σ1, μ1), ..., (Ωq, Σq,

μq) be probability spaces and for each i ∈ [q] let (Ai
j)kj=1 be a sequence in Σi such that 

μi(Ai
j) � ε for all j ∈ [k]. Then there exists a subset L of [k] of cardinality 
 such that 

for every i ∈ [q] we have that

μi

( ⋂
j∈L

Ai
j

)
� θ
. �

Proof of Part 2 of Theorem 1.11. Recall that the theorem of Erdős [10] and Simonovits 
[41] states that the problem is classically stable with B = Km. Thus the only twin-free 
graph B, which can have the property that the problem is robustly B-stable, is Km. 
Let tm(n) be the maximum size of a Km-blow-up of order n; it is easy to see that the 
maximum is attained if and only if any two part sizes differ at most by 1.

According to the discussion in the beginning of this section, it suffices to prove equiva-
lence between robust Km-stability and Condition (i) stated above. If Condition (i) fails, 
then for each D we can construct an H↑-free graph GD by adding Dq edges to Kq

m for 
some q = q(D). This graph GD of order n := mq exceeds tm(n), the maximum size of a 
Km-blow-up on n vertices, by Dn/m. Thus problem is not robustly Km-stable.

Let us show the converse direction. Let D satisfy Condition (i) and define v0 by (50). 
Given H and D, we choose positive constants in this order

c � c3 � c2 � c1 � c0,

each being sufficiently small depending on the previous ones. Assume on the contrary 
that the problem is not robustly Km-stable. Hence, there exists an H↑-free graph G with 
n � 1/c0 vertices satisfying

tm(n) − e(G) + n < c1Δedit(G,Km()). (51)

Let V1, ..., Vm be a max-cut partition of V (G) and set T := Km(V1, ..., Vm). Since e(G) �
tm(n) − 2c1

(
n
2
)
, we have by the Erdős–Simonovits Stability Theorem [10,41] that

|E(G) � E(T )| � c2

(
n
)
. (52)
2
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It routinely follows that

(1/m− c3)n � |Vi| � (1/m + c3)n, for all i ∈ [m]. (53)

Next we observe that in each G[Vi] there are only a few vertices of high degree. More 
precisely, we have the following claim.

Claim 9.3. For every i ∈ [m], the induced subgraph G[Vi] has at most k(m, 2D, 2mc/3,
3mc/4) vertices of degree at least cn, where k() satisfies Lemma 9.2.

Proof. We set k = k(m, 2D, 2mc/3, 3mc/4) and assume on the contrary that there exist 
i0 ∈ [m] and x1, ..., xk ∈ Vi0 such that the degree of each xj in G[Vi0 ] is at least cn. By 
the max-cut property of V1, ..., Vm we have for each i ∈ [m] and j ∈ [k] that the set of all 
neighbours of xj in Vi, which we denote by Ai

j , is of cardinality at least cn and therefore, 
by (53), of uniform density at least c

1/m+c3
� 3mc/4. Applying Lemma 9.2, we obtain 

a subset L of [k] of cardinality 2D such that for each i ∈ [m], setting Bi :=
⋂

j∈L Ai
j

(which is the set of vertices in Vi that are G-adjacent to xj for all j ∈ L), we have that

|Bi| � (2mc/3)2D |Vi| � (c2D/22D)n.

We pick arbitrary subsets Y1, ..., Ym of B1, ..., Bm respectively, of cardinality (c2D/

22D)n each. We set Y := Y1 ∪ . . . ∪Ym and Z := {xj : j ∈ L}. Observe that G[Y ] cannot 
contain a copy (not necessarily induced) of K4D

m . Indeed, assume on the contrary that 
there exist pairwise disjoint 4D-subsets W1, ..., Wm of Y1, . . . , Ym, respectively, such that 
E(G) ⊇ E(Km(W1, ..., Wm)). Let W ′

1 be the set obtained by deleting 2D vertices from W1
and adding the set Z. Then E(G) is a superset of E(G[W ′

1]) ∪E(Km(W ′
1, W2, ..., Wm)). 

Observing that G[W ′
1] contains at least 2D · 2D = D · |W ′

1| edges, we get that G is not 
H↑-free, a contradiction.

Thus, for every choice of a 4D-subset Wj of Yj , for j = 1, ..., m, there should be at least 
one missing edge (that is, an edge of T but not of G). Notice that there are 

(
c2Dn/22D

4D
)m

choices of (W1, . . . , Wm). On the other hand, a missing edge can be overcounted at most

(
c2Dn/22D − 1

4D − 1

)2(
c2Dn/22D

4D

)m−2

= (4D)2

(c2Dn/22D)2

(
c2Dn/22D

4D

)m

(54)

times. Thus E(T ) \ E(G) is of cardinality at least (c4D/24+4DD2)n2 contradicting 
(52). �

We set K := m ·k(m, 2D, 2mc/3, 3mc/4). Let U ′ be the set all vertices having at least 
cn neighbours within their part. By Claim 9.3 we have that

|U ′| � K � c2n. (55)
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We also set U ′′ to be the set of all vertices x in V (G) \U ′ such that dT (x) −dG(x) � cn. 
By (52), we get that

|U ′′| � c2
c
n � (c3 − c2)n. (56)

Thus, setting E ′′ to be the set of all pairs e of vertices in V (G) satisfying e ∩U ′′ �= ∅, we 
have that

|E(T ) ∩ E ′′| − |E(G) ∩ E ′′| � |U ′′| cn−
(
|U ′′|

2

)
(56)
� |U ′′|(c− c3)n � c

2 |U ′′|n. (57)

Moreover, setting U := U ′ ∪ U ′′, by (55) and (56), we have that |U | � c3n. Also, set 
V ′ := V \ U and V ′

i := Vi \ U for each i ∈ [m]. We have the following claim.

Claim 9.4. Let i ∈ [m] and X be a subset of V ′ \ Vi with at most v0 elements. Then V ′
i

has at least (1 − 3cmv0)|V ′
i | vertices G-adjacent to every node in X.

Proof. For every x ∈ V ′ \ Vi we have the following. Let j be the unique element of [m]
satisfying x ∈ Vj . Since x /∈ U ′′, we have that dG(x) � dT (x) −cn. Invoking the fact that 
x has at most cn G-neighbours in Vj , since c /∈ U ′, and x is T -adjacent to all vertices in 
V ′
i , it follows that x is G-adjacent to all but at most 2cn vertices in V ′

i . By (53), (55)
and (56), we get that n/m � |V ′

i |/(1 − 2c3m) and therefore x is G-adjacent to at least

|V ′
i | − 2cm n

m
�

(
1 − 2cm

1 − 2c3m

)
|V ′

i | � (1 − 3cm)|V ′
i |

vertices in V ′
i . Since X has at most v0 elements, the claim follows. �

Next, we observe that in each V ′
j we have a few edges. Namely, we have the following.

Claim 9.5. For every j ∈ [m], we have that G[V ′
j ] contains less than (5D/2m)n edges.

Proof. We assume on the contrary that there is some j ∈ [m] such that G[V ′
j ] contains 

at least 5D(n/2m) edges. Without loss of generality, let j = 1. Let X1 be a random 
subset of V ′

1 of size n/2m. Then the expected number of edges in G[X1] is at least

5D(n/2m)
(

|V ′
1 | − 2

n/2m− 2

)(
|V ′

1 |
n/2m

)−1 (53)
> D · n/2m.

We pick X1 so that G[X1] has at least D · n/2m edges and, for each i ∈ {1, . . . , m}, 
we pick an arbitrary (n/2m)-subset Xi of V ′

i . We set F to be the graph obtained by 
adding to Km(X1, ..., Xm) the edges of G[X1]. By the choice of D there is an injective 
homomorphism f , that is, an injective map sending edges to edges, from some H ∈ H
into F . We will arrive to a contradiction by constructing an injective homomorphism 
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f ′ from H into G. To this end, we set Yi := {h ∈ H : f(h) ∈ Xi} for each i ∈ [m]. 
We inductively define f ′ on each Yi. For every h ∈ Y1 we set f ′(h) = f(h). Then, for 
each i = 2, ..., m, assuming that f ′ has been defined on 

⋃i−1
j=1 Yj , we extend f ′ on Yi by 

using arbitrary elements of V ′
i which are adjacent in G to every element of f ′(∪i−1

j=1Yj). 
Claim 9.4 guarantees that such a selection is feasible. It follows easily that f ′ is indeed 
an injective homomorphism. Thus its image contains a (not necessarily induced) copy 
of H, which contradicts that G is H↑-free. �

We have

tm(n) − e(G) � e(T ) − e(G)

� e(T [V ′]) − e(G[V ′]) + |E(T ) ∩ E ′′| − |E(G) ∩ E ′′| − |U ′|n
(55), (57)

� e(T [V ′]) − e(G[V ′]) + c

2 |U ′′|n−Kn

Claim 9.5
� |E(T [V ′]) � E(G[V ′])| + c

2 |U ′′|n− (5D + K)n

(55)
� |E(T [V ′]) � E(G[V ′])| + |U ′|n + c

2 |U ′′|n− (5D + 2K)n

� c

2
(
|E(T [V ′]) � E(G[V ′])| + |U |n

)
− (5D + 2K)n

� c

2 |E(T ) � E(G)| − (5D + 2K)n

� c

2 Δedit(G,Km()) − (5D + 2K)n.

By combining this with (51), we get

1
c1

(
tm(n) − e(G) + n

)
� Δedit(G,Km()) � 2

c

(
tm(n) − e(G) + (5D + 2K)n

)
,

which is a contradiction since we have assumed that c1 � c. �
10. Concluding remarks

Theorem 1.11 implies that the three notions of stability introduced in Section 1 are 
non-equivalent. Indeed, let Ka,b,c denote the complete 3-partite graph with part sizes 
a, b, c. Then the Turán problem ex(n, K2,2,2) is classically K2-stable (by [10,41]) but 
not robustly K2-stable by Part 2 of Theorem 1.11. (Namely, one can add a C4-free 
bipartite graph of size Ω(q3/2) into one part of Kq

2 , which will not violate the property 
of being {K2,2,2}↑-free.) Also, ex(n, K2,2,1) is robustly but not perfectly K2-stable by 
Theorem 1.11.

Theoretically, one should be able to write a computer code that takes as input only a 
family F of twin-free graphs and Λ and then tries to figure out everything else (namely 
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B, a, N , and C) automatically. For lower bounds, computer can enumerate all small B
such that B() is F-free and then use Gröbner bases calculations to calculate λ(B()), thus 
identifying best possible B. For upper bounds, computer may start with largest feasible 
N (which is 8 for graphs unless G is rather structured), outputting some floating-point 
number c as an upper bound. Furthermore, if c seems to coincide with λ(B()), then the 
steps of finding smallest N that works and rounding the solution (using B as conjectured 
extremal configuration) could be also automated. However, the human intuition (based 
on various heuristics, symmetries, structure of admissible graphs, etc) is usually superior 
to the brute force search for plausible extremal configurations. Of course, the more 
powerful combination would be when computer search is restricted to a narrow set of 
plausible examples suggested by the user. It would be interesting to write a computer 
code that has this wider functionality and yet requires little coding from the user.

If the maximiser a of λ(B()) is unique (up to symmetry), one may be tempted to define 
another version of stability where one wishes to relate Λ(G) −Λ(n, G) to the distance from 
G to B(V1, . . . , Vm) with |Vi| = ai/n +O(1). However, here the dependence is in general 
worse. For example, consider the Turán problem for triangle which is perfectly K2-stable. 
Here the optimal a is unique: (1/2, 1/2). However, for G := K(1/2−ε)n,(1/2+ε)n we have 
that λ(n, G) −λ(G) = O(ε2), which is much smaller than δedit(G, Kn/2,n/2) = Ω(ε) when 
ε → 0.
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