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Abstract. An edge decompositionof a posetP is a collection of chains such that every pair of
elements of which one covers the other belongs to exactly one chain. We consider this and the
related notion of theline posetL(P ) which consists of pairs of adjacent elements ofP so that
(xly) <L(P ) (x′ly′) iff y ≤P x′. We present some min-max type results on path-cycle partitions
of digraphs which are applicable to poset decompositions. Providing an explicit construction we
show that the lattice of the subsets of ann-set admits an edge decomposition into symmetric chains.
We demonstrate a few applications of this decomposition. Also, a characterisation of line posets is
given.
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1. Introduction

There are many important results about decompositions of posets into disjoint
chains, when we require that every element of the poset belongs to exactly one
chain. We will refer to these asvertex decompositions. Typical questions are the
following. What is the minimal number of chains of such a partition? Do there
exist partitions with some extra properties? Are there any applications of these
decompositions?

In this paper we investigate the notion of anedge decompositionwhich is a
collection of chains such that every pair of adjacent elements (one covers the other)
belongs to exactly one chain and we try to answer the questions above.

Such considerations may arise, for example, when in a computer program we
want to operate with posets, and so we wish to represent them efficiently in the
memory. If keeping the relational binaryn× n-table is impossible or undesirable,
we can try to maintain a list of chains completely determining the poset, and a
natural question to ask is, for example, how small such a list can be. The related
notion of line poset(defined later) also arises naturally.
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In Section 3 we present formulas for the minimal number of paths in a cycle-
path vertex/edge partition of a digraph. Their corollaries on poset decompositions
can be viewed as an analogue of Dilworth’s theorem [7].

In Section 4 we provide an explicit edge decomposition of the all-important
lattice of subsets of a finite set into symmetric chains. Although the existence of
such a partition can be deduced from the results of Anderson [1] and Griggs [10], a
constructive proof is a new result. The partition discovered has some extra proper-
ties, as is asserted by Theorem 5, and applications: an upper bound on the number
of antichains inL(Bn), a construction of a pair of orthogonal edge partitions of
Bn for oddn, an application to a storage and retrieval problem and to a numerical
problem. For details we refer the reader to Section 5.

Finally, we characterise line posets in terms of forbidden configurations and
point out which information determines and can be reconstructed from the line
poset.

2. Definitions

Let P = (X,>) be a poset. We sayy coversx (denoted byy m x or x l y) if
y > x and noz ∈ X satisfiesx < z < y (suchx, y will be also calledadjacent
elements). With every posetP we associate itsHasse diagramD = D(P ) which
is the digraph withX as the vertex set and(x, y) ∈ E(D) iff y coversx. Sometimes
we switch between the poset and digraph terminology.

A chain inP is calledskiplessif every element covers its predecessor; skipless
chains correspond tooriented pathsin its Hasse diagram. Thewidthw(P ) is the
maximal size of an antichain inP .

The line posetL(P ) of a posetP has as vertices the pairs(x, y) of elements
in P with y coveringx and we agree that(x l y) is less than(x′ l y′) in L(P )
iff y ≤ x′. (This operation somewhat resembles taking the line graph, hence the
name.)

Every skipless chain inP corresponds to a skipless chain inL(P ) of size
smaller by 1. We usually identify these chains.

One can ask which important poset properties are preserved by the operatorL.
In fact,L preserves very few properties (e.g., self-duality, regularity). As in almost
every case it is trivial to find a counterexample/proof we do not dwell on this topic.

A vertex(or chain) partition (or decomposition) of P is a collection of chains
such that everyx ∈ X belongs to exactly one chain. Anedge partition(or de-
composition) is a family of skipless chains such that every pairx, y ∈ X with x
being covered byy, belongs to exactly one chain. Note that the chains in an edge
decomposition are required to be skipless. One can see that edge partitions ofP
correspond to skipless chain partitions ofL(P ).

The subsets of the set[n] = {1, . . . , n} partially ordered via the inclusion rela-
tion, form the ranked posetBn = (2[n],⊂). The corresponding Hasse diagram is
theorientedn-cubeQn. ForBn the relation ‘B coversA’ is denoted byA < B.
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We find it useful to identifyA ∈ Bn with its ()-representation which is then-
sequence of left and right parentheses corresponding to the elements ofA = [n]\A
andA respectively. Likewise, the(∗)-representation of an element(A < B) ∈
L(Bn) contains ‘(’ for the elements inB, ‘)’ for the elements inA and ‘∗’ for the
element inB \A.

Generally, letF be a sequence containing left and right parentheses. Consec-
utively and as long as possible remove matched pairs of adjacent brackets, i.e.,
substrings ‘( )’. Clearly, the order of operations does not matter. The elements
which would be removed by the abovematchingare calledfixedor pairedelements
and the remaining ones are calledfree. In particular, the free parentheses always
form the following, possibly empty, subsequence:) ) . . . ) ) ( ( . . . ( (.

3. Edge Decompositions of Minimum Size

Here we present a few Dilworth-type theorems for digraphs and posets.
Let D be any digraph. (Here we allow loops and opposite edges.) Consider

partitions ofV (D) into vertex-disjoint directed cycles and directed paths. (We
consider a single vertex as a path of length zero; loops and pairs of opposite edges
are considered as cycles.) Letm(D) be the minimum number of directed paths in
a such partition.

On the other hand, letM(D) be the maximum of|A| − |B| taken over all pairs
of disjoint setsA,B ⊂ V (D) such that any directed path connecting two distinct
vertices fromA contains a vertex ofB and any cycle intersectingA intersectsB.
(In particular, if(i, i) ∈ E(D) theni 6∈ A.) Clearly, for any such pair(A,B) we
have|P ∩A| ≤ |P ∩B| + ε, whereε = 1 if P is a directed path andε = 0 if P is
a directed cycle. This implies thatm(D) ≥M(D).

We will show that we have in fact equality for anyD. This was originally proved
by the author by using the linear programming method of Dantzig and Hoffman [6].
Here we present a much simpler argument suggested by Graham Brightwell.

THEOREM 1. For any digraphD we havem(D) = M(D).
Proof (Brightwell). Consider the bipartite graphG on two copies ofV (D), say

X = {v∨ : v ∈ V (D)} andY = {v∧ : v ∈ V (D)}, where we connectu∨ to v∧ if
and only if(u, v) ∈ E(D). It is easy to check that the number of edges missing in a
maximum matching inG equalsm(D). By the defect form of Hall’s theorem, this
number equals the maximum of|Z| − |0(Z)| overZ ⊂ X, where0(Z) denotes
the set of neighbours ofZ. Choose any extremal setZ. Let

A = {v ∈ V (D) : v∨ ∈ Z, v∧ 6∈ 0(Z)},
B = {v ∈ V (D) : v∨ 6∈ Z, v∧ ∈ 0(Z)}.

LetP = {v1, . . . , vl} be a directed path inD with v1, vl ∈ A, l ≥ 2. Asv∧l 6∈ 0(Z),
we conclude thatv∨l−1 6∈ Z. Asv∨1 ∈ Z, there must bei ∈ [1, l−2] such thatv∨i ∈ Z



234 OLEG PIKHURKO

butv∨i+1 6∈ Z. As v∧i+1 ∈ 0(Z), we havevi+1 ∈ B. Similarly, any cycle intersecting
A intersectsB. Hence,m(D) = |A| − |B| ≤ M(D). 2

Remark.For a cycle-free digraphD, the conclusion of Theorem 1 can be de-
duced from the result of Saks [18, Theorem 5.3] pointed to the author by one of
the referees. Saks’ result is more general, but it applies only to cycle-free digraphs
and its proof is complicated.

The minimum numbern of paths in a cycle-path decomposition ofE(D) can be
computed by applying Theorem 1 to the appropriately defineddirected line graph
of D. However, we present a direct proof which gives a straightforward algorithm
for constructing a minimum partition: remove one by one all cycles and then –
maximal paths. It turns out that it is enough to consider only pairsA,B ⊂ E(D)
of the following rather special form: take a partitionX ∪ Y = V (D), let A =
{(x, y) ∈ E(D) : x ∈ X, y ∈ Y }, B = {(y, x) ∈ E(D) : x ∈ X, y ∈ Y } and
N(X, Y ) = |A| − |B|.
THEOREM 2. For any digraphD, the minimum numbern(D) of paths in a
partition ofE(D) into directed paths and cycles is equal to

N(D) = max{N(X, Y ) : X ∪ Y = V (D), X ∩ Y = ∅}.
Proof. It is immediate thatn(D) ≥ N(D).
As the removal of a cycle does not affectN(D), it is enough to prove the reverse

inequality for a cycle-free digraphD. To apply induction on|E(D)| we have to
show thatN(D′) < N(D), whereD′ is obtained fromD by removing the edges of
a maximal pathP = (x1, . . . , xk).

To see this take a partitionX ∪ Y = V (D′) with N(D′) = N(X, Y ). SinceP is
maximal andD is acyclic there is noy ∈ V (D) with (y, x1) ∈ E(D). Therefore,
if x1 ∈ Y , we can movex1 to X without decreasingN(X, Y ). Likewise we may
assumexk ∈ Y . But if we add back the edges ofP , we will increaseN(X, Y ) by
1: if moving alongP we change side fromY toX i times, then we go fromX to Y
i + 1 times. This shows thatN(D′) < N(D) as required. 2
The following corollary is obtained by applying Theorem 1 or 2 to the Hasse
diagram of a posetP .

COROLLARY 3. The minimum size of a skipless chain decomposition of a poset
P equals the maximum of|A| − |B| over all disjoint setsA,B ⊂ P such that any
skipless chain containing two elements fromA intersectsB.

The minimum size of an edge decomposition ofP equals the maximum of
e(X, Y ) − e(Y,X) over all partitionsP = X ∪ Y , wheree(X, Y ) denotes the
number of elements(x l y) ∈ L(P ) with x ∈ X andy ∈ Y .
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4. Symmetric Edge Partitions of Cubes

The fundamental result of de Brujin, Kruyswijk and Tengbergen [4] (see, e.g., [2,
Section 3.1] for a proof) asserts thatBn = (2[n],⊂) is a symmetric chain order,
that is, admits a decomposition intosymmetric chains. (A chainx1 < · · · < xk in a
ranked poset(P , r) is calledsymmetricif it is skipless andr(x1) = r(P )− r(xk).)
This was strengthened by Anderson [1] and Griggs [10], who showed that a LYM
posetP with a unimodal symmetric rank-sequence is a symmetric chain order.
(Note that the number of chains isw(P ) – minimal possible.)

The latter result is applicable toL(Bn), which as a regular poset has the LYM
property. However, this way we obtain a purely existentional result while one
would wish to have an explicit decomposition. Here we provide an explicit con-
struction, which like that of Greene and Kleitman [9] and Leeb (unpublished) on
Bn, utilises bracket representations.

THEOREM 4. For everyn,L(Bn) is a symmetric chain order. In other words,Bn

admits an edge decomposition into symmetric chains.
Proof. Assume that the numbers 1, . . . , n are placed on a circle clockwise in

this order. Letσ denote theshift permutationwhich maps every element to the
next position clockwise:σ(k) = k+1 (modn) and letσ (i) be itsith iterate. (These
are referred to also asrotations.) For clarity of language we use the same symbol
σ for the corresponding action on the vertex set and the edge set ofQn. We will
produce aσ -invariant edge partition.

We build, inductively onn, a familyFn of n-element sequences, starting for the
casen = 1 with the familyF1 = { ( }. To buildFn+1 apply Operations A and B to
every sequenceF ∈ Fn and letFn+1 comprise the resulting sequences. Operation
A: add ‘(’ to the right ofF . Operation B: add ‘)’ to the right ofF and throw away
the resulting sequence if it does not contain free elements (i.e., if all its parentheses
can be paired).

Proceeding in this way we obtain, for example,

F2 = { ( ( },
F3 = { ( ( (, ( ( ) }
F4 = { ( ( ( (, ( ( ( ), ( ( ) ( }.

It is easy to see thatFn is the set of alln-sequences beginning with ‘(’ which is
a free element. (In particular, all right parentheses are paired.)

For any sequenceF ∈ Fn we build the corresponding chainCF in L(Bn)

which has lengtht , wheret is the number of free members ofF . To obtain the
(∗)-description of theith element ofCF , i ∈ [t], we reverse inF the lasti −1 free
parentheses and replace theith free element (when counted from the right) by the
star∗. Thus, for example, ‘( ( ) ( ( )’ gives ( ( ) ∗ ( ) and ∗ ( ) ) ( ) which correspond
to the following chain inL(B6):({3,6} < {3,4,6})l ({3,4,6} < {1,3,4,6}).
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It is easy to see that everyCF is a symmetric chain. We claim that

Dn = {σ (j)(CF ) : F ∈ Fn, j = 0, . . . , n− 1}
is the required edge partition.

We have to prove that for every elementx = (A < B) in L(Bn) there are
uniqueF ∈ Fn andj ∈ [0, n − 1] such thatx ∈ σ (j)(CF ). First we show how to
find at least one such pair(F, j).

Step 1.Write x in the(∗)-representation.

Step 2.Rotate the pattern to bring the star to position 1 and then identify all free
parentheses. Clearly, if disregarding the paired elements, our sequence is
‘∗ ) . . . ) ( . . . (.’

Step 3.Rotate again so that the first free left parenthesis identified in Step 2
(or the star itself if no ‘(’ is free) is moved to position 1. Letj be the number of
positions that the star was moved anticlockwise by Steps 2 and 3 combined.

Step 4.Replace the star and all free right parentheses identified in Step 2 by left
parentheses. LetF be the resulting sequence.

Obviously, when we pair brackets inF , we obtain the same pairings as in Step 2.
This implies thatF ∈ Fn as it starts with a free ‘(’ and thatx ∈ σ (j)(CF ) as
required. Here is an illustration forx = ({1,6,7} < {1,4,6,7}) ∈ L(B8):

Step 1: ) ( ( ∗ ( ) ) (

Step 2: ∗ ( ) ) ( ) ( (

Step 3: ( ( ∗ ( ) ) ( ) (andj = 1)

Step 4: ( ( ( ( ) ( ( ) (this isF)

The uniqueness of(F, j) may be established in different ways. One, which
actually gives an alternative definition ofDn, is the following. Given the(∗)-
representation ofx, let g(i) = li − ri for 0 ≤ i ≤ n− 1, whereli andri = i − li
are respectively the number of left and right parentheses occuring in thei positions
preceding ‘∗’ clockwise. Now,CF starts at the element on whichg achieves its
maximum. (If there are a few such elements, then it is the first one.) Why? Just pair
the brackets in the(∗)-representation ofσ (−j)(x) ∈ CF , e.g.,

( ( ( ) ( ) ) ( ) ( ∗ ) ( ) ) ( ) , (1)

and notice that any paired block (boxed regions) contributes 0 tog while any right-
hand-sided part of it contributes a strictly negative value. Now, the maximum ofg

is the number of free left parentheses in (1) and this is achieved for the first time
when considering the segment preceding the star, as required.

But now, once thatj has been identified, there trivially could not be two suitable
F ’s. 2
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For the remainder of this work letDn denote the edge decomposition ofBn con-
structed above. It has the following properties.

THEOREM 5. LetC = (A1 < · · · < Ak) be one of the chains inDn. If Ai+1 =
Ai ∪ {ai}, then the elementsak−1, . . . , a1 are situated on the circle in this order
(clockwise) and betweenai+1 andai (clockwise) there is an even number of places.
For eachi ∈ [k − 3] there is an element(B < B ′) belonging to a chain ofDn

shorter thanC such that

Ai < B < B ′ < Ai+3. (2)

Proof.Take the sequenceF ∈ Fn giving rise toC. (We may assumej = 0.) The
fact that inF every pair of consecutive free elements contains only paired brackets
in between implies the first part of the theorem.

To show the second claim, letF ′ be the sequenceF with the(i + 1)st free left
bracket (if counted from the right) replaced by ‘)’ which is then paired with the
(i + 2)nd free element:

F : ( 2 ( 2 ( 2 ( 2 ( 2 ( 2
∗ . . . . . . . Ai

∗ . . . . . . . . . . . . . . . . . . . . . . .Ai+3

F ′ : ( 2 ( 2 ( 2 ) 2 ( 2 ( 2
∗ . . . . . . . B

∗ . . . . . . . . . . . . . . . . . . . . . . .B ′

The new sequence corresponds to a chain of lengthk − 2 and itsith andi + 1st
elements obviously satisfy the required property. 2

5. Applications of the Partition Dn

We would like to include here some applications of the edge partitionDn built in
Theorem 4. Basically, we are inspired by known results where a symmetric vertex
decomposition ofBn is used. We refer the reader to Section 3.4 of Anderson’s
book [2] for an exposition of a few results of this type. I am grateful to Ian An-
derson for drawing my attention to some other applications not surveyed in his
book.

5.1. ON THE NUMBER OF ANTICHAINS INL(Bn)

Let us consider the following question: what isϕ(L(Bn)), the number of an-
tichains inL(Bn)? The computation ofϕ(Bn) was an old and difficult problem;
a complicated asymptotic formula is established by Korshunov [14].

Here we provide some rough estimates ofϕ(L(Bn)) by applying ideas of
Hansel [12] who showed that 2N ≤ ϕ(Bn) ≤ 3N , whereN = w(Bn) =

(
n

bn/2c
)
.



238 OLEG PIKHURKO

Considering all possible subsets of the largest antichain ofL(Bn) we obtain
trivially ϕ(L(Bn)) ≥ 2m, wherem = w(L(Bn)) = dn/2e

(
n

bn/2c
)
.

On the other hand, observe that an antichainA ⊂ L(Bn) is uniquely determined
by the ideal1(A) = {x ∈ L(Bn) : ∃ a ∈ A, x ≤ a}. Consider anyC = (x1l· · ·l
xl) ∈ Dn. By Theorem 5 we can findyi in a shorter chain withxi−2 < yi < xi+2

for 3≤ i ≤ l− 2. Knowing1(A)∩C′ for everyC′ ∈ Dn shorter thanC we know
1(A) ∩ {y3, . . . , yl−2}. But then it is easy to check that for at most 4 elements of
C we cannot deduce whether it is in1(A), and therefore1(A) ∩ C can assume
at most 5 possible values. Considering consecutively the chains ofDn in some
size-increasing order we conclude thatϕ(L(Bn)) ≤ 5m.

5.2. ORTHOGONAL PARTITIONS OFL(Bn)

Two chains in a posetP are calledorthogonalif they have at most one common
element. Two vertex partitionsD andD ′ areorthogonalif any C ∈ D is orthog-
onal to anyC′ ∈ D ′. This notion is of interest because, as proved by Baumert
et al. [3], the existence of two orthogonal minimum decompositions implies one,
rather strong, Sperner-type property (see [2, Section 3.4.3] for details).

A result of Shearer and Kleitman [13] (see Section 3.4 in [2]) asserts that there
exist two orthogonal chain decompositions ofBn into

(
n

bn/2c
)

chains each. What
can be said aboutL(Bn)?

We define thecomplementary chainC of a chainC by replacing every element
by its complement, i.e., ifC = (A1 ⊂ · · · ⊂ Ak) thenC = (Ak ⊂ · · · ⊂ A1). Let
Dn = {C : C ∈ Dn}, whereDn is the decomposition built in Theorem 4.

LEMMA 6. Two elementsx1 = (A1 < B1) andx2 = (A2 < B2) of L(Bn) can
belong simultaneously toDn and Dn only if n = 2k is even and{|B1|, |B2|} =
{k, k + 1}.

Proof.Let ih ∈ [n] be the element ofBh not inAh, h = 1,2, and let pairs(F, j)
and(F ′, j ′) give rise to chainsC,C′ ∈ Dn such thatC′ containsx1 andx2 while
C containsx1 andx2 respectively. Assume thatj ′ = 0 andx1 < x2, i.e.,B1 ⊂ A2.

In F ′ i2 precedesi1 and we claim thatF ′ does not contain a free element be-
tween them. Indeed, if it be in the positiony ∈ [n], theny ∈ B1 andy 6∈ A2,
that is,σ (−j)(y) must be a free element inF . But thenσ (−j)(y) must lie between
σ (−j)(i1) < σ (−j)(i2). (In C the elementx2 comes beforex1.) This contradiction
(on one hand the elementsi2, y, i1 go clockwise, on the other – anticlockwise)
proves the claim.

Thus all the elements betweeni2 and i1 are paired inF ′; thereforeB1 = A2

and there must be the same number of left and right parentheses in this interval.
Consideringx2, x1 ∈ C we show the analogeous statement about the elements
betweeni1 andi2 (if going clockwise), which clearly implies the claim. 2
COROLLARY 7. For oddn there is a pair of orthogonal symmetric chain decom-
positions ofL(Bn).
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Remark.Unfortunately, we do not know if the corresponding claim is true for
evenn.

5.3. A STORAGE AND RETRIEVAL PROBLEM

Suppose we maintain a database withn records which we number from 1 ton
and we wish to organize an efficient searching. We assume that we have queries
Q1, . . . ,QM each of which we identify with the set of records satisfying it, that is,
Qi ⊂ [n] and these subsets are not necessarily distinct. One idea, see Ghosh [8],
is to find a sequenceX of elements of[n] such that everyQi occurs inX as a
subsequence of consecutive terms so that everyQi can be defined by a starting
position inX and the size ofQi.

In connection with this Lipski [15] considered the following problem. Find the
shortest sequence of elements ofX = [n] such thatX contains everyA ⊂ [n] as a
subsequence of|A| consecutive terms. He showed thatsn, the length of an optimal
sequence, satisfies(

2

πn

)1/2

2n ≤ (1+ o(1))sn ≤
(

2

π

)
2n. (3)

As far as I know, these seems to be the best known bounds to date.
Here we ask what is the value oftn, the shortest length of a sequenceX such

that for everyA < B ⊂ [n] the sequenceX containsA as a subsequence of|A|
consecutive terms preceded byx, where{x} = B \A. Such a situation can happen
if every query is a set with a selected point. For example, we search in a dictionary,
the allowed queries are of the form “Findword” and the answer should give the
entry whereword is defined plus all relevant entries. Applying the ideas of [15] we
prove the following upper and lower bounds.

THEOREM 8.( n
2π

)1/2
2n ≤ (1+ o(1))tn ≤

( n
π

)
2n. (4)

Proof. Clearly, tn exceeds the number of different pairsA < A ∪ {x} with
|A| = bn/2c, which implies the lower bound in (4) by Stirling’s formula.

On the other hand, associate with every chainC = (A1 < · · · < Aq) in Dn the
sequence of elements of[n] which contains first the elements ofA1 in any order
which then are followed bya2, . . . , aq , where{ai} = Ai \ Ai−1, i = 2, . . . , q.

Let [n] = S ∪ T be a partition of[n] into 2 parts of (nearly) equal sizes. Let
φ1, . . . , φk be the sequences corresponding to a symmetric vertex decomposition
of 2S . Also, letψ1, . . . , ψl be the sequences corresponding to a symmetric edge
decomposition of 2T , each sequence being reversed.
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Clearly, for everyA ⊂ S there existsφi containingA as the first consecutive
|A| terms and for everyA < A∪ {x} ⊂ T there existsψj containing, at the end,A
preceded byx.

Now consider the sequence

X1 = ψ1φ1ψ1φ2 . . . ψ1φkψ2φ1ψ2φ2 . . . ψlφk.

Take anyA ⊂ [n] andx ∈ T \A. There isψi containing, at the end,x followed by
A ∩ T andφj containingA ∩ S as an initial subsequence. Therefore,X1 contains
x followed byA. InterchangingS andT , we write a sequenceX2 containing every
pair A < A ∪ {x} with x ∈ S. The sequenceX1X2 is the required (and explic-
itly constructed) sequence. It is easy to see that the average size of a sequence
corresponding to a chain of a symmetric vertex or edge decomposition ofBn is
(1

2+o(1))n. Therefore,tn ≤ 2
(

1
2 + o(1)

)
nkl which gives the desired upper bound

by Stirling’s formula. 2

5.4. ONE NUMERICAL PROBLEM

There exists a so called Audit Expert Mechanism which can be used to protect
small statistical databases, see Chin and Ozsoyogly [5]. To find an optimal mech-
anism the following problem has to be solved. Suppose we operate withn-tuples
of nonzero realsa1, . . . , an and we want to find what is the maximum possible
number of subsetsI ⊂ [n] such thatS(I ) is equal to either 0 or 1. (Here and later
we denoteS(I ) = ∑

i∈I ai .) The best possible bound of
(

n+1
b(n+1)/2c

)
was found by

M. Miller, Roberts and Simpson [17] and all extremal sequences were characterised
by K. Miller and Sarvate [16] (for integers) and by Griggs [11] (for reals). The
papers [17, 16] make use of the existence of a symmetric chain decomposition of
Bn.

Here, applying a symmetric chain decomposition ofL(Bn), we can findK, the
maximum possible number of elements(I < J ) ∈ L(Bn) such that{S(I ), S(J )} =
{0,1} over all real sequencesa1, . . . , an. Actually, we can allow zero entries for,
as we will see later, this does not affectK. Apparently, this problem does not have
such an application like that of the original problem, but it might be of some interest
especially as an unexpected application of a symmetric chain decomposition of
L(Bn).

The expression(a)i is a shorthand fora repeatedi times. Also we assume that
all n-tuples have their entries ordered nondecreasingly.

THEOREM 9. For n ≥ 2 we have

K = dn/2e
(

n

bn/2c
)
, (5)

and this value is achieved for and only for the following sequences:((−1)k, (+1)k),
((−1)k−1, (+1)k+1) and((−1)k−1,0, (+1)k) – for n = 2k and((−1)k, (+1)k+1) –
for n = 2k + 1.
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Proof. Let m be the largest index for whicham < 0. (If a1 ≥ 0, letm = 0.)
Definef : 2[n] → 2[n] by the formula

f (I ) = I4[m] = (I \ [m]) ∪ ([m] \ I ), I ⊂ [n].
One can easily check thatI ⊂ J ⊂ [n] impliesS(f (I )) ≤ S(f (J )).

Dn can be viewed as a collection of symmetric chains in 2[n]. LetXr < · · · <
Xn−r be one such chain. The sequence

S(f (Xr)), . . . , S(f (Xn−r ))

is nondecreasing and therefore 0 and 1 can occur side by side there at most once.
As everyA < B is present in exactly one chain andf is a bijection preserving
or reversing the<-relation,K does not exceed the total number of chains, which
gives the required upper bound.

A moment’s thought reveals that a necessary and sufficient condition for ann-
tuple to be optimal is the following. Ifn = 2k + 1 then for everyA < B ⊂ X,
|A| = k, we haveS(f (A)) = 0 andS(f (B)) = 1. If n = 2k then for every
A < B < C ⊂ X, |A| = k − 1, among the numbers

S(f (A)) ≤ S(f (B)) ≤ S(f (C)) (6)

there is a 0 adjacent a 1.
This condition is fulfilled for the sequences mentioned in the statement. Indeed,

let us consider((−1)k, (+1)k+1), for example. Herem = k and for anyA < B

with |A| = k we have

S(f (A)) = S(A4[k]) = (−1)(k − s)+ (k − s) = 0, (7)

wheres = |A ∩ [k]|. Similarly,S(f (B)) = 1 so the sequence is optimal.
We claim that these are essentially the cases of the equality. Let us do the harder

casen = 2k. If for somei 6= j we haveai 6= ±1 andaj 6= ±1, thenA < A∪{i} <
A ∪ {i, j} with anyA ∈ X(k−1), A 63 i, j , obviously violates the condition. If for
exactly onei we haveai 6= ±1, then consideringA < A ∪ {i} < C we conclude
thatS(f (A ∪ {i})) = 0 for anyA ∈ (X \ {i})(k−1). Supposeai ≥ 0, for example.
ThenS(f (A∪{i})) = k− j −1+ ai = 0, wherej is the total number of elements
equal to−1 (so 2k − 1− j elements equal+1). If ai = 0, then we have the third
example mentioned in the theorem. Ifai ≥ 2, thenj ≥ k+1 and any sequence (6)
with C 63 i violates the condition. Finally, if|ai | = 1 for everyi, then arguing as
in (7) we deduce that we can have eitherk or k + 1 positive entries. 2
6. Characterisation of Line Posets

Here we ask ourselves when a given posetL is the line poset of someP and what
information aboutP can be reconstructed fromL(P ). (Of course, it is implicitly
understood that we operate with isomorphism classes of posets.)
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Now,L(P ) cannot contain elementsw, x, y, z such thatw l y, x l y, w l z
butx 6lz; call this configurationN . Indeed, ify andz coverw they must be of the
form (a l b), (a l c), wherew = (d l a), somea, b, c, d ∈ P . Then the relation
x l y implies thatx = (e l a) which implies thatx l z.

Also,L(P ) cannot contain the configurationCn, n ≥ 3, made of elementsy and
x1, . . . , xn such thatx1l yl xn andxi l xi+1, for i ∈ [n−1]. Indeed, suppose the
contrary. Clearly,P contains elementsz0lz1l · · ·lzn such thatxi = (zi−1lzi).
But y covers the same element asx2 and is covered by the same element asxn−1,
soy = (z1l zn−1) andn = 3; but theny = x2, which is a contradiction.

For a posetP let T (P ) = (C, k, l, u) be the quadruple withC being a subposet
of P spanned by the nonextremal elements, that is by{a ∈ P : ∃ b, c ∈ P , b <
a < c} andk is the number of pairs(a l b) with a, b ∈ P \ C while the functions
l, u : C→ N0 are given by

l(a) = |{x ∈ P \ C : x l a}|,
u(a) = |{x ∈ P \ C : x m a}|, a ∈ C.

It is easy to see thatT (P ) determinesL(P ).
The following theorem states that the above examples provide a complete an-

swer to our two questions.

THEOREM 10. A posetL is isomorphic toL(P ) for someP if and only if
L contains neither configurationN nor any ofCn, n ≥ 3. Furthermore,T (P )
determinesL(P ) and can be reconstructed from it.

Proof.Given a posetL withoutN orCn letX be two disjoint copies of its vertex
set, namelyX = {x∧, x∨ : x ∈ L}. Let x∧ ∼ y∨ if x l y; let x∧ ∼ y∧ if for some
s ∈ L we haves m x ands m y; let x∨ ∼ y∨ if for somes ∈ L, s l x ands l y.

We claim that∼ is an equivalence relation. Indeed, ifx∧ ∼ y∧ andy∧ ∼ z∧
then there ares, t ∈ L such thatx, y l s andy, z l t . But thent must coverx for
otherwisex, y, s, t would span a forbidden configuration. Sox, zl t andx∧ ∼ z∧.
The remaining cases are equally easy.

Let x denote the equivalence class ofx ∈ X. Define the posetP (also denoted
byL−1(L)) onV = X/∼ = {x : x ∈ X} byA < B,A,B ∈ V , iff in L there exist
y ≤ z with y∨ ∈ A andz∧ ∈ B. One can check that this is indeed an ordering.
For example, to check its transitivity, letA < B andB < C, choosew ≤ x and
y ≤ z in L with w∨ ∈ A, x∧, y∨ ∈ B andz∧ ∈ C; thenx∧ ∼ y∨ implies that
w ≤ x l y ≤ z andA < C.

Let us show thatx∧ coversx∨. Assuming the contrary we findz ≥ y andw ≥ v
in L with z∧ ∼ x∧, y∨ ∼ w∧ andv∨ ∼ x∨. By the definition of∼, somet ∈ L
covers bothx andz, somes ∈ L is covered by bothx andv andv ≤ w l y ≤ z –
which implies thatL contains someCn, which is forbidden.

We claim thatL ∼= L(P ) via the mapF which sendsx ∈ L to (x∨l x∧). First
note thatF is an order preserving map: ifxmy in L, thenx∨ ∼ y∧, which implies
F(x)mF(y) as desired. Next,F is injective for ifF(x) = F(y) thenx∧ ∼ y∧ and
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x∨ ∼ y∨, which implies that for somew andz we havew l x l z andw l y l z;
but asL does not contain configurationC3 we conclude thatx = y. To show that
F is surjective take any(Al B) ∈ L(P ). AsA < B, for someL-elementsx ≤ y
we haveA = x∨, B = y∧. But it is easy to see thatx∧ ≤ y∧, which implies that
(Al B) = (x∨ l x∧) = F(x). Finally, if F(x) l F(y) thenx∧ ∼ y∨ andx l y.
This proves completely thatL ∼= L(P ).

In the second part it is enough to show that for any posetR we haveT (R) ∼=
T (P ), whereP = L−1(L), L = L(R). To build a natural isomorphismH :
C(R)→ C(P ) take, for any elementa ∈ C(R), someb l a which exists asa is
a non-extremal element ofR. Now letH(a) = x∧, wherex = (bl a) ∈ L and∼
is as above. To show thatH is well defined letb′ be another choice ofb and denote
y = (b′l a). Let c be an element coveringa. Then(al c) covers inL bothx and
y, so by the definition ofP we havex∧ ∼ y∧. Also,H(a) ∈ P is not extremal as

(b l a)∨ < H(a) < (a l c)∧.

Next,H is an order-preserving bijection. Indeed, leta m b in C(R). Choose
c l b. ThenH(a) = (b l a)∧ andH(b) = (c l b)∧. But (c l b)∧ ∼ (b l a)∨
and we haveH(a) > H(b) by the definition of the order onP . To show that
H is injective choose anya, a′ ∈ C(R). ThenH(a) = H(a′) implies thaty =
(c l a)∧ ∼ y′ = (c′ l a′)∧, somec, c′ ∈ R. Therefore there isx ∈ L covering
bothy andy′ which impliesa = a′ in R as required. To establish the surjectivity
of H considerx = (a l b)∨ ∈ C(P ), for example. Observe first thata ∈ R is
not extremal. Indeed, take anyy ∈ P covered byx; as we have already shown any
pairyl x is of the form(c l d)∨l (cl d)∧ which impliesd = a andcl a. Now
H(a) = (c l a)∧ = x as required. Again, any two adjacent elements ofC(P ) can
be represented as(a l b)∨l(a l b)∧ and then they are the images of two adjacent
elements,a l b of C(R), which implies thatC(P ) ∼= C(R).

Clearly,H preservesk, l andu, which completes the proof. 2
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