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Abstract. An edge decompositionf a poset® is a collection of chains such that every pair of
elements of which one covers the other belongs to exactly one chain. We consider this and the
related notion of thdine posetL(#) which consists of pairs of adjacent elementsffso that

(x<y) <pp) (' <y)iff y <p x’. We present some min-max type results on path-cycle partitions

of digraphs which are applicable to poset decompositions. Providing an explicit construction we
show that the lattice of the subsets ofraget admits an edge decomposition into symmetric chains.
We demonstrate a few applications of this decomposition. Also, a characterisation of line posets is
given.
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1. Introduction

There are many important results about decompositions of posets into disjoint
chains, when we require that every element of the poset belongs to exactly one
chain. We will refer to these agertex decompositiongypical questions are the
following. What is the minimal number of chains of such a partition? Do there
exist partitions with some extra properties? Are there any applications of these
decompositions?

In this paper we investigate the notion of adge decompositiowhich is a
collection of chains such that every pair of adjacent elements (one covers the other)
belongs to exactly one chain and we try to answer the questions above.

Such considerations may arise, for example, when in a computer program we
want to operate with posets, and so we wish to represent them efficiently in the
memory. If keeping the relational binanyx n-table is impossible or undesirable,
we can try to maintain a list of chains completely determining the poset, and a
natural question to ask is, for example, how small such a list can be. The related
notion ofline poset(defined later) also arises naturally.
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In Section 3 we present formulas for the minimal number of paths in a cycle-
path vertex/edge partition of a digraph. Their corollaries on poset decompositions
can be viewed as an analogue of Dilworth’s theorem [7].

In Section 4 we provide an explicit edge decomposition of the all-important
lattice of subsets of a finite set into symmetric chains. Although the existence of
such a partition can be deduced from the results of Anderson [1] and Griggs [10], a
constructive proof is a new result. The partition discovered has some extra proper-
ties, as is asserted by Theorem 5, and applications: an upper bound on the number
of antichains inL(8,), a construction of a pair of orthogonal edge partitions of
B, for oddn, an application to a storage and retrieval problem and to a numerical
problem. For details we refer the reader to Section 5.

Finally, we characterise line posets in terms of forbidden configurations and
point out which information determines and can be reconstructed from the line
poset.

2. Definitions

Let # = (X, >) be a poset. We say coversx (denoted byy > x or x < y) if
y > x and noz € X satisfiesx < z < y (suchx, y will be also calledadjacent
elementys With every poset? we associate itslasse diagranD = D (&) which
is the digraph withx as the vertex set and, y) € E(D) iff y coversx. Sometimes
we switch between the poset and digraph terminology.

A chain in is calledskiplessf every element covers its predecessor; skipless
chains correspond toriented pathsn its Hasse diagram. Theidth w () is the
maximal size of an antichain if.

Theline posetL () of a poset? has as vertices the pai¢s, y) of elements
in # with y coveringx and we agree thatk < y) is less thanx’ < y) in L(P)
iff y < x’. (This operation somewhat resembles taking the line graph, hence the
name.)

Every skipless chain i® corresponds to a skipless chain i) of size
smaller by 1. We usually identify these chains.

One can ask which important poset properties are preserved by the ogerator
In fact, L preserves very few properties (e.g., self-duality, regularity). As in almost
every case itis trivial to find a counterexample/proof we do not dwell on this topic.

A vertex(or chain) partition (or decompositionof & is a collection of chains
such that everyy € X belongs to exactly one chain. Aatdge partition(or de-
compositiol is a family of skipless chains such that every paiy € X with x
being covered by, belongs to exactly one chain. Note that the chains in an edge
decomposition are required to be skipless. One can see that edge partitiBns of
correspond to skipless chain partitionsiaf?).

The subsets of the spt] = {1, ..., n} partially ordered via the inclusion rela-
tion, form the ranked pose8, = (2", C). The corresponding Hasse diagram is
theorientedn-cubeQ, . For B, the relation B coversA’ is denoted byA C B.
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We find it useful to identifyA € B, with its ()-representation which is the
sequence of left and right parentheses corresponding to the elemednts pf]\ A
and A respectively. Likewise, théx)-representation of an elemetd = B) €
L(8,) contains ‘(' for the elements i®, ‘)’ for the elements inA and %’ for the
elementinB \ A.

Generally, letF' be a sequence containing left and right parentheses. Consec-
utively and as long as possible remove matched pairs of adjacent brackets, i.e.,
substrings (). Clearly, the order of operations does not matter. The elements
which would be removed by the abowetchingare calledixedor pairedelements
and the remaining ones are calligde In particular, the free parentheses always
form the following, possibly empty, subsequenge:..)) ((...((.

3. Edge Decompositions of Minimum Size

Here we present a few Dilworth-type theorems for digraphs and posets.

Let D be any digraph. (Here we allow loops and opposite edges.) Consider
partitions of V(D) into vertex-disjoint directed cycles and directed paths. (We
consider a single vertex as a path of length zero; loops and pairs of opposite edges
are considered as cycles.) LetD) be the minimum number of directed paths in
a such partition.

On the other hand, le¥ (D) be the maximum ofA| — | B| taken over all pairs
of disjoint setsA, B C V(D) such that any directed path connecting two distinct
vertices fromA contains a vertex oB and any cycle intersecting intersectsB.

(In particular, if(i,i) € E(D) theni ¢ A.) Clearly, for any such paifA, B) we
have|P N A| < |P N B| + ¢, wheres = 1 if P is adirected path and= 0 if P is
a directed cycle. This implies that(D) > M (D).

We will show that we have in fact equality for ay. This was originally proved
by the author by using the linear programming method of Dantzig and Hoffman [6].
Here we present a much simpler argument suggested by Graham Brightwell.

THEOREM 1. For any digraphD we haven(D) = M (D).

Proof (Brightwell). Consider the bipartite grapti on two copies ol (D), say
X ={vY:veV(D}andY = {v" : v € V(D)}, where we conneat” to v" if
and only if (u, v) € E(D). Itis easy to check that the number of edges missing in a
maximum matching irG equalsm (D). By the defect form of Hall’'s theorem, this
number equals the maximum pf| — |I"(Z)| over Z C X, wherel'(Z) denotes
the set of neighbours df. Choose any extremal sgt Let

A=1{veV(D) :veZ v ¢TI (2)},
B = {veV(D):vW¢gZ v'el(Z))].

Let P = {vy, ..., v/} be adirected path iP with vy, v; € A,1 > 2. Asv)* ¢ I'(2),
we conclude that,” ; & Z. Asv;y’ € Z,there mustbe e [1,/—2] suchthab,” € Z
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butv’, , & Z. Asv/,, € I'(Z), we havev;,1 € B. Similarly, any cycle intersecting
A intersectsB. Hencem (D) = |A| — |B| < M (D). O

Remark.For a cycle-free digraplD, the conclusion of Theorem 1 can be de-
duced from the result of Saks [18, Theorem 5.3] pointed to the author by one of
the referees. Saks’ result is more general, but it applies only to cycle-free digraphs
and its proof is complicated.

The minimum number of paths in a cycle-path decomposition BfD) can be
computed by applying Theorem 1 to the appropriately defdieztted line graph

of D. However, we present a direct proof which gives a straightforward algorithm
for constructing a minimum partition: remove one by one all cycles and then —
maximal paths. It turns out that it is enough to consider only p&irB C E(D)

of the following rather special form: take a partitichU Y = V(D), let A =
{x,y) e E(D) :x e X,yeY},B={y,x) e ED):x € X,y e Y}and
N(X,Y) = |A| —|B|.

THEOREM 2. For any digraph D, the minimum number (D) of paths in a
partition of E(D) into directed paths and cycles is equal to

N(D)=maxXN(X,Y): XUY =V(D), XNY = @).

Proof. It is immediate that (D) > N (D).

As the removal of a cycle does not afféétD), it is enough to prove the reverse
inequality for a cycle-free digraplp. To apply induction orfE(D)| we have to
show thatV (D’) < N(D), whereD' is obtained fromD by removing the edges of
a maximal pathP = (xq, ..., x;).

To see this take a partitiok UY = V(D’) with N(D') = N(X, Y). SinceP is
maximal andD is acyclic there is ng € V(D) with (y, x1) € E(D). Therefore,
if x; € Y, we can movex; to X without decreasingv (X, Y). Likewise we may
assumex, € Y. But if we add back the edges &f, we will increaseN (X, Y) by
1. if moving alongP we change side frorii to X i times, then we go frorX to Y
i + 1 times. This shows thd{ (D’) < N(D) as required. O

The following corollary is obtained by applying Theorem 1 or 2 to the Hasse
diagram of a poseP.

COROLLARY 3. The minimum size of a skipless chain decomposition of a poset
P equals the maximum @A | — | B| over all disjoint setsA, B C & such that any
skipless chain containing two elements franmtersectsB.

The minimum size of an edge decompositionfokquals the maximum of
e(X,Y) — e(Y, X) over all partitions? = X U Y, wheree(X, Y) denotes the
number of elemenia < y) € L(P)withx € X andy € Y.
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4. Symmetric Edge Partitions of Cubes

The fundamental result of de Brujin, Kruyswijk and Tengbergen [4] (see, e.g., [2,
Section 3.1] for a proof) asserts th&f, = (21", ) is asymmetric chain order
that is, admits a decomposition idigmmetric chaingA chainx; < --- < x;ina
ranked poset?, r) is calledsymmetridf it is skipless and-(x1) = r(P) — r(xz).)

This was strengthened by Anderson [1] and Griggs [10], who showed that a LYM
poset# with a unimodal symmetric rank-sequence is a symmetric chain order.
(Note that the number of chainsuis %) — minimal possible.)

The latter result is applicable #(8,), which as a regular poset has the LYM
property. However, this way we obtain a purely existentional result while one
would wish to have an explicit decomposition. Here we provide an explicit con-
struction, which like that of Greene and Kleitman [9] and Leeb (unpublished) on
B,, utilises bracket representations.

THEOREM 4. For everyn, L(8,) is a symmetric chain order. In other words,,
admits an edge decomposition into symmetric chains.

Proof. Assume that the numbers 1., n are placed on a circle clockwise in
this order. Leto denote theshift permutationwhich maps every element to the
next position clockwises (k) = k+1 (modn) and leto @ be itsith iterate. (These
are referred to also astations) For clarity of language we use the same symbol
o for the corresponding action on the vertex set and the edge sgf.diVe will
produce a -invariant edge partition.

We build, inductively oz, a family &, of n-element sequences, starting for the
casen = 1 with the family#; = { ( }. To build %, 1 apply Operations A and B to
every sequencé e ¥, and let#,,,; comprise the resulting sequences. Operation
A: add ‘(" to the right of F. Operation B: add ‘)’ to the right of and throw away
the resulting sequence if it does not contain free elements (i.e., if all its parentheses
can be paired).

Proceeding in this way we obtain, for example,

F2= {((},
Fz = {((G (O}
Faoo= {(CCGC CCO, (O

It is easy to see thaf, is the set of alk-sequences beginning with ‘(" which is
a free element. (In particular, all right parentheses are paired.)

For any sequencé < %, we build the corresponding chaifiz in L(8,)
which has lengthr, wheret is the number of free members &f. To obtain the
(x)-description of theéth element ofC, i € [¢], we reverse irF the last — 1 free
parentheses and replace ilie free element (when counted from the right) by the
starx. Thus, for example,(‘() (()’ gives (() * () and = ()) () which correspond
to the following chain inL(Be):

(3.6} C {3.4,6}) < ({3, 4,6} C {1, 3, 4,6}).
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It is easy to see that evedyr is a symmetric chain. We claim that
D, ={cVCp):FeF, j=0,...,n—1

is the required edge partition.

We have to prove that for every element= (A C B) in L(8,) there are
uniqueF € F, and;j € [0,n — 1] such thatc € ¢)(Cy). First we show how to
find at least one such p&iF, j).

Step 1 Write x in the (x)-representation.

Step 2Rotate the pattern to bring the star to position 1 and then identify all free
parentheses. Clearly, if disregarding the paired elements, our sequence is
).,

Step 3.Rotate again so that the first free left parenthesis identified in Step 2
(or the star itself if no ¢ is free) is moved to position 1. Let be the number of
positions that the star was moved anticlockwise by Steps 2 and 3 combined.

Step 4Replace the star and all free right parentheses identified in Step 2 by left
parentheses. Ldt be the resulting sequence.

Obviously, when we pair brackets i, we obtain the same pairings as in Step 2.
This implies thatF e #, as it starts with a free(* and thatx € o (Cr) as
required. Here is an illustration far= ({1, 6, 7} C {1, 4, 6, 7}) € L(Bg):

Stepl: ) ( (. x () ) (
step2: x [O]) [O] ( «
Step3:  ( ( * ) (and;j = 1)
Stepd: (( ( () ( () (thisisF)

The unigueness ofF, j) may be established in different ways. One, which
actually gives an alternative definition &b,, is the following. Given the(x)-
representation of, letg(i) =1, —r; forO <i <n — 1, wherel; andr; =i — [;
are respectively the number of left and right parentheses occuring irptigtions
preceding %' clockwise. Now,C starts at the element on whighachieves its
maximum. (If there are a few such elements, then it is the first one.) Why? Just pair
the brackets in théx)-representation of =/ (x) € Cy, e.g.,

COM]O]H[ODO] (1)

and notice that any paired block (boxed regions) contributesz@thile any right-
hand-sided part of it contributes a strictly negative value. Now, the maximuym of
is the number of free left parentheses in (1) and this is achieved for the first time
when considering the segment preceding the star, as required.

But now, once thaj has been identified, there trivially could not be two suitable
F’s. O
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For the remainder of this work leb, denote the edge decomposition®f con-
structed above. It has the following properties.

THEOREMS. LetC = (A; C --- C Ay) be one of the chains im,. If A; ;1 =

A; U {a;}, then the elements,_4, ..., a; are situated on the circle in this order
(clockwisé and betweem, . ; anda; (clockwisg there is an even number of places.
For eachi e [k — 3] there is an elementB C B’) belonging to a chain ofD,
shorter thanC such that

A;CBC B'C A3 2

Proof. Take the sequendg € %, giving rise toC. (We may assumg = 0.) The
fact that inF every pair of consecutive free elements contains only paired brackets
in between implies the first part of the theorem.

To show the second claim, Iét’ be the sequencg with the (i + 1)st free left
bracket (if counted from the right) replaced by ‘)’ which is then paired with the
(i + 2)nd free element:

F: (o(o(o(o(o(o

X oo Ai
e S Ai+3
F': (o(ol(o)]o (oo
Ko B
K B’

The new sequence corresponds to a chain of lehgth2 and itsith andi + 1st
elements obviously satisfy the required property. O

5. Applications of the Partition D,

We would like to include here some applications of the edge partifipribuilt in
Theorem 4. Basically, we are inspired by known results where a symmetric vertex
decomposition ofB, is used. We refer the reader to Section 3.4 of Anderson’s
book [2] for an exposition of a few results of this type. | am grateful to lan An-
derson for drawing my attention to some other applications not surveyed in his
book.

5.1. ON THE NUMBER OF ANTICHAINS IN L(B,,)

Let us consider the following question: what ¢gL(8,)), the number of an-
tichains inL(8,)? The computation of(B,) was an old and difficult problem;
a complicated asymptotic formula is established by Korshunov [14].

Here we provide some rough estimatesqafl(8,)) by applying ideas of

Hansel [12] who showed that'2< ¢(8,) < 3", whereN = w(8,) = (Ln’}zj).



238 OLEG PIKHURKO

Considering all possible subsets of the largest antichaih(¢#,) we obtain
trivially ¢(L(8B,)) > 2", wherem = w(L(B,)) = rn/21(m';2j).

On the other hand, observe that an antichhia L ($8,) is uniquely determined
by theidealA(A) = {x € L(B,) : Ja € A, x <a}. Considerany’ = (x1<<---<
x;) € O,. By Theorem 5 we can fing; in a shorter chain with,; > < y; < x;,»
for3 <i <1 —2.KnowingA(A) N C’ for everyC’' € D, shorter tharC we know
A(A) N {ys, ..., y_2}. But then it is easy to check that for at most 4 elements of
C we cannot deduce whether it is i(A), and thereforeA(A) N C can assume
at most 5 possible values. Considering consecutively the chaieg, ah some

size-increasing order we conclude thdf. (8,)) < 5".

5.2. ORTHOGONAL PARTITIONS OFL(B,)

Two chains in a poseP are calledorthogonalif they have at most one common
element. Two vertex partition® and’ areorthogonalif any C € D is orthog-
onal to anyC’ € D’. This notion is of interest because, as proved by Baumert
et al [3], the existence of two orthogonal minimum decompositions implies one,
rather strong, Sperner-type property (see [2, Section 3.4.3] for details).

A result of Shearer and Kleitman [13] (see Section 3.4 in [2]) asserts that there
exist two orthogonal chain decompositions 8f into (LanJ) chains each. What
can be said about(B,)?

We define theeomplementary chai@ of a chainC by replacing every element
by its complement, i.e., i€ = (A C --- C Ay) thenC = (A, C --- C Aj). Let
D, ={C : C € D,}, whereD, is the decomposition built in Theorem 4.

LEMMA 6. Two elements; = (A1 C By) andx, = (A, C Bp) of L(8,) can
belong simultaneously t®, and D, only if n = 2k is even and|B1|, |By|} =
{k, k+ 1}.

Proof.Leti, € [n] be the elementaB, notinA,, h =1, 2, and let pairsF, j)
and(F’, j') give rise to chaing, C' € D, such thatC’ containsx; andx, while
C containsx; andXx, respectively. Assume that = 0 andx; < xp, i.e.,B; C A,.

In F’ i, precedes; and we claim that’ does not contain a free element be-
tween them. Indeed, if it be in the positione [r], theny € B; andy ¢ A,
that is,o =/ (y) must be a free element ifi. But theno /) (y) must lie between
o “I(i1) < o (iy). (In C the elemenk, comes befor&y.) This contradiction
(on one hand the elemenis y, i; go clockwise, on the other — anticlockwise)
proves the claim.

Thus all the elements betweénandi, are paired inF’; thereforeB; = A,
and there must be the same number of left and right parentheses in this interval.
Consideringxz, x1 € C we show the analogeous statement about the elements
between; andi, (if going clockwise), which clearly implies the claim. O

COROLLARY 7. For oddn there is a pair of orthogonal symmetric chain decom-
positions ofL(B,,).
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Remark.Unfortunately, we do not know if the corresponding claim is true for
evenn.

5.3. A STORAGE AND RETRIEVAL PROBLEM

Suppose we maintain a database withecords which we number from 1 0

and we wish to organize an efficient searching. We assume that we have queries
01, ..., Q) each of which we identify with the set of records satisfying it, that is,

Q; C [n] and these subsets are not necessarily distinct. One idea, see Ghosh [8],
is to find a sequenc& of elements ofln] such that evenyQ; occurs inX as a
subsequence of consecutive terms so that egergan be defined by a starting
position inX and the size oD);.

In connection with this Lipski [15] considered the following problem. Find the
shortest sequence of elements¥of= 1] such thatX contains everyd C [n] as a
subsequence ofi| consecutive terms. He showed thatthe length of an optimal
sequence, satisfies

1/2
(i) 2" < (1+0(1)s, < <§) 2" ()

mn

As far as | know, these seems to be the best known bounds to date.

Here we ask what is the value gf the shortest length of a sequentesuch
that for everyA C B C [n] the sequenc& containsA as a subsequence [of|
consecutive terms preceded bywhere{x} = B \ A. Such a situation can happen
if every query is a set with a selected point. For example, we search in a dictionary,
the allowed queries are of the form “Finmdord’ and the answer should give the
entry whereword is defined plus all relevant entries. Applying the ideas of [15] we
prove the following upper and lower bounds.

THEOREM 8.

1/2
(55) 2’ =a+owy = (=)2- (4)

Proof. Clearly, 1, exceeds the number of different pails — A U {x} with
|A| = [n/2], which implies the lower bound in (4) by Stirling’s formula.

On the other hand, associate with every ch@ig- (A; C --- C A,) in D, the
sequence of elements pf] which contains first the elements af, in any order
which then are followed by,, ..., a,, where{a;} = A; \ Ai_1,i =2,..., 4.

Let[n] = S U T be a partition ofin] into 2 parts of (nearly) equal sizes. Let
o1, ..., ¢ be the sequences corresponding to a symmetric vertex decomposition
of 25. Also, lety, ..., ¥; be the sequences corresponding to a symmetric edge
decomposition of 2, each sequence being reversed.
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Clearly, for everyA c S there existsp; containingA as the first consecutive
|A] terms and for everA C A U {x} C T there existg/; containing, at the endy
preceded by.

Now consider the sequence

X1 = Y101¥12 . . . Y1 YoPp1V2ga . .. iy

Take anyA C [n] andx € T \ A. There isy; containing, at the end, followed by

ANT andg; containingA N S as an initial subsequence. Therefakg,contains

x followed by A. InterchangingS and 7', we write a sequenck, containing every

pair A C A U {x} with x € S. The sequenc&’, X5 is the required (and explic-

itly constructed) sequence. It is easy to see that the average size of a sequence
corresponding to a chain of a symmetric vertex or edge decompositica), i

(3 +0o(1)n. Thereforet, < 2(3 + o(1)) nkl which gives the desired upper bound

by Stirling’s formula. O

5.4. ONE NUMERICAL PROBLEM

There exists a so called Audit Expert Mechanism which can be used to protect
small statistical databases, see Chin and Ozsoyogly [5]. To find an optimal mech-
anism the following problem has to be solved. Suppose we operate:iiples
of nonzero realsiy, ..., a, and we want to find what is the maximum possible
number of subsets C [r] such thatS(7) is equal to either 0 or 1. (Here and later
we denoteS(/) = Y., a;.) The best possible bound ()@‘(n’ﬁ)l/zj) was found by
M. Miller, Roberts and Simpson [17] and all extremal sequences were characterised
by K. Miller and Sarvate [16] (for integers) and by Griggs [11] (for reals). The
papers [17, 16] make use of the existence of a symmetric chain decomposition of
B,.

Here, applying a symmetric chain decompositior.of3,,), we can findk, the
maximum possible number of elementsc J) € L(B,) suchtha{S(/), S(J)} =
{0, 1} over all real sequences, ..., a,. Actually, we can allow zero entries for,
as we will see later, this does not afféct Apparently, this problem does not have
such an application like that of the original problem, but it might be of some interest
especially as an unexpected application of a symmetric chain decomposition of
L(B,).

The expressiolta)’ is a shorthand for repeated times. Also we assume that
all n-tuples have their entries ordered nondecreasingly.

THEOREM 9. Forn > 2 we have
n
K =1[n/2 , 5
/21,7 ©)
and this value is achieved for and only for the following sequengest)*, (+1)%),
(=D* 1, (+D**Y and (-D* 1, 0, (+1¥) —forn = 2k and ((—D*, (+D**) -
forn =2k + 1
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Proof. Let m be the largest index for which,, < 0. (If a; > O, letm = 0.)
Define f : 2”1 — 20" py the formula

fU) =1TAIml = U \[mD)U(mI\D), IClIn]

One can easily check thatc J c [n] impliesS(f (1)) < S(f(J)).
D, can be viewed as a collection of symmetric chainslth 2et X, C --- C
X,_, be one such chain. The sequence

S(f(X), .. S(fF (X))

is nondecreasing and therefore 0 and 1 can occur side by side there at most once.
As everyA C B is present in exactly one chain arfdis a bijection preserving
or reversing the_-relation, K does not exceed the total number of chains, which
gives the required upper bound.

A moment’s thought reveals that a necessary and sufficient condition for an
tuple to be optimal is the following. i = 2k + 1 then for everyA C B C X,
|A| = k, we haveS(f(A)) = 0andS(f(B)) = 1. If n = 2k then for every
ACBLCCcCX,|A|l =k—-1,among the numbers

S(f(A) =S(f(B)) = S(f(C)) (6)

there is a 0 adjacent a 1.

This condition is fulfilled for the sequences mentioned in the statement. Indeed,
let us considex(—1)*, (+-1)¥+1), for example. Heren = k and for anyA — B
with |[A| = k we have

S(f(A)) = S(AA[KD = (=D (k —s) + (k —5) =0, ()

wheres = |A N [k]|. Similarly, S(f(B)) = 1 so the sequence is optimal.

We claim that these are essentially the cases of the equality. Let us do the harder
casen = 2k. If for somei # j we havey; # +£1anda; # £1,thenA C AU{i} C
AU{i, jlwithanyA e X*D A ¥, j, obviously violates the condition. If for
exactly one we havea; # +1, then consideringd C— A U {i} = C we conclude
that S(f(A U {i})) = 0 foranyA e (X \ {i})*D. Suppose;; > 0, for example.
ThenS(f(AU{i})) = k—j—1+a; = 0, wherej is the total number of elements
equal to—1 (so Z — 1 — j elements equat-1). If a; = 0, then we have the third
example mentioned in the theoremalf> 2, thenj > k + 1 and any sequence (6)
with C # i violates the condition. Finally, ifa;| = 1 for everyi, then arguing as
in (7) we deduce that we can have either k£ + 1 positive entries. O

6. Characterisation of Line Posets

Here we ask ourselves when a given paéés the line poset of som@ and what
information about?” can be reconstructed fro(#). (Of course, it is implicitly
understood that we operate with isomorphism classes of posets.)
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Now, L(#) cannot contain elements, x, y, z such thatw < y, x <y, w < z
butx <£z; call this configurationV. Indeed, ify andz coverw they must be of the
form (a < b), (a < ¢), wherew = (d < a), somea, b, ¢, d € &. Then the relation
x < y implies thatr = (e < a) which implies thatx < z.

Also, L(£) cannot contain the configurati@h,, n > 3, made of elementsand
X1, ..., %, such thaty; < y <x, andx; < x;,1, fori € [n — 1]. Indeed, suppose the
contrary. Clearly,? contains elementg < z; < - - - <z, such that; = (z;_1 < z;).
But y covers the same element.gsand is covered by the same elementas,
SO0y = (z1 < z,_1) andn = 3; but theny = x,, which is a contradiction.

For a posetP let T () = (C, k, I, u) be the quadruple witl? being a subposet
of # spanned by the nonextremal elements, that ifdbg » : 3b,c € P, b <
a < c} andk is the number of pair& < b) with a, b € £ \ € while the functions
l,u: C — Ngare given by

l(a) = {x e P\C:x <all,
u@a) = fxe P\C:x>al|, aceccC.

It is easy to see thdt(#) determined.(£).
The following theorem states that the above examples provide a complete an-
swer to our two questions.

THEOREM 10. A posetL is isomorphic toL(£) for some& if and only if
L contains neither configuratio&v nor any ofC,, n > 3. Furthermore,T (P)
determined.(#) and can be reconstructed from it.

Proof. Given a poset£ without N or C, let X be two disjoint copies of its vertex
set, namelyX = {x", x¥ : x € L£}. Letx” ~ yVif x < y; letx” ~ y” if for some
s € L we haves > x ands > y; letx¥ ~ yY if for somes € £, s < x ands < y.

We claim that~ is an equivalence relation. Indeedxif ~ y* andy” ~ z"
then there are, t € £ such thatx, y < s andy, z < r. But thens must coverx for
otherwisex, vy, s, t would span a forbidden configuration. 8oz < ¢ andx”™ ~ z”.
The remaining cases are equally easy.

Letx denote the equivalence classxo€ X. Define the posef* (also denoted
by L=Y(L))onV = X/~={x:x e X}byA < B, A, B € V,iffin £ there exist
y < z with y¥ € A andz” € B. One can check that this is indeed an ordering.
For example, to check its transitivity, ldt < B and B < C, choosew < x and
y < zin Lwithw”Y € A, x",y¥ € Bandz" € C; thenx” ~ y¥ implies that
w<x<y<zandA <C.

Let us show that” coversx¥. Assuming the contrary we find> y andw > v
in £ with z ~ x*, y¥ ~ w” andv” ~ xV. By the definition of~, somer € £
covers bothe andz, somes € £ is covered by both andv andv < w <y <z -
which implies that£ contains somég’,,, which is forbidden.

We claim thatt = L (&) via the mapF which sends: € £ to (xV < x*). First
note thatF is an order preserving map:if> y in £, thenx” ~ y”, which implies
F(x) > F(y) as desired. Next is injective for if F(x) = F(y) thenx” ~ y* and
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x¥ ~ y¥, which implies that for some andz we havew < x < zandw < y < z;
but as.£ does not contain configuratiafi; we conclude that = y. To show that
F is surjective take anyA < B) € L(P). As A < B, for someL-elementst < y
we haved = xV, B = y~. But it is easy to see that* < y”, which implies that
(A < B) = (xV < x") = F(x). Finally, if F(x) < F(y) thenx" ~ y¥ andx < y.
This proves completely that = L(P).

In the second part it is enough to show that for any pggete haveT (R) =
T(P), where? = L~ 1(L), £ = L(R). To build a natural isomorphisni/ :
C(R) — C(P) take, for any element € C(R), someb < a which exists as is
a non-extremal element &t. Now let H (a) = x*, wherex = (b < a) € L£ and~
is as above. To show thét is well defined leb’ be another choice df and denote
y = (b <a). Letc be an element covering Then(a < ¢) covers inL bothx and
v, so by the definition of? we havex” ~ y*. Also, H(a) € & is not extremal as

(b<a)¥ < H(a) < (a<o).

Next, H is an order-preserving bijection. Indeed, det> b in C(R). Choose
c<b.ThenH(a) = (b<a) andH () = (c <b). But(c < b)" ~ (b < a)”
and we haveH (a) > H(b) by the definition of the order oeP. To show that
H is injective choose any,a’ € C(R). ThenH (a) = H(a') implies thaty =
(c<a) ~y = (d <d)", somec, c’ € R. Therefore there is € L covering
both y andy’ which impliesa = &’ in R as required. To establish the surjectivity
of H considerx = (a < b)Y € C(P), for example. Observe first thate R is
not extremal. Indeed, take amye & covered byy; as we have already shown any
pairy < x is of the form(c < d)V < (¢ < d)” which impliesd = a andc < a. Now
H(a) = (c < a)* = x as required. Again, any two adjacent element€ @) can
be represented d@s < b)V < (a < b)”" and then they are the images of two adjacent
elementsq < b of C(R), which implies that® (£) = C(R).

Clearly, H preserve, [ andu, which completes the proof. a
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