NOTE

Enumeration of Labelled (k, m) -Trees

Oleg Pikhurko*

Department of Pure Mathematics and Mathematical Statistics, Cambridge University, Cambridge CB2 1SB, United Kingdom E-mail:op201@cam.ac.uk

Communicated by the Managing Editors

Received February 12, 1998

A k-graph is called a (k, m) -tree if it can be obtained from a single edge by consecutively adding edges so that every new edge contains $k-m$ new vertices while its remaining m vertices are covered by an already existing edge. We prove that there are

> $(e(k-m)+m)!(e(\frac{k}{m})-e+1)^{e-2}$ $e!m!((k-m)!)^e$

distinct vertex labelled (k, m) -trees with e edges. \circ 1999 Academic Press

The notion of a tree and its different extensions to k -graphs, that is, k-uniform set systems, play an important role in discrete mathematics and computer science. We will dwell upon the following, rather general, definition suggested independently by Dewdney [5] and Beineke and Pippert [2].

Let us agree that the vertex set is $[n]=\{1, ..., n\}$. Fix the *edge size k* and the *overlap size m*, $0 \le m \le k-1$. We refer to k-subsets and *m*-subsets of $[n]$ as edges and laps respectively. A non-empty k-graph without isolated vertices is called a (k, m) -tree if we can order its edges, say $E_1, ..., E_e$, so that for every $i, 2 \le i \le e$, there is $i', 1 \le i' < i$, such that $|E_i \cap E_i| = m$ and $(E_i \backslash E_i) \cap (\bigcup_{j=1}^{i-1} E_j) = \emptyset$. In other words, we start with a single edge and can consecutively affix a new edge along an m-subset of an existing edge.

Thus, a (k, m) -tree with e edges has $n = e(k-m)+m$ vertices and its edges cover $f = e((\frac{k}{m}) - 1) + 1$ laps. For example, a $(k, 0)$ -tree consists of disjoint edges.

* Supported by an External Research Studentship, Trinity College, Cambridge, UK.

197

198 NOTE

The problem of counting $(m+1, m)$ -trees which are known in the literature as m-trees, received great attention and was completely settled by Beineke and Pippert [1] and Moon [9]. This extends celebrated Cayley's theorem [3] as, clearly, 1-trees correspond to usual (Cayley) trees. Later, different bijective proofs for *m*-trees appeared as well, see [11, 7, 8, 6, 4].

In this paper we enumerate (k, m) -trees. It is not surprising that many of the above counting techniques are applicable here as is, for example, Foata's bijection [7] (details are available from the author [10]). Also, as observed by the referee, our formula can be obtained via Chen's method [4]. We decided to present here an inductive proof which is the shortest one, perhaps.

Let $T_{km}(e)$ denote the number of (k,m) -trees on $\lceil n \rceil$ with e edges, $n = e(k-m) + m$, and let $R_{km} (e)$ count the trees *rooted* at the lap [m], that is, those trees for which $[m]$ is covered by some edge.

THEOREM 1. Given integers k, m, e with $0 \le m \le k-1$ and $e \ge 1$, let $n = e(k-m) + m$, $l = \binom{k}{m}$ and $f = e(l-1)+1$. Then the number of different (k, m) -trees on $\lceil n \rceil$ equals

$$
T_{km}(e) = \frac{n!f^{e-2}}{e!m!((k-m)!)^e}.
$$
\n(1)

Proof. Like in Beineke and Pippert $\lceil 1 \rceil$, to prove the theorem, we write down a recurrence relation for $T_{km}(e)$ and then verify that (1) does satisfy the relation. Let us agree that $T_{km}(0)=R_{km}(0)=1$.

Counting in two different ways the number of pairs (H, L) , where H is a (k, m) -tree on [n] rooted at an *m*-subset L of [n], we obtain

$$
\binom{n}{m} R_{km}(e) = f \cdot T_{km}(e). \tag{2}
$$

Next, consider the following method for constructing trees. Select an edge E, a k-subset of [n], and label by L_1 , ..., L_l the laps of E. Represent $e-1$ as a sum of l non-negative integers, $e-1=e_1+\cdots+e_l$. Partition $[n] \ E$ into sets $X_1, ..., X_l$ of sizes $e_1(k-m), ..., e_l(k-m)$ respectively. On each $L_i \cup X_i$ build a (k, m) -tree H_i rooted at L_i , $i \in [l]$. Clearly, the union of all H_i 's plus the edge E forms a (k, m) -tree with e edges and every such tree H is obtained exactly e times. Therefore, by (2) we obtain

$$
eT_{km}(e) = {n \choose k} \sum_{e} \frac{(n-k)!}{(e_1(k-m))! \cdots (e_l(k-m))!} \prod_{i=1}^{l} R_{km}(e_i)
$$

$$
= \frac{n!}{k!} \sum_{e} \prod_{i=1}^{l} \frac{m!(e_i(l-1)+1) T_{km}(e_i)}{(e_i(k-m)+m)!},
$$
(3)

NOTE 199

where \sum_{e} denotes the summation over all representations $e-1=$ $e_1 + \cdots + e_i$ with non-negative integers summands.

Clearly, formula (1) gives correct values for $e=0$. Also, the substitution of (1) into the both sides of (3) gives (after routine cancellations)

$$
l(e(l-1)+1)^{e-2} = \sum_{\mathbf{e}} \frac{(e-1)!}{e_1! \cdots e_l!} \prod_{i=1}^l (e_i(l-1)+1)^{e_i-1}.
$$
 (4)

The last identity (in slightly different notation) was established by Beineke and Pippert $[1, Lemma 2]$, which proves our theorem by induction.

COROLLARY 1. The number of labelled m-trees on n vertices, $n > m \geq 1$, is

$$
T_{m+1, m}(n-m) = {n \choose m}(mn-m^2+1)^{n-m-2}.
$$

ACKNOWLEDGMENTS

The author is grateful to the anonymous referee for helpful comments

REFERENCES

- 1. L. W. Beineke and R. E. Pippert, The number of labelled k -dimensional trees, J . Combin. Theory 6 (1969), 200-205.
- 2. L. W. Beineke and R. E. Pippert. On the structure of (m, n) -trees, in "Proc. 8th Southeast" Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge)," Congressus Numeratium, Vol. XIX, pp. 75-80, Utilitas Math., Winnipeg, 1977.
- 3. A. Cayley, A theorem on trees, *Quart. J. Math.* 23 (1889), 376-378.
- 4. W. Y. C. Chen, A coding algorithm for Rényi trees, *J. Combin. Theory Ser. A* 63 (1993), $11 - 25$.
- 5. A. K. Dewdney, Multidimensional tree-like structures, J. Combin. Theory B 17 (1974), 160-169.
- 6. O. Egecioglu and L.-P. Shen, A bijective proof for the number of labelled q -trees, Ars Combin. 25 (1988), 3-30.
- 7. D. Foata, Enumerating k -trees, Discrete Math. 1 (1971), 181-186.
- 8. C. Greene and G. A. Iba, Cayley's formula for multidimensional trees, Discrete Math. 13 $(1975), 1-11.$
- 9. J. W. Moon, The number of labeled *k*-trees, *J. Combin. Theory* **6** (1969), 196–199.
- 10. O. Pikhurko, Foata's bijection for (k, m) -trees, manuscript.
- 11. C. Rényi and A. Rényi, The Prüfer code for k -trees, in "Combinatorial Theory and Its Applications" (P. Erdős et al., eds.) pp. 945–971, North-Holland, Amsterdam, 1970.