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A k-graph is called a (k, m)-tree if it can be obtained from a single edge by con-
secutively adding edges so that every new edge contains k&m new vertices while
its remaining m vertices are covered by an already existing edge. We prove that
there are

(e(k&m)+m)!(e( k
m)&e+1)e&2

e!m!((k&m)!)e

distinct vertex labelled (k, m)-trees with e edges. � 1999 Academic Press

The notion of a tree and its different extensions to k-graphs, that is,
k-uniform set systems, play an important role in discrete mathematics and
computer science. We will dwell upon the following, rather general, defini-
tion suggested independently by Dewdney [5] and Beineke and Pippert
[2].

Let us agree that the vertex set is [n]=[1, ..., n]. Fix the edge size k and
the overlap size m, 0�m�k&1. We refer to k-subsets and m-subsets of
[n] as edges and laps respectively. A non-empty k-graph without isolated
vertices is called a (k, m)-tree if we can order its edges, say E1, ..., Ee , so
that for every i, 2�i�e, there is i$, 1�i$<i, such that |Ei & Ei$|=m and
(Ei"Ei $) & (� i&1

j=1 Ej)=<. In other words, we start with a single edge and
can consecutively affix a new edge along an m-subset of an existing edge.

Thus, a (k, m)-tree with e edges has n=e(k&m)+m vertices and its
edges cover f=e(( k

m)&1)+1 laps. For example, a (k, 0)-tree consists of
disjoint edges.
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The problem of counting (m+1, m)-trees which are known in the
literature as m-trees, received great attention and was completely settled by
Beineke and Pippert [1] and Moon [9]. This extends celebrated Cayley's
theorem [3] as, clearly, 1-trees correspond to usual (Cayley) trees. Later,
different bijective proofs for m-trees appeared as well, see [11, 7, 8, 6, 4].

In this paper we enumerate (k, m)-trees. It is not surprising that many of
the above counting techniques are applicable here as is, for example,
Foata's bijection [7] (details are available from the author [10]). Also, as
observed by the referee, our formula can be obtained via Chen's method
[4]. We decided to present here an inductive proof which is the shortest
one, perhaps.

Let Tkm (e) denote the number of (k,m)-trees on [n] with e edges,
n=e(k&m)+m, and let Rkm (e) count the trees rooted at the lap [m], that
is, those trees for which [m] is covered by some edge.

Theorem 1. Given integers k, m, e with 0�m�k&1 and e�1, let
n=e(k&m)+m, l=( k

m) and f =e(l&1)+1. Then the number of different
(k, m)-trees on [n] equals

Tkm(e)=
n!f e&2

e!m!((k&m)!)e . (1)

Proof. Like in Beineke and Pippert [1], to prove the theorem, we write
down a recurrence relation for Tkm(e) and then verify that (1) does satisfy
the relation. Let us agree that Tkm(0)=Rkm(0)=1.

Counting in two different ways the number of pairs (H, L), where H is
a (k, m)-tree on [n] rooted at an m-subset L of [n], we obtain

\n
m+ Rkm(e)= f } Tkm(e). (2)

Next, consider the following method for constructing trees. Select an
edge E, a k-subset of [n], and label by L1 , ..., Ll the laps of E. Represent
e&1 as a sum of l non-negative integers, e&1=e1+ } } } +el . Partition
[n]"E into sets X1 , ..., Xl of sizes e1(k&m), ..., el (k&m) respectively. On
each Li _ Xi build a (k, m)-tree Hi rooted at Li , i # [l]. Clearly, the union
of all Hi 's plus the edge E forms a (k, m)-tree with e edges and every such
tree H is obtained exactly e times. Therefore, by (2) we obtain

eTkm(e)=\n
k+ :

e

(n&k)!
(e1(k&m))! } } } (el (k&m))!

`
l

i=1

Rkm(ei)

=
n!
k!

:
e

`
l

i=1

m!(ei (l&1)+1)Tkm(e i)
(ei (k&m)+m)!

, (3)
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where �e denotes the summation over all representations e&1=
e1+ } } } +el with non-negative integers summands.

Clearly, formula (1) gives correct values for e=0. Also, the substitution
of (1) into the both sides of (3) gives (after routine cancellations)

l(e(l&1)+1)e&2=:
e

(e&1)!
e1! } } } el !

`
l

i=1

(ei (l&1)+1)ei&1. (4)

The last identity (in slightly different notation) was established by Beineke
and Pippert [1, Lemma 2], which proves our theorem by induction. K

Corollary 1. The number of labelled m-trees on n vertices, n>m�1,
is

Tm+1, m (n&m)=\n
m+ (mn&m2+1)n&m&2 .
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