NOTE

Enumeration of Labelled (k, m)-Trees

Oleg Pikhurko*

Department of Pure Mathematics and Mathematical Statistics, Cambridge University, Cambridge CB2 1SB, United Kingdom E-mail:op201@cam.ac.uk

Communicated by the Managing Editors

Received February 12, 1998

A k-graph is called a (k, m)-tree if it can be obtained from a single edge by consecutively adding edges so that every new edge contains k - m new vertices while its remaining m vertices are covered by an already existing edge. We prove that there are

 $\frac{(e(k-m)+m)!(e\binom{k}{m}-e+1)^{e-2}}{e!m!((k-m)!)^{e}}$

distinct vertex labelled (k, m)-trees with e edges. \mathbb{C} 1999 Academic Press

The notion of a tree and its different extensions to *k-graphs*, that is, *k*-uniform set systems, play an important role in discrete mathematics and computer science. We will dwell upon the following, rather general, definition suggested independently by Dewdney [5] and Beineke and Pippert [2].

Let us agree that the vertex set is $[n] = \{1, ..., n\}$. Fix the *edge size k* and the *overlap size m*, $0 \le m \le k - 1$. We refer to *k*-subsets and *m*-subsets of [n] as *edges* and *laps* respectively. A non-empty *k*-graph without isolated vertices is called a (k, m)-tree if we can order its edges, say $E_1, ..., E_e$, so that for every $i, 2 \le i \le e$, there is $i', 1 \le i' < i$, such that $|E_i \cap E_{i'}| = m$ and $(E_i \setminus E_{i'}) \cap (\bigcup_{j=1}^{i-1} E_j) = \emptyset$. In other words, we start with a single edge and can consecutively affix a new edge along an *m*-subset of an existing edge.

Thus, a (k, m)-tree with e edges has n = e(k - m) + m vertices and its edges cover $f = e(\binom{k}{m} - 1) + 1$ laps. For example, a (k, 0)-tree consists of disjoint edges.

* Supported by an External Research Studentship, Trinity College, Cambridge, UK.

197

NOTE

The problem of counting (m+1, m)-trees which are known in the literature as *m*-trees, received great attention and was completely settled by Beineke and Pippert [1] and Moon [9]. This extends celebrated Cayley's theorem [3] as, clearly, 1-trees correspond to usual (Cayley) trees. Later, different bijective proofs for *m*-trees appeared as well, see [11, 7, 8, 6, 4].

In this paper we enumerate (k, m)-trees. It is not surprising that many of the above counting techniques are applicable here as is, for example, Foata's bijection [7] (details are available from the author [10]). Also, as observed by the referee, our formula can be obtained via Chen's method [4]. We decided to present here an inductive proof which is the shortest one, perhaps.

Let $T_{km}(e)$ denote the number of (k,m)-trees on [n] with e edges, n = e(k-m) + m, and let $R_{km}(e)$ count the trees *rooted* at the lap [m], that is, those trees for which [m] is covered by some edge.

THEOREM 1. Given integers k, m, e with $0 \le m \le k-1$ and $e \ge 1$, let n = e(k-m) + m, $l = \binom{k}{m}$ and f = e(l-1) + 1. Then the number of different (k, m)-trees on [n] equals

$$T_{km}(e) = \frac{n!f^{e-2}}{e!m!((k-m)!)^e}.$$
(1)

Proof. Like in Beineke and Pippert [1], to prove the theorem, we write down a recurrence relation for $T_{km}(e)$ and then verify that (1) does satisfy the relation. Let us agree that $T_{km}(0) = R_{km}(0) = 1$.

Counting in two different ways the number of pairs (H, L), where H is a (k, m)-tree on [n] rooted at an m-subset L of [n], we obtain

$$\binom{n}{m} R_{km}(e) = f \cdot T_{km}(e).$$
⁽²⁾

Next, consider the following method for constructing trees. Select an edge E, a k-subset of [n], and label by $L_1, ..., L_l$ the laps of E. Represent e-1 as a sum of l non-negative integers, $e-1=e_1+\cdots+e_l$. Partition $[n]\setminus E$ into sets $X_1, ..., X_l$ of sizes $e_1(k-m), ..., e_l(k-m)$ respectively. On each $L_i \cup X_i$ build a (k, m)-tree H_i rooted at $L_i, i \in [l]$. Clearly, the union of all H_i 's plus the edge E forms a (k, m)-tree with e edges and every such tree H is obtained exactly e times. Therefore, by (2) we obtain

$$eT_{km}(e) = \binom{n}{k} \sum_{e} \frac{(n-k)!}{(e_1(k-m))! \cdots (e_l(k-m))!} \prod_{i=1}^{l} R_{km}(e_i)$$
$$= \frac{n!}{k!} \sum_{e} \prod_{i=1}^{l} \frac{m!(e_i(l-1)+1)T_{km}(e_i)}{(e_i(k-m)+m)!},$$
(3)

NOTE

where \sum_{e} denotes the summation over all representations $e-1 = e_1 + \cdots + e_l$ with non-negative integers summands.

Clearly, formula (1) gives correct values for e = 0. Also, the substitution of (1) into the both sides of (3) gives (after routine cancellations)

$$l(e(l-1)+1)^{e-2} = \sum_{\mathbf{e}} \frac{(e-1)!}{e_1! \cdots e_l!} \prod_{i=1}^l (e_i(l-1)+1)^{e_i-1}.$$
 (4)

The last identity (in slightly different notation) was established by Beineke and Pippert [1, Lemma 2], which proves our theorem by induction. ■

COROLLARY 1. The number of labelled m-trees on n vertices, $n > m \ge 1$, is

$$T_{m+1,m}(n-m) = \binom{n}{m}(mn-m^2+1)^{n-m-2}.$$

ACKNOWLEDGMENTS

The author is grateful to the anonymous referee for helpful comments

REFERENCES

- L. W. Beineke and R. E. Pippert, The number of labelled k-dimensional trees, J. Combin. Theory 6 (1969), 200–205.
- L. W. Beineke and R. E. Pippert. On the structure of (m, n)-trees, in "Proc. 8th Southeast Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge)," Congressus Numeratium, Vol. XIX, pp. 75–80, Utilitas Math., Winnipeg, 1977.
- 3. A. Cayley, A theorem on trees, Quart. J. Math. 23 (1889), 376-378.
- W. Y. C. Chen, A coding algorithm for Rényi trees, J. Combin. Theory Ser. A 63 (1993), 11–25.
- 5. A. K. Dewdney, Multidimensional tree-like structures, J. Combin. Theory B 17 (1974), 160–169.
- O. Egecioglu and L.-P. Shen, A bijective proof for the number of labelled q-trees, Ars Combin. 25 (1988), 3–30.
- 7. D. Foata, Enumerating k-trees, Discrete Math. 1 (1971), 181-186.
- 8. C. Greene and G. A. Iba, Cayley's formula for multidimensional trees, *Discrete Math.* 13 (1975), 1–11.
- 9. J. W. Moon, The number of labeled k-trees, J. Combin. Theory 6 (1969), 196-199.
- 10. O. Pikhurko, Foata's bijection for (k, m)-trees, manuscript.
- C. Rényi and A. Rényi, The Prüfer code for k-trees, in "Combinatorial Theory and Its Applications" (P. Erdős et al., eds.) pp. 945–971, North-Holland, Amsterdam, 1970.