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Let F be a family of forbidden k-hypergraphs (k-uniform set systems). An F-saturated

hypergraph is a maximal k-uniform set system not containing any member of F. As the

main result we prove that, for any finite family F, the minimum number of edges of an

F-saturated hypergraph is O(nk−1). In particular, this implies a conjecture of Tuza. Some

other related results are presented.

1. Introduction

A k-hypergraph H is, as usual, a pair (V (H), E(H)) (vertices and edges) where

E(H) ⊂ (V (H))(k) = {A ⊂ V (H) : |A| = k}.
We sometimes call H a k-graph or even simply a graph when k is understood. The size of

H is e(H) = |E(H)| and its order is |H | = |V (H)|.
Given a familyF of forbidden k-graphs, we say that a k-graph H isF-admissible if no

F ∈ F is a subgraph of H . Next, H is F-saturated if it is F-admissible and the addition

of any extra edge to H violates this property. In other words, an F-saturated graph is a

maximal F-admissible graph. Let

SAT(n,F) = {H : H is F-saturated, |H | = n}.
A typical extremal forbidden subgraph problem or ‘Turán-type’ problem asks about

ex(n,F) = max{e(H) : H ∈ SAT(n,F)}.
On the other hand, we can ask about the opposite extremum: how large is

sat(n,F) = min{e(H) : H ∈ SAT(n,F)}? (1.1)
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We are interested only in the latter problem. If F has only a single member F , we write

sat(n, F) instead of sat(n, {F}), etc.

The sat-function was considered as early as the late 1940s by Zykov [13], but the theory

seems to be less developed than the theory of Turán-type problems. In part, this might

be the case because minimum saturated graphs are harder to handle. For example, as

demonstrated in [8], the sat-function lacks many of the natural regularity properties of

the ex-function (such as monotonicity).

Although a number of results have been obtained for special families F (see, for

instance, [1, 5, 8]), little is known about sat(n,F) for a general family F. Tuza in [11, 12]

conjectured (also an unpublished conjecture of Bollobás of the late 1960s) that, for any

k-hypergraph F ,

sat(n, F) = O(nk−1). (1.2)

The conjecture was proved by Kászonyi and Tuza [8] in the case k = 2; indeed they

showed that sat(n,F) = O(n) for all families F of 2-graphs, including infinite families.

Extending some results of Erdős, Hajnal and Moon [6], Bollobás [1] proved that

sat(n,Kk
m) =

(
n

k

)
−
(
n− m+ k

k

)
, (1.3)

where Kk
m is the complete k-uniform hypergraph of order m. As the right-hand side of (1.3)

is of order nk−1, the estimate (1.2) is essentially best possible.

The main result of this paper is to prove Tuza’s conjecture; in fact we will show that

sat(n,F) = O(nk−1) (1.4)

for all families of k-graphs for which the independence numbers are bounded by a

constant. Also, we consider the question whether the limit limn→∞ sat(n,F)/nk−1 exists.

Then, we try to evaluate sat(n, F) for one special hypergraph. As we will see, even for

rather simple hypergraphs the exact evaluation may turn out to be a hard task, since it

may involve questions of design theory.

Finally, we investigate whether estimate (1.4) is true if reformulated for some classes of

directed hypergraphs. Although it is not true for the class of all directed hypergraphs we

demonstrate that for some natural subclasses a form of (1.4) holds.

There are many related results: we refer the reader to Bollobás’s survey [3] where there

is a section on minimum saturated graphs.

2. The size of saturated hypergraphs

2.1. The main theorem

Here we present the following estimate of sat(n,F) which implies Tuza’s conjecture.

For a k-graph H we say that A ⊂ V (H) is independent if it does not span an edge of H

and the independence number α(H) is the size of a largest independent set in H . Formally,

α(H) = max{|A| : A ⊂ V (H), A(k) ∩ E(H) = ∅}.
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Theorem 2.1. Let F be a family of k-graphs such that s = max{α(F) : F ∈ F} exists, and

let s′ = min{|F | : F ∈ F}. Then, for any n,

sat(n,F) <
(
s′ − s+ 2k−1(s− 1)

)( n

k − 1

)
. (2.1)

Proof. It is enough to construct a graph H ∈ SAT(n,F) whose size does not exceed the

stated bound. Our construction will be by means of an algorithm.

Our algorithm works in the following way. Let us agree that the vertex set is X =

{1, . . . , n} with the usual ordering. Given x ∈ X and B ⊂ X, we write B < x if every vertex

in B is smaller than x. By Ux = {y ∈ X : y > x} we denote the upper shadow of x and

in the obvious way we define the lower shadow Lx. If |B| 6 k, say B consists of elements

b1 < · · · < bi, i 6 k, then we define its tail

TB = {{b1, . . . , bi, xi+1, . . . , xk} : bi < xi+1 < · · · < xk} ⊂ X(k). (2.2)

We construct an F-saturated graph H by starting with the empty hypergraph H on X

and adding to H one by one certain families of edges until we obtain H ∈ SAT(n,F).

The algorithm is rather simple. We take, one by one in order, the vertices of X. For

every vertex x, we consider all of the i-subsets of Lx, beginning with i = 0 and increasing

i until i = k − 1. For every such subset A < x, we consider TB , B = A ∪ {x}, which is,

by definition, the family of k-subsets having B as an initial segment. If at this moment

TB 6⊂ E(H) and the addition of TB to the edge set of H does not create any forbidden

subgraph, we add TB to H . This is a crucial feature of the algorithm: for every x and A

we either add all of TB or we add nothing.

Another important detail is the order of the steps. The outermost cycle has x increasing

from 1 to n. The next cycle runs for i increasing from 0 to k − 1. In the innermost cycle

we consider all i-subsets of Lx and here we are free to choose them in any order, but for

uniformity let us agree that we use here the colex order.

In the course of the algorithm we define, on the vertex set X, auxiliary hypergraphs

H1, . . . , Hn and G1, . . . , Gk , which we need for an estimation of e(H) = |E(H)|. The

k-hypergraph Hx contains precisely those edges which were added whilst considering

vertices from 1 to x inclusive. The i-hypergraph Gi contains as edges those i-subsets B for

which the set TB was added to H .

We claim that the resulting graph H = Hn is an F-saturated graph. Indeed, H is F-

admissible, as we were adding edges only if they did not produce any forbidden subgraphs.

On the other hand, take any k-subset E not in E(H). We did not use the opportunity to

add E to E(H) when x = maxE, i = k − 1 and A = E \ {x} (when TB = {E}). The only

reason for our not doing so is that the addition of E would have created a forbidden

subgraph F . Then, certainly, H + E contains F , which shows H ∈ SAT(n,F).

We now show that e(G1) 6 s′ − 1 and

e(Gi) 6 (s− 1)

(
n

i− 1

)
, i = 2, . . . , k. (2.3)
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This will establish the theorem, as then

e(H) 6
k∑
i=1

(
n− i
k − i

)
e(Gi) < (s′ − s)

(
n

k − 1

)
+ (s− 1)

k∑
i=1

(
n− i+ 1

k − i
)(

n

i− 1

)

= (s′ − s)
(

n

k − 1

)
+ (s− 1)

k∑
i=1

(
n

k − 1

)(
k − 1

i− 1

)
=

(
s′ − s+ 2k−1(s− 1)

)( n

k − 1

)
.

Assume that, for some i, 2 6 i 6 k, estimate (2.3) is not true. Then there is some

(i − 1)-set V = {v1, . . . , vi−1}, v1 < · · · < vi−1, which is the initial segment of at least s

edges of Gi. Let E1, . . . , Es ∈ E(Gi) be s distinct edges containing V as initial segment, say

Ej = V ∪ {zj}, j = 1, . . . , s, V < z1 < · · · < zs.

Since E1 ∈ E(Gi), all edges whose initial segment is E1 were added to H at the moment

when x = z1 and A = V . It follows that V 6∈ E(Gi−1), for otherwise these edges would

already be present in H . The only reason that we did not add V to E(Gi−1) earlier when

x = vi−1 and A = {v1, . . . , vi−2} must have been that the hypergraph H ′ = Hvi−1
+TV

contains some forbidden subgraph F . Note that Uvi−1
is an independent set in H ′, therefore

|V (F) ∩Uvi−1
| 6 s, by the assumption on F.

By the way the algorithm works, any permutation σ of X affecting only the upper

shadow Uz of a vertex z ∈ X (that is, σ(y) = y for all y 6 z) is an automorphism of Hz ,

because any TB ⊂ X(k) with maxB 6 z is σ-invariant.

Applying this remark to z = vi−1, we see that we may assume, since |V (F) ∩Uvi−1
| 6 s,

that

V (F) ∩Uvi−1
⊂ Z = {z1, . . . , zs}. (2.4)

Now let E ∈ E(F). Then either E ∈ E(Hvi−1
) ⊂ E(H), or else letting zj = min(E ∩

{z1, . . . , zs}) we see by (2.4) that E ∈ TEj . Since Ej ∈ E(Gi) we obtain that in both cases

E ∈ E(H). But then F ⊂ H , which is a contradiction, so (2.3) is proved for 2 6 i 6 k.
The case i = 1 does not fall into general scheme of the proof. However, it is rather trivial,

for if we have at least s′ edges (one-element subsets) in G1, say {v1}, . . . , {vs′ } ∈ E(G1),

then these vertices span a complete k-graph in H , because if E ∈ {v1, . . . , vs′ }(k) then

E ∈ T{minE} ⊂ E(H). Therefore H contains every k-graph of order s′, which is certainly a

contradiction.

Corollary 2.1. For any finite family F of k-graphs, we have sat(n,F) = O(nk−1).

Remark. Our construction is not generally best possible. For example, for the 2-graph

consisting of 2 disjoint edges the sat-function equals 3, while our algorithm gives n− 1.

Kászonyi and Tuza [8] showed that (1.4) is, in fact, valid for any infinite family of 2-

graphs. Thus, an interesting question which still remains open is whether the estimate (1.4)

is true for any infinite family F, k > 3. Our construction does not settle this question,

although possibly some modification of it can do the job.
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The algorithm has an interesting ‘convergence’ property which is true for any (finite

or infinite) family F. Namely, for any fixed natural m and any i = 1, . . . , k, if n is

sufficiently large, Gi([m]) (the graph spanned by the first m vertices of Gi) does not depend

on n. Consequently, any finite part of the resulting graph H ∈ SAT(n,F) is eventually

constant, which allows us to define the ‘limiting’ F-saturated graph H∞ of infinite order.

Unfortunately, we have not found any interesting application of this object so far.

2.2. The asymptotic behaviour of the sat-function

Let us turn to another conjecture from [12], namely that, for every 2-graph F , the limit

c(F) = lim
n→∞

1

n
sat(n,F), (2.5)

exists, for F = {F}.
We can show that (2.5) is not generally true for an infinite family F of 2-graphs.

Let us take as forbidden graphs K1,m (a star), some fixed m > 4, and cycles

Cbi , Cbi+1, . . . , C2bi , i ∈ N,
for some ‘fast growing’ sequence (bi). For n = 2bi+1 we have sat(n,F) 6 n because a cycle

on n vertices does not contain any forbidden subgraph, but the addition of any chord

produces a cycle of length at least n/2, so Cn ∈ SAT(n,F). Thus lim sat(n,F)/n 6 1.

Now, for n = bi − 1 any G ∈ SAT(n,F) can have at most

v =

2bi−1−1∑
l=0

(m− 2)l < (m− 2)2bi−1

vertices of degree strictly less than m−1. Indeed, let x be a vertex of degree at most m−2.

As ∆(G) 6 m − 1 (which is equivalent to K1,m 6⊂ G), there are at most v − 1 vertices at

distance at most 2bi−1 − 1 from x. Now, for any y ∈ G with d(x, y) > 2bi−1, the addition

of edge {x, y} to G can create neither a cycle of length at most 2bi−1 nor a cycle of length

greater than |G| = bi − 1. So, d(y) = m − 1 and all vertices of degree at most m − 2 are

confined to the ball around x containing in total at most v vertices. Therefore

e(G) >
(n− v)(m− 1)

2
=
m− 1 + o(1)

2
n

if our sequence satisfies (m− 2)2bi−1 = o(bi).

From these considerations we conclude that the limit (2.5) does not necessarily exist

for an infinite family F.

3. Butterflies

For k > 3 many totally new difficulties arise that are not present when k = 2. There are

some links with design theory, and, as designs are quite hard to handle, the same applies

to saturated hypergraphs. We will provide an example to demonstrate the point.

A Steiner triple system Sλ(2, 3, v) is a 3-hypergraph of order v in which every two distinct

vertices are covered by exactly λ edges. Later we will be interested in the existence of an

Sλ(2, 3, v). Dehon [4] characterized all possible pairs (λ, v), as follows.
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Theorem 3.1. Let λ and v be positive integers. There exists an Sλ(2, 3, v) if and only if

λ 6 v − 2, λv(v − 1) ≡ 0 (mod 6) and λ(v − 1) ≡ 0 (mod 2).

We consider sat(n, B3
m), where the 3-graph B3

m (called a butterfly) has vertex set [m+ 2]

and m edges {1, 2, i}, i = 3, . . . , m + 2. Given H ∈ SAT(n, B3
m), we build a 2-graph G, so

that {x, y} ∈ E(G) if there are m − 1 edges in H containing both x and y. Let e = e(G).

Note that if some vertices x, y, z ∈ G do not span a single edge then {x, y, z} ∈ E(H), and

so

e(H) > (m− 1)e/3 + k3(G), (3.1)

where k3(G) means the number of triangles in the complement of G. Corollary VI.1.6

from [2] (which can be deduced from the results of Moon and Moser [10]) states that

k3(G) > ē(4ē−n2)/(3n), where ē =
(
n
2

)− e denotes the number of edges in the complement

of G. We aim to show that

sat(n, B3
m) >

(m− 1)e(T2(n))

3
, (3.2)

where T2(n) is the Turán graph of order n, so e(T2(n)) =
(
n
2

)− bn2/4c.
Assume that n = 2v is even, then e(T2(n)) = v(v−1). By (3.1) we are home if e > v(v−1),

so assume the contrary. Note that ē = v(2v − 1)− e and that e < v(v − 1) implies ē > v2.

Then we have

e(H)− (m− 1)v(v − 1)/3 > k3(G) +
m− 1

3
(e− v(v − 1))

> (ē− v2)

(
2ē

3v
− m− 1

3

)
> (ē− v2) (2v − m+ 1) /3 > 0

for v > (m− 1)/2, that is, n > m− 1.

By similar reasoning we can show that (3.2) is true for any odd n > 4(m− 1)/3.

On the other hand, suppose that there exist Hi = Sm−1(2, 3, vi), i = 1, 2, v1 = bn/2c and

v2 = dn/2e; define H to be their disjoint union, H = H1 tH2.

We claim that H ∈ SAT(n, B3
m). Indeed, any 3-edge E 6∈ E(H) has at least 2 vertices in

one of the components, say x, y ∈ H1. By definition, H1 has m− 1 edges containing {x, y}
which, together with the edge E, form a butterfly. This shows that for such values of n

we have sat(n, B3
m) 6 (m− 1)e(T2(n))/3.

The above discussion combined with Theorem 3.1 gives a proof of the following.

Theorem 3.2. Let m > 2 and n be natural numbers with n > m + 2 if n is even or

n > 4(m− 1)/3 if n is odd. Then the inequality (3.2) is true.

We have equality in (3.2) if and only if n > 2m + 2 and there is an integer l such that

m− 1 = 2l and n ≡ 0, 1, 7 or 8 (mod 12), m− 1 = 3l and n ≡ 10 (mod 12), m− 1 = l and

n ≡ 2 or 6 (mod 12), or m− 1 = 6l and n ≡ 3, 4, 5, 9 or 11 (mod 12).

Characterization of non-isomorphic Steiner triple systems is in the embryo state, so we

cannot say much more about extremal graphs in the cases covered by Theorem 3.2 than
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that G = G(H) is isomorphic to the complement of the Turán graph and any 2 vertices

of H are contained in either m− 1 edges of H or none.

It is hard to find exact values of sat(n, B3
m) for all n. We will only provide some upper

bound which may be considered as a satisfactory answer to the problem.

If n is even, take a representation n = n1 + n2 with n1 and n2 being congruent to 1 or 3

modulo 6 and |n1 − n2| 6 6. Then Sm−1(2, 3, n1) t Sm−1(2, 3, n2) ∈ SAT(n, B3
m) and

sat(n, B3
m) 6 (m− 1)

((
n1

2

)
+
(
n2

2

))
/3 6 (m− 1)

(
e(T2(n)) + 9

)
/3.

If n is odd, we represent similarly n + 1 = n1 + n2, take the union of the corresponding

designs that share one vertex and deduce that

sat(n, B3
m) 6 (m− 1)

(
e(T2(n)) + n−1

2
+ 9
)
/3.

Of course, if we know that 2 or 3 divides m− 1 then we can do better.

4. Directed hypergraphs

Here we shall consider, roughly speaking, k-hypergraphs with the additional structure of

directed edges.

Actually, many different but natural definitions suggest themselves, but we will consider

in more detail the following classes (defined below): acyclic directed hypergraphs and

ordered hypergraphs. We shall ask whether the estimate

sat(n,F) = O(nk−1) (4.1)

is true for a general k-hypergraph familyF and for the appropriately defined sat-function.

Note that we can give a uniform definition of saturatedness: cf. Tuza [11]. Suppose we

have a class of objects C, with a binary relation ‘⊂’ and a rank function r : C → N. Given

a family F ⊂ C, we say that H ∈ C is F-admissible if H does not contain an F ∈ F as

a subobject. Now, let SAT(n,F) be the family of maximal F-admissible objects of rank

n; H is called F-saturated if H ∈ SAT(r(H),F).

In our cases, C is the class of hypergraphs with some additional structure, G ⊂ H holds

if H contains a copy of G as a substructure, and r(H) = |H |, G,H ∈ C.

4.1. Cycle-free directed hypergraphs

To obtain a directed hypergraph we take a usual hypergraph and on every one of its edges

introduce some orientation, that is, a linear order. In fact, estimate (4.1) is not generally

true for directed hypergraphs, which is exhibited by the directed 3-cycle C3 consisting of

edges (1, 2), (2, 3) and (3, 1): improving previous bounds of Katona and Szemerédi [9],

Füredi, Horak, Pareek and Zhu [7] showed that sat(n, C3) ≈ n log2 n.

But let us consider cycle-free hypergraphs. We say that a directed hypergraph H is cycle-

free or acyclic if there is no cycle which is by definition an alternating sequence of vertices

and edges (x1, E1, . . . , xl , El , xl+1 = x1) such that xi precedes xi+1 in Ei. Equivalently, H is

cycle-free if we can order its vertices in a way compatible with the ordering of the edges.

By definition, H is F-saturated if no F ∈ F is a subgraph of H but the addition of

any new (ordered) edge to G creates either a forbidden subgraph or a directed cycle. For
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a directed hypergraph H let α(H) be equal to the maximum number of vertices in H not

spanning an edge.

Theorem 4.1. In the class of the cycle-free k-graphs for any familyF with bounded {α(F) :

F ∈ F} we have sat(n,F) = O(nk−1).

Proof. We proceed essentially in the same way as in the proof of Theorem 2.1, so we

briefly describe the differences.

Consider one by one x ∈ X = [n], i = 0, . . . , k − 1, A ∈ L(i)
x . Let B = A ∪ {x} and let

TB be defined by (2.2). An orientation of the edges in TB is called symmetric if any order

preserving injections f, g : [k]→ [n] with f([k]), g([k]) ∈ TB induce identical orientations

of [k].

If TB 6⊂ E(H) (as unoriented k-tuples) and there exists a symmetric orientation of TB
such that H +TB does not contain a forbidden subgraph or a cycle, then we add TB
(with this orientation) to the edge set of H .

That is the algorithm. The obtained hypergraph H does not contain a forbidden

configuration. As every k-subset E ⊂ X was tested (for B = E we had TB = {E} and

every orientation was symmetric), we conclude that H ∈ SAT(n,F).

As in Theorem 2.1 we define the auxiliary hypergraphs Hx (directed) and Gi (undirected).

We have to show that e(Gi) = O(ni−1).

First, suppose that E(G1) = {{x1}, . . . , {xl}}. One can easily check that, as H is cycle-free,

there is no choice for the orientation of the edges of T{xi}, 2 6 i 6 l and H contains the

complete cycle-free k-graph on l vertices, which implies l = O(1).

Suppose that e(Gi) 6= O(ni−1), for some 1 < i 6 k. Then, for some (i − 1)-tuple

V ⊂ X, we can find an arbitrarily large set Z = {z1, . . . , zs} ⊂ Ux, x = maxV , such

that V ∪ {zi} ∈ E(Gi), i ∈ [s], and the orientation of ∪i∈[s]FV∪{zi} ⊂ E(H) extends to a

symmetric orientation ‘≺’ of TV . As V 6∈ E(Gi−1) we conclude that H ′ = Hx + (TV ,≺)

contains a forbidden subgraph F or a cycle. If a copy of F is present we follow the proof

of Theorem 2.1. Otherwise let C = (y1, E1, . . . , yl , El , yl+1 = y1) be a shortest cycle in H ′.
We claim that C can be chosen so that |W | 6 3k − 5, where W = (∪i∈[l]Ei) ∩Ux. Then

for s > 3k− 5 we may assume that W ⊂ Z , and the argument of Theorem 2.1 shows that

C ⊂ H , which is a contradiction, thus proving the theorem.

If Y = {y1, . . . , yl} ⊂ Ux then l 6 2 and the claim is true. Indeed, there is an i ∈ [l] such

that yi+1 is larger than yi and yi+2 in [n] but it follows yi in Ei and precedes yi+2 in Ei+1

which, by the symmetry of Ux ⊂ H ′, implies that any two y, y′ ∈ Ux form a 2-cycle.

Next, |Y ∩Ux| 6 1; otherwise pick yh, yi ∈ Ux ∩Y , h < i, with yi+1 ∈ Y \Ux and obtain

a strictly shorter cycle through (y1, . . . , yh, yi+1, . . . , yl+1 = y1) as Ux ⊂ H ′ is ‘symmetric’.

The two edges containing the point (if one exists) in Y ∩ Ux contribute at most 2k − 3

to |W |. By the symmetry of Ux, we can assume that for the remaining edges Ei ∩Ux lies

within some fixed (k − 2)-subset of Ux, which shows that |W | 6 3k − 5.

For k = 2 we can prove a stronger result which includes all infinite families.
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Theorem 4.2. In the class of the cycle-free digraphs we have sat(n,F) = O(n) for any

family F.

Proof. It is enough to provide a construction. Order the vertex set X = {x1, . . . , xn}.
Repeat the following as long as no forbidden subgraph appears: take the next vertex x of

X and add all of Tx. Here, Tx is the set of the (oriented) edges of the form xy, y ∈ Ux.

Suppose we have repeated the iteration m = m(n) times. Let G′ = G′(n) be the graph

received after these m steps. As [m] ⊂ V (G′) spans the complete digraph, the number

of iterations is bounded by a constant not depending on n: namely, m < u, where

u = min{|F | : F ∈ F}.
Obviously, m(n) is non-increasing as a function of n for n > u, so it is constant for n

sufficiently large. Then, the reason for terminating the procedure is that the addition of

Txm+1
would create a forbidden subgraph F and it will be the case for any subsequent n,

that is, G′(n) +Txm+1
contains the same subgraph F .

Now we add edges to G′ in any order as long as we create neither a cycle nor a

forbidden subgraph. In the resulting graph G, no d = |V (F) ∩ Uxm+1
| edges can start at

the same vertex y ∈ Uxm , as otherwise we have a subgraph isomorphic to F .

So, the number of edges in G is at most m(n− 1)− (m
2

)
+ (n− m)(d− 1) = O(n).

Actually, one can argue that, for sufficiently large n,

m = min{|F | − α′(F) : F ∈ F} − 1,

where α′(F) is the maximum size of A ⊂ V (F) such that no edge starts in A. Equivalently,

m is the minimum number of vertices one needs to remove from some F ∈ F to obtain

a directed star (a digraph whose edges start at a common vertex). For d we can take the

size of any such star. This observation allows us to write more explicitly the bound of

Theorem 4.2.

4.2. Ordered hypergraphs

We can introduce yet another class: ordered k-graphs. An ordered k-graph is a usual

(unoriented) k-graph with an extra structure: we have a fixed ordering on the vertex

set and the vertices of a subgraph inherit their order from the original graph. To avoid

confusion note that an ordered graph comes equipped with a fixed vertex ordering while

a cycle-free graph is one that admits at least one compatible vertex ordering.

Without any difficulties we can restate word by word the proof of Theorem 2.1 (except

that now we have already been given an order on the vertex set and in the construction

we take the vertices in this order). We change the definition of the independence number

for ordered hypergraphs to obtain a stronger result. Namely, we define

α(F) = max{|Ux| : Ux does not span an edge, x ∈ V (F)}.

Theorem 4.3. Let F be a family of ordered k-graphs such that the set {α(F) : F ∈ F} is

bounded. Then sat(n,F) = O(nk−1).



492 O. Pikhurko

Using the ideas of Theorem 4.2 one can see that for k = 2 our result can be extended

to all infinite families.

Theorem 4.4. For any family F of ordered 2-graphs we have sat(n,F) = O(n).

It is easy to give an example of an ordered k-hypergraph with sat-function of order

nk−1: for instance, complete hypergraphs for which the answer is given by formula (1.3),

the same as for usual hypergraphs.

Trivial examples show that the estimate (1.4) is not generally true if we enlarge any of

the above classes by allowing edges of different sizes (up to k) and/or multiple edges (and

defining the sat-function respectively).
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