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Abstra
t

We introdu
e a general method of extending (pseudo-)metri
s from

X to FX, where F is a normal fun
tor on the 
ategory of metrizable


ompa
ta. For many 
on
rete instan
es of F , our method spe
ializes to

the known 
onstru
tions.

1 Introdu
tion

Consider the 
ategory of all 
ompa
t metrizable spa
es whi
h will be referred

to as MComp. All fun
tors are expe
ted to be normal (for the de�nition and

properties see [2, page 165℄ or [3℄) and to haveMComp as both the domain and

the 
odomain. For a normal fun
tor F , every spa
e X is naturally embeddable

in FX , so further in this work X is 
onsidered to be a subspa
e of FX .

By an operator u : C(�)! C(F (�)) we mean a family of maps

(u

X

: C(X)! C(FX))

X2MComp

;

where C(X) denotes the set of all 
ontinuous mappings from X to R. Consid-

ering di�erent topologies on this set, one 
an speak about operators 
ontinuous

in the pointwise topology, in the uniform topology, et
. An operator is 
alled a

fun
torial operator if for every i : Y ! X the following identity holds:

u

Y

Æ i

�

= (F (i))

�

Æ u

X

: (1)

Here, for i : Y ! X , the mapping i

�

: C(X)! C(Y ) 
orresponds � to � Æ i.

For f; g 2 C(X) we write f � g to denote the poinwise inequality: f(x) �

g(x) for all x 2 X . An operator u is an extension operator if u

X

(�)j

X

= �;

�
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monotonous if � �  implies u

X

(�) � u

X

( ); semiadditive if u

X

(� +  ) �

u

X

(�) + u

X

( ); positive if � � 0 implies u

X

(�) � 0, all X and �;  2 C(X).

Here we investigate a general method for extending (pseudo-)metri
s from a

metrizable 
ompa
t X to FX , where F is a normal fun
tor. For many 
on
rete

instan
es of F , our method spe
ializes to the known 
onstru
tions.

2 De�nition and properties of the new operator

Suppose that we have a normal fun
tor F and an operator u : C(�)! C(F (�)).

For a; b 2 FX , ha; bi denotes the set

f
 2 F (X �X) j Fpr

1

(
) = a; Fpr

2

(
) = bg = (F (pr

1

); F (pr

2

))

�1

(a; b):

It is not empty sin
e any normal fun
tor is bi
ommutative. Also, we will use

some other notation:

�

X

: X ! X �X; �(x) = (x; x); (2)

r

X

: X �X ! X �X; r

X

(x; y) = (y; x) (3)

If no 
onfusion arises, we simply write � or r.

For any real-valued fun
tion p on X

2

, we may de�ne a fun
tion ~p on (FX)

2

by the following formula:

~p(a; b) = inffu

X�X

(p)(
) j 
 2 ha; big; a; b 2 FX (4)

The formula (4) gives the promised operator~. Of 
ourse, to de�ne it, one

needs an operator u �rst, so it seems that do not gain mu
h. But, for many

fun
tors F , there is usually a natural and obvious de�nition of u, while it is

typi
ally not 
lear how to de�ne a (pseudo-)metri
 on FX should we have one

on X .

Lemma 1 If u is an extension operator, then the fun
tion ~p extends p.

Proof. The 
laim is obvious be
ause, for any normal fun
tor F and arbitrary

a; b 2 X , the set ha; bi � F (X �X) 
onsists of one point.

Lemma 2 If u is a positive, monotonous, semiadditive fun
torial operator, then

for any pseudometri
 p on X the fun
tion ~p is a pseudometri
 on FX.

Proof. For any pair (X � Y ) and for every � 2 C(X) su
h that �j

Y

= 0, we

have u

X

(�)j

FY

= 0. This 
an be dedu
ed from (1) by letting i be the identity

map Y ! X . Here,

u

X

(�)j

FY

= (Fi)

�

(u

X

(�)) = u

Y

(i

�

(�)) = u

Y

(0) = 0:

Now we 
an prove that, for any a 2 FX , we have ~p(a; a) = 0. Sin
e pj

�(X)

=

0 we have u

X�X

(p)j

F�(X)

= 0, and

0 � ~p(a; a) � u

X�X

(p)(F�(a)) = 0:
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The fun
tion ~p is symmetri
, as

Fr(hb; ai) = ha; bi; 8a; b 2 FX

and

~p(a; b) = inf(u

X�X

(p)(ha; bi)) = inf(u

X�X

(p)(Fr(hb; ai))

= inf(u

X�X

(r

�

(p))(hb; ai)) = inf(u

X�X

(p)(hb; ai) = ~p(b; a):

In this 
hain of equalities we used the symmetry of p (i.e. r

�

(p) = p), the fun
-

toriality of u (i.e. u

X�X

(r

�

(p))(x) = Fr

�

Æ u

X�X

(p)(x) = u

X�X

(p)(Fr(x)))

and the identity

Fr

�

Æ u

X�X

= u

X�X

Æ r

�

: C(X �X)! C(F (X �X)): (5)

Let a, b and 
 be arbitrary points in FX . Choose x

1

2 ha; bi and x

2

2 hb; 
i,

su
h that

~

d(a; b) = u

X�X

(x

1

) and

~

d(b; 
) = u

X�X

(d)(x

2

). F is bi
ommutative

so there exists y 2 F (X

3

) su
h that Fpr

12

(y) = x

1

and Fpr

23

(y) = x

2

. Let

x

3

= Fpr

13

(y) 2 ha; 
i. Then

~

d(a; 
) � u

X�X

(d)(x

3

) = u

X�X

(d)(Fpr

13

(y))

= u

X

3

(d Æ pr

13

)(y) � u

X

3

(d Æ pr

12

+ d Æ pr

23

)(y)

� u

X�X

(Fpr

12

(y)) + u

X�X

(Fpr

23

(y)) =

~

d(a; b) +

~

d(b; 
):

The lemma is proved.

Lemma 3 If u is 
ontinuous in the uniform topology, then so is the operator ~.

Proof. For any a; b 2 FX , we have

ku

X�X

(d

1

)� u

X�X

(d

2

)k

1

� u

X�X

(d

1

)(x

2

; y

2

)� u

X�X

(d

2

)(x

2

; y

2

)

�

~

d

1

(a; b)�

~

d

2

(a; b) � u

X�X

(d

1

)(x

1

; y

1

)� u

X�X

(d

2

)(x

1

; y

1

)

� �ku

X�X

(d

1

)� u

X�X

(d

2

)k

1

;

where

~

d

i

(a; b) = u

X�X

(d

i

)(x

i

; y

i

), i = 1; 2. Hen
e

k

~

d

1

�

~

d

2

k

1

� ku

X�X

(d

1

)� u

X�X

(d

2

)k

1

and the operator ~ is 
ontinuous in the uniform topology.

Lemma 4 If the mapping

H

X

= (Fpr

1

; Fpr

2

) : F (X �X)! FX � FX

is open for any X 2MComp, then

~

d : FX � FX ! R is 
ontinuous.
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Proof. In fa
t, ha; bi = H

�1

X

(a; b). Mapping H

X

is both open and 
losed as

dom(H

X

); 
odom(H

X

) 2MComp. So the mapping

H

�1

X

: FX � FX ! exp(F (X �X))

is 
ontinuous. Also, for any �xed f 2 C(X). the in�mum map inf

f

: exp(X)!

R, de�ned by inf

f

(A) = inf f(A), is 
ontinuous.

Putting this all together we obtain the required.

The dire
t 
onsequen
e of Lemmas 1{4 is the following.

Theorem 5 If u

X

is a positive, monotone, semiadditive fun
torial operator

extending fun
tions from X to FX, then the operator ~ de�ned by formula (4)

extends pseudometri
s from X to FX. Moreover, if u is 
ontinuous in the

uniform topology, then so is the operator ~; if H

X

is an open mapping for all

X 2MComp, then the pseudometri


~

d is 
ontinuous for every 
ontinuous pseu-

dometri
 d.

A remarkable fa
t about the above de�ned opeartor ~ is that in many 
ases

it 
oin
ides with the well-known 
onstru
tions, as we are going to demonstrate

now.

3 Case F = exp

Let F = exp (the fun
tor of all 
losed subsets equipped with the Vietoris topol-

ogy, see [2, page 139℄.) We de�ne u : C(�) ! C(exp(�)) by the formula

u

X

(�)(A) = sup(�(A)), � 2 C(X), A 2 exp(X).

Theorem 6 For every metri
 d on X, we have

~

d = d

H

(Hausdor� metri
).

Proof. Let A;B 2 exp(X),

M = d

H

(A;B) = inff� > 0 j A

�

� B;B

�

� Ag;

where, for example, A

�

= fx 2 X j d(x;A) � �g.

Then either there is b 2 B with d(b; A) = M or there is a 2 A with

d(a;B) = M . Sin
e pr

1

(C) = A and pr

2

(C) = B for every C 2 ha; bi, we

have u

X�X

(d)(C) �M , whi
h implies

~

d � d

H

.

On the other hand, de�ne

C = f(a; b) 2 A�B j d(a;B) = d(a; b) or d(A; b) = d(a; b)g:

It is easy to prove that C 2 ha; bi and u

X�X

(d)(C) =M . Thus, we obtain that

~

d = d

H

.
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4 Case F = (�)

n

.

To de�ne an operator u one has to assign a 
ertain number, given a real-valued

fun
tion � on X and a sequen
e x

1

; : : : ; x

n

2 X . It may be done in many ways

but the following de�nitions are most interesting:

u

X�X

(�)(x

1

; : : : ; x

n

) =

 

n

X

i=1

�(x

i

)

p

!

1=p

; p � 1;

u

X�X

(�)(x

1

; : : : ; x

n

) = max

i

(�(x

i

)):

The easy veri�
ation shows that 
orresponding operators ~have the following

appearen
e:

~

d(x; y) =

 

n

X

i=1

d(x

i

; y

i

)

p

!

1=p

;

~

d(x; y) = max

i

(d(x

i

; y

i

)):

5 Case F = P

Let P denote the fun
tor of probability measures, see [1℄. The topology on the

spa
e PX 
an be de�ned by means of the metri


�

d(�; �) = inff�(d) j � 2 P (X �X); Ppr

1

(�) = �; Ppr

2

(�) = �g; �; � 2 PX

Letting u

X

(�)(�) = �(�), � 2 PX , � 2 C(X), one 
an see that the de�ni-

tions of

�

d and

~

d 
oin
ide.

6 Case of the free (free abelian) group fun
tor

On the 
ontrary to our default assumptions, here we suppose that the fun
tor

G(�), the free group fun
tor, is de�ned on the 
ategory of metrizable 
ompa
ta

with sele
ted point. (The sele
ted point plays the role of the identity in GX .)

The topology on the spa
e GX may be de�ned in di�erent ways. Among

them are the 
onstru
tions of Swier
zkowski and Graev. To �nd distan
e be-

tween \words" A;B 2 GX one has to �nd all proper representations A =

Q

n

i=1

(a

i

)

�

i

and B =

Q

m

i=1

(b

i

)

�

i

, a

i

; b

i

2 X , �

i

; �

i

= �1, that is, representa-

tions whi
h have the same number of letters and degrees 
oin
iding exa
tly:

n = m and �

i

= �

i

for 1 � i � n. Then

d

1

(A;B) = inf

 

n

X

i=1

d(a

i

; b

i

)

!

;

where the in�mum is taken for all proper representations. This is Graev's 
on-

stru
tion. That of Swier
zkowski (let us denote it by d

2

) is nearly the same ex-


ept we 
al
ulate the sum only for all di�erent pairs (a

i

; b

i

). Obviously, d

1

� d

2

.
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It turned out that these metri
s 
an also be represented in the form (4) for

suitable u. Indeed, for � 2 C(X) and for A =

Q

n

i=1

(a

i

)

�

i

2 FX (written in the

redu
ed form), let

u

X

(�)(A) =

X

i

�(a

i

);

but in the �rst 
ase we take sum for all i = 1; : : : ; n and in the se
ond for all

di�erent a

i

's. The points of the set hA;Bi are in the bije
tive 
orresponden
e

with the proper representations, whi
h sends C =

Q

n

i=1

(


i

)

�

i

(in the redu
ed

form) to the representations A =

Q

n

i=1

pr

1

(


i

)

�

i

and B =

Q

n

i=1

pr

2

(


i

)

�

i

. Sin
e

u

X�X

(d)(C) =

X

i

d(pr

1

(
); pr

2

(
))

we get the 
laimed result.

The 
ase F = A (the free abelian group fun
tor) is analogous. The interested

reader should be able to transfer easily all results by himself.
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