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For positive integers n � s > r, the Turán function T (n, s, r)
is the smallest size of an r-graph with n vertices such that 
every set of s vertices contains at least one edge. Also, define 
the Turán density t(s, r) as the limit of T (n, s, r)/

(
n
r

)
as n →

∞. The question of estimating these parameters received a 
lot of attention after it was first raised by Turán in 1941. A 
trivial lower bound is t(s, r) � 1/

(
s 

s−r

)
. In the 1990s, de Caen 

conjectured that r · t(r+1, r) → ∞ as r → ∞ and offered 500 
Canadian dollars for resolving this question.
We disprove this conjecture by showing more strongly that 
for every integer R � 1 there is μR (in fact, μR can be taken 
to grow as (1 + o(1)) R lnR) such that t(r + R, r) � (μR +
o(1))/

(
r+R
R

)
as r → ∞, that is, the trivial lower bound is 

tight for every R up to a multiplicative constant μR.
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1. Introduction

An r-graph G on a vertex set V is a collection of r-subsets of V , called edges. If the 
vertex set V is understood, then we may identify G with its edge set, that is, view G as 
a subset of 

(
V
r

)
:= {X ⊆ V : |X| = r}.

For positive integers n � s > r, a Turán (n, s, r)-system is an r-graph G on an n-set 
V such that every s-subset X ⊆ V is covered by G, that is, there is Y ∈ G with Y ⊆ X. 
Let the Turán number T (n, s, r) be the smallest size of a Turán (n, s, r)-system. If we 
pass to the complements then 

(
n
r

)
− T (n, s, r) is ex(n,Kr

s ), the maximum size of an n-
vertex r-graph without Kr

s , the complete r-graph on s vertices. This is a key instance 
of the classical extremal Turán problem that goes back to Turán [29]. For the purposes 
of this paper, it is more convenient to work with the function T rather than with its 
complementary version ex. So we define the Turán density

t(s, r) := lim
n→∞

T (n, s, r)(
n
r

) , (1)

to be the asymptotically smallest edge density of a Turán (n, s, r)-system as n → ∞. 
The limit in the right-hand size of (1) exists, since easy double-counting shows that 
T (n, s, r)/

(
n
r

)
is non-decreasing in n.

We refer the reader to de Caen [6] and Sidorenko [24] for surveys of results and open 
problems on minimum Turán systems, and to Füredi [9] and Keevash [12] for surveys 
of the ex-function for general hypergraphs. Also, the table on Page 651 in Ruszinkó [23] 
lists some connections of Turán systems to various areas of combinatorial designs.

In the trivial case r = 1, it holds that T (n, s, 1) = n−s+1 for any n � s > 1. The case 
r = 2 was resolved in the fundamental paper of Turán [29] (with the special case when 
(s, r) = (3, 2) previously done by Mantel [18]). In particular, it holds that t(s, 2) = 1 

s−1
with the upper bound coming from the disjoint union of s− 1 almost equal cliques. The 
problem of determining T (n, s, r) for r � 3 was raised already in the above-mentioned 
paper of Turán [29] from 1941. Erdős [7, Section III.1] offered $500 for determining 
t(s, r) for at least one pair (s, r) with s > r � 3. This reward is still unclaimed despite 
decades of active research. It was conjectured by Turán and other researchers (see e.g. 
[4, Page 348]) that t(s, 3) = 4/(s− 1)2 for each r � 4. Various constructions attaining 
this upper bound can be found in Sidorenko’s survey [24, Section 7]. In the first open 
case s = 4, the computer-generated lower bound t(4, 3) � 0.438... of Razborov [22] 
(improving on the earlier bounds in [11,5,1]) comes rather close to the conjectured value 
4/9. As stated by Sidorenko [24, Section 8] (and this seems to be still true), the only 
pair (s, r) with s > r � 4 for which there is a plausible conjecture is (5, 4), where a 
construction of Giraud [10] gives t(5, 4) � 5 

16 = 0.325. (The best known lower bound is 
t(5, 4) � 627 

2380 = 0.2634... by Markström [19].)
Also, a lot of attention was paid to estimating t(s, r) as r → ∞. In the first inter-

esting case s = r + 1, the trivial lower bound t(r + 1, r) � 1 
r+1 was improved to 1/r
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independently by de Caen [3], Sidorenko [27], and Tazawa and Shirakura [28]. Some fur-
ther improvements (of order at most O(1/r2)) for a growing sequence of r were made by 
Giraud (unpublished, see [1, Page 362]), Chung and Lu [1], and by Lu and Zhao [17].

In terms of the previously known upper bounds on t(r + 1, r) as r → ∞ there was a 
sequence of better and better bounds: O(1/

√
r) by Sidorenko [26], 1+2 ln r

r by Kim and 

Roush [13], ln r+O(1)
r by Frankl and Rödl [8], and (1 + o(1)) ln r

2r by Sidorenko [25].
De Caen [6, Page 190] conjectured that r · t(r + 1, r) → ∞ as r → ∞ and offered 

500 Canadian dollars for proving or disproving this. The question which of the bounds 
Ω(1

r ) � t(r+1, r) � O( ln r
r ) is closer to the truth was asked earlier by Kim and Roush [13, 

Page 243]. Also, Frankl and Rödl [8, Page 216] wrote that it is “conceivable” that t(r +
1, r) = O(1/r). Here we disprove de Caen’s conjecture (and thus confirm the intuition of 
Frankl and Rödl), with the following explicit constants.

Theorem 1.1. For all integers n > r � 1, it holds that T (n, r + 1, r) � 6.239
r+1 

(
n
r

)
.

Also, there is r0 such that, for all integers n > r � r0, it holds that T (n, r + 1, r) �
4.911
r+1 

(
n
r

)
.

While the constant in the first part is worse than in the second part, we include both 
proofs as it may be useful to have a simple explicit bound valid for every pair (n, r).

In the general case, the trivial lower bound is T (n, s, r) �
(
n
r

)
/
(

s 
s−r

)
: indeed, if G ⊆([n]

r

)
has fewer edges than the stated bound then the expected number of edges inside a 

random s-set is 
(
s 
r

)
·|G|/

(
n
r

)
< 1 so some s-set is not covered at all. Thus t(s, r) � 1/

(
s 

s−r

)
. 

This was improved to

t(s, r) � 1 (
s−1
s−r

) , (2)

by de Caen [4], and this is still the best known general lower bound. In terms of upper 
bounds, Frankl and Rödl [8] proved that, for any integer R � 1, we have

t(r + R, r) � (1 + o(1))R(R + 4) ln r(
r+R
R

) , as r → ∞. (3)

We can also remove the factor ln r in the above result of Frankl and Rödl:

Theorem 1.2. For every integer R � 1, it holds that

t(r + R, r) � (μ + o(1)) 1 (
r+R
R

) , as r → ∞, (4)

where μ := (c0 + 1)R+1/cR0 with c0 = c0(R) being the largest real root of the equation 
ec = (c + 1)R+1.
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While for a given integer R it is possible to numerically approximate the above con-
stant μ (in particular, to see that μ < 4.911 for R = 1), it is also interesting to see how 
μ grows with R. This is done in the following corollary to Theorem 1.2:

Corollary 1.3. There is R0 such that for every integer R � R0, it holds that

lim sup
r→∞ 

t(r + R, r) ·
(
r + R

R

)
� R lnR + 3R ln lnR. (5)

Let us discuss the known upper bounds in the case when r → ∞ while R = R(r) is 
a function of r that also tends to the infinity. By analysing the construction of Frankl 
and Rödl [8], Sidorenko [25, Theorem 2] proved that μ(r + R, r) � (1 + o(1))R ln

(
r+R
r

)
provided R � r/ log2 r. Liu and Pikhurko [16] observed that the restriction on R in 
Sidorenko’s bound can be weakened to just R → ∞. Also, Liu and Pikhurko [16] cal-
culated that the recursive construction presented in this paper yields μ(r + R, r) �
(1 + o(1))R lnR for any function R = o(

√
r).

2. Proofs

Our construction is motivated by the recursive constructions of covering codes in [2,14, 
15], of which Theorems 6 and 9 in Lenz, Rashtchian, Siegel and Yaakobi [15] are probably 
closest to the presented results. This connection was previously used by Verbitsky and 
Zhukovskii (personal communication) to prove new results on insertion covering codes 
using some methods developed for Turán systems; this project later developed into a 
joint paper [21]. Here, we exploit this connection by using the recursion in [15] as guiding 
intuition for our construction.

It will be convenient to extend the definition of T (n, s, r) to allow all triples (n, s, r)
of integers with s > r � 0 and n � 0. We agree (and this formally matches the general 
definition) that T (n, s, r) = 0 for n < s (in particular, for n � r), while T (n, s, 0) = 1
for n � s � 1. These degenerate cases will be used in our inductive proofs.

We need some definitions first. For integers 0 � m � n, we denote [n] := {1, 2, . . . , n}
and [m,n] := {m,m + 1, . . . , n}. For an integer m � 0 and an �-graph H ⊆

([n]
� 
)
, let 

H⊗nK
m
∗ denote the (�+m)-graph on [n] that consists of those X ∈

( [n] 
�+m

)
for which there 

is Y ∈ H with Y being the initial �-segment of X, that is, if we order the elements of X
as x1 < · · · < x�+m under the natural ordering of [n] then {x1, . . . , x�} ∈ H. Informally 
speaking, H ⊗n Km

∗ is obtained from H by extending its edges into (� + m)-subsets of 
[n] in all possible ways to the right. Also, we define

B(H) :=
{
B ∈

(
[n] 
� + 1

)
:
(
B

� 

)
∩H 	= ∅

}
,

to consist of all (� + 1)-subsets of [n] covered by the �-graph H.
The first part of Theorem 1.1 will be derived from the following lemma.
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Lemma 2.1. Let reals β ∈ (0, 1) and c, μ > 1 be fixed such that �βμ� � c and

c 
βμ− 1 + e−c

1 − β
� 1. (6)

Then, for all integers n, r � 0, there is a Turán (n, r + 1, r)-system Gr
n with |Gr

n| �
μ 

r+1
(
n
r

)
.

Proof. We construct Gr
n using induction on r and then on n. Let r0 := �μ� − 1.

For r � r0 and any n � 0, we can let Gr
n :=

([n]
r

)
be the complete r-graph on [n]. 

Note that μ 
r+1 � 1 so the desired upper bound |Gr

n| � μ 
r+1

(
n
r

)
trivially holds.

Let r > r0. Given r, we construct Gr
n inductively on n. For n ∈ [0, r], we let Gr

n := ∅
be the empty r-graph on [n], which trivially satisfies the lemma.

Let n � r + 1. Define k := �β(r + 1)�. Note that k � 1 since r + 1 � r0 + 2 > μ

while βμ � c > 1 by our assumptions. Also, k � r since β < 1. We will consider a 
random r-graph Gr

n (which will be a Turán (n, r+1, r)-system deterministically) and fix 
an outcome whose size is at most the expected value.

Let S ⊆
( [n] 
k−1

)
be a c 

k -binomial random (k − 1)-graph on [n], that is, we include 
each (k − 1)-subset of [n] into S with probability c/k, with all choices being mutually 
independent. (Note that k � �β(r0 + 2)� � �βμ� which is at least c by one of the 
assumptions, so c/k � 1.) The expected size of the r-graph S∗ := S ⊗n Kr−k+1

∗ is 
exactly c 

k

(
n
r

)
because every r-set Y ∈

([n]
r

)
is included into it with probability c/k: 

indeed, Y ∈ S∗ if and only if the initial (k − 1)-segment of Y is in S, which happens 
with probability c/k.

Let T :=
([n]

k

)
\ B(S), that is, T consists of those k-subsets Y of [n] such that no 

(k − 1)-subset of Y belongs to S. Note that every Y ∈
([n]

k

)
is included into T with 

probability exactly 
(
1 − c 

k

)k: each of its k subsets of size k−1 has to be omitted from S. 
Let T ∗ := T ⊗n Gr−k

∗ be the r-graph on [n] obtained as follows: for every edge Y ∈ T , 
let y := max Y , take a copy GY of Gr−k

n−y on [y + 1, n] and add to T ∗ all sets Y ∪Z with 
Z ∈ GY . (Note that if y � n− r + k then no edges are added to T ∗ for this Y .) By the 
inductive assumptions (since k � 1) and by 1− x � e−x, the expected size of T ∗ can be 
upper bounded as follows, where y plays the role of max Y for Y ∈ T :

E|T ∗| =
n ∑

y=k

(
1 − c 

k

)k
(
y − 1 
k − 1

)
· |Gr−k

n−y|

�
n ∑

y=k

e−c

(
y − 1 
k − 1

)
· μ 
r − k + 1

(
n− y

r − k

)

= e−c μ 
r − k + 1

(
n

r

)
.

Note that we may have k = r or y = n in the above expressions; this is why we found is 
convenient to allow any n, r � 0 when defining Turán (n, s, r)-systems.
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Fix S such that |S∗ ∪ T ∗| is at most its expected value, and let Gr
n := S∗ ∪ T ∗. We 

have by above that

|Gr
n| � E|S∗ ∪ T ∗| � E|S∗| +E|T ∗| �

(
c 
k

+ e−c μ 
r − k + 1

)(
n

r

)
. (7)

Since r � r0 + 1 � �μ� and thus r + 1 � μ, we can lower bound k as

k � β(r + 1) − 1 = (r + 1)
(
β − 1 

r + 1

)
� (r + 1)

(
β − 1 

μ

)
= (r + 1)(βμ− 1)

μ 
.

Using this and the trivial bound r − k + 1 � (r + 1)(1 − β), we obtain from (7) that

|Gr
n| �

(
cμ 

(r + 1)(βμ− 1) + e−c μ 
(r + 1)(1 − β)

)(
n

r

)
,

which is at most the claimed bound μ 
r+1

(
n
r

)
by (6).

Let us check that, regardless of the choice of S, the obtained r-graph Gr
n is a Turán 

(n, r+1, r)-system. Take any (r+1)-subset X of [n]. Let its elements be x1 < · · · < xr+1
and let Y := {x1, . . . , xk}. If Y is in T , then the Turán (n− xk, r − k + 1, r − k)-system 
GY on [xk + 1, n] contains an edge Z which is a subset of {xk+1, . . . , xr+1} ∈

([xk+1,n]
r−k+1 

)
; 

thus Gr
n contains Y ∪Z which is a subset of X, as desired. So suppose that Y is not in T . 

By definition, this means that there is i ∈ [k] such that Z := Y \ {xi} is in S. But then 
X \ {xi} has Z as its initial (k − 1)-segment and thus belongs to S∗ ⊆ Gr

n, as desired. 
This finishes the proof of the lemma. �

It is easy to find a triple (β, c, μ) satisfying Lemma 2.1: for example, take β = 1/2, 
c = 2 and sufficiently large μ. The constant in the first part of Theorem 1.1 is the optimal 
μ coming from Lemma 2.1, rounded up in the third decimal digit.

Proof of the first part of Theorem 1.1. The assignment β := 0.784, c := 2.89 and μ :=
6.239 can be checked to satisfy Lemma 2.1. �
Remark 2.2. The best constant μ = 6.2387... for Lemma 2.1 comes from some small 
values of r. It can be improved in various ways, even just by using T (n, 3, 2) � 1

2
(
n
2 
)

in 
the base case of the induction in the proof.

Next, we turn to general R (with the result also including the case R = 1, which will 
be used to derive the second part of Theorem 1.1).

Lemma 2.3. If an integer R � 1, and reals β ∈ (0, 1) and c, μ > 0 satisfy

c 
βR

+ e−cμ 
(1 − β)R � μ (8)
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(in particular, it holds that e−c < (1 − β)R), then there is a constant D such that, for 
all integers n, r � 0, there is a Turán (n, r + R, r)-system Hr

n with

|Hr
n| �

(
μ + D

ln(r + 3)

)(
r + R

R

)−1(
n

r

)
. (9)

Proof. Given R, β, c and μ, fix constants C, r0 and D in this order, with each being 
sufficiently large depending on the previous constants (and with r0 being an integer). We 
construct Hr

n ⊆
([n]

r

)
by induction on r and, for each r, by induction on n. For r ∈ [0, r0]

and any n, we can take the complete r-graph on [n] for Hr
n. Note that (9) holds since we 

can assume that 
(
r+R
R

)
� D/ ln(r + 3) for every such r. (We use that ln(r + 3) � 1 > 0

for every r � 0, which was the reason why 3 was added to the argument of ln.)
So let r > r0. Define k := �βr�. We have that k � �βr0� is at least R because r0 is 

sufficiently large. For n ∈ [0, r], we let Hr
n be the empty r-graph on [n], which trivially 

satisfies the lemma. So let n � r + 1.
Let S be a random subset of 

( [n] 
k−R

)
where each (k−R)-subset of [n] is included with 

probability c/
(
k
R

)
independently of the others. Note that c/

(
k
R

)
� 1 since r � r0 is 

sufficiently large depending on β, c and R. Let S∗ := S ⊗n Kr−k+R
∗ . Recall that this is 

the r-graph obtained by extending the edges of S to the right into all possible r-subsets 
of [n]. Also, let T :=

([n]
k

)
\ BR(S), where

BR(S) :=
{
X ∈

(
[n]
k

)
:
(

X

k −R

)
∩ S 	= ∅

}

consists of all k-subsets of [n] covered by S. Let T ∗ := T ⊗n Hr−k
∗ be the r-graph on [n]

obtained as follows. For every edge Y in T , let y := max Y , take a copy HY of Hr−k
n−y

on [y + 1, n] and, for every Z ∈ HY , add Y ∪ Z to T ∗. Take S such that the size of 
Hr

n := S∗ ∪ T ∗ is at most its expected value.
Let us show that Hr

n is a Turán (n, r + R, r)-system, regardless of the choice of S. 
Take any (r+R)-subset X ⊆ [n] with elements x1 < · · · < xr+R. Let Y := {x1, . . . , xk}. 
If Y is in T then some edge Z in the Turán (n−xk, r−k+R, r−k)-system HY satisfies 
Z ⊆ X \Y and thus Y ∪Z ∈ T ∗ is a subset of X. Otherwise there is an R-subset Z ⊆ Y

such that Y \Z ∈ S; then X \Z is in S∗ and is a subset of X. Thus every (r+R)-subset 
of [n] is covered by Hr

n, as desired.
It remains to show that Hr

n satisfies (9). Similarly as in Lemma 2.1, we have by 
induction that

|Hr
n| � E|S∗| +E|T ∗|

� c (
k
R

)(n
r

)
+

n ∑
y=k

(
1 − c 

(
k

R

)−1
)(k

R) (
y − 1 
k − 1

)
· |Hr−k

n−y|

�
(

c (
k
R

) + e−c(
r−k+R

R

) (μ + D

ln(r − k + 3)

))(
n

r

)
.
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Thus we have

|Hr
n| 

(
r+R
R

)(
n
r

) � c 
βR

+ e−c μ 
(1 − β)R + C

r
+

((
e−c

(1 − β)R + C

r

)
D

ln(r − k + 3)

)

� μ + D

ln(r + 3) +
((

e−c

(1 − β)R − 1 + 1 
C

)
D

ln(r − k + 3)

)
� μ + D

ln(r + 3) ,

as desired. Here, the first inequality uses the fact that the ratio 
(
r+R
R

)
/
(
k
R

)
(resp. (

r+R
R

)
/
(
r−k+R

R

)
) deviates from the “main” term β−R (resp. (1 − β)−R) by O(1/r), and 

the resulting error can be absorbed by C/r. The second inequality uses (8) and absorbs 
all error terms by the (much larger) term D/(C ln(r − k + 3)). The last inequality uses 
that e−c < (1 − β)R.

This finishes the proof of the lemma. �
Proof of Theorem 1.2. It is enough to show that if we take c := c0 as in the theorem 
(that is, the largest root of ec = (c + 1)R+1), β := c 

1+c and μ := (c + 1)R+1/cR then 
all assumptions of Lemma 2.3 are satisfied. Note that ec − (c + 1)R+1 is negative (resp. 
positive) for sufficiently small (resp. large) c > 0 so c0 is well-defined and positive.

In fact, this assignment was obtained as follows: first, we solved (8) as equality for μ, 
obtaining that μ = h(β, c), where

h(β, c) := c 

βR − e−c( β
1−β )R

, (10)

and then took a point at which the partial derivatives ∂h∂c and ∂h 
∂β vanish. (It seems that 

this choice of (β, c) minimises μ over the feasible region; however, this is not needed in 
our proof.)

Let us check that all assumptions of Lemma 2.3 are satisfied. Clearly, β ∈ (0, 1). For 
h as in (10) (and c = c0), we have

h

(
c 

1 + c
, c

)
= c 

( c 
1+c )R − e−ccR

= c 
( c 
1+c )R − ( 1 

c+1 )R+1cR
= (c + 1)R+1

cR
= μ,

that is, (8) holds (with equality). �
Proof of the second part of Theorem 1.1. The constant μ given by Theorem 1.2 for R =
1 can be seen to be 4.9108..., which is less than the constant in the stated upper bound. 
Alternatively, it is enough just to give some feasible value of (β, c) such that (8) holds 
for μ := 4.911; one can check that a pair (0.715, 2.51) satisfies this. �
Proof of Corollary 1.3. Let R be sufficiently large and let c0 be as defined in Theo-
rem 1.2, that is, c0 is the largest root of the equation ec = (c + 1)R+1.
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Let us show that

R lnR + R ln lnR < c0 < R lnR + 2R ln lnR. (11)

For the upper bound, we have to show that, for any c � R lnR + 2R ln lnR, it holds 
that ec > (c + 1)R+1, or by taking the logarithms that c > (R + 1) ln(c + 1). If, say, 
c + 1 � eR lnR then

c− (R + 1) ln(c + 1) � R lnR + 2R ln lnR− (R + 1)(lnR + ln lnR + 1)

= R ln lnR−O(R) > 0.

Otherwise we have e.g. R+ 1 � c/(2 ln(c+ 1)) and thus c− (R + 1) ln(c+ 1) � c/2 > 0, 
as desired. On the other hand, for c = R lnR+R ln lnR, we have very crudely that, say, 
c + 1 � eR lnR and thus

c− (R+1) ln(c+1) � R lnR+R ln lnR− (R+1)(lnR+ln lnR+1) = (−1+o(1))R < 0.

Thus the largest root c0 of ec = (c + 1)R+1 indeed falls in the interval specified in (11).
We conclude that

μ = (c0 + 1) 
(

1 + 1 
c0

)R

� (R lnR + 2R ln lnR + 1) 
(

1 + 1 
R lnR + R ln lnR

)R

� (R lnR + 2R ln lnR + 1) 
(

1 + 2 
lnR

)
< R lnR + 3R ln lnR.

Now, Corollary 1.3 follows from Theorem 1.2. �
3. Concluding remarks

One can re-write the proof of Lemma 2.3 to also contain the conclusion of Lemma 2.1, 
with some minor changes for correctly handling the cases when k < R. However, the 
author feels that having a separate proof for the case s = r + 1 is a good way to 
introduce the main ideas.

One can make the new lower bounds constructive, that is, for any fixed R, there is an 
algorithm that on input (n, r) outputs a Turán (n, r + R, r)-system in time polynomial 
in nr. One has to replace a random subset S ⊆

( [n] 
k−R

)
by one constructed by the standard 

“conditioning method” (see e.g. [20]), in a very similar way as described in [14, Section 
IV].

Now that we know that t(r + 1, r) = O(1/r), the most intriguing remaining open 
question is whether t(r + 1, r) = (1 + o(1))/r as r → ∞ or not.
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