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ABSTRACT

The Turán density π(F) of a family F of k-graphs is the limit as n → ∞
of the maximum edge density of an F-free k-graph on n vertices. Let

Π
(k)
∞ consist of all possible Turán densities and let Π

(k)
fin ⊆ Π

(k)
∞ be the

set of Turán densities of finite k-graph families. Here we prove that Π
(k)
fin

contains every density obtained from an arbitrary finite construction by

optimally blowing it up and using recursion inside the specified set of parts.

As an application, we show that Π
(k)
fin contains an irrational number for

each k ≥ 3. Also, we show that Π
(k)
∞ has cardinality of the continuum. In

particular, Π
(k)
∞ �= Π

(k)
fin .

1. Introduction

Let F be a (possibly infinite) family of k-graphs (that is, k-uniform set sys-

tems). We call elements of F forbidden. A k-graph G is F-free if no member

F ∈ F is a subgraph of G, that is, we cannot obtain F by deleting some vertices

and edges from G. The Turán function ex(n,F) is the maximum number of

edges that an F -free k-graph on n vertices can have. This is one of the central

questions of extremal combinatorics that goes back to the fundamental paper
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of Turán [45]. We refer the reader to the surveys of the Turán function by

Füredi [22], Keevash [27], and Sidorenko [41].

As it was observed by Katona, Nemetz and Simonovits [26], the ratio

ex(n,F)/
(
n
k

)
is non-increasing in n. In particular, the limit

π(F) := lim
n→∞

ex(n,F)(
n
k

)

exists. It is called the Turán density of F . Let Π
(k)
∞ consist of all possible

Turán densities of k-graph families and let Π
(k)
fin be the set of all possible Turán

densities when finitely many k-graphs are forbidden. Clearly, Π
(k)
fin ⊆ Π

(k)
∞ .

For k = 2, the celebrated Erdős–Stone–Simonovits Theorem [16, 17] deter-

mines the Turán density for every family F . In particular, we have

(1) Π
(2)
fin = Π(2)

∞ =
{m− 1

m
: m = 1, 2, 3, . . . ,∞

}
.

(It is convenient to allow empty forbidden families, so 1 ∈ Π
(k)
fin for every k.)

Unfortunately, the Turán function for hypergraphs (that is, k-graphs with

k ≥ 3) is much more difficult and many problems (even rather basic ones) are

wide open.

Arguably, the case when |F| = 1 is the most interesting one. However, even

very simple forbidden hypergraphs turned out to be notoriously difficult. For

example, the famous conjecture of Turán from 1941 that π({K3
4}) = 5/9 is still

open, where Kk
m denotes the complete k-graph on m vertices. For no 3 ≤ k < m

is the value of π({Kk
m}) known, despite the $1000 prize of Erdős. Razborov [36,

Page 247] writes that “these questions became notoriously known ever since as

some of the most difficult open problems in discrete mathematics”.

On the other hand, some Turán-type results stop being true if only one sub-

graph is to be forbidden. One such example is the Ruzsa–Szemerédi theorem [38]

that ex(n,F) = o(n2), where F consists of all 3-graphs with 6 vertices and at

least 3 edges (while ex(n, {F}) = Ω(n2) for every F ∈ F). Some other problems

(such as various intersection questions for uniform set systems, see, e.g., [22])

can be restated in terms of the Turán function and require that more than one

subgraph is forbidden. Also, new interesting phenomena (such as, for example,

non-principality, see [3, 32]) appear when one allows more than one forbidden

k-graph. Last but not least, by solving (perhaps more tractable) cases with

|F| > 1 we may get more insight about the case |F| = 1. In fact, some proofs
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that determine π({F}) proceed by forbidding some extra hypergraphs whose

addition does not affect the Turán density; see, e.g., [2, 4, 19, 31, 39].

Little is known about Π
(k)
fin and Π

(k)
∞ for k ≥ 3. Brown and Simonovits [8,

Theorem 1] noted that for every F and ε > 0 there is a finite F ′ ⊆ F with

π(F ′) ≤ π(F) + ε (while, trivially, π(F) ≤ π(F ′)). It follows that Π
(k)
∞ lies in

the closure of Π
(k)
fin . Here we show the following results about Π

(k)
∞ with the first

one implying that in fact Π
(k)
∞ is the closure of Π

(k)
fin .

Proposition 1: For every k ≥ 3 the set Π
(k)
∞ ⊆ [0, 1] is closed.

Theorem 2: For every k ≥ 3 the set Π
(k)
∞ has cardinality of the continuum.

Since the number of finite families of k-graphs (up to isomorphism) is count-

able, Theorem 2 implies that Π
(k)
fin �= Π

(k)
∞ for k ≥ 3, answering one part of a

question of Baber and Talbot [2, Question 31].

Erdős [14] proved that Π
(k)
∞ ∩ (0, k!/kk) = ∅, that is, if the Turán density

is positive, then it is at least k!/kk. Let us call a real α ∈ [0, 1] a jump for

k-graphs if there is ε > 0 such that Π
(k)
∞ ∩ (α, α + ε) = ∅. For example, every

α ∈ [0, 1] is a jump for graphs by (1) and every α ∈ [0, k!/kk) is a jump for

k-graphs by [14]. The break-through paper of Frankl and Rödl [21] showed

that non-jumps exist for every k ≥ 3, disproving the $1000 conjecture of Erdős

that Π
(k)
∞ is well-ordered with respect to the usual order on the reals. Further

results on (non-) jumps were obtained in [1, 20, 33] and many other papers.

Our Theorem 2 shows that Π
(k)
∞ is “very far” from being well-ordered for k ≥ 3.

Since each jump is followed by an interval disjoint from Π
(k)
∞ , at most countably

many elements of Π
(k)
∞ can be jumps. Thus, by Theorem 2, the set of non-jumps

has cardinality of the continuum.

Very few explicit numbers were proved to belong to Π
(k)
fin . For example, before

2006 the only known members of Π
(3)
fin were 0, 2/9, 4/9, 3/4 and 1 (see [4, 11, 23]).

Then Mubayi [31] showed that (m−1)(m−2)/m2 ∈ Π
(3)
fin for every m ≥ 4. Very

recently, Baber and Talbot [2] and Falgas-Ravry and Vaughan [18] determined

a few further elements of Π
(3)
fin ; their proofs are computer-generated, being based

on the flag algebra approach of Razborov [35]. In all the cases when an explicit

element of Π
(k)
fin is known, this limit density is achieved, informally speaking, by

taking a finite pattern and blowing it up optimally. Here we generalise these

results (as far as Π
(k)
fin is concerned) by showing that every finite pattern where,
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moreover, we are allowed to iterate the whole construction recursively inside a

specified set of parts, produces an element of Π
(k)
fin .

Let us give some formal definitions. (We refer the reader to Section 2.3 for an

illustrative example.) A pattern is a triple P = (m,E,R) where m is a positive

integer, E is a collection of k-multisets on [m] := {1, . . . ,m}, and R is a subset

of [m]. (By a k-multiset we mean an unordered collection of k elements with

repetitions allowed.) Let V1, . . . , Vm be disjoint sets and let V = V1 ∪ · · · ∪ Vm.

The profile of a k-set X ⊆ V (with respect to V1, . . . , Vm) is the k-multiset on

[m] that contains i ∈ [m] with multiplicity |X ∩ Vi|. For a k-multiset Y ⊆ [m]

let Y ((V1, . . . , Vm)) consist of all k-subsets of V whose profile is Y . We call this

k-graph the blow-up of Y and the k-graph

E((V1, . . . , Vm)) :=
⋃
Y ∈E

Y ((V1, . . . , Vm))

is called the blow-up of E (with respect to V1, . . . , Vm).

A P -construction on a set V is any k-graph G that can be recursively

obtained as follows. Either let G be the empty k-graph on V (and stop) or take

an arbitrary partition V = V1 ∪ · · · ∪ Vm where we require that if i ∈ R then

Vi �= V . Add all edges of E((V1, . . . , Vm)) to G. Furthermore, for every i ∈ R

take an arbitrary P -construction on Vi and add all these edges to G. (If R = ∅,
then there is nothing to add and we have G = E((V1, . . . , Vm)).) Let pn be the

maximum number of edges that can be obtained on n vertices in this way:

(2) pn := max
{
|G| : G is a P -construction on [n]

}
.

It is not hard to show (see Lemma 10) that the ratio pn/
(
n
k

)
is non-increasing

and therefore tends to a limit which we denote by ΛP and call the Lagrangian

of P :

(3) ΛP := lim
n→∞

pn(
n
k

) .
For i ∈ [m] let P − i be the pattern obtained from P by removing the index

i, that is, we remove i from R and delete all multisets containing i from E (and

relabel the remaining indices to form the set [m− 1]). In other words, (P − i)-

constructions are precisely those P -constructions where we always let the i-th

part be empty. Let us call P minimal if ΛP−i is strictly smaller than ΛP for

every i ∈ [m]. For example, the 2-graph pattern P := (3, { {1, 2}, {1, 3} }, ∅) is
not minimal as ΛP = ΛP−3 = 1/2.
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Theorem 3: For every minimal pattern P there is a finite family F of k-graphs

such that for all n ≥ 1 we have ex(n,F) = pn and, moreover, every maximum

F -free k-graph on [n] is a P -construction.

Corollary 4: For every pattern P we have that ΛP ∈ Π
(k)
fin .

Corollary 4 answers questions posed by Baber and Talbot [2, Question 29]

and by Falgas-Ravry and Vaughan [18, Question 4.4]; we refer the reader to

Section 7 for details.

Chung and Graham [10, Page 95] conjectured that Π
(k)
fin consists of rational

numbers only. The following theorem disproves this conjecture for every k ≥ 3.

(Note that the conjecture is true for k = 2 by (1).) Independently, Chung and

Graham’s conjecture was disproved by Baber and Talbot [2] who discovered a

family of only three forbidden 3-graphs whose Turán density is irrational. We

should mention that Theorems 3 and 5 rely on the Strong Removal Lemma of

Rödl and Schacht [37] so they give families F of huge size.

Theorem 5: For every k ≥ 3 the set Π
(k)
fin contains an irrational number.

This paper is organised as follows. Some further notation is given in Sec-

tion 2. The proof of Theorem 3 is presented in Section 3; it is preceded by a

number of auxiliary results. Sections 4, 5 and 6 contain the proofs of respec-

tively Theorem 5, Proposition 1 and Theorem 2. Finally, Section 7 presents

some concluding remarks and open questions.

2. Notation

Let us introduce some further notation complementing and expanding that from

the Introduction. Some other (infrequently used) definitions are given shortly

before they are needed for the first time in this paper.

Recall that a k-multisetD is an unordered collection of k elements x1, . . . , xk

with repetitions allowed. Let us denote this as D = {{x1, . . . , xk }}. The

multiplicity D(x) of x in D is the number of times that x appears. If

the underlying set is understood to be [m], then we can represent D as the

ordered m-tuple (D(1), . . . , D(m)) of multiplicities. Thus, for example, the

profile of X ⊆ V1 ∪ · · · ∪ Vm is the multiset on [m] whose multiplicities are

(|X ∩ V1|, . . . , |X ∩ Vm|). Also, let x(r) denote the sequence consisting of r

copies of x; thus the multiset consisting of r copies of x is denoted by {{x(r)}}.
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If we need to emphasise that a multiset is in fact a set (that is, no element has

multiplicity more than 1), we call it a simple set.

For D ⊆ [m] and sets U1, . . . , Um, denote

UD :=
⋃
i∈D

Ui.

Let
(
X
m

)
:= {Y ⊆ X : |Y | = m} consist of all m-subsets of a set X . The

standard (m− 1)-dimensional simplex is

(4) Sm := {x ∈ R
m : x1 + · · ·+ xm = 1, ∀ i ∈ [m] xi ≥ 0}.

2.1. Hypergraphs. We usually identify a k-graph G with its edge set. For

example, X ∈ G means that X is an edge of G and |G| denotes the number

of edges. When we need to refer to the vertex set, we write V (G) and denote

v(G) := |V (G)|. The (edge) density of G is

ρ(G) :=
|G|(
v(G)
k

) .
The complement of G is G := {X ⊆ V (G) : |X | = k, X �∈ G}. For x ∈ V (G)

its link is the (k − 1)-hypergraph

Gx := {X ⊆ V (G) : x �∈ X, X ∪ {x} ∈ G}.

For U ⊆ V (G) its induced subgraph is G[U ] := {X ∈ G : X ⊆ U}. The

vertex sets of G, Gx and G[U ] are by default V (G), V (G) \ {x} and U , respec-

tively. The degree of x ∈ V (G) is dG(x) := |Gx|. Let Δ(G) and δ(G) denote

respectively the maximum and minimum degrees of the k-graph G.

An embedding of a k-graph F into G is an injection f : V (F ) → V (G) such

that f(X) ∈ G for every X ∈ F . An embedding is induced if non-edges are

mapped to non-edges.

2.2. Pattern specific definitions. Let P = (m,E,R) be a pattern and

G be a P -construction on [n]. The initial partition V (G) = V1 ∪ · · · ∪ Vm is

called the level-1 partition and Vi’s are called level-1 parts. For each i ∈ R

we denote the corresponding partition of Vi as Vi,1 ∪ · · · ∪ Vi,m and call these

parts level-2 parts. This notation generalises in the obvious way with Vi1,...,is

for (i1, . . . , is) ∈ Rs−1 × [m] consisting of those vertices of G that, for every

j = 1, . . . , s, belong to the ij-th part on level j. Also, we denote V∅ := V (G).

The length of a sequence i = (i1, . . . , is) is |i| = s. The sequence i is legal if

ij ∈ R for all j ∈ [s− 1] and is ∈ [m]; this includes the empty sequence.
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We collect all parts that appear in the P -construction G into a single vector

V := (V∅, V1, . . . , Vm, . . . )

and call V the partition structure of G; its index set is some subset of legal

sequences.

For convenience, we view the partition structure as vertical with a level’s

index (called height) increasing as we go up. In particular, the partition

V1∪· · ·∪Vm is called bottom. By default, the profile of X ⊆ V (G) is taken with

respect to the bottom parts, that is, its multiplicities are (|X∩V1|, . . . , |X∩Vm|).
The branch brV(x) of a vertex x ∈ V (G) is the (unique) maximal sequence i

such that x ∈ Vi.

Given P , let F∞ consist of those k-graphs F that do not embed into a P -

construction:

(5) F∞ := {k-graph F : every P -construction G is F -free}.

For an integer n, let Fn consist of all members of F∞ with at most n vertices:

(6) Fn := {F ∈ F∞ : v(G) ≤ n}.

Let the Lagrange polynomial of E be

(7) λE(x1, . . . , xm) := k!
∑
D∈E

m∏
i=1

x
D(i)
i

D(i)!
.

This definition is motivated by the fact that, for every partition [n]=V1∪· · ·∪Vm,

we have that

(8) ρ(E((V1, . . . , Vm))) = λE

( |V1|
n

, . . . ,
|Vm|
n

)
+ o(1), as n → ∞;

see also Lemma 14 that relates λE and ΛP . The special case of (7) when E is a

k-graph (i.e., E consists of simple sets) has been successfully applied to Turán-

type problems, with the basic idea going back to Motzkin and Straus [30]. Also,

our definition of ΛP is a generalisation of the well-known hypergraph Lagrangian

ΛE := Λ(m,E,∅); see, e.g., [2].
For i ∈ [m] let the link Ei consist of all (k − 1)-multisets A such that if we

increase the multiplicity of i in A by one, then the obtained k-multiset belongs

to E. We call a pattern P proper if it is minimal and 0 < ΛP < 1. Trivially,

every minimal pattern P = (m,E,R) satisfies that

(9) Ei �= ∅, for every i ∈ [m].
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2.3. An example. To illustrate the above definitions, let us consider a specific

simple example:

(10) P :=
(
2, { {{1, 2, 2}} }, {1}

)
.

Here a P -construction on V is obtained by partitioning V = V1 ∪ V2 with

V1 �= V and adding all triples that have exactly two vertices in V2. Next, we

apply recursion to V1: namely, we partition V1 = V1,1 ∪ V1,2 with V1,1 �= V1 and

add all triples that intersect V1,1 and V1,2 in respectively one and two vertices.

Next, we repeat inside V1,1, and so on. We can always stop; for example, we

may choose to do this after three iterations by letting V1,1,1 span the empty

3-graph. In this case, the partition structure is

V = (V∅, V1, V2, V1,1, V1,2, V1,1,1, V1,1,2),

where V∅ := V . If we take a vertex x in V2, V1,2, V1,1,1 and V1,1,2, then its

branch is respectively (2), (1, 2), (1, 1, 1) and (1, 1, 2). This defines the branch

of every vertex as these four sets partition V ; there is no vertex whose branch

is, for example, (1, 1).

We have λE(x1, x2) = 6 · x1 · (x2
2/2) = 3x1x

2
2. It is not hard to show

(cf. Lemma 14) that ΛP = 2
√
3 − 3 and an example of a P -construction at-

taining this density is to use a ratio close to 1 :
√
3 for each partition. Thus,

this is an example of a 3-graph pattern whose Lagrangian is irrational.

3. Proof of Theorem 3

The proof of Theorem 3 is rather long and relies on a number of auxiliary results.

Very briefly, it proceeds as follows. The starting point is the easy observation

(Lemma 7) that by forbidding F∞ we restrict ourselves to k-graphs that embed

into a P -construction; thus ex(n,F∞) = pn. The deep and powerful Strong

Removal Lemma of Rödl and Schacht [37] (stated as Lemma 21 here) implies

that for every ε > 0 there is M such that every FM -free k-graph with n ≥ M

vertices can be made F∞-free by removing at most ε
(
n
k

)
edges. It follows that

every maximum FM -free k-graphG on [n] is 2ε
(
n
k

)
-close in the edit distance to a

P -construction; see Lemma 22. Although the obtained ε > 0 can be made arbi-

trarily small by choosing M large, the author did not see any simple way of en-

suring that ε → 0 for some fixed M as n → ∞. Nonetheless, our key Lemma 20
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shows that some small but constant ε > 0 suffices to ensure that there is a par-

tition V (G) = V1 ∪ · · · ∪ Vm such that G \ (
⋃

i∈R G[Vi]) = E((V1, . . . , Vm)), that

is, G follows exactly the bottom level of some P -construction (but nothing is

stipulated about what happens inside the “recursive” parts Vi). The maximal-

ity of G implies that each G[Vi] with i ∈ R is maximum FM -free (cf. Lemma 9),

allowing us to apply induction.

3.1. Basic properties of patterns. Here, let P = (m,E,R) be an arbitrary

pattern and let all definitions of Sections 1 and 2 apply. In particular, pn, ΛP ,

F∞ and Fn are defined by respectively (2), (3), (5) and (6).

Lemma 6: Any induced subgraph (resp. any blow-up) of a P -construction H

is (resp. embeds into) a P -construction.

Proof. Let V be the partition structure of H . If H ′ := H [X ] is an induced

subgraph, then we can initially let V ′
i := Vi ∩ X for each index i. This need

not be a partition structure as we may have V ′
i1,...,is = V ′

i1,...,is−1
for some

(i1, . . . , is) ∈ Rs, which is not allowed by the definition: namely, the partition

of V ′
i1,...,is−1

has the is-th part equal to the whole set (and is ∈ R). We can fix

one such occurrence by removing is from all indices that begin with (i1, . . . , is).

Formally, we remove all parts V ′
ii,...,is−1,js,... with js �= is (note that they are all

empty) and relabel each part V ′
i1,...,is,js+1,...,jt

into V ′
i1,...,is−1,js+1,...,jt

. We keep

fixing all such occurrences one by one. Since, for example,
∑

V ′
i ∈V′ |i| strictly

decreases each time, this procedure stops. The final vector V′ shows that H ′ is
a P -construction.

If we insert a new vertex into a P -construction by putting it into the same

part as some existing vertex x, then we add all those edges (and possibly some

further ones) as when we just clone x. Thus every blow-up of H , which can

be obtained by a sequence of cloning steps and vertex removals, embeds into a

P -construction.

Lemma 7: The following are equivalent for an arbitrary k-graphG on n vertices:

1) G is Fn-free;

2) G is F∞-free;

3) G embeds into a P -construction;

4) G embeds into a P -construction H with v(H) = n.
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Proof. The equivalence of 1), 2) and 3) follows from the definitions of Fn and

F∞. Statements 3) and 4) are equivalent by Lemma 6.

It follows from Lemma 7 that ex(n,Fn) = ex(n,F∞) = pn.

Lemma 8: Let s ∈ N ∪ {∞}. If G is Fs-free, then any blow-up of G is Fs-free.

Proof. Let G′ be obtained from G by adding a clone x′ of some vertex x of

G. Take any U ⊆ V (G′) with |U | ≤ s. If at least one of x and x′ is not

in U , then G′[U ] is isomorphic to a subgraph of G and is Fs-free; so suppose

otherwise. Since G is Fs-free, there is an embedding f of G[U \ {x′}] into some

P -construction. By Lemma 6, G[U ] is also embeddable. It follows that G′ is
Fs-free.

Lemma 9: Let s ∈ N∪{∞}. Let G be a k-graph on V = V1∪· · ·∪Vm obtained

by taking E((V1, . . . , Vm)) and putting arbitrary Fs-free k-graphs into parts Vi

with i ∈ R. Then G is Fs-free.

Proof. Take an arbitrary U ⊆ V (G) with |U | ≤ s. Let Ui := Vi ∩ U . Note that

G[Ui] has no edges for i ∈ [m] \ R and embeds into some P -construction Hi

for i ∈ R (because |Ui| ≤ s and G[Ui] ⊆ G[Vi] is Fs-free). By combining the

partition structure of each Hi together with the level-1 decomposition U =

U1 ∪ · · · ∪ Um, we see that G[U ] embeds into a P -construction, giving the

required.

Lemma 10: The ratio pn/
(
n
k

)
is non-increasing with n. In particular, the limit

in (3) exists.

Proof. Let � < n and take a maximum P -construction G on [n]. Every �-subset

of [n] spans at most p� edges by Lemma 6. Averaging over all
(
n
�

)
�-subsets

gives that pn ≤ p�
(
n
�

)
/
(
n−k
�−k

)
= p�

(
n
k

)
/
(
�
k

)
, as required.

Lemma 11: For every ε > 0 and s ∈ N ∪ {∞} there is n0 such that every

maximum Fs-free k-graph G with n ≥ n0 vertices has minimum degree at least

(ΛP − ε)
(
n−1
k−1

)
.

Proof. Let n be large and G be as stated. Clearly, |G| ≥ pn. The average degree

of G is k|G|/n ≥ kpn/n ≥ (ΛP − ε/2)
(
n−1
k−1

)
. If some x has degree smaller than

(ΛP − ε)
(
n−1
k−1

)
, then by deleting x and adding a clone y′ of a vertex y whose

degree is at least the average, we increase |G| by at least |Gy|−|Gx|−
(
n−2
k−2

)
> 0.
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This preserves the Fs-freeness by Lemma 8, contradicting the maximality of

G.

Lemma 12: We have ΛP = 1 if and only if at least one of the following holds.

(1) There is i ∈ [m] such that {{i(k)}} ∈ E.

(2) There are i ∈ R and j ∈ [m] \ {i} such that {{i(k−1), j }} ∈ E.

Proof. The converse implication is obvious: we can get the complete k-graph

on [n] by taking Vi = [n] in the first case and by taking Vi = [n− 1], Vj = {n},
and recursing inside Vi in the second case.

Let us show the direct implication. Suppose that the above multisets are not

present in E. Let n → ∞ and let G be a maximum P -construction on [n] with

the bottom partition [n] = V1 ∪ · · · ∪ Vm.

Suppose first that there is a part Vi with n− o(n) vertices for infinitely many

n, say i = 1. Assume that 1 ∈ R for otherwise the complement G has at least(|V1|
k

)
= Ω(nk) edges. Since V1 is not allowed to be the whole vertex set [n],

we can assume that e.g., V2 �= ∅. Fix x ∈ V2. The degree of x in G is at most

(n−|V1|)
(

n
k−2

)
= o(nk−1): since {{1(k−1), 2}} �∈ E, each edge of the link (k−1)-

graph Gx has to contain at least one vertex outside of V1. This contradicts

Lemma 11.

Thus some two parts, say V1 and V2, have Ω(n) vertices each. Assume that

1 ∈ R for otherwise at least Ω(nk) edges (those inside V1) are missing from G.

Since {{1(k−1), 2}} �∈ E, all edges that intersect V1 in k − 1 vertices and V2 in

one vertex are not present. Again, at least Ω(nk) edges are missing from G, as

required.

The proof of Lemma 12 shows that if ΛP = 1, then the complete k-graph is

a P -construction. This satisfies Theorem 3 if we take F = ∅. Also, if ΛP = 0,

then only empty k-graphs are realisable as P -constructions and Theorem 3

is also satisfied: let F = {Kk
k} consist of a single edge. Thus it is enough to

prove Theorem 3 for proper patterns (that is, minimal patterns with Lagrangian

strictly between 0 and 1).

3.2. Properties of proper patterns. In this section we let P = (m,E,R)

be an arbitrary pattern that is proper. Here we establish some properties of P .
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Lemma 13: For every P -construction G on n vertices with minimum degree

δ(G) = Ω(nk−1), each bottom part Vi has at most (1 − Ω(1))n vertices as

n → ∞.

Proof. For i ∈ [m] \ R the claim follows from δ(G)n/k ≤ |G| ≤
(
n
k

)
−

(|Vi|
k

)
.

Let i ∈ R. Since Vi �= V (G), pick any vertex x ∈ Vj with j �= i. Since

{{i(k−1), j }} �∈ E by Lemma 12, every edge through x contains at least one other

vertex outside of Vi. Thus dG(x) ≤ (n−|Vi|)
(
n−2
k−2

)
, implying the required.

Let

S
∗
m := {x ∈ R

m : x1 + · · ·+ xm = 1, ∀ i ∈ [m] 0 ≤ xi < 1}

be obtained from Sm by excluding the standard basis vectors, where Sm is

defined by (4). Let us call a vector x ∈ Rm optimal if x ∈ S∗m and

(11) ΛP = λE(x) + ΛP

∑
i∈R

xk
i .

Let X be the set of all optimal x. Note that when we define X we restrict

ourselves to S∗m (i.e., we do not allow any standard basis vector to be included

into X ).

In a sense (with the formal statements appearing in Lemmas 14 and 15 below),

X is precisely the set of optimal limiting ratios that lead to asymptotically

maximum P -constructions. Let us illustrate this on the case when P is as in

(10). Suppose that we want to determine ΛP . Let [n] = V1 ∪ V2 be the bottom

partition in a maximum P -construction G. Let xi := |Vi|/n for i = 1, 2. By

Lemma 10, ρ(G) and ρ(G[V1]) are close to ΛP . (Note that we cannot have x1 =

o(1) by Lemmas 11 and 13.) Thus, we conclude that ΛP = 3x1x
2
2+ΛPx

3
1+o(1),

which is exactly (11) if we ignore the error term. Solving for ΛP and excluding

x2, we have to maximise g(x) := 3x(1 − x)2/(1 − x3) for x ∈ (0, 1). In this

particular case, the maximum is 2
√
3 − 3 and it is attained inside (0, 1) at the

unique point α := (
√
3− 1)/2. It follows that ΛP = 2

√
3− 3, (11) has a unique

solution in S∗2, and X = {(α, 1 − α)}. Note that although (x1, x2) = (1, 0)

satisfies (11), we have that limx→1 g(x) = 0 < ΛP . This justifies why we

exclude the standard basis vectors from X .

Lemma 14: Let f(x) := λE(x) + ΛP

∑
i∈R xk

i be the right-hand side of (11).

Then the following claims hold.

(1) X �= ∅.
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(2) f(x) ≤ ΛP for all x ∈ Sm. (Thus, by Part 1, X is precisely the set of

elements in S∗m that maximise f .)

(3) X does not intersect the boundary of Sm.

(4) For every x ∈ X and j ∈ [m] we have ∂f
∂j
(x) = kΛP .

(5) X is a closed subset of Sm.

(6) For every ε > 0 there is α > 0 such that for every y ∈ Sm with

max(y1, . . . , ym) ≤ 1 − ε and f(y) ≥ ΛP − α there is x ∈ X with

‖x− y‖∞ ≤ ε.

(7) There is β > 0 such that for every x ∈ X and every i ∈ [m] we have

xi ≥ β.

Proof. Let G be a maximum P -construction on [n] with the bottom partition

V1 ∪ · · · ∪ Vm. By passing to a subsequence of n, we can assume that, for

every i ∈ [m], the ratio |Vi|/n tends to some limit xi. By Lemmas 11 and 13,

x = (x1, . . . , xm) belongs to S
∗
m. By Lemma 9, for each i ∈ R the induced

subgraph G[Vi] is a maximum P -construction. By Lemma 10, we have that

|G[Vi]| = (ΛPx
k
i + o(1))

(
n
k

)
. Now, (8) shows that x satisfies (11). Thus x ∈ X ,

so this set is non-empty.

Let x ∈ Sm. If we use the approximate ratios x1 : · · · : xm for the bottom

partition V1 ∪ · · · ∪ Vm and put a maximum P -construction on each Vi with

i ∈ R, then the obtained P -construction has edge density f(x) + o(1). Thus

f(x) ≤ ΛP for all x ∈ Sm, proving Part 2.

Suppose that X intersects the boundary of Sm, that is, X contains some

x with zero entries. Without loss of generality, assume that x1, . . . , xm′ are

positive while all other entries are 0. Since x ∈ S∗m, we have m′ ≥ 2. Let

P ′ = (m′, E′, R′) be obtained from P by removing the indices m′ + 1, . . . ,m.

Consider a P ′-construction H where the bottom partition U1 ∪ · · · ∪ Um′ has

approximate ratios x1 : · · · : xm′ while each part Ui with i ∈ R′ spans a

maximum P ′-construction. By the definition of ΛP ′ , we have

ΛP ′ ≥ρ(H) + o(1) = λE′(x1, . . . , xm′) + ΛP ′
∑
i∈R′

xk
i + o(1)

=λE(x) + ΛP ′
∑
i∈R

xk
i + o(1).

Since x ∈ S
∗
m, we have

∑
i∈R xk

i < 1. Thus ΛP ′+o(1) ≥ λE(x)/(1−
∑

i∈R xk
i ) =

ΛP , where we used identity (11) that x ∈ X has to satisfy. This contradicts the

minimality of P and proves Part 3.
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Let x ∈ X . By Part 3, x lies in the interior of Sm. Since x maximises

f subject to x1 + · · · + xm = 1, we conclude that all partial derivatives of f

coincide at x. Furthermore, this common value is kΛP , which follows from the

easy identity
∑m

i=1 xi
∂f
∂i
(x) = kf(x), establishing Part 4

From Part 2 we know that X is precisely the set of elements of S∗m that

maximise f(x). Clearly, f : Sm → R is a continuous function. Thus, in order

to prove Part 5 it is enough to show that X cannot accumulate to any element

of the set Sm \ S∗m that consists of the standard basis vectors. The proof will

essentially be a translation of the argument of Lemma 13 into a more analytic

language. Let x ∈ X . Take any index i ∈ [m]. If i ∈ [m] \R, then ΛP = f(x) ≤
1− xk

i +ΛP (1− xi)
k, so xi cannot be arbitrarily close to 1. Let i ∈ R. Since P

is proper, each monomial of λE(x) contains at least two factors different from

xi by Lemma 12. Thus when we take the j-th derivative of f for j ∈ [m], each

monomial will have some factor xs with s �= i; of course, xs ≤ 1 − xi. As

the sum of the coefficients of the degree-k polynomial f is, rather roughly, at

most mk, we conclude that ∂f
∂j
(x) ≤ kmk(1 − xi). By Part 4 we conclude that

1− xi ≥ ΛP /m
k, that is, xi is separated from 1. This establishes Part 5.

Suppose that Part 6 is false. Then there is ε > 0 such that for every i ∈ N

there is yi ∈ Sm violating it with α = 1/i. By the compactness of Sm the

sequence (y1,y2, . . . ) accumulates to some y. The vector y belongs to S∗m by

the assumption on each yi. By the continuity of f we have f(y) ≥ ΛP , that is,

y ∈ X , a contradiction to y being ε-far from X .

Part 7 is proved in a similar way as Part 6. (Alternatively, it directly follows

from Parts 3 and 5.)

Informally speaking, the following lemma implies, among other things, that

all part ratios of bounded height in a P -construction of large minimum degree

approximately follow some optimal vectors. For example, if P is defined by (10),

then Part 1 of Lemma 15 gives that, for any fixed �, every P -construction G

on [n] with δ(G) ≥ (ΛP − o(1))
(
n−1
k−1

)
satisfies |V1(s),2| : |V1(s),1| =

√
3 + o(1) for

each 0 ≤ s ≤ �.

Lemma 15: For every ε > 0 and � ∈ N there are constants

α0, ε0, . . . , α�, ε�, α�+1 ∈ (0, ε) and n0 ∈ N

such that the following holds. Let G be an arbitrary P -construction G on

n ≥ n0 vertices with the partition structure V such that the minimal degree



Vol. 201, 2014 ON POSSIBLE TURÁN DENSITIES 429

δ(G) ≥ (ΛP − α0)
(
n−1
k−1

)
. Take arbitrary i ∈ Rs with 0 ≤ s ≤ � and denote

vi := (|Vi,1|/|Vi|, . . . , |Vi,m|/|Vi|). Then:
(1) ‖vi − x‖∞ ≤ εs for some x ∈ X ;

(2) |Vi,j | ≥ (β/2)s+1n for all j ∈ [m], where β is returned by Part 7 of

Lemma 14;

(3) δ(G[Vi,j ]) ≥ (ΛP − αs+1)
(|Vi,j |−1

k−1

)
for all j ∈ R.

Proof. We choose positive constants in this order:

α�+1 � ε� � α� � · · · � ε0 � α0 � 1/n0,

each being sufficiently small depending on P , ε, β, and the previous constants.

LetG and i be as in the lemma. We use induction on s=0, 1, . . . , �. Let Uj :=Vi,j

for j ∈ [m], U := Vi = U1 ∪ · · · ∪ Um, and u := vi = (|U1|/|U |, . . . , |Um|/|U |).
By the inductive assumption on δ(G[U ]) (or by the assumption of the lemma if

s = 0 when U = V∅ = V (G)), we have that

|G[U ]| ≥ δ(G[U ])|U |/k ≥ (ΛP − αs)

(
|U |
k

)
.

Since αs � εs, Lemma 13 and Part 6 of Lemma 14 (when applied to y = u)

give the desired x, proving Part 1.

For all j ∈ [m], we have |Uj | ≥ (xj − εs)|U | ≥ (β/2)|U |, which is at least

(β/2)s+1n by the inductive assumption, proving Part 2.

Finally, take arbitrary j ∈ R and y ∈ Uj. The degree of y in E((U1, . . . , Um))

is

dE((U1,...,Um))(y) =

(
1

k
× ∂λE

∂j
(u) + o(1)

)(
|U | − 1

k − 1

)
.

Since ‖u−x‖∞ ≤ εs � αs+1, we have by Part 4 of Lemma 14 that, for example,

∂

∂j
λE(u)− α2

s+1 ≤ ∂

∂j
λE(x) =

∂

∂j
f(x)− kΛPx

k−1
j = kΛP − kΛPx

k−1
j .

Thus, by the (inductive) assumption on the minimal degree of G[U ], we have

dG[Uj ](y) =dG[U ](y)− dE((U1,...,Um))(y)

≥((ΛP − αs)− (ΛP − ΛPx
k−1
j + 2α2

s+1/k))

(
|U | − 1

k − 1

)

≥(ΛP (uj − εs)
k−1 − 3α2

s+1/k)

(
|U | − 1

k − 1

)
≥ (ΛP − αs+1)

(
|Uj | − 1

k − 1

)
,
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where we used |uj − xj | ≤ εs and xj ≥ β � αs+1 � εs � αs. This finishes the

proof of Lemma 15.

Recall that the link Ei of i ∈ [m] consists of all (k− 1)-multisets on [m] such

that if we increase the multplicity of i by one, then the obtained k-multiset

belongs to E.

Lemma 16: If distinct i, j ∈ [m] satisfy Ei ⊆ Ej , then i ∈ R, j �∈ R, and

Ei �= Ej . In particular, no two vertices of the pattern P = (m,E,R) have the

same links in E.

Proof. Take some optimal x ∈ X . By Part 3 of Lemma 14, all coordinates of x

are non-zero. Define x′ ∈ Sm by x′
i = 0, x′

j = xi + xj , and x′
h = xh for all other

indices h. We claim that

(12) λE(x
′) ≥ λE(x).

One way to show (12) is to use (8). Consider some F := E((V1, . . . , Vm)). The

assumption Ei ⊆ Ej implies that if we decrease the multiplicity of i in some

A ∈ E but increase the multiplicity of j by the same amount, then the new

multiset necessarily belongs to E. Thus if we remove a vertex y from Vi and

add a vertex y′ to Vj , then the obtained k-graph F ′ has at least as many edges

as F . (In fact, we have that Fy ⊆ F ′
y′ .) Since x′ is obtained from x by shifting

weight from xi to xj , (12) follows.

Also, m ≥ 3 for otherwise {{j(k) }} ∈ E, contradicting Lemma 12. Thus

x′ ∈ S∗m.

We conclude that j �∈ R, for otherwise we get a contradiction to Part 2 of

Lemma 14 by using (12) and the trivial inequality xk
i +xk

j < (xi+xj)
k. Likewise,

i ∈ R for otherwise the vector x′, that has a zero coordinate, would belong to

X . Finally, we see that Ei �= Ej by swapping the roles of i and j in the above

argument.

A map h : [m] → [m] is an automorphism of the pattern P if h is bijective,

h(R) = R, and h is an automorphism of E (that is, h(E) = E). Let us

call a P -construction G with the bottom partition V1 ∪ · · · ∪ Vm rigid if for

every embedding f of G into a P -construction H with the bottom partition

U1 ∪ · · · ∪Um such that f(V (G)) intersects at least two different parts Ui, there

is an automorphism h of P such that f(Vi) ⊆ Uh(i) for every i ∈ [m].
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For example, the pattern P in (10) has no non-trivial automorphism and a

rigid P -construction can be obtained by taking any E((V1, V2)) with |V1| ≥ 1

and |V2| ≥ 3. Thus the following Lemma 17 is trivially true for this particular

P .

Lemma 17: For all large n, every maximum P -construction G on [n] is rigid.

Since the proof of Lemma 17 in general is long and complicated, some informal

discussion may be helpful here. It is not surprising that the proof is far simpler

if R = ∅. In fact, an example of a rigid P -construction in this case can be

obtained by letting each Vi have more than (k− 2)m vertices. Indeed, take any

embedding f of G = E((V1, . . . , Vm)) into E((U1, . . . , Um)). For every i ∈ [m]

at least k − 1 vertices of Vi go into Uh(i) for some h(i). It is not hard to see

that if we map each part Vi entirely into Uh(i), then the new map is also an

embedding. Since P is minimal, h has to be surjective and some extra work

shows that necessarily f(Vi) ⊆ Uh(i) for all i ∈ [m]. (In fact, if furthermore E

consists of simple k-sets only, then |Vi| ≥ 1 is enough for rigidity.)

The case R �= ∅ is more complicated, although the main ideas (such as using

the function h that specifies where a large part of Vi is mapped to) are roughly

the same. One complication is that for a non-minimal pattern P there can be

embeddings that map the bottom edges into different levels. For example, let

P =
(
5, { {{1, 2, 3}}, {{1, 2, 4}}, {{1, 2, 5}}, {{3, 4, 5}} } , {5}

)
and let f map the bottom parts V1, . . . ,V5 into respectively U1, U2,U3,1, U3,2, U3,3.

Here, P is obtained from the pattern (3, { {{1, 2, 3}} }, {3}) by “expanding” the

third part up one level. Thus our proof of Lemma 17 should in particular catch

all such redundancies.

Proof of Lemma 17. Let n → ∞ and G be a maximum P -construction on [n]

with the partition structure V. Take any embedding f of G into some P -

construction H with the bottom partition V (H) = U1 ∪ · · · ∪ Um such that

f(V (G)) intersects at least two different parts Ui.

Claim 17.1: The map f is an induced embedding (that is, f(X) is an edge if

and only if X is).

Proof of Claim. If some non-edge D ∈ G is mapped by f into an edge of H ,

then the k-graph G∪ {D} embeds into a P -construction (the very same map f

embeds it into H). However, this contradicts the maximality of G.
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By Lemma 11 and Part 2 of Lemma 15, the size of each Vi tends to infinity.

By the pigeonhole principle, there is a function h : [m] → [m] such that

(13) |f(Vi) ∩ Uh(i)| ≥ k, for all i ∈ [m].

Claim 17.2: We can choose h in (13) so that, additionally, h(R) ⊆ R and h

assumes at least two different values.

Proof of Claim. Suppose that R �= ∅ and we cannot satisfy the first part of

the claim for some i ∈ R, that is, for each s ∈ R we have |f(Vi) ∩ Us| < k.

Thus G[Vi] with the exception of at most (k− 1)|R| vertices is embeddable into

H [U[m]\R]. By the maximality of G, Lemmas 11 and 15 give that |Vi| → ∞
and ρ(G[Vi]) = ΛP + o(1). This means that (P −R)-constructions can contain

arbitrarily large subgraphs of edge density ΛP + o(1), that is, ΛP−R ≥ ΛP .

However, this contradicts the minimality of P .

Let us restrict ourselves to those h with h(R) ⊆ R. Suppose that we cannot

fulfil the second part of the claim. Then there is j∈ [m] such that |f(Vi)∩Uj |≥k

for every i ∈ [m]. Since E �= ∅, the induced subgraph G[f−1(Uj)] is non-empty

(it has at least k vertices from each Vi) and is mapped entirely into Uj . Thus

j ∈ R. Since f(V (G)) intersects at least two different parts Ui, we can pick

some x ∈ Vi with f(x) ∈ Us and s �= j. Fix some (k − 1)-multiset D ∈ Ei.

(Note that Ei �= ∅ by (9).) Take an edge D′ � x of G so that D′\{x} is a subset

of f−1(Uj) and has profile D; it exists because each part Vg contains at least

k vertices of f−1(Uj). The k-set f(D′) is an edge of H as f is an embedding.

However, it has k − 1 vertices in Uj and one vertex in Us. Thus the k-multiset

{{j(k−1), s}} belongs to E. Since j ∈ R, this contradicts Lemma 12. The claim

is proved.

Claim 17.3: Each h satisfying Claim 17.2 is a bijection.

Proof of Claim. For j ∈ [m] let U ′
j :=

⋃
i∈h−1(j) f(Vi) ⊆ V (H). (Thus U ′

j = ∅
for j not in the image of h.) Let H ′ be the P -construction on f(V (G)) such

that U ′
1 ∪ · · · ∪ U ′

m is the bottom partition of H ′ and, for i ∈ R, H ′[U ′
i ] is the

image of the P -construction G[f−1(U ′
i)] under the bijection f .

We have just defined a new P -construction H ′ so that each part Vi of G is

entirely mapped by f into the h(i)-th part of H ′, that is, all vertices of G follow

h now. This H ′ will be used only for proving that h is a bijection. The reader
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should be able to derive from the proof of Claim 17.3 that in fact U ′
j ⊆ Uj and

H ′ = H [f(V (G))] (but we will not use these properties).

Let us show first that the same map f is an embedding of G into H ′. First,
take any bottom edge D ∈ G such that f(D) intersects two different parts U ′

i .

Let D′ ∈ G have the same profile as D and satisfy

(14) D′ ⊆
⋃

i∈[m]

(
Vi ∩ f−1(Uh(i))

)
,

which is possible because there are at least k vertices available in each part

Vi. Since f(D′) ∩ Ui = f(D′) ∩ U ′
i for all i ∈ [m], the f -image of D′ has the

same profile X with respect to the partitions U1 ∪ · · · ∪ Um and U ′
1 ∪ · · · ∪ U ′

m.

Thus X ∈ E. Next, as each f(Vi) lies entirely inside U ′
h(i), the sets f(D) and

f(D′) have the same profiles with respect to parts U ′
i . Thus f(D) is an edge of

E((U ′
1, . . . , U

′
n)), as required. Next, take any i ∈ [m] and let G′ := G[f−1(U ′

i)].

Assume that i ∈ [m] \R, for otherwise f(G′) ⊆ H ′ by the definition of H ′. We

claim that G′ has no edges in this case. Since h(R) ⊆ R, we have h−1(i)∩R = ∅.
Thus it remains to derive a contradiction by assuming that a bottom edge D of

G belongs to G′. As before, we can find an edge D′ ∈ G that satisfies (14) and

has the same profile as D′ with respect to V1, . . . , Vm. However, f maps this D′

inside a non-recursive part Ui of H , a contradiction. Thus f is an embedding

of G into H ′.
Thus, by considering H ′ instead of H (and without changing h) we have that

f(Vi) ⊆ U ′
h(i) for all i ∈ [m].

Suppose on the contrary to the claim that |h−1(s)| ≥ 2 for some s ∈ [m]. Let

A := h−1(s) and B := [m] \ A. Since h assumes at least two different values,

the set B is non-empty.

Note that U ′
s is externally H ′-homogeneous, meaning that any permuta-

tion σ of V (H ′) that fixes every vertex outside of U ′
s is a symmetry of the set of

H ′-edges that intersect the complement of U ′
s, that is, σ

(
H ′ \

(U ′
s
k

))
= H ′ \

(U ′
s
k

)
.

It follows from Claim 17.1 that f−1(U ′
s) = VA is externally G-homogeneous.

(Recall that we denote VA :=
⋃

i∈A Vi.) Since each Vi has at least k elements,

we conclude that A is externally E-homogeneous.

Suppose first that A∩R �= ∅. By the above homogeneity, if we replace G[VA]

by any P -construction, then the new k-graph on V is still a P -construction.

Also, recall that each Vi has size Ω(n) by Lemmas 11 and 15. Thus, by the max-

imality of G, the edge density of G[VA] is ΛP +o(1). Also, ρ(G[Vi]) = ΛP + o(1)
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for i ∈ A ∩R. Consider the pattern Q := P −B obtained by removing B from

P . Without loss of generality assume that A = [a]. For i ∈ A let xi := |Vi|/|VA|.
The obtained vector x ∈ Sa satisfies ΛP = λQ(x)+

∑
i∈A∩R ΛPx

k
i +o(1). On the

other hand, if we use the same vector x for the bottom ratios and put a maxi-

mum Q-construction on each recursive part, then we get overall density at most

ΛQ + o(1). Thus ΛQ ≥ λQ(x) +
∑

i∈A∩R ΛQx
k
i + o(1). Since G is a maximum

P -construction, we have that each part Vi has Ω(n) vertices; thus no xi can be

equal to 1 − o(1) and we have that 1 −
∑

i∈A∩R xk
i = Ω(1). These inequalities

imply that ΛQ ≥ λQ(x)/(1−
∑

i∈A∩R xk
i )+ o(1) = ΛP + o(1), contradicting the

minimality of P .

Finally, suppose that A ∩R = ∅. Since VA is externally G-homogeneous and

A consists of at least two indices i �= j, we have that E contains at least one

multiset entirely inside A (for otherwise Ei = Ej , contradicting Lemma 16).

Since f(VA) = U ′
s, we have that s ∈ R. By the maximality of G and Claim 17.1

it follows that the edge density of H ′[U ′
s] (and thus of G[VA]) is ΛP +o(1). Thus

ΛP−B ≥ ΛP , a contradiction proving the claim.

It follows from Claim 17.3 that each h satisfying Claim 17.2 is an auto-

morphism of P . By relabelling the parts of H , we can assume for notational

convenience that h is the identity mapping. Now we are ready to prove the

lemma, namely that f(Vi) ⊆ Ui for every i ∈ [m].

Suppose on the contrary that f(x) ∈ Uj for some x ∈ Vi and j ∈ [m] \ {i}.
It follows that Ei ⊆ Ej . By Lemma 16 this inclusion is strict and i ∈ R. Pick

some X from Ej \ Ei �= ∅. We can find D ∈ H such that D \ {f(x)} has the

profile X with respect to both U1 ∪ · · · ∪ Um and f(V1) ∪ · · · ∪ f(Vm). But

then f−1(D) is not an edge of G because its profile X ∪ {i} is not in E. (Note

that it is impossible that X = {{i(k−1)}} as this would give that E contains

{{i(k−1), j }}, the profile of D ∈ H , contradicting Lemma 12.) Thus f is not

induced, contradicting Claim 17.1. This shows that G is rigid.

Lemma 18: Every rigid P -construction G with the partition structure V such

that |Vi| ≥ k for every legal i with |i| ≤ 2 remains rigid after the addition of

any new vertex.

Proof. It is enough to show that if we take any embedding f of G into a P -

construction with the partition structureU such that f(Vi) ⊆ Ui for i ∈ [m] and

add one vertex x to some part Vi, then any extension of f to x maps it into Ui.
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If i ∈ [m]\R, then x and some y ∈ Vi have the same links in V ′ := V (G)\{x, y};
since the part containing f(y) is determined by the values of f on V ′, the same

applies to f(x), as required. So let i ∈ R. Since |Vi,j | ≥ k for each j ∈ [m],

the link of x in G necessarily contains at least one (k− 1)-set entirely inside Vi

by (9). This forces by Lemma 12 that f(x) ∈ Ui, finishing the proof.

Later (in the proof of Lemma 20) we will need the existence of a rigid P -

construction such that the recursion goes for exactly � levels for some � and

every part at height at most � has many vertices. This can be achieved as

follows. Take large n and let G be a maximum P -construction on [n]. It is

rigid by Lemma 17. Also, by Lemma 11 and Part 2 of Lemma 15, G satisfies

the assumptions of Lemma 18. Thus we can add some extra vertices to the

P -construction G, without increasing its maximum height � while achieving the

following property:

Lemma 19: There are � ∈ N and a rigid P -construction with the partition

structure V = (Vi : |i| ≤ �) such that for every legal sequence i of length at

most � we have |Vi| ≥ (k − 1)max(m, k).

3.3. Key lemmas. In this section, P = (m,E,R) is still a proper pattern. Let

us call two k-graphs with the same number of vertices s-close if one can be

made isomorphic to the other by changing at most s edges.

Lemma 20: There are c0 > 0 and M0 ∈ N such that the following holds. Let G

be a maximum FM0-free k-graph on n ≥ 2 vertices that is c0
(
n
k

)
-close to some

P -construction. Then there is a partition V (G) = V1 ∪ · · · ∪Vm such that no Vi

is equal to V and

(15) G \
( ⋃

i∈R

G[Vi]

)
= E((V1, . . . , Vm)).

Proof. Clearly, it is enough to establish the existence of M0 such that the con-

clusion of the lemma holds for every sufficiently large n. (Indeed, it clearly

holds for n ≤ M0 by Lemma 7, so we can simply increase M0 at the end to take

care of finitely many exceptions; alternatively, one can decrease c0.)

Let F be the rigid construction returned by Lemma 19. Let � be the maximum

height of F and let W be its partition structure. (Our proof also works if

R = ∅, when � = 1; in fact, some parts can be simplified in this case.) Let

M0 := v(F ) + k.
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We choose some constants ci in this order: c4 � c3 � c2 � c1 � c0 > 0,

each being sufficiently small depending on the previous ones. Let n tend to

infinity.

Let G be a maximum FM0 -free k-graph on [n] that is c0
(
n
k

)
-close to some

P -construction H . We can assume that V (H) = [n] and the vertices of H are

already re-labelled so that |G�H | ≤ c0
(
n
k

)
. Let V be the partition structure

of H . In particular, the bottom partition of H is V1 ∪ · · · ∪ Vm.

One of the technical difficulties that we are going to face is that some part

Vi with i ∈ R may in principle contain almost every vertex of V (G) (so every

other part Vj has o(n) vertices). This means that the “real” approximation to

G starts only at some higher level inside Vi. On the other hand, Lemma 15

gives us a way to rule out such cases: we have to ensure that the minimal

degree of H is close to ΛP

(
n−1
k−1

)
. So, as our first step, we are going to modify

the P -construction H (perhaps at the expense of increasing |G� H | slightly)
so that its minimal degree is large.

Namely, let Z := {x ∈ [n] : dH(x) < (ΛP − 2c1)
(
n−1
k−1

)
}. By Lemma 11 we can

assume that

(16) δ(G) ≥ (ΛP − c1)

(
n− 1

k − 1

)
.

Thus every vertex of Z contributes at least c1
(
n−1
k−1

)
/k to |G�H |. We conclude

that |Z| ≤ c0n/c1. Fix an arbitrary y ∈ [n] \Z. Let us change H by making all

vertices in Z into clones of y (and updating V accordingly). Clearly, we have

now

(17) δ(H) ≥ (ΛP − 2c1)

(
n− 1

k − 1

)
− |Z|

(
n− 2

k − 2

)
≥ (ΛP − 3c1)

(
n− 1

k − 1

)

while |G�H | ≤ c0
(
n
k

)
+ |Z|

(
n−1
k−1

)
≤ c1

(
n
k

)
.

If we end up with an improper partition structure (e.g., Vi = V (H) for some

i ∈ R), then we correct this as in the proof of Lemma 6 without changing the

k-graph H .

By Lemma 15 we can conclude that (in the new k-graph H) all part ratios

up to height � are close to optimal ones and |Vi| ≥ 2c4n for each legal sequence

i of length at most �.

Let A := E((V1, . . . , Vm)) \G consist of what we shall call absent edges. Let

us call a k-multiset D on [m] bad if D �∈ E and D �= {{i(k)}} for some i ∈ R.
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Let

B :=
(
G \ E((V1, . . . , Vm))

)
\
( ⋃

i∈R

(
Vi

k

))

and call edges in B bad. Equivalently, an edge of G is bad if its profile is bad.

Define a := |A| and b := |B|. Our aim is to achieve that a = b = 0.

Our next modification is needed to ensure later that (23) holds. Roughly

speaking, we want a property that the number of bad edges cannot be decreased

much if we move one vertex between parts. Unfortunately, we cannot just take

a partition structure V that minimises b because then we do not know how to

guarantee the high minimum degree of H (another property important in our

proof). Nonetheless, we can simultaneously satisfy both properties with some

extra work.

Namely, we modify H as follows (updating A, B, V, etc. as we proceed). If

there is a vertex x ∈ [n] such that by moving it to another part Vi we decrease

b by at least c2
(
n−1
k−1

)
, then we pick y ∈ Vi of maximum H-degree and make x a

clone of y. (Note that the new value of b depends only on the index i of the part

Vi but not on the choice of y ∈ Vi.) Clearly, we perform this operation at most

c1
(
n
k

)
/c2

(
n−1
k−1

)
= c1n/(c2k) times because we initially had b ≤ |G�H | ≤ c1

(
n
k

)
.

Thus, we have at all steps of this process (which affects at most c1n/(c2k)

vertices of H) that, trivially,

|Vi| ≥2c4n− c1n

c2k
≥ c4n, for all legal i with |i| ≤ �,(18)

|G�H | ≤c1

(
n

k

)
+

c1n

c2k

(
n− 1

k − 1

)
≤ c2

(
n

k

)
.(19)

It follows that at every step each part Vi had a vertex of degree at least

(ΛP − c2/2)
(
n−1
k−1

)
for otherwise the edit distance between H and G at that

moment would be at least c2
3

(
n−1
k−1

)
× c4n by (16) and (18), contradicting the

first inequality in (19). This implies that every time we clone a vertex it has

a high degree. Thus we have by (17) that, additionally to (18) and (19), the

following holds at the end of this process:

(20)

δ(H) ≥
(
ΛP −max(3c1, c2/2)

)(n− 1

k − 1

)
− c1n

c2k

(
n− 2

k − 2

)
≥ (ΛP − c2)

(
n− 1

k − 1

)
.

If we take the union of E((V1, . . . , Vm)) with
⋃

i∈R G[Vi], then the obtained

k-graph is still FM0 -free by Lemma 9 and has exactly a − b + |G| edges. The
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maximality of G implies that

(21) b ≥ a.

Suppose that b > 0, for otherwise a = b = 0 and the lemma is proved. Let

H ′ := H \
( ⋃

i∈R�

H [Vi]
)

be obtained from H by “truncating” it down to the first � levels.

Let us show that the maximal degree of B is small, namely that

(22) Δ(B) < c3

(
n− 1

k − 1

)
.

Suppose on the contrary that dB(x) ≥ c3
(
n−1
k−1

)
for some x ∈ [n].

It may be helpful to informally illustrate our argument leading to a contra-

diction on the special case when P is as in (10). Assume that Lemma 19 returns

� = 1 and F = E((W1,W2)) with |Wi| = 6 (although some smaller Wi’s will

also suffice). Here we have H ′ = E((V1, V2)). Suppose, for example, that the

vertex x contradicting (22) is in V2. Let Bx,2 := Bx = Gx ∩
((

V2

2

)
∪
(
V1

2

))
be

the link of x in the bad 3-graph B. Next, let Bx,1 := Gx ∩K2
2 ((V1, V2)) be the

set of pairs that would form a bad edge with x if x is moved to V1. By our

assumption, we have |Bx,2| ≥ c3
(
n−1
2

)
. Also, |Bx,1| ≥ (c3 − c2)

(
n−1
2

)
for other-

wise we would have moved x to V1, thus decreasing b substantially. Take any

D = (D1, D2), where Di ∈ Bx,i. Consider arbitrary 6-vertex sets Z1 ⊆ V1 and

Z2 ⊆ V2 \ {x} such that Z1 ∪Z2 contains the set D1 ∪D2. It is impossible that

E((Z1, Z2)) ⊆ G because the 3-graph FD obtained from E((Z1, Z2)) by adding

the edges D1 ∪ {x} and D2 ∪ {x} belongs to F13. (Indeed, if we could embed

FD into a P -construction, then all vertices of Z1 and Z2 would have to go into

“correct” parts by the rigidity of F ∼= E((Z1, Z2)), leaving no way to fit x.) Thus

Z1 ∪Z2 contains at least one absent edge. Finally, our lower estimates on |Bx,i|
translate with some work into a lower bound on a that contradicts (19).

Let us give the general argument. For i ∈ [m] let the (k − 1)-graph Bx,i

consist of those D ∈ Gx such that if we add i to the profile of D then the

obtained k-multiset is bad. In other words, if we move x to Vi, then Bx,i will

be the link of x with respect to the (updated) bad k-graph B. By the definition

of H , we have

(23) |Bx,i| ≥ (c3 − c2)

(
n− 1

k − 1

)
, for every i ∈ [m].
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For D = (D1, . . . , Dm) ∈
∏m

i=1 Bx,i let FD be the k-graph that is constructed

as follows. Recall that F is the rigid P -construction given by Lemma 19 and

W is its partition structure. By relabelling vertices of F , we can assume that

x �∈ V (F ) while D :=
⋃m

i=1 Di is a subset of V (F ) so that for every y ∈ D we

have brF (y) = brH′(y), that is, y has the same branches in both F and H ′.
(Note that both k-graphs have the same maximum height �.) This is possible

because each part of F of height at most � has at least m(k− 1) ≥ |D| vertices.
Finally, add x as a new vertex and the sets Di ∪ {x} for i ∈ [m] as edges,

obtaining the k-graph FD.

Claim 20.1: For every D ∈
∏m

i=1 Bx,i we have FD ∈ F∞.

Proof of Claim. Suppose on the contrary that we have an embedding f of FD

into some P -construction with the partition structure U. By the rigidity of

F , we can assume that f(Wi) ⊆ Ui for every i ∈ [m]. Let i ∈ [m] satisfy

f(x) ∈ Ui. But then the edge Di ∪ {x} ∈ FD is mapped into a non-edge

because f(Di ∪ {x}) has bad profile with respect to U1, . . . , Um by the choice

of Di ∈ Bx,i, a contradiction.

For every vector D ∈
∏m

i=1 Bx,i and every map f : V (FD) → V (G) such that

f is the identity on D ∪ {x} and f preserves branches of height up to � on all

other vertices, the image f(FD) has to contain some X ∈ G by Claim 20.1.

(Note that G is FD-free since v(FD) ≤ M0.) Also,

f
(
FD \ {D1 ∪ {x}, . . . , Dm ∪ {x}}

)
⊆ H ′,

that is, the “base” copy of F on which FD was built is embedded by f into H ′.
On the other hand, each of the edges D1∪{x}, . . . , Dm∪{x} of FD that contain

x is mapped to an edge of G (to itself). Thus X ∈ H ′ \G and X �� x. Any such

X can appear, very roughly, for at most
(

w
k−1

)m
(w+1)!nw−k choices of (D, f),

where w := v(F ) = v(FD)− 1. On the other hand, the total number of choices

of (D, f) is at least
∏m

i=1 |Bx,i| ≥
(
(c3 − c2)

(
n−1
k−1

))m
times (c4n/2)

w−(k−1)m

(since every part of H ′ has at least c4n vertices by (18)). We conclude that

|H \G| ≥ |H ′ \G| ≥
(
(c3 − c2)

(
n−1
k−1

))m × (c4n/2)
w−(k−1)m(

w
k−1

)m
(w + 1)!nw−k

> c2

(
n

k

)
.

However, this contradicts (19). Thus (22) is proved.

Next, we show (in Claim 20.3 below) that every bad edge D intersects

Ω(c3n
k−1) absent edges. Again, let us first illustrate the proof on the case
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when P is as in (10). Suppose that D = {y1, y2, z} with, say, y1, y2 ∈ V1 and

z ∈ V2. For i = 1, 2, let Dyi be an edge of G[V1] such that Dyi ∩ D = {yi};
there are many such edges because we have by Part 3 of Lemma 15 that, for

example,

(24) dG[Vi](y) ≥ c4

(
n− 1

k − 1

)
, for all i ∈ R and y ∈ Vi.

Let D = (Dy1 , Dy2). Take arbitrary 6-sets Zi ⊆ Vi \ D such that

Z1 ⊇ (Dy1 ∪Dy2) \D. Let FD be the 3-graph obtained from E((Z1, Z2 ∪ {z}))
by adding vertices y1, y2 and edges D,Dy1 , Dy2 . It is not hard to show that

FD belongs to F15. Thus E((Z1, Z2 ∪ {z})) �⊆ G and we arrive at some Y ∈ A.

It is impossible that the obtained absent edge Y is disjoint from D for at least

half of the choices of (Dy1 , Dy2 , Z1, Z2), for otherwise |A| is too large. If Y ∩D

is not empty, then it consists of the unique vertex z. Some counting gives the

desired lower bound on the number of absent edges intersecting D. Note that

this counting would not work if the obtained Y ∈ A could share more than one

vertex with D. This is the reason why we do not allow Z1 ∪ Z2 to share more

than one vertex with D; we make these sets disjoint in the general proof for the

notational convenience.

Let us present the general argument. Let D ∈ B be an arbitrary bad edge.

For each i ∈ R and y ∈ D∩Vi pick some Dy ∈ G[Vi] such that Dy ∩D = {y}; it
exists by (24). Let D := (D, {Dy : y ∈ D ∩ VR}). (Recall that VR =

⋃
i∈R Vi.)

We define the k-graph FD using the rigid k-graph F as follows. By re-labelling

V (F ), we can assume that X ⊆ V (F ), where

(25) X :=
⋃

y∈D∩VR

Dy \ {y},

so that for every x ∈ X its branches in F and H ′ coincide. Again, there is

enough space inside F to accommodate all |X | ≤ k(k−1) vertices ofX . Assume

also that D is disjoint from V (F ). The vertex set of FD is V (F ) ∪D. Starting

with the edge-set of F , add D and each Dy with y ∈ D ∩ VR. Finally, for every

y ∈ D∩Vi with i ∈ [m]\R pick some z ∈ Wi and add {Z∪{y} : Z ∈ Fz} to the

edge set, obtaining the k-graph FD. The last step can be viewed as enlarging

the part Wi by D∩Vi and adding those edges that are stipulated by the pattern

P and intersect D in at most one vertex.

Claim 20.2: For every D as above, we have FD ∈ F∞.
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Proof of Claim. Suppose on the contrary that we have an embedding f of FD

into some P -construction with the partition structure U. We can assume by

the rigidity of F that f(Wi) ⊆ Ui for each i.

Take y ∈ D ∩ Vi with i ∈ R. The (k − 1)-set f(Dy \ {y}) lies entirely inside

Ui. We cannot have f(y) ∈ Uj with j �= i because otherwise the profile of the

edge f(Dy) is {{i(k−1), j }}, contradicting Lemma 12. Thus f(y) ∈ Ui.

Next, take any y ∈ D∩Vi with i ∈ [m]\R. Pick some z ∈ Wi. By the rigidity

of F , if we fix the restriction of f to V (F ) \ {z}, then Ui is the only part where

z can be mapped to. By definition, y and z have the same link (k − 1)-graphs

in FD when restricted to V (F ) \ {y, z}. Hence, f(y) necessarily belongs to Wi.

Thus the edge f(D) has the same profile as D ∈ B, a contradiction.

Claim 20.3: For every D ∈ B there are at least kc3
(
n−1
k−1

)
absent edges Y ∈ A

with |D ∩ Y | = 1.

Proof of Claim. GivenD choose the setsDy, for y∈D∩VR, as before Claim 20.2.

The condition Dy ∩ D = {y} rules out at most k
(
n−2
k−2

)
edges for this y. Thus

by (24) there are, for example, at least (c4/2)
(
n−1
k−1

)
choices of each Dy. Form

the k-graph FD as above and consider potential injective embeddings f of FD

into G that are the identity on D ∪X and map every other vertex of F into a

vertex of H ′ with the same branch, where X is defined by (25). For every vertex

x �∈ D ∪X we have at least c4n/2 choices for f(x) by (18). By Claim 20.2, G

does not contain FD as a subgraph so its image under f contains some Y ∈ G.

Since f maps D and each Dy to an edge of G (to itself) and

f(FD \ ({D} ∪ {Dy : y ∈ D ∩ VR})) ⊆ H ′,

we have that Y ∈ H ′. The number of choices of (D, f) is at least

(
(c4/2)

(
n− 1

k − 1

))|D∩VR|
× (c4n/2)

w−(k−1)|D∩VR| ≥ (c4n/4k)
w,

where w := v(F ). Assume that for at least half of the time the obtained set Y

intersects D, for otherwise we get a contradiction to (19):

|H ′ \G| ≥ 1

2
× (c4n/4k)

w

(
w

k−1

)k
(w + k)!nw−k

> c2

(
n

k

)
.

By the definitions of FD and f , we have that |Y ∩D| = 1 and Y ∈ A. Each

such Y ∈ A is counted for at most
(

w
k−1

)k
(w + k)!nw−k+1 choices of f . Thus
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the number of such Y is at least 1
2 (c4n/4k)

w/(
(

w
k−1

)k
(w+k)!nw−k+1), implying

the claim.

Let us count the number of pairs (Y,D) where Y ∈ A, D ∈ B, and |Y ∩D| = 1.

On one hand, each bad edge D ∈ B creates at least kc3
(
n−1
k−1

)
such pairs by

Claim 20.3. On the other hand, we trivially have at most akΔ(B) such pairs.

By (21), we have bkc3
(
n−1
k−1

)
≤ akΔ(B) ≤ bkΔ(B). Since b �= 0, we obtain a

contradiction to (22). This finishes the proof of Lemma 20.

Let us state a special case of a result of Rödl and Schacht [37, Theorem 6]

that we will need.

Lemma 21 (Strong Removal Lemma [37]): For every k-graph family F and

ε > 0 there are δ > 0, m, and n0 such that the following holds. Let G be

a k-graph on n ≥ n0 vertices such that for every F ∈ F with v(F ) ≤ m the

number of F -subgraphs in G is at most δnv(F ). Then G can be made F -free by

removing at most ε
(
n
k

)
edges.

Lemma 22: For every c0 > 0 there is M1 such that every maximum FM1 -free

G with n ≥ M1 vertices is c0
(
n
k

)
-close to a P -construction.

Proof. Lemma 21 gives M1 such that any FM1 -free k-graph G on n ≥ M1

vertices can be made into an F∞-free k-graph G′ by removing at most c0
(
n
k

)
/2

edges. By Lemma 7, G′ embeds into some P -constructionH with v(H) = v(G′).
Assume that V (H) = V (G′) and the identity map is an embedding of G′ intoH .

Since H is FM1-free, the maximality of G implies that |G| ≥ |H |. Thus

|H \ G′| ≤ c0
(
n
k

)
/2 and we can transform G′ into H by changing at most

c0
(
n
k

)
/2 further edges.

3.4. Proof of Theorem 3: Putting it all together. We are ready to

prove Theorem 3. It is trivially true if ΛP = 0 or 1 by the discussion after

Lemma 12, so we can assume that P is proper. Apply Lemma 20 which returns

c0 and M0. Next, Lemma 22 on input c0 returns some M1.

Let us show that M = max(M0,M1) works in Theorem 3. We use induction

on n. Let G be any maximum FM -free k-graph on [n]. Suppose that n > M ,

for otherwise we are done by Lemma 7. Thus Lemma 22 applies and shows

that G is c0
(
n
k

)
-close to some P -construction. Lemma 20 returns a partition

[n] = V1 ∪ · · · ∪ Vm such that (15) holds.
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Let i ∈ R be arbitrary. By Lemma 9, if we replace G[Vi] by a maximum FM -

free k-graph, then the new k-graph on V is still FM -free. By the maximality of

G, we conclude that G[Vi] is a maximum FM -free k-graph. By the induction

hypothesis (note that |Vi| ≤ n− 1), G[Vi] is a P -construction.

It follows that G is a P -construction itself, which implies all claims of Theo-

rem 3.

4. Proof of Theorem 5

By Corollary 4 it is enough to exhibit, for every k ≥ 3, a pattern P such that

ΛP is irrational.

Given k ≥ 3, let � be any prime number that does not divide k such that

2 ≤ � < k. If k is odd, we can take � = 2. For even k we can take � to be any

prime with k/2 < � < k; it exists by Bertrand’s postulate. Take P = (2, E, {1}),
where E consists of the single multiset {{1(k−�), 2(�)}}. In other words, a P -

construction on V is obtained by partitioning V = V1 ∪V2 with V1 �= V , adding

all k-sets that intersect V1 in exactly k − � vertices, and doing recursion inside

V1. If k = 3, we get the familiar pattern from (10).

Let x = (x1, x2) ∈ X be an optimal vector. We have by (11) that ΛP /
(
k
�

)
=

r(x1), where

r(x) :=
(1− x)�xk−�

1− xk
.

By Part 2 of Lemma 14 the real x1 maximises r over (0, 1). Thus x1 is a root

of the derivative of r. We have

r′(x) = − (1− x)�xk−�−1

(1− xk)2
g(x),

where g(x) := �(xk−1 + · · ·+ 1)− k. Since x1 �= 0, 1, it is a root of g.

The polynomial g(x) is irreducible (by Eisenstein’s criterion). Indeed, if we

can factorise g(x) = (amxm + · · ·+ a0)(bk−1−mxk−1−m + · · ·+ b0) in Z[x], then

exactly one of am and bk−1−m is divisible by �, say bk−1−m is. Since b0a0 = �−k,

we have that � does not divide b0. Thus there is i such that � does not divide bi

but � divides each bj with j > i. But then the coefficient at xm+i is congruent

to ambi modulo �, which implies that m = 0 and the first factor is equal to ±1.
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Thus x1 is irrational but we still have to show that ΛP is irrational. Sup-

pose on the contrary that ΛP = s/t with s, t ∈ Z. Note that (x − 1)g(x) =

�xk−kx+k−�. Thus xk
1 = (kx1−k+�)/�. Substituting this in ΛP =

(
k
�

)
r(x1),

we infer that

s

t
=

(
k

�

)
(1− x1)

�xk−�
1

1− (kx1 − k + �)/�
=

(
k − 1

�− 1

)
(1− x1)

�−1xk−�
1 .

Thus x1 is a root of the polynomial

h(x) := t (k − 1)! (1− x)�−1xk−� − s (�− 1)! (k − �)! ∈ Z[x]

which has to be divisible by the irreducible polynomial g. Since these poly-

nomials have the same degree k − 1, h is a constant multiple of g. But the

highest two coefficients of g are the same while those of h have different signs,

a contradiction. Thus ΛP is irrational, proving Theorem 5.

5. Proof of Proposition 1

Here we prove Proposition 1. The proof is motivated by the emerging theory of

the limits of discrete structures; see, e.g., [5, 13, 28, 29]. Also, an intermediate

result that we obtain (Theorem 24) may be of independent interest. We make

the presentation essentially self-contained by restricting ourselves to only one

aspect of hypergraph limits. In particular, we do not rely on the machinery

developed by Elek and Szegedy [13].

Let F and G be k-graphs. A homomorphism from F to G is a map

f : V (F ) → V (G), not necessarily injective, such that f(A) ∈ G for ev-

ery A ∈ F . (Thus, embeddings are precisely injective homomorphisms.) Let

the homomorphism density t(F,G) be the probability that a random map

V (F ) → V (G), with all v(G)v(F ) choices being equally likely, is a homomor-

phism. For example, we have t(Kk
k , G) = k! |G|/v(G)k.

Let G(k) consist of all k-graphs up to isomorphism. A sequence (Gi)
∞
i=1 of k-

graphs converges to a function φ : G(k) → [0, 1] if the sequence is increasing

(i.e., v(G1) < v(G2) < · · · ) and for every k-graph F we have limi→∞ t(F,Gi) =

φ(F ). Clearly, the convergence is not affected if we modify o(v(Gi)
k) edges in

each Gi. Let LIM
(k) consist of all possible functions φ that can be obtained in

the above manner.

Given a family F of forbidden k-graphs, let T (F) ⊆ LIM(k) consist of all pos-

sible limits of increasing sequences (Gi)
∞
i=1 such that limi→∞ ρ(Gi) = π(F) and
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each Gi is F -free. In other words, T (F) is the set of the limits of almost maxi-

mum F -free k-graphs. The standard diagonalisation argument shows that every

increasing sequence has a convergent subsequence; in particular, T (F) �= ∅. Let
T (k) be the union of T (F) over all k-graph families F . We have

(26) Π(k)
∞ = {φ(Kk

k ) : φ ∈ T (k)}.

Let the blow-up closure F of F ⊆ G(k) consist of all k-graphs F such that

some blow-up of F is not F -free. Clearly, F ⊆ F . Also, it is easy to see that

by applying the blow-up closure twice we get the same family F .

Lemma 23: For every F ⊆ G(k) and ε > 0 there is n0 such that any F -free

k-graph G with n ≥ n0 vertices can be made F -free by removing at most ε
(
n
k

)
edges.

In particular, it follows that π(F) = π(F) and T (F) = T (F).

Proof. Let Lemma 21 on input (F , ε) return m and δ > 0. Let n be large

and G be an arbitrary F -free k-graph on [n]. For each F ∈ F there is s such

that G is F (s)-free. As it is well known (see, e.g., [8, Theorem 3]), G contains

at most δnv(F ) copies of F for all large n. Since there are only finitely many

non-isomorphic k-graphs on at most m vertices, we can satisfy the above bound

for all such k-graphs by taking n large. Now Lemma 21 applies, giving the first

part.

Thus any increasing sequence (Gi)
∞
i=1 of asymptotically maximum F -free k-

graphs can be converted into that for F by modifying o(v(Gi)
k) edges in each

Gi. This modification does not affect, for any fixed F , the limit of t(F,Gi) as

i → ∞, implying the second part.

Recall that the Lagrangian of a k-graphG on [n] is ΛG = max{λG(x) :x∈Sn};
equivalently, ΛG is the Lagrangian ΛP of the pattern P := (n,G, ∅) as defined
by (3). We have the following characterisation of the set T (k).

Theorem 24: For φ ∈ LIM(k), the following are equivalent:

1) φ ∈ T (k);

2) φ is a limit of an increasing k-graph sequence (Gi)
∞
i=1 such that

ρ(Gi)− ΛGi → 0;

3) φ(F ) = 0 for every k-graph F with t(Kk
k , F ) > φ(Kk

k ).
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Proof. 1) ⇒ 2). Let φ ∈ T (k), say φ ∈ T (F). By Lemma 23 we can assume

that F = F . Let (Gi)
∞
i=1 be a sequence of almost maximum F -free k-graphs

that converges to φ. Take any i and let n := v(Gi). Since F = F , any blow-up

of Gi is still F -free. Also, the limit superior of the edge densities attained by

increasing blow-ups of Gi is exactly ΛGi . Thus ΛGi ≤ π(F) = ρ(Gi) + o(1).

On the other hand, we have ΛGi ≥ λGi(1/n, . . . , 1/n) = k! |Gi|/nk, giving the

converse inequality.

2)⇒ 3). Let φ satisfy 2). Suppose on the contrary that some F on [n] violates 3).

Pick a sequence (Gi)
∞
i=1 given by 2). By the definition of convergence, Gi

contains F as a subgraph for all large i. But then

ΛGi ≥ ΛF ≥ k! |F |
nk

= t(Kk
k , F ) ≥ φ(Kk

k ) + Ω(1),

contradicting φ(Kk
k ) = limi→∞ ρ(Gi) = limi→∞ ΛGi .

3) ⇒ 1). Given φ as in 3), let

F := {F ∈ G(k) : φ(F ) = 0}.

Let Hn be a maximum F -free k-graph on [n]. Since Hn �∈ F , we have

φ(Hn) > 0. Thus, by 3),

φ(Kk
k ) ≥ t(Kk

k , Hn) =
k! |Hn|
nk

≥ ρ(Hn) + O(1/n).

By letting n → ∞, we obtain that

(27) φ(Kk
k ) ≥ π(F).

Let us show that φ ∈ T (F). Take any increasing sequence (Gi)
∞
i=1 convergent

to φ. Let F ∈ F . Since φ(F ) = 0, the number of F -subgraphs in Gi is at

most o(v(Gi)
v(F )). By Lemma 21, we can remove o(v(Gi)

k) edges in each Gi,

obtaining an F -free k-graph G′
i. Thus

π(F) ≥ lim
i→∞

ρ(G′
i) = φ(Kk

k )

and, by (27), this is equality. The obtained sequence (G′
i)

∞
i=1 of almost maxi-

mum F -free k-graphs still converges to φ. This shows that

φ ∈ T (F) ⊆ T (k).

Let us view LIM(k) as a subset of [0, 1]G
(k)

, where the latter set is endowed

with the product (or pointwise convergence) topology. If we identify each k-

graph G with the sequence (t(F,G))F∈G(k) , then this topology gives exactly the
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above convergence. Moreover, the set LIM(k), as the topological closure of G(k),

is a closed subset of [0, 1]G
(k)

.

Corollary 25: For every k ≥ 2 the set T (k) is a closed subset of [0, 1]G
(k)

.

Proof. The third characterisation of Theorem 24 shows that

(28)

T (k) =
⋂

F∈G(k)

({φ ∈ LIM(k) : φ(F ) = 0} ∪ {φ ∈ LIM(k) : φ(Kk
k ) ≥ t(Kk

k , F )}).

For every F ∈ G(k), the map φ �→ φ(F ) is continuous (it is just the projection of

[0, 1]G
(k)

onto the F -th coordinate). We see by (28) that T (k), as the intersection

of closed sets, is itself closed.

Proof of Proposition 1. Let ai ∈ Π
(k)
∞ with ai → a as i → ∞. By Part 2 of

Theorem 24 we can find, for each i ∈ N, a k-graph Hi such that v(Hi) > i

and both ΛHi and edge density of Hi are within 1/i from ai. By passing to a

subsequence we can additionally assume that the k-graphs Hi converge to some

φ ∈ LIM(k). This φ satisfies Part 2 of Theorem 24 and thus belongs to T (k).

Thus a = φ(Kk
k ) belongs to Π

(k)
∞ , as required.

Alternatively, by Tychonoff’s theorem, [0, 1]G
(k)

is compact. By Corollary 25,

T (k) is compact. By (26), Π
(k)
∞ is a continuous image of T (k), so it is compact

too. Hence Π
(k)
∞ ⊆ [0, 1] is closed.

6. Proof of Theorem 2

Let k ≥ 3. Let α < 1 be a non-jump for k-graphs (that is, (α, α+ ε)∩Π
(k)
∞ �= ∅

for every ε > 0). It exists by the result of Frankl and Rödl [21]. Pick m so

that γ := ΛKk
m

> α. (Such m exists as the assignment xi = 1/m shows that

ΛKk
m

≥ k!
(
m
k

)
/mk, which tends to 1 as m → ∞.) Let τ := γ/(k(m − 1)). By

Part 2 of Theorem 24, we can pick, inductively for i = 1, 2, . . . , a k-graph Hi

such that βi := ΛHi belongs to (α, γ) and

(29) 0 < βi − α < (βi−1 − βi) τ
2k, for all i ≥ 2.

Informally speaking, we require that β1 > β2 > · · · tend to α rather fast.

Next, we introduce a new concept that is similar to that of a P -construction.

Namely, for an infinite set A = {a1 < a2 < · · · } ⊆ N, an A-configuration

is a k-graph G that can be recursively obtained as follows. Take a partition
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V = V1 ∪ · · · ∪ Vm of the vertex set and add Kk
m((V1, . . . , Vm)) to the edge

set (that is, add all k-sets that intersect every part in at most one vertex).

Inside V2 put some blow-up of Ha1 . Inside V1 put any A′-configuration, where
A′ := A \ {a1}.
Note that we allow a part to be everything, e.g. we allow V1 = V . Let pA,n

be the maximum size of an A-configuration on n vertices. Let FA consist of

all k-graphs that do not embed into an A-configuration. It is routine to see

that Lemmas 6–11, with the obvious modifications, apply to A-configurations

as well. In particular, we have ex(n,FA) = pA,n for all n. Let ΛA be the

limit of pA,n/
(
n
k

)
as n → ∞; averaging shows that this ratio is non-increasing

(cf. Lemma 10). Thus ΛA = π(FA).

In order to show that |Π(k)
∞ | ≥ 2ℵ0 it is enough to show that ΛA �= ΛB for

every pair of infinite distinct sets A,B ⊆ N. We prove the stronger claim that

ΛA > ΛB provided

(30) minA \B < minB \A,

where we agree that minX = ∞ if X is empty.

Let A = {a1 < a2 < · · · }, B = {b1 < b2 < · · · }, and minA \ B = ai. Fix

large � and let n → ∞. Take a maximum B-configuration G. Let V be its

partition structure, defined in the obvious way. (For example, every index in V

is of the form (1(j), s) for some j ≥ 0 and s ∈ [m].)

If, for some j ≤ i and infinitely many n, the part V1(j−1) ,2 (that is, the second

part of the j-th level of G) is empty, we remove this bj from B. Clearly, the

k-graph G remains a maximum B-configuration. Also, this does not violate

(30). Thus, by passing to a subsequence of n, we can assume that V1(j−1) ,2 �= ∅
for all j ≤ i. Furthermore, by relabelling parts (if needed), we can assume that

for every j ≥ 0

(31) min(|V1(j) ,1|, |V1(j),2|) ≥ max{|V1(j),h| : h = 3, . . . ,m}.

Let us show by induction on j = 1, . . . , � that

(32) min
(
|U1|, |U2|

)
≥ τ |U |,

where U := V1(j−1) and Uh := V1(j−1) ,h for h ∈ [m]. Since G′ := G[U ] is

a maximum {bj, bj+1, . . . }-configuration on at least τ j−1n vertices, its edge

density is, for example, at least γ + o(1). The argument of Lemma 11 shows

that δ(G′) ≥ (γ + o(1))
(|U|−1

k−1

)
. It is impossible that U2 = U , for otherwise
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ΛG′ ≤ ΛHbj
< γ and G′ cannot be maximum for large n. Thus, our assumption

that U2 �= ∅ and (31) imply that both U1 and U2 are non-empty. Let h = 1

or 2. It is impossible that |Uh| > (1 − γ/k)|U |, for otherwise a vertex x of

U3−h �= ∅ has too small G′-degree as every edge of G′
x has at least one other

vertex in U \ Uh. By (31) we get that |U3−h| ≥ (|U | − |Uh|)/(m − 1) ≥ τ |U |.
This proves (32).

Recall that i ∈ N is defined by ai = minA \ B. Let U1 ∪ · · · ∪ Um be the

partition of U := V1(i−1) in the B-configurationG. Let G′ be obtained fromG by

replacing G[U2] with a maximum blow-up of Hai (instead of Hbi) and replacing

G[U1] with the {aj : j > i}-configuration that has the same partition structure

as the {bj : j > i}-configuration G[U1]. Clearly, G
′ is an A-configuration. Since

|U2| ≥ τ |U | by (32), the change inside U2 increases the number of edges by at

least (βai − βai+1)τ
k
(
u
k

)
+ o(nk), where u := |U |. On the other hand, when we

modify G[U1], we replace, for j > i, a blow-up of Hbj by another blow-up whose

density is at least α + o(1). Let nj be the number of vertices in this part. By

(32), nj ≤ (1− τ)j−i|U | for all j ≤ �. Thus

|G[U1]| − |G′[U1]| ≤
�−1∑

j=i+1

(βbj − α)

(
nj

k

)
+
∑
j≥�

(
nj

k

)
+ o(nk)

≤(βai+1−α)

(
u

k

) �−1∑
j=i+1

(1−τ)(j−i)k+

(
n� + n�+1 + . . .

k

)
+o(nk)

≤((βai+1 − α)τ−k + (1− τ)(�−i)k)

(
u

k

)
.

This is strictly less than (βai − βai+1)τ
k
(
u
k

)
by (29) (and since � = �(A,B) is

large). Thus |G′| ≥ |G| + Ω(nk) and indeed ΛA > ΛB, finishing the proof of

Theorem 2.

7. Concluding remarks

If we consider graphs (the case k = 2), then the Stability Theorem of Erdős [15]

and Simonovits [42] answers the question about the possible asymptotic struc-

ture of maximum F -free graphs. However, if we need a more precise answer,

then the picture is much more complicated and many questions remain open,

including the general inverse problem of describing graphs that are maximum
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F -free for some family F (see, e.g., [42, 43, 44]). The situation with extremal

problems for digraphs and multigraphs is similar (see, e.g., [6, 7, 9, 40]).

Although very few instances of the hypergraph Turán problem have been

solved, there is a variety of constructions giving best known lower bounds. So

it is likely that Π
(k)
fin contains many further elements in addition to the values

given by Corollary 4. For example, we do not know if there is a pattern P

that gives the same (or better) lower bound π({K4
5}) ≥ 11

16 as the construction

of Giraud [24] (see also [12] for generalisations). Roughly speaking, Giraud’s

construction takes an arbitrary 2-colouring of vertices and pairs of vertices (with

an optimal colouring of pairs being quasi-random) and decides if a quadruple

X is an edge depending on the colouring induced by X . It would be interesting

to decide if Corollary 4 can be extended to cover constructions of this type.

In the special case when E consists of simple k-sets and R = ∅, ΛP is equal

by Lemma 14 to the well-studied Lagrangian of the k-graph E; see, e.g., [2].

Thus Corollary 4 implies that every value of the Lagrangian belongs to Π
(k)
fin ,

answering a question of Baber and Talbot [2, Question 29].

One can show that every proper pattern P = (m,E,R) with R �= ∅ is com-

plex, meaning that the number of non-isomorphic s-vertex subgraphs in a large

maximum P -construction grows faster than any polynomial of s. Indeed, by

Lemma 17 for every � there is a P -construction F with the partition structure

V which is �-rigid, meaning that for every i ∈ Rs with s ≤ � the induced

P -construction F [Vi] is rigid. Additionally, we can assume that |Vi| ≥ k for

each legal i of length at most � + 1. Thus if we add any n − v(F ) vertices,

the new k-graph F ′ is still �-rigid by Lemma 18. There are at least � different

parts at the bottom � levels for placing these extra vertices. The rigidity im-

plies that the number of pairwise non-isomorphic k-graphs F ′ with n vertices

that we can obtain this way is at least
(
n−v(F )+�−1

�−1

)
(the number of solutions

to n− v(F ) = x1 + · · ·+ x� in non-negative integers) divided by �!. Moreover,

each such F ′ will appear an an induced subgraph in every large maximum P -

construction by Lemmas 11 and 15. Since � can be chosen arbitrarily large,

P is indeed complex. Thus Theorem 3 answers the question of Falgas-Ravry

and Vaughan [18, Question 4.4] to solve an explicit Turán problem with a com-

plex extremal configuration (if one agrees that the family F in Theorem 3 is

“explicit”).

Let Π
(k)
m consist of all possible Turán densities π(F) where F is a family

consisting of at most m forbidden k-graphs.
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Question 26 (Baber and Talbot [2]): Let k ≥ 3. Which of the following trivial

inclusions Π
(k)
1 ⊆ Π

(k)
2 ⊆ · · · ⊆ Π

(k)
i ⊆ · · · ⊆ Π

(k)
fin are strict?

It is open even whether Π
(k)
1 = Π

(k)
fin for k ≥ 3.

Question 27 (Jacob Fox (personal communication)): Does Π
(k)
fin contain a tran-

scendental number?

Since there are only countably many algebraic numbers, Theorem 2 implies

that Π
(k)
∞ has a transcendental number for every k ≥ 3.

Question 28 (Frank, Peng, Rödl and Talbot [20]): Let k ≥ 3. Is there αk < 1

such that no value in (αk, 1) is a jump for k-graphs?

Note that by Proposition 1 the last condition is equivalent to Π
(k)
∞ ⊇ [α, 1].

It is still open if Π
(k)
∞ contains some interval of positive length for k ≥ 3. On

the other hand, the arsenal of tools for proving that some real does not belong

to Π
(k)
∞ is very limited for k ≥ 3. In addition to the old result of Erdős [14]

that Π
(k)
∞ ∩ (0, k!/kk) = ∅, the only other such result is by Baber and Talbot [1]

that (0.2299, 0.2315) ∩ Π
(3)
∞ = ∅. The proof in [1] uses flag algebras and is

computer-generated.

Hatami and Norine [25] showed that the question whether a given linear

inequality in subgraph densities is always valid is undecidable.

Question 29: Is the validity of π(F) ≤ α decidable, where the input is a finite

family F of k-graphs and a rational number α?

A related open question is whether every true inequality π(F) ≤ α admits

a finite proof in Razborov’s Cauchy–Schwarz calculus [34, 35] (see also [25,

Appendix A]).

If k = 2, then the answer to Question 29 is in the affirmative by the Erdős–

Stone–Simonovits Theorem [17, 16]. Brown, Erdős and Simonovits [6] obtained

a positive solution to the version of Question 29 for the class of directed multi-

graphs.

As we have already mentioned, our proof of Theorem 3 relies on the Strong

Removal Lemma. So the size of the obtained family F is huge (even for small

concrete P ). This is in contrast to many previous results and conjectures that

forbid very few hypergraphs. The main place in our proof that makes |F| huge
is the application of the Removal Lemma in the proof of Lemma 22. If, for some
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concrete P , Lemma 22 can be deduced in an alternative way, then one might

be able to obtain an explicit and reasonably sized F for which Theorem 3 holds

for all large n. (Note that we did not try to optimise our other lemmas for the

sake of brevity and generality.) So, some of our results and techniques might be

useful for small forbidden families as well. Also, the new ideas introduced for

proving Theorem 3 (in particular, the method of Lemma 20) might be applicable

to other instances of the Turán problem.

Acknowledgements. The author thanks Zoltán Füredi for helpful discus-

sions and the anonymous referee for the comments that greatly improved the

presentation of this paper.
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[19] P. Frankl and Z. Füredi, Extremal problems whose solutions are the blowups of the small

Witt-designs, Journal of Combinatorial Theory. Series A 52 (1989), 129–147.
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