

Contents lists available at [SciVerse ScienceDirect](http://www.ScienceDirect.com/) Journal of Combinatorial Theory, Series B

Journal of Combinatorial Theory

www.elsevier.com/locate/jctb

Exact computation of the hypergraph Turán function for expanded complete 2-graphs $\dot{\mathbb{R}}$

Oleg Pikhurko

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

article info abstract

Article history: Received 3 November 2004 Available online 4 January 2013

Keywords: k-uniform hypergraph Stability property Turán density Turán function

Let $l > k \geq 3$. Let the *k*-graph $H_l^{(k)}$ be obtained from the complete 2-graph $K_l^{(2)}$ by enlarging each edge with a new set of $k-2$ vertices. Mubayi [A hypergraph extension of Turán's theorem, J. Combin. Theory Ser. B 96 (2006) 122–134] computed asymptotically the Turán function $ex(n, H_l^{(k)})$. Here we determine the exact value of $ex(n, H_l^{(k)})$ for all sufficiently large *n*, settling a conjecture of Mubayi.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

For $k, l \geqslant 2$ let $\mathcal{K}_l^{(k)}$ be the family of all *k*-graphs *F* with at most $\binom{l}{2}$ edges such that for some *l*-set *L* (called the *core*) every pair *x*, *y* \in *L* is covered by an edge of *F*. Let the *k*-graph $H_l^{(k)} \in K_l^{(k)}$ be obtained from the complete 2-graph $K_l^{(2)}$ by enlarging each edge with a new set of $k-2$ vertices.

These *k*-graphs were recently studied by Mubayi [\[13\]](#page-5-0) in the context of the *Turán* ex*-function* which is defined as follows. Let F be a family of *k*-graphs. We say that a *k*-graph G is F-free if no $F \in \mathcal{F}$ is a subgraph of *G*. (When we talk about subgraphs, we do not require them to be induced.) Now, the *Turán function* $ex(n, \mathcal{F})$ is the maximum size of an \mathcal{F} -free *k*-graph *G* on *n* vertices. Also, let

$$
\pi(\mathcal{F}) = \lim_{n \to \infty} \frac{\mathrm{ex}(n, \mathcal{F})}{\binom{n}{k}}.
$$

(The limit is known to exist, see Katona, Nemetz, and Simonovits [\[9\].](#page-5-0))

E-mail address: [O.Pikhurko@warwick.ac.uk.](mailto:O.Pikhurko@warwick.ac.uk)

0095-8956/\$ – see front matter © 2012 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.jctb.2012.09.005>

 \star According to Elsevier's open archive policy for papers published in the Journal of Combinatorial Theory Series B, this paper will be made open access 4 years after publication.

URL: [http://homepages.warwick.ac.uk/staff/O.Pikhurko/.](http://homepages.warwick.ac.uk/staff/O.Pikhurko/)

To obtain the *k*-graph $T^{(k)}(n,l)$, $l \geq k$, partition $[n] = \{1, \ldots, n\}$ into *l* almost equal parts (that is, of sizes $\lfloor \frac{n}{l} \rfloor$ and $\lceil \frac{n}{l} \rceil$) and take those edges which intersect every part in at most one vertex. Let us, for notational convenience, identify *k*-graphs with their edge sets and, for a *k*-graph *F* , write ex*(n, F)* for ex*(n,*{*F* }*)*, etc.

Mubayi [\[13, Theorem 1\]](#page-5-0) proved the following result.

Theorem 1 (Mubayi). Let $n \ge l \ge k \ge 3$. Then $ex(n, \mathcal{K}_{l+1}^{(k)}) = |T^{(k)}(n, l)|$, and $T^{(k)}(n, l)$ is the unique maximum $\mathcal{K}_{l+1}^{(k)}$ -free k-graph of order n. \Box

It follows from Theorem 1 and the super-saturation technique of Erdős and Simonovits [\[3\]](#page-5-0) that $\pi(H_l^{(k)}) = \pi(\mathcal{K}_l^{(k)})$, see [\[13, Theorem 2\].](#page-5-0) This gave us the first example of a non-degenerate *k*-graph
with known Turán's density for every *k*. (Previously, Frankl [\[5\]](#page-5-0) did this for all even *k*.) Settling a conjecture posed in [\[13\],](#page-5-0) we prove that the Turán functions of $H_{l+1}^{(k)}$ and $\mathcal{K}_{l+1}^{(k)}$ coincide for all large *n*.

Theorem 2. For any $l \geqslant k \geqslant 3$ there is $n_0(l,k)$ such that for any $n \geqslant n_0(l,k)$ we have $ex(n, H_{l+1}^{(k)}) = |T^{(k)}(n,l)|$, *and* $T^{(k)}(n,l)$ *is the unique maximum* $H_{l+1}^{(k)}$ -free k-graph of order n. \Box

Remark. Theorem 2 is true for $k = 2$ by the Turán theorem [\[21\].](#page-5-0) If $k \geqslant 3$ and $2 \leqslant l < k$, then Theorem 2 is false: $ex(n, K_{l+1}^{(k)}) = 0$ while $ex(n, H_{l+1}^{(k)}) > 0$.

Remark. We do not compute an explicit upper bound on $n_0(l,k)$ as this would considerably lengthen the paper. (For one thing, we would have to reproduce some proofs from [\[13\]](#page-5-0) in order to calculate an explicit dependence between the constants there.)

2. Stability of $H_l^{(k)}$

Two *k*-graphs *F* and *G* of the same order are *m-close* if we can add or remove at most *m* edges from the first *k*-graph and make it isomorphic to the second; in other words, for some bijection $\sigma: V(F) \to V(G)$ the symmetric difference between $\sigma(F) = \{\sigma(D): D \in F\}$ and G has at most m edges.

Mubayi [\[13, Theorem 5\]](#page-5-0) proved that $K_l^{(k)}$ is *stable*, meaning for the purpose of this article that for any $\varepsilon > 0$ there are $\delta > 0$ and n_0 such that any $\mathcal{K}_l^{(k)}$ -free *k*-graph *G* of order $n \ge n_0$ and size at least $(\pi(K_l^{(k)}) - \delta) \binom{n}{k}$ is $\varepsilon \binom{n}{k}$ -close to $T^{(k)}(n, l-1)$. Here we prove the same statement for the single forbidden graph $H^{(k)}_l$, which we will need in the proof of Theorem 2.

Lemma 3. For any $l > k \geqslant 3$ the k-graph $H_l^{(k)}$ is stable, that is, for any $\varepsilon > 0$ there are $\delta = \delta(k, l, \varepsilon) > 0$ and $n_0=n_0(k,l,\varepsilon)$ such that any $H_l^{(k)}$ -free k-graph G of order $n\geqslant n_0$ and size at least $(\pi\,(H_l^{(k)})-\delta)\binom{n}{k}$ is *ε*($\binom{n}{k}$ -close to $T^{(k)}(n, l - 1)$ *.*

Proof. Let $\varepsilon > 0$ be given. Choose $\delta > 0$ which establishes the stability of $\mathcal{K}^{(k)}_l$ with respect to $\frac{\varepsilon}{2}$. Assume that $\delta \leq \varepsilon$. Let *n* be large and *G* be an $H_l^{(k)}$ -free *k*-graph on [*n*] of size at least $(\pi(H_l^{(k)}) - \frac{\delta}{2})^{(n)}$ $\frac{\delta}{2}$ $)$ $\binom{n}{k}$.

Let us call a pair $\{x, y\}$ of vertices *sparse* if it is covered by at most

$$
m = \left(l + (k-2)\binom{l}{2}\right)\binom{n}{k-3}
$$

edges of *G*. Let *G'* be obtained from *G* by removing all edges containing sparse pairs, at most $\binom{n}{2}$ \times $m < \frac{\delta}{2} {n \choose k}$ edges.

Let us show that the *k*-graph *G'* is $\mathcal{K}_l^{(k)}$ -free. Suppose on the contrary that every pair from some *l*-set *L* is covered by an edge of *G'*. It follows that every pair $\{x, y\} \subset L$ is not sparse with respect to that is, *G* has more than *m* edges containing $\{x, y\}$. This means that if we have a partial embedding of *H*^(*k*) into *G* with the core *L*, then we can always find a *G*-edge *D* \ni *x*, *y* such that *D* \{*x*, *y*} is disjoint from the rest of the embedding. Thus *G* has an $H_l^{(k)}$ -subgraph with the core *L*, a contradiction.

We have $|G'| \geq (\pi(H_l^{(k)}) - \delta) \binom{n}{k}$. By the stability of $\mathcal{K}_l^{(k)}$, G' is $\frac{\varepsilon}{2} \binom{n}{k}$ -close to $T^{(k)}(n, l-1)$. The triangle inequality implies that G is $(\frac{\delta}{2} + \frac{\varepsilon}{2}) {n \choose k}$ -close to $T^{(k)}(n, l-1)$. As $\delta \leq \varepsilon$, this finishes the proof of the lemma.

3. Exactness

Proof of Theorem [2.](#page-1-0) Let us choose, in this order, positive constants c_1, \ldots, c_5 , each being sufficiently small depending on the previous constants. Then, let n_0 be sufficiently large. In fact, we can take some simple explicit functions of k , l for c_1, \ldots, c_5 . However, n_0 should also be at least as large as the function $n_0(k, l+1, c_5)$ given by Lemma [3.](#page-1-0)

Let *G* be a maximum $H_{l+1}^{(k)}$ -free graph on [*n*] with $n \geq n_0$. We have

$$
|G| \geq |T^{(k)}(n, l)| \geq \frac{l(l-1)\dots(l-k+1)}{l^k} {n \choose k} = \pi \left(H_{l+1}^{(k)}\right) {n \choose k},
$$
\n(1)

where the first inequality follows from the fact that $T^{(k)}(n,l)$ is $H^{(k)}_{l+1}$ -free while the second inequality can be shown directly. (For example, a simple averaging shows that the function $|T^{(k)}(n,l)|/ {n \choose k}$ is decreasing in *n*.)

Let $V_1 \cup \cdots \cup V_l$ be a partition of [*n*] such that

$$
f = \sum_{D \in G} |\{i \in [l]: D \cap V_i \neq \emptyset\}|
$$

is maximum possible. Let T be the complete *l*-partite k -graph on $V_1\cup\cdots\cup V_l.$ Clearly, $f\geqslant k|T\cap G|.$ As *n* is sufficiently large, Lemma [3](#page-1-0) implies that *G* is $c_5 {n \choose k}$ -close to $T^{(k)}(n,l)$. (The value of $\delta > 0$ returned by Lemma [3](#page-1-0) is not significant here because of the lower bound (1) on the size of *G*.) The choice of *T* implies that $f \ge k(|G| - c_5 {n \choose k}$. On the other hand, $f \le k|G| - |G \setminus T|$. It follows that

$$
|G \setminus T| \leqslant c_5 k \binom{n}{k}.\tag{2}
$$

Thus we have $|T| \geq |T^{(k)}(n, l)| - c_5 k {n \choose k}$. This bound on $|T|$ can be easily shown to imply (or, alternatively, see Claim 1 in [\[13, Proof of Theorem 5\]\)](#page-5-0) that for each *i* ∈ [*l*] we have, for example,

$$
|V_i| \geqslant \frac{n}{2l}.\tag{3}
$$

Let us call the edges in $T \setminus G$ *missing* and the edges in $G \setminus T$ *bad.* As $|T| \leqslant |T^{(k)}(n,l)|$ with equality if and only if *T* is isomorphic to $T^{(k)}(n,l)$, see [\[13, Eq. \(1\)\],](#page-5-0) the number of bad edges is at least the number of missing edges. It also follows that if $G \subset T$, then we are done. Thus, let us assume that *B* is non-empty, where the 2-graph *B* consists of all *bad* pairs, that is, pairs of vertices which come from the same part V_i and are covered by an edge of G .

For vertices *x*, *y* coming from two different parts V_i , call the pair $\{x, y\}$ *sparse* if *G* has at most

$$
m = \left(\binom{l+1}{2} (k-2) + l + 1 \right) \binom{n}{k-3}
$$

edges containing both *x* and *y*; otherwise {*x, y*} is called *dense*.

Note that there are less than c_4n^2 sparse pairs for otherwise we get a contradiction to (2): each sparse pair generates at least

O. Pikhurko / Journal of Combinatorial Theory, Series B 103 (2013) 220–225 223

$$
\left(\frac{n}{2l}\right)^{k-2} - m \geqslant \frac{1}{2} \left(\frac{n}{2l}\right)^{k-2} \tag{4}
$$

missing edges by [\(3\)](#page-2-0) while each missing edge contains at most $\binom{k}{2}$ sparse pairs.

Take any bad pair $\{x_0, x_1\}$, where, for example, $x_0, x_1 \in V_1$ are covered by $D \in G$. The number of vertices in $H_{l+1}^{(k)}$ is $\binom{l+1}{2}(k-2)+l+1$. Therefore, if we have a partial embedding of $H_{l+1}^{(k)}$ into G such that a pair of vertices x, y from the core is dense, then we can find a G-edge containing both x, y and disjoint from the rest of the embedding. It follows that for any choice of (x_2, \ldots, x_l) , where $x_i \in V_i \setminus D$ for $2 \le i \le l$, at least one pair $\{x_i, x_j\}$ with $\{i, j\} \ne \{0, 1\}$ is sparse. Since x_0 and x_1 are fixed, each such sparse pair $\{x_i, x_j\}$ is counted, very roughly, at most n^{l-3} times if $\{x_i, x_j\} \cap \{x_0, x_1\} = \emptyset$, and at most *n*^{*l*−2} times if {*x_i*, *x_i*} ∩ {*x*₀, *x*₁} $\neq \emptyset$.

Since we have at most c_4n^2 sparse pairs, the number of times the former alternative occurs is at most

$$
c_4 n^2 \times n^{l-3} \leq \frac{1}{2} \left(\frac{n}{2l} - k \right)^{l-1}.
$$

That is, by [\(3\)](#page-2-0), for at least half of the choices of (x_2, \ldots, x_l) , the obtained sparse pair intersects ${x_0, x_1}$. Let *A* consist of those $z \in V(G)$ which are incident to at least $c_1 n$ sparse pairs. Since $\frac{1}{4}$ $(\frac{n}{2l} - k)^{l-1}/n^{l-2}$ ≥ c_1n , at least one of x_0 and x_1 belongs to *A*. Thus, in summary, we have proved that every bad pair intersects *A*.

Considering the sparse pairs, we obtain by (4) at least

$$
\frac{|A| \times c_1 n}{2} \times \frac{1}{2} \left(\frac{n}{2l}\right)^{k-2} \times {k \choose 2}^{-1} \ge |A| \times c_2 n^{k-1}
$$

missing edges and, consequently, at least $|A| \times c_2 n^{k-1}$ bad edges. Let B consist of the pairs $(D, \{x, y\})$, where $\{x, y\} \in B$, $D \in G$ and $x, y \in D$. (Thus *D* is a bad edge.) As each bad edge contains at least one bad pair, we conclude that $|B| \ge |A| \times c_2 n^{k-1}$. For any $(D, \{x, y\}) \in B$, we have $\{x, y\} \cap A \neq \emptyset$. If we fix *x* and *D*, then, obviously, there are at most $k - 1$ ways to choose a bad pair $\{x, y\} \subset D$. Hence, some vertex $x \in A$, say $x \in V_1$, belongs to at least

$$
\frac{|\mathcal{B}|}{(k-1)|\mathcal{A}|} \geqslant \frac{c_2}{k-1} n^{k-1} \tag{5}
$$

bad edges, each intersecting V_1 in another vertex y .

Let $Y \subset V_1$ be the neighborhood of x in the 2-graph *B*. We have

$$
|Y| \geqslant \frac{c_2}{k-1} n^{k-1} \times {n \choose k-2}^{-1} \geqslant c_3 n.
$$

For $j \in [2, l]$ let Z_j consist of those $z \in V_j$ for which $\{x, z\}$ is dense.

Suppose first that $|Z_j| \geq c_3 n$ for each $j \in [2, l]$. In this case we do the following. For every $y \in Y$, fix some $D_y \in G$ containing both x and y. Consider an $(l + 1)$ -tuple $L = (x, y, z_2, z_3, ..., z_l)$, where *y* ∈ *Y* and *z*_{*j*} ∈ *Z*_{*j*} \ *D*_{*y*} are arbitrary. We can find a partial embedding of $H_{l+1}^{(k)}$ with core *L* such that every pair containing x is covered: the pair $\{x, y\}$ is covered by D_y while each pair $\{x, z_i\}$ is dense. Since *G* is $H_{l+1}^{(k)}$ -free, at least one pair from the set $\{y, z_2, \ldots, z_l\}$ is sparse. Since there are at least $(c_3n-k)^l$ choices of L (note that x is fixed), this gives us at least $(c_3n-k)^l/n^{l-2} > c_4n^2$ sparse pairs, which is a contradiction as we already know.

Hence, assume that, for example, $|Z_2| < c_3n$. This means that all but at most c_3n pairs $\{x, z\}$ with $z \in V_2$ are sparse, that is, there are at most

$$
c_3 n \times {n \choose k-2} + n \times m \leqslant c_3 n^{k-1}
$$
\n⁽⁶⁾

G-edges containing *x* and intersecting V_2 . Let us contemplate moving *x* from V_1 to V_2 . Some edges of *G* may decrease their contribution to *f* by 1. But each such edge must contain *x* and intersect V_2 so the corresponding total decrease is at most c_3n^{k-1} by [\(6\)](#page-3-0). On the other hand, the number of edges of *G* containing *x*, intersecting *V*₁ \{*x*}, and disjoint from *V*₂ is at least $\frac{c_2}{k-1}n^{k-1} - c_3n^{k-1}$ by [\(5\)](#page-3-0) and [\(6\)](#page-3-0). As c_3 is much smaller than c_2 , we strictly increase f by moving x from V_1 to V_2 , a contradiction to the choice of the parts V_i . The theorem is proved. \Box

4. Concluding remarks

Lemma [3](#page-1-0) also follows from the following more general Lemma 4. In order to state the latter result, we need some further definitions.

Let us call a family F of *k*-graphs *s*-stable if for any $\varepsilon > 0$ there are $\delta > 0$ and n_0 such that for arbitrary F-free *k*-graphs G_1, \ldots, G_{s+1} of the same order $n \geq n_0$, each of size at least $(\pi(\mathcal{F}) - \delta) {n \choose k}$, some two are ε ($\frac{n}{k}$)-close. Please note that if $\cal F$ is *s*-stable for some *s* then it is also *t*-stable for any $t > s$. Lemma [3](#page-1-0) implies that $H_l^{(k)}$ is 1-stable. Let $F[t]$ denote the *t*-blowup of a *k*-graph *F*, where each vertex *x* is replaced by *t* new vertices and each edge is replaced by the corresponding complete *k*-partite *k*-graph. Clearly, |*F* [*t*]| = *t ^k*|*F* |.

Lemma 4. Let $t \in \mathbb{N}$. Let \mathcal{F} be a finite family of k-graphs which is s-stable. Let \mathcal{H} be another (possibly infinite) *k*-graph family such that for each $F \in \mathcal{F}$ there is $H \in \mathcal{H}$ such that $H \subset F[t]$ *.* If $\pi(\mathcal{H}) \geq \pi(\mathcal{F})$ *, then* $\pi(\mathcal{H}) =$ $\pi(F)$ *and* H *is s-stable.*

Proof. Our proof uses the following theorem of Rödl and Skokan [\[19, Theorem 1.3\]](#page-5-0) which in turn relies on the Hypergraph Regularity Lemma of Rödl and Skokan [\[18\]](#page-5-0) and the Counting Lemma of Nagle, Rödl, and Schacht [\[16\]](#page-5-0) (see also Gowers [\[8\]\)](#page-5-0).

Theorem 5 *(Rödl and Skokan). For all integers* $l > k \geqslant 2$ *and a real* $\varepsilon > 0$ *there exist* $\mu = \mu(k, l, \varepsilon) > 0$ *and* $n_1 = n_1(k, l, \varepsilon) \in \mathbb{N}$ *such that the following statement holds.*

Given a k-graph F with v \leq *l vertices, suppose that a k-graph G with n* $> n_1$ *vertices contains at most* μ *n*^{*v*} α *copies of F as a subgraph. Then one can delete at most* $\varepsilon \binom{n}{k}$ edges of G to make it F-free. \Box

Let *ε >* 0 be arbitrary. Let *δ >* 0 and *n*⁰ be constants satisfying the *s*-stability assumptions for $\mathcal F$ and $\frac{\varepsilon}{3}$. Assume that $\delta \leqslant \varepsilon$. Let *l* be the maximum order of a *k*-graph in $\mathcal F$ and $m = |\mathcal F|$. Let $\mu=\mu(k,l,\frac{\delta}{3m})$ and $n_1=n_1(k,l,\frac{\delta}{3m})$ be given by Theorem 5. Also, assume that n_2 is so large that for every $F \in \mathcal{F}$ any $F[t]$ -free *k*-graph of order $n \geq n_2$ contains at most $\mu n^{\nu(F)}$ copies of *F*, where $\nu(F)$ denotes the number of vertices in *F*. Such n_2 exists because any *F*[t]-free *k*-graph *G* of order *n* has at most $o(n^{\nu(F)})$ copies of F, which follows from a theorem of Erdős [\[4\].](#page-5-0) Let $n_3 = \max(n_0, n_1, n_2)$.

Let $n \ge n_3$ and let G_1, \ldots, G_{s+1} be arbitrary H -free *k*-graphs each having *n* vertices and at least $(\pi(F) - \frac{\delta}{2}) {n \choose k}$ edges. By Theorem 5 (and the choice of n_1 and n_2), for each $F \in \mathcal{F}$ each G_i can be made *F*-free by removing at most $\frac{\delta}{3m} {n \choose k}$ edges. Hence, we can transform G_i into an \mathcal{F} -free *k*-graph $G'_i \subset G_i$ by removing at most $|\mathcal{F}| \frac{\delta}{3m} {n \choose k} \leq \frac{\delta}{3} {n \choose k}$ edges.

We conclude that $\pi(F) \geq \pi(H) - \frac{\varepsilon}{3}$. As $\varepsilon > 0$ was arbitrary, we have $\pi(F) = \pi(H)$. Thus the edge density of each G'_i is at least $\pi(\mathcal{H}) - \frac{\delta}{2} - \frac{\delta}{3} > \pi(\mathcal{F}) - \delta$. By the *s*-stability of \mathcal{F} , some two of these graphs, for example, G'_i and G'_j , are $\frac{\varepsilon}{3} {n \choose 2}$ -close. It follows that G_i and G_j are $\varepsilon {n \choose k}$ -close. Thus the constants $\frac{\delta}{2}$ and n_3 demonstrate the *s*-stability of H, proving Lemma 4. \Box

The line of argument we used in this article might be useful for computing the exact value of $ex(n, F)$ for other forbidden *k*-graphs *F*. The approach in general could be the following.

1. Find a suitable *k*-graph family $\mathcal{F} \ni F$ for which we can compute $\pi(\mathcal{F})$ and prove the stability of \mathcal{F} .

- 2. Deduce from Lemma [4](#page-4-0) that $\pi(F) = \pi(F)$ and *F* is stable too.
- 3. Using the stability, obtain the exact value of $ex(n, F)$. (The fact that stability often helps in proving exact results for the hypergraph Turán problem was observed and used by Füredi and Simonovits [7], Keevash and Sudakov [12,11], and others.)

Extending the results by Sidorenko [20], the author [17] has successfully applied the above approach to computing the exact value of $ex(n, T^{(4)})$ for $n \geq n_0$, where the *k*-graph $T^{(k)}$ consists of the following three edges: [k], [2, k + 1], and {1}∪[k + 1, 2k − 1]. The exact value of ex(n, $T^{(3)}$) was previously computed by Frankl and Füredi [6] (see also Bollobás [2], Keevash and Mubayi [10]).

Lemma [3](#page-1-0) has an interesting application. Namely, the method of Mubayi and the author [14] (com-bined with Lemma [3\)](#page-1-0) shows that the pair $(H_{k+2}^{(k)}, K_{k+1}^{(k)})$ is *non-principal* for any $k \geqslant 3$, that is,

$$
\pi\left(\left\{H_{k+2}^{(k)}, K_{k+1}^{(k)}\right\}\right) < \min\{\pi\left(H_{k+2}^{(k)}\right), \pi\left(K_{k+1}^{(k)}\right)\},\tag{7}
$$

where *^K(k) ^m* denotes the complete *^k*-graph of order *^m*. This completely answers a question of Mubayi and Rödl [15] (cf. also Balogh [1]). We refer the Reader to [14] for further details.

Acknowledgments

The author is grateful to Vojta Rödl and Mathias Schacht for providing the manuscripts [16,19] before their publication and to the anonymous referees for the very useful and detailed comments.

References

- [1] J. Balogh, The Turán density of triple systems is not principal, J. Combin. Theory Ser. A 100 (2002) 176–180.
- [2] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21–24.
- [3] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181-192.
- [4] P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964) 183–190.
- [5] P. Frankl, Asymptotic solution of a Turán-type problem, Graphs Combin. 6 (1990) 223–227.
- [6] P. Frankl, Z. Füredi, A new generalization of the Erdős–Ko–Rado theorem, Combinatorica 3 (1983) 341–349.
- [7] Z. Füredi, M. Simonovits, Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (2005) 467–488.
- [8] W.T. Gowers, Hypergraph regularity and the multidimensional Szemerédi theorem, Adv. Math. 166 (2007) 897–946.
- [9] G.O.H. Katona, T. Nemetz, M. Simonovits, On a graph problem of Turán, Mat. Fiz. Lapok 15 (1964) 228–238 (in Hungarian).
- [10] P. Keevash, D. Mubayi, Stability results for cancellative hypergraphs, J. Combin. Theory Ser. B 92 (2004) 163–175.
- [11] P. Keevash, B. Sudakov, The Turán number of the Fano plane, Combinatorica 25 (2005) 561–574.
- [12] P. Keevash, B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica 25 (2005) 673–706.
- [13] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory Ser. B 96 (2006) 122–134.
- [14] D. Mubayi, O. Pikhurko, Constructions of non-principal families in extremal hypergraph theory, Discrete Math. 308 (2008) 4430–4434.
- [15] D. Mubayi, V. Rödl, On the Turán number of triple systems, J. Combin. Theory Ser. A 100 (2002) 135–152.
- [16] B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular *k*-uniform hypergraphs, Random Structures Algorithms 28 (2006) 113–179.
- [17] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2008) 187–208.
- [18] V. Rödl, J. Skokan, Regularity lemma for *k*-uniform hypergraphs, Random Structures Algorithms 25 (2004) 1–42.
- [19] V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006) 180–194.
- [20] A.F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Math. Notes 41 (1987) 247–259, translated from Mat. Zametki.
- [21] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452 (in Hungarian).