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a b s t r a c t

Let Gi be the (unique) 3-graph with 4 vertices and i edges.
Razborov [A. Razborov, On 3-hypergraphs with forbidden 4-
vertex configurations, SIAM J. Discrete Math. 24 (2010) 946–963]
determined asymptotically the minimum size of a 3-graph on n
vertices having neither G0 nor G3 as an induced subgraph. Here we
obtain the corresponding stability result, determine the extremal
function exactly, and describe all extremal hypergraphs for n ≥

n0. It follows that any sequence of almost extremal hypergraphs
converges, which answers in the affirmative a question posed by
Razborov.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For a set X and an integer k, let


X
k


= {Y ⊆ X : |Y | = k}. A k-graph G with vertex set V is a subset

of


V
k


, i.e., it is a collection of k-element subsets of V . Elements of V and G are called vertices and

edges respectively. We will also call G a hypergraph.
Let G be a family of k-graphs. A k-graph F is G-free if it contains no member of G as an induced

subgraph. Let t(n, G) be the minimum size of a G-free k-graph on n vertices. This function is related
to the Turán problem; we refer the reader to surveys by Füredi [9], Sidorenko [24], and Keevash [12].

If G = {G} consists of one k-graph G, we may abbreviate t(n, {G}) to t(n,G), etc. For 0 ≤ i ≤ 4, let
Gi be the (unique) 3-graph with 4 vertices and i edges.

One of the most famous open questions in extremal combinatorics is to determine t(n,G0). It goes
back to the fundamental paper by Turán [26] who conjectured that

t(n,G0) = tn, (1)

where tn is defined as follows.
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For pairwise disjoint setsV0, V1, andV2, the Turán pattern TV0,V1,V2 is the 3-graph onV = V0∪V1∪V2
whose edges are triples {x, y, z}with x, y ∈ Vi and z ∈ Vi ∪Vi+1 for some i ∈ Z3. (Here Zm denotes the
additive group of residues modulom.) Let tv0,v1,v2 be the number of edges in TV0,V1,V2 where |Vi| = vi.
The Turán 3-graph Tn is the (unique up to isomorphism) Turán pattern TV0,V1,V2 with v0 + v1 + v2 = n
and |vi − vj| ≤ 1 for all i, j ∈ Z3. It is not hard to show (see Lemma 4) that among all Turán patterns
on n vertices, the Turán 3-graph Tn has the smallest size. Let

tn = |Tn|.
We have tn =

 4
9 + o(1)

  n
3


as n → ∞. Also, any Turán pattern is G0-free; thus t(n,G0) ≤ tn.

The problem of obtaining a matching lower bound (even within a (1 + o(1))-factor) seems to be
extremely difficult. Successively better lower bounds on t(n,G0) were proved by de Caen [5], Giraud
(unpublished, see [4]), and Chung and Lu [4]. Razborov [20,22] presented a general framework for
working with extremal problems of this kind. His solution of a certain semidefinite program with
over 900 variables suggests that t(n,G0) ≥ 0.43833

 n
3


for all sufficiently large n, see also [1]. One of

many difficulties here is that, if Turán’s conjecture (1) is correct, then there are many non-isomorphic
extremal 3-graphs, see [16,3,8]. Also, we refer the reader to Razborov [21] for some related results.

Note that Tn is also G3-free; thus t(n, {G0,G3}) ≤ tn. Applying his technique Razborov [22] proved
the matching asymptotic lower bound. Thus

t(n, {G0,G3}) =


4
9

+ o(1)
 n

3


. (2)

This result is interesting because there are very fewnon-trivial hypergraphs or hypergraph families
for which the asymptotic of its Turán function is known. Also, it gives us a better understanding of the
original conjecture of Turán. For example, if the conjecture is false, then any G0-free 3-graph G on n
vertices beating tn has to contain an induced copy of G3. (In fact, if |G| ≤ (1 − Ω(1))tn as n → ∞,
then G contains Ω(n4) G3-subgraphs by the super-saturation technique of Erdős and Simonovits [7].)

Here, we prove for all n ≥ n0 that t(n, {G0,G3}) = tn and the Turán hypergraph Tn is the unique
extremal 3-graph:

Theorem 1 (Exact Result). There is n0 such that every {G0,G3}-free 3-graph F on n ≥ n0 vertices has at
least tn edges with equality if and only if F ∼= Tn.

In particular, t(n, {G0,G3}) = tn for n ≥ n0.

Theorem 1 is also interesting in the context of the rapidly developing theory of graph and
hypergraph limits, see e.g. [17,2,6]. Although Razborov’s proof of (2) is stated without any appeal to
hypergraph limits, the flag algebras introduced by him provide a convenient and powerful language
formanipulating limit objects. Also, any relations provedwith the help of flag algebras or (hyper)graph
limits hold only asymptotically as the order of the underlying (hyper)graph tends to infinity. So, at
first sight, this technique can give asymptotic results only. However, the proof of Theorem 1 gives an
example of how a solution of the ‘‘limiting’’ case may lead to an exact result for all sufficiently large
n. The key ingredient here is the stability property which states, roughly speaking, that all almost
extremal hypergraphs have essentially the same unique structure. Here is the precise formulation for
the {G0,G3}-problem:

Theorem 2 (Stability Property). For every ε > 0 there is c > 0 such that the following holds. Let G be a
{G0,G3}-free 3-graph on n > 1/c vertices with at most tn + cn3 edges. Then we can make G isomorphic
to Tn by changing at most εn3 triples.

Stability greatly helps in proving exact results (with one example being Theorem 1). This approach
was pioneered by Simonovits [25] in the late 1960s and has led to exact solutions of numerous
extremal problems since then. In recent years it has been actively used to prove exact results for the
hypergraph Turán problem, see e.g. [13,11,14,15,18,10,19].

As an extra bonus, Theorem 2 also implies the following result, which answers in the affirmative
a question posed by Razborov [22, Section 5]. For F ⊆


V
k


and H ⊆


U
k


let ind(H, F) denote the

induced density of H in F , that is, the probability that a random injection U → V preserves all edges
and non-edges of H .
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Theorem 3 (Convergence). Let ni → ∞. Let Fi ⊆


[ni]
3


be a {G0,G3}-free 3-graph with |Fi| = 4

9 + o(1)
  ni

3


as i → ∞. Then, for every fixed 3-graph H, the limit limi→∞ ind(H, Fi) exists (and is

equal to limm→∞ ind(H, Tm)).

Proof. By Theorem 2 we can change o(n3
i ) edges in Fi and transform it into Tni . Relabel the vertices of

Fi so that V (Fi) = V (Tni) and the symmetric difference Fi1Tni has o(n
3) triples, where V (F) denotes

the vertex set of a hypergraph F .
For every fixed 3-graph H we have |ind(H, Fi) − ind(H, Tni)| = o(1) because the probability that a

random injection V (H) → V (Fi) hits one of the triples where Fi and Tni differ is o(1). Also, ind(H, Tm)
tends to an (explicitly computable) limit λH as m → ∞. Thus ind(H, Fi) → λH , as required. �

Remark. A simple application of the Principle of Inclusion–Exclusion shows that the conclusion of
Theorem 3 is equivalent to the statement that the sequence (Fi) of 3-graphs converges, as defined by
Elek and Szegedy [6, Definition 2.5].

2. Some notation

We denote [n] = {1, . . . , n}. For brevity, we often omit punctuation signs when writing sets; for
example, abc is a shorthand for {a, b, c}.

Let G ⊆


V
k


be a k-graph on V . For A ⊆ V ,G[A] = {D ∈ G : D ⊆ A} denotes the subgraph of G

induced by A. For disjoint subsets V1, . . . , Vk ⊆ V , let

G[V1, . . . , Vk] = {D ∈ G : ∀ i ∈ [k] |D ∩ Vk| = 1}

denote the k-partite subgraph of G induced by the sets Vi. For A ⊆ V with a ≤ k−1 elements, the link
(k − a)-graph of A is

GA = {D : D ⊆ V \ A, D ∪ A ∈ G}.

When a = k − 1, we view GA as a set of vertices rather than a set of 1-element sets. The maximum
degree of G is 1(G) = max{|Gx| : x ∈ V }.

Let G and H be two k-graphs with the same number of vertices. They are isomorphic (written as
G ∼= H) if there is a bijection f : V (G) → V (H) such A ∈ G if and only if f (A) ∈ H for every A ∈


V (G)

k


.

The edit distance δ1(G,H) is the minimum of |σ(G)1H| over all bijections σ : V (G) → V (H). In other
words, δ1(G,H) is the smallest number of k-tuples whose inclusion into G one has to change in order
to make G isomorphic to H .

3. Auxiliary results

Here we list a few lemmas needed later. Their proofs are fairly straightforward and are included
here for the sake of completeness.

Lemma 4. Let n ≥ 3. For every Turán pattern TX,Y ,Z on [n]we have |TX,Y ,Z | ≥ tn and, if we have equality,
then TX,Y ,Z ∼= Tn.

Proof. Let x, y, z be the cardinalities of X, Y , Z respectively. The claim is trivial for n = 3, so let us
assume that n ≥ 4.

It is enough to show that no two of x, y, z differ by more than by 1. Suppose on the contrary that
this is false. We will give an example of a triple strictly better than (x, y, z), thus proving the lemma.
Up to a symmetry, there are two cases.
Case 1. x ≥ y ≥ z and x ≥ z + 2.

Routine simplifications show that

∂ := tx,y,z − tx−1,y,z+1 =
x2

2
+ xy − xz −

y2

2
−

3x
2

−
y
2

+ z + 1.
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It is enough to show that this expression is strictly positive. This a linear function of z with the
coefficient 1 − x < 0, so it suffices to show that ∂ > 0 under the additional assumption that
z = min(x − 2, y).

If z = x − 2, then y can be one of x, x − 1, and x − 2 and ∂ is x − 1, x − 1, and x − 2 respectively.
Since n ≥ 4, we have x ≥ 2. Also, if x = 2, then z = 0, n = 4, and y = 2. In all cases, ∂ is strictly
positive, as desired.

If z = y, then ∂ =
x2
2 −

3x
2 −

y2

2 +
y
2 + 1, which is an increasing function of x ≥ 2. So it follows

from the case x = z + 2 which we have just done.
Case 2. x ≥ z ≥ y and x ≥ y + 2.

Routine simplifications show that

∂ := tx,y,z − tx−1,y+1,z = −
y2

2
+ xy − yz +

z2

2
−

y
2

−
z
2
.

This is a non-decreasing function of x, so it is enough to consider the case x = max(y+2, z). If y = x−2,
then z is one of x, x− 1, x− 2 with ∂ being x− 1, x− 2 and x− 2 respectively. The assumption n ≥ 4
implies that ∂ > 0 in each case. If z = x, then ∂ =

x2
2 −

x
2 −

y2

2 −
y
2 , which is increasing in x ≥ 2, so it

is enough to assume that x = z = y + 2; we have ∂ = x − 1 > 0 in this case. �

Lemma 5. For every ε > 0 there is c > 0 such that for every n > 1/c and for every non-negative integer
v0, v1, v2 with v0 + v1 + v2 = n and tv0,v1,v2 ≤

 4
9 + c

  n
3


we have |vi − n/3| ≤ εn for every i ∈ Z3.

Proof. Since we are not interested in an explicit dependence of c on ε, we present a ‘‘non-
constructive’’ but short proof. Suppose that the lemma is false, that is, there is ε > 0 such that for
every integermwe have a counterexample (v0, v1, v2) for c = 1/m. By choosing a subsequence ofm,
we can assume that vi/n converges for each i ∈ Z3; let xi be the limit of vi/n. By Lemma 4, we have
tv0,v1,v2 =

 4
9 + o(1)

  n
3


. Thus

P(x0, x1, x2) =
x30 + x31 + x32

6
+

x20x1 + x21x2 + x22x0
2

assumes the value 4
9 ×

1
3! =

2
27 .

Let us minimize P(x, y, z) over non-negative reals x, y, z with x + y + z = 1. If, for example,
x ≥ y ≥ z with x > z, then the following difference of partial derivatives

∂

∂z
P(x, y, z) −

∂

∂x
P(x, y, z) = (y − x)

x + y
2

+ (z − y)x

is strictly negative

because at least one of y − x ≤ 0 and z − y ≤ 0 is strictly negative while x ≥

1
3


.

Thus P(x − δ, y, z + δ) < P(x, y, z) for all small δ > 0. Likewise, if x ≥ z ≥ y with x > y, then

∂

∂y
P(x, y, z) −

∂

∂x
P(x, y, z) = (z − x)y + (y − z)

y + z
2

≤ 0.

Moreover, if we have equality here, then y = z = 0, x = 1 and P assumes value 1
6 > P

 1
3 ,

1
3 ,

1
3


=

2
27 .

In any case, P(x, y, z) is not minimum. This implies that the only extremal point is
 1
3 ,

1
3 ,

1
3


and the

minimum value of P is 2
27 .

It follows that x0 = x1 = x2 =
1
3 , which contradicts the fact some two of the ratios v0/n, v1/n, and

v2/n differ by at least ε for everym. �

4. Stability for the {G0,G3}-problem

In this sectionwewill prove Theorem 2. Suppose on the contrary that it is false. Thus there is ε > 0
and a sequence (Fi)with |Fi| ≤

 4
9 + o(1)

  ni
3


as i → ∞, where Fi is a {G0,G3}-free 3-graph on ni > i

vertices that is εn2
i -far in the edit distance from Tni .
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Fix any such sequence (Fi). We will split the whole proof resulting in a final contradiction into a
sequence of claims.

Let us call a 3-graph H singular if H is {G0,G3}-free but for every n the Turán graph Tn does not
contain H as an induced subgraph. Clearly, it is enough to check this inclusion for n = 3|V (H)| only.
There are exactly 26 non-isomorphic singular 3-graphs on 6 vertices, denoted by H9, . . . ,H34 in [22].
Claim 1. For every singular 3-graph H on 6 vertices we have ind(H, Fi) → 0 as i → ∞.
Proof of Claim. Although this claim is stated in [22, Section 5], let us sketch its proof very briefly. Let
n → ∞ and let F be an arbitrary {G0,G3}-free 3-graph on n vertices. Let ρ = |F |/

 n
3


be the edge

density of F . Razborov [22, Section 3] derives the following identity:

5
9
(ρ − 4/9) = [[(e − 4/9)2 ]]1 + [[Q1(f1, . . . , f4) ]]τ1 + [[Q2(g0, . . . , g5) ]]τ2 + R + o(1). (3)

Rather than formally defining all terms appearing here, we state only those properties that we need
in order to prove Claim 1, referring the reader to [22] for all details.

• Each term involving the brackets [[. . .]] is non-negative by Inequality (6) in [22].
• The last term,whichwe denoted by R, is of the form

∑
H αH ind(H, F), where the following applies.

– The sum runs over {G0,G3}-free 3-graphs H with 6 vertices.
– αH are explicit non-negative reals that are listed in Table 3 in [22].
– αH ≥ 1/360 for every singular H .

It follows that if |F | ≤
 4
9 + ε

  n
3


, then ind(H, F) ≤ 360 ×

5ε
9 + o(1) for every singular 6-vertex

hypergraph H . The claim follows. �
Now, we can apply the Strong Hypergraph Removal Lemma of Rödl and Schacht [23] to each 3-

graph Fi with respect to induced singular subgraphs H9, . . . ,H34. The lemma shows that we can
change o(n3

i ) edges in Fi as i → ∞ and ensure that it contains no induced singular subgraph on 6
vertices. Hence, bymaking ε slightly smaller, it is enough to derive a contradictionunder the additional
assumption that Fi has no induced singular subgraph on 6 vertices.

Fix large i, and let n = ni, F = Fi, and V = V (F) for the remainder of this section. Let T be the
logical predicate that takes three disjoint sets U0,U1,U2 ⊆ V as input and is true if and only if the
induced subgraph F [U0 ∪U1 ∪U2] follows the Turán pattern, that is, its edges are precisely triples xyz
with xy ∈ Uj and z ∈ Uj ∪ Uj+1 for some j ∈ Z3. Thus we have the following claim.
Claim 2. For any set U ⊆ V with |U| ≤ 6, there is a partition U = U0 ∪U1 ∪U2 such that T (U0,U1,U2)
holds. �

Let the logical predicate S(ab, cd) state that the vertices a, b, c, d ∈ V are pairwise distinct,
abc, abd ∈ F , and acd, bcd ∉ F . Also, for a, b ∈ V let us write a ∼ b if a = b or there are c, d ∈ V
satisfying S(ab, cd). In the latter case, we call the pair cd awitness of a ∼ b. Clearly, the binary relation
∼ is symmetric. The following claim can be checked by a trivial case analysis.
Claim 3. If T (U0,U1,U2) holds and a, b, c, d ∈ U0 ∪ U1 ∪ U2 satisfy S(ab, cd), then for some j ∈ Z3 we
have a, b ∈ Uj and c, d ∈ Uj+1. �

Claim 4. The relation ∼ is transitive.
Proof of Claim. Suppose that a ∼ b and b ∼ f , which is witnessed by S(ab, cd) and S(bf , gh)
respectively. Let U = {a, b, c, d, f , g, h}.

If |U| ≤ 6, then take a partition U = U0 ∪ U1 ∪ U2 given by Claim 2. By Claim 3 and symmetry, we
can assume that e.g. ab ∈ U0 and cd ∈ U1. Since S(bf , gh) holds, the vertices b and f are in the same
part Uj by Claim 3. Thus f ∈ U0. Then S(af , cd) holds, giving f ∼ a as required.

So suppose that |U| = 7 (i.e. all involved vertices are pairwise distinct). Consider U ′
= U \ {g}. It

has 6 elements, so by Claim 2 there is a partition U ′
= U ′

0 ∪ U ′

1 ∪ U ′

2 satisfying T (U ′

0,U
′

1,U
′

2). Assume
by Claim 3 that a, b ∈ U ′

0 and c, d ∈ U ′

1.
If f ∈ U ′

0, then S(af , cd) holds and thus a ∼ f , as required. So suppose that f ∉ U ′

0.
If f or h is in U ′

1, say h ∈ U ′

1, then we have S(ab, dh). We can replace c by h in U , reducing its size
to 6 and conclude as above that a ∼ f . So suppose that f , h ∉ U ′

1.
Since bfh ∈ F , it must be the case that f , h ∈ U ′

2. Thus T (ab, cd, fh) holds, in particular, afh ∈ F .
By the symmetry, we can swap f with a and cdwith gh in the above analysis and conclude that either
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we are done or that T (fb, gh, ac) holds. But the latter relation implies that afh ∉ F . This contradiction
proves Claim 4. �

Thus all vertices of F are partitioned into ∼-equivalence classes, say

V = V1 ∪ · · · ∪ Vk.

Let us call two vertices a, b ∈ V twins if swapping a and bwe get an automorphism of F .
Claim 5. If a ∼ b, then a and b are twins.
Proof of Claim. Pick c and d such that S(ab, cd) holds. Let e, f ∈ V \ {a, b} be arbitrary. Let U =

{a, b, c, d, e, f }. Apply Claim 3 to U to obtain a Turán partition U = U0 ∪ U1 ∪ U2. Without loss of
generality assume that a, b ∈ U0. Wherever the vertices e, f fall, we have aef ∈ F if and only if
bef ∈ F by the symmetry of U0 with respect to F [U], as required. �

Hence, we can define the skeleton 3-graph F ′ on [k]: namely, a triple fgh ∈


[k]
3


is an edge of

F ′ if and only if the induced 3-partite 3-graph F [Vf , Vg , Vh] is complete (or, equivalently by Claim 5
non-empty).
Claim 6. F ′ does not contain an induced copy of G0,G2, nor G3.

Proof of Claim. If some 4-set uwxy ∈


[k]
4


spans exactly two triples in F ′, say uwx, uwy ∈ F ′, then

S(ab, cd) holds for arbitrary representatives a ∈ Vu, b ∈ Vw, c ∈ Vx, and d ∈ Vy. Thus a ∼ b, a
contradiction to u ≠ w.

The {G0,G3}-freeness of F ′ follows from the {G0,G3}-freeness of F and Claim 5. �

Claim 7. Each Vj spans a complete 3-graph.
Proof of Claim. Let a, b, c ∈ Vj be distinct. Choose a witness fg to a ∼ b. By Claim 5, the pair fg also
witnesses b ∼ c and a ∼ c. Thus abf , acf , bcf ∈ F . Since we do not have G3, abc ∈ F . �

Claim 8. If fgh ∈ F ′, then Vf ∪ Vg ∪ Vh spans the complete 3-graph in F .
Proof of Claim. Take c ∈ Vf , d ∈ Vg and distinct a, b ∈ Vh. We have acd, bcd ∈ F . Since c ≁ d, at least
one of abc or abd is an edge of F . But F does not contain G3. Hence both abc and abd are edges of F .
The result follows from Claim 7. �

Claim 9. If two edges D, E ∈ F ′ intersect in two vertices, then D∪ E induces a complete subgraph in F ′.
Proof of Claim. This follows from Claim 6 (the {G2,G3}-freeness of F ′). �

Claim 10. If two edges D, E ∈ F ′ intersect in one vertex, then D∪ E induces a complete subgraph in F ′.
Proof of Claim. Let D = abc and E = cde. The 4-set abde spans at least one edge (since F ′ is G0-free),
say abd ∈ F ′. By Claim 9 applied to abc, abd ∈ F ′, the quadruple abcd induces G4. Since cde ∈ F ′

intersects each of acd, bcd ∈ F ′ in two vertices, we have G[acde] ∼= G[bcde] ∼= G4 by Claim 9. This
implies that every triple of abcde is in F ′ except perhaps abe. But Claim 9 applied to abc, bce ∈ F ′

shows that abe ∈ F ′, as required. �
By the above claims, F ′ is a vertex-disjoint union of complete subgraphs on sets W1, . . . ,Wl

respectively. Let us agree that each isolated vertex of F ′, if there are any, forms a separate part Wj.
The sets W1, . . . ,Wl partition [k] = V (F ′). Since F ′ is G0-free, we have l ≤ 3 (otherwise pick one
vertex from some four parts Wj to obtain a G0-subgraph in F ′). Moreover, every triple of F intersects
atmost two of the partsWj. For j ∈ [l], defineUj = ∪h∈Wj Vh and uj = |Uj|. The setsU1, . . . ,Ul partition
V = V (F).
Claim 11. For each j ∈ [l], the set Uj ⊆ V spans a complete subgraph in F .
Proof of Claim. If Wj = {h} has only one element, then Uj = Vh and the result follows from Claim 7. If
|Wj| ≥ 3, then Wj spans a (non-trivial) complete subgraph in F ′ and the result follows from Claim 8.
Finally, it is impossible to have |Wj| = 2 for otherwise the two vertices of Wj would be isolated in F ′

and would form a separate partWh each. �
Suppose first that l = 3. Then the following holds.

Claim 12. For every h ∈ [3] there is j ≠ h such that abc ∈ F for every ab ∈


Uh
2


and c ∈ Uj.
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Proof of Claim.Without loss of generality assume h = 3. For j = 1, 2, letHj be the 2-graph that consists

of all pairs ab ∈


U3
2


such that abc ∈ F for every c ∈ Uj.

Let us show that the union of H1 and H2 is


U3
2


. If, on the contrary, some pair ab ∈


U3
2


is not

in H1 ∪ H2, then pick cj ∈ Uj with abcj ∉ F for j = 1, 2 and observe that abc1c2 spans G0 in F , a
contradiction.

Also, for j = 1, 2, the 2-graph Hj contains no induced path of length 2. Indeed, if ad, bd ∈ Hj but
ab ∉ Hj, then pick c ∈ Uj with abc ∉ F and observe that abcd spans G3 (note that abd ∈ F by Claim
11), a contradiction.

Hence, each of H1 and H2 is a union of vertex-disjoint cliques. Since H1 ∪ H2 =


U3
2


, it easily

follows that H1 or H2 is equal to


U3
2


, proving the claim. �

Claim 13. For every distinct j, h ∈ [3], F contains at least

u2
j uh + uju2

h

2
−

ujuh


u2
j + u2

h

2
+ O(n2) (4)

triples within Uj ∪ Uh that intersect both Uj and Uh.
Proof of Claim. Suppose without loss of generality that j = 1 and h = 2.

Let i = 1 or 2. Letmi be the number of triples that do not belong to F and have exactly two vertices
in Ui and one vertex in U3−i. For ab ∈


Ui
2


, let mab be the number of c ∈ U3−i such that abc ∉ F . The

sum

si =

−
ab∈


Ui
2


mab

2



counts 4-tuples abcd such that ab ∈


Ui
2


, cd ∈


U3−i
2


, and abc, abd ∉ F . Since F is G0-free, no 4-

tuple is counted twice (i.e. for both i = 1 and i = 2). Thus s1 + s2 ≤
 u1

2

  u2
2


. On the other hand, the

convexity of the function
 x
2


and the identitymi =

∑
ab∈


Ui
2

 mab imply that

si ≥

ui

2

 
mi/

 ui
2


2


=

m2
i

u2
i

+ O(n3).

We conclude that

u2
1u

2
2

4
≥

m2
1

u2
1

+
m2

2

u2
2

+ O(n3). (5)

If we ignore the error term and maximize m = m1 + m2 over non-negative reals m1,m2 satisfying
(5), then any optimal assignment makes (5) equality. Using this to eliminate m2, we obtain that
m = m1 + u2(u2

1u
2
2/4 − m2

1/u
2
1)

1/2. This function of m1 has the unique maximum 1
2u1u2(u2

1 + u2
2)

1/2

attained at the unique positive root m1 = u3
1u2(u1 + u2)

1/2/2 of its derivative. This gives an upper
bound on the number of triples between U2 and U3 that are missing from F , proving the claim. �

By Claim 12, fix j(h) for each h ∈ [3]. Up to a symmetry we have two cases.
Case 1. (j(1), j(2), j(3)) = (2, 1, 1).

Here U1 ∪ U2 spans a complete subgraph in F . By Claim 13, the number of edges in F is at least
P(u1, u2, u3) + O(n2), where

P(u1, u2, u3) =
(u1 + u2)

3
+ u3

3

6
+

u1u2
3

2
+

u2u2
3 + u2

2u3

2
−

u2u3


u2
2 + u2

3

2
.

Claim 14. Theminimum value of P(x, y, z) over non-negative x, y, z with x+y+z = 1 is strictly larger
than 4

9 ×
1
6 =

2
27 .
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Proof of Claim. Let

Q (y, z) = P(1 − y − z, y, z) −
2
27

=
y2z
2

−
z3

2
−

yz

y2 + z2

2
+ z2 −

z
2

+
5
54

.

Let us minimize Q over

S = {(y, z) ∈ R2
: y ≥ 0, z ≥ 0, y + z ≤ 1}.

The derivative

∂Q (y, z)
∂y

= −

z

y −


y2 + z2

2

2

y2 + z2

,

is non-positive. Hence, there is an optimal assignment with y = 1 − z. Note that

Q (1 − z, z) =
5
54

+
(z2 − z)

√
1 − 2z + 2z2

2
.

Let I = [0, 1] ⊆ R denote the closed unit interval. It is enough to show that (5/54)2 − (Q (1− z, z) −

5/54)2 is positive on I . The last expression is a polynomial and factorizes as (18z2−18z+5)R(z)/2916,
where R(z) = −81z4 + 162z3 − 99z2 + 18z + 5. Clearly, it remains to show that R(z) is positive on I .
The derivative R′(z) has three simple roots 1/2 and (3 ±

√
5)/6, all of which are in I . So the potential

minima of R on I are restricted to values R(0), R(1/2), or R(1). But each of these is positive. This proves
Claim 14. �

By Claim 14, we have that |F | is strictly larger than
 2
27 + o(1)


n3

=
 4
9 + o(1)

  n
3


, a

contradiction.

Case 2. (j(1), j(2), j(3)) = (2, 3, 1).
Thus F contains the Turán pattern T = TU1,U2,U3 plus perhaps some extra edges. By Lemma 5, the

3-graph T alone has at least
 4
9 + o(1)

  n
3


edges. Since we have assumed that |F | ≤

 4
9 + o(1)

  n
3


,

each of F and T has size
 4
9 + o(1)

  n
3


and |F \ T | = o(n3). Thus F can be converted into T by

changing o(n3) edges. By the second part of Lemma 5, uj =
 1
3 + o(1)


n for each j ∈ [3]. Therefore,

δ1(T , Tn) = o(n3). Thus F and Tn are o(n3)-close in the edit distance, a contradiction to our assumption.
Since l = 1 is impossible


otherwise F =


[n]
3


, it remains to consider the case l = 2. By Claim

13 and the routine fact that themaximum of x(1−x)(x2+(1−x)2)1/2 for x ∈ I is attained for x = 1/2,
we have

|F | ≥

n
3


−

u1u2


u2
1 + u2

2

2
+ O(n2) ≥

n3

6
−

n3

8
√
2

+ O(n2),

which is strictly larger than
 4
9 + o(1)

  n
3


. This final contradiction proves Theorem 2.

5. Exact result for the {G0,G3}-problem

First, we will obtain the conclusion of Theorem 1 under the additional assumptions that G is close
to a Turán pattern and its maximum degree is at most that of Tn:

Theorem 6. There is ε > 0 such that the following holds. Let G be a {G0,G3}-free 3-graph on n ≥ 1/ε
vertices such that |G| ≤ tn, 1(G) ≤ 1(Tn), and G is εn3-close in the edit distance to some TV0,V1,V2 . Then
G is isomorphic to Tn.

Then, in Section 5.2, we will show that Theorems 2 and 6 imply Theorem 1.
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5.1. Proof of Theorem 6

Suppose on the contrary that Theorem 6 is false. Then for every ε > 0 there is a counterexample.
In fact, there are infinitelymany counterexamples (otherwise by Lemma 4, wewould have eliminated
all of them by making ε sufficiently small). Thus we may assume that ε → 0 and that n, the number
of vertices, is arbitrarily large with respect to 1/ε.

In order to make the proof more readable, we use the asymptotic notation where all terms
depending on ε are hidden. For example, a = o(n) means that |a| ≤ f (ε)n for some function f (ε)
that depends on ε only and tends to 0 as ε → 0.

We will use the following constants that are chosen in this order, each being a sufficiently small
positive number depending on the previous ones:

c1 ≫ c2 ≫ c3 ≫ c4 ≫ c5 ≫ c6 ≫ c7.

We do not try to optimize the inequalities that we derive in the course of the proof.
Let G ⊆


[n]
3


satisfy all assumptions of Theorem 6. Choose a best-fit partition, that is, a partition

[n] = V0 ∪ V1 ∪ V2 such that |T \ G| is smallest possible, where T = TV0,V1,V2 .
By our assumptions, there is a Turán pattern T ′ with |T ′

\ G| ≤ |T ′1G| ≤ εn3. By the extremality
of T , we have

|T \ G| ≤ |T ′
\ G| ≤ εn3

= o(n3).

We conclude that

|T | ≤ |T ∩ G| + |T \ G| ≤ |G| + εn3
≤ tn + o(n3).

So, by Lemma 5, we have

vi = (1/3 + o(1))n. (6)

Let B = T \ G and S = G \ T . We call triples in B bad and triples in S superfluous. Let b = |B| ≤ εn3

and s = |S|.
Since each vi is at least 4, we cannot remove any triple from T without creating G0. If s = 0, then

G ⊆ T and, in fact,G = T by theG0-freeness ofG; thus |T | = tn andG ∼= T ∼= Tn by Lemma 4, satisfying
Theorem 6. So assume that s > 0. Also, tn ≥ |G| = |T | + s − b ≥ tn + s − b, so s ≤ b. Summarizing:

0 < s ≤ b = o(n3). (7)

Let P = {xy ∈


[n]
2


: |Bxy| ≥ n/20} be the set of pairs of vertices that belong to at least n/20 bad

triples. Let p = |P|.
Claim 1. p ≥ b/2n.
Proof of Claim. Suppose on the contrary that p < b/2n. Let L ⊆ B consist of bad triples that do not
contain pairs in P . We have |L| ≥ b − p(n − 2) ≥ b/2.

Let l be the number of pairs (D, E) ∈ L×S such that |D∩E| = 2. Every bad triple xyz ∈ L contributes
at least

 1
3 + o(1)


n to l. Indeed, if x, y ∈ Vi and z ∈ Vi ∪Vi+1 for some i ∈ Z3, then for every w ∈ Vi−1

at least one of wxy, wxz, wyz belongs to S (otherwise the quadruple wxyz spans a copy of G0 in G).
Thus l ≥ (b/2)

 1
3 + o(1)


n. On the other hand, the 2-shadow of S has at most 3s pairs, so some pair

xy is covered by at least l/(3s) triples of L. Thus, by (7),

|Bxy| ≥ |Lxy| ≥
(b/2)

 1
3 + o(1)


n

3b
>

n
20

.

Thus xy ∈ P , which contradicts the definition of L. �

Claim 2. There is a vertex xwith |Bx| ≥ c2n2.
Proof of Claim. Each pair in P can either lie inside some part Vi or connect two parts. We distinguish
two cases depending on where the majority of pairs in P go.
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Case 1. |P ∩ (∪2
i=0


Vi
2


)| ≥ p/2.

Without loss of generality, suppose that |P0
| ≥ p/6, where P0

= P ∩


V0
2


. Define

P ′
= {xy ∈ P0

: |Bxy ∩ V1| ≥ n/40}.

Case 1.1. |P ′
| ≥ p/12.

For each quadruple uwxywith xy ∈ P ′ and u, w ∈ Bxy ∩ V1 (at least (p/12) ×


n/40
2


choices), uwx

or uwy is superfluous (otherwise G[uwxy] ∼= G0). Therefore, some triple, say uwx ∈ S with x ∈ V0,
appears for at least

(p/12) ×


n/40
2


s

≥

(b/(24n)) ×


n/40
2


b

≥ c1n

choices of y, where we used (7) and Claim 1. This vertex x is in at least 1
2 × c1n × (n/20) ≥ c2n2 bad

triples, as required.
Case 1.2. |P ′

| < p/12.
For each pair xy ∈ P0

\P ′ (at least p/12 choices), u ∈ V0∩Bxy (at least |Bxy|−n/40 ≥ n/40 choices),
andw ∈ V1 \Bxy (at least (1/3−1/40+o(1))n choices), we havewxy ∈ G and uxy ∉ G. Thus, in order
to avoid G3, we have that uwx or uwy is in B. By averaging, some triple, say, uwx ∈ B with w ∈ V1
appears for at least c1n choices of y in this way. Out of these c1n P-pairs connecting such vertices y to
u, x ∈ V0, at least half go to the same vertex, which necessarily has B-degree at least c2n2.
Case 2. More than half of the edges of P connect two different parts Vi.

Without loss of generality, suppose that at least p/6 pairs of P connect V0 to V1. Let the 2-graph P01

consist of these pairs. Note that any bad triple xyz with xy ∈ P01 satisfies z ∈ V0. Define

P ′′
= {xy ∈ P01

: |V2 \ Sxy| ≥ n/6}.

Case 2.1. |P ′′
| ≥ p/12.

For every choice of xy ∈ P ′′, z ∈ Bxy ⊆ V0, and w ∈ V2 \ Sxy (at least (p/12) × (n/20) × (n/6)
choices), at least one of wxz or wyz is superfluous (to prevent G[wxyz] ∼= G0). By averaging, some
triple, say, wxz ∈ S with w ∈ V2 appears for at least c1n choices of y, implying that x has the required
B-degree.
Case 2.2. |P ′′

| < p/12.
For every choice of xy ∈ P01

\ P ′′, say x ∈ V0 and y ∈ V1, and distinct u, w ∈ Sxy ∩ V2, we have
uwx ∈ B or uwy ∈ S (to avoid G3). One of these alternatives occurs at least half of the time. Averaging
gives a triple (in B or in S) that appears at least c1n times thisway. As above, this gives a vertex incident
to at least c2n2 edges of B. The claim is proved. �

Fix some vertex x with |Bx| ≥ c2n2. The following definitions and assumptions will apply to the
rest of the section. Assume without loss of generality that x ∈ V0. Partition the link 2-graphs Bx and Sx
as B0

∪ B1
∪ B2 and S0 ∪ S1 ∪ S2, where

B0
= Bx ∩


V0

2


,

B1
= {yz ∈ Bx : y ∈ V0, z ∈ V1},

B2
= Bx ∩


V2

2


,

S0 = {yz ∈ Sx : y ∈ V1, z ∈ V2},

S1 = Sx ∩


V1

2


,

S2 = {yz ∈ Sx : y ∈ V0, z ∈ V2}.

For i ∈ Z3, let bi = |Bi
| and si = |S i|.
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Let A be a largest subset of V1 with the property that

|S1[A]| ≥


|A|

2


− c3n2. (8)

Since A = ∅ satisfies (8), A exists. Let α = |A|/n. Also, let

C = {y ∈ V0 : |B1
y| ≥ c4n},

where B1
y = (B1)y is the set of neighbors of y in the 2-graph B1. Let γ = |C |/n.

Let us state a few easy inequalities relating some of the parameters that have just been defined.
By the definition of A, we have

s1 ≥

αn
2


− c3n2. (9)

Also, let us show that

b1 ≤ αγ n2
+ c4n2

+ o(n2). (10)

The vertices in V0\C are incident to atmost |V0|×c4n < c4n2 edges of B1. Let C ′
= {y ∈ C : |B1

y| > αn}.
Clearly, C \ C ′ is incident to at most αγ n2 edges of B1. For every y ∈ C ′, we have |S1[B1

y]| > c3n2 by
the definition of α; moreover, for every distinct u, w ∈ B1

y with uw ∉ S1, we have uwy ∈ S (to avoid
G[uwxy] ∼= G0). Thus |C ′

| × c3n2
≤ |S|. By (7), |C ′

| = o(n), and (10) follows.
Let us estimate l, the number of pairs (E,D) with E ∈ B2,D ∈ S0, and |E ∩ D| = 1 plus the number

of pairs (E, w) with E ∈ B2, w ∈ V1, and E ∪ {w} ∈ S. On one hand, every yz ∈ B2 contributes at
least v1 to l: for every w ∈ V1 at least one of wxy, wxz, wyz is in S (to prevent G[wxyz] ∼= G0). On the
other hand, each D ∈ S0 contributes at most v2 − 1 to l while the number of pairs (E, w) is at most
|S| = o(n3). By (6), we have b2n/3 ≤ s0n/3 + o(n3), i.e.

s0 ≥ b2 + o(n2). (11)

Similarly to the above, let us estimate l, the number of pairs (E,D) with E ∈ B0,D ∈ B1, and
|E ∩ D| = 1 plus the number of pairs (E, w) where E ∈ B0, w ∈ V1, and E ∪ {w} ∈ B. Each yz ∈ B0

contributes at least v1 to l: for every w ∈ V1, at least one of wxy, wxz, wzy is in B (to avoid G3). On the
other hand, each D ∈ B1 contributes at most v0 − 1 to l while there are at most |B| = o(n3) required
pairs (E, w). This implies that

b1 ≥ b0 + o(n2). (12)

By (6) every vertex of T (as well as of Tn) has degree (4/9 + o(1))
 n
2


. Since

1(Tn) ≥ 1(G) ≥ |Gx| = |Tx| + |Sx| − |Bx|,

by the maximum degree assumption of Theorem 6, we conclude that

b0 + b1 + b2 ≥ s0 + s1 + s2 + o(n2). (13)

The number of triples in T \ G that contain x is

|(T \ G)x| = |Bx| = b0 + b1 + b2. (14)

If we change T by moving x to V1, then |(T \G)x| becomes b0 +


n/3
2


− s1


+ ((n/3)2 − s0)+ o(n2).

By the best-fit property of T , this is at least (14), which implies that

b1 + b2 + s0 + s1 ≤
n2

6
+ o(n2). (15)
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If we move x to V2, then |(T \ G)x| becomes


n/3
2


− s1


+ b2 + ((n/3)2 − s2) + o(n2). Again by the

best-fit property of T , we have

b0 + b1 + s1 + s2 ≤
n2

6
+ o(n2). (16)

Claim 3. s0 ≥ c5n2.

Proof of Claim. Let us suppose on the contrary that s0 < c5n2. By (11), we have b2 ≤ c5n2
+ o(n2).

Thus

b0 + b1 = |Bx| − b2 ≥ c2n2
− c5n2

+ o(n2) ≥ 3c2n2/4 + o(n2)

and by (12), we have b1 ≥ 3c2n2/8 + o(n2). This, (10), and max(α, γ ) ≤ 1/3 + o(1) imply that both
α and γ are at least (3c2/8 − c4)/(1/3) + o(1) > c2.

Let A be as in (8). Take y ∈ V0 \ C . Let A′
= A \ B1

y . We have |A′
| ≥ (α − c4)n and

|S1[A′
]| ≥


|A′

|

2


− c3n2

≥


(c2 − c4)n

2


− c3n2 > c22n

2/3.

For every wz ∈ S1[A′
], we have wyz ∈ S (to avoid G3 on wxyz). Thus |V0 \ C | × c22n

2/3 ≤ |S| = o(n3)
and, by (6), γ = 1/3 + o(1).

Pick y ∈ C, z ∈ B1
y , and w ∈ V2. There are at least γ n × c4n × v2 such triples. By (7) and the

assumption on s0, o(n3) choices satisfy wyz ∈ S and at most c5n3 choices satisfy wz ∈ S0. For all
remaining triples wyz, we have wy ∈ S2 (to avoid G0 on wxyz). Let S = {wy : y ∈ C, w ∈ V2, wy ∉

S2} be the bipartite complement of S2[C, V2]. Since for each wy ∈ S there are at least c4n choices of z,
we have |S|c4n ≤ c5n3

+ o(n3). Thus e.g. |S| ≤ (c4 + o(1))n2. We conclude that

s2 ≥ |C | × |V2| − |S| ≥ (1/9 − c4 + o(1))n2.

By (11) and (13), we have

(1/9 − c4)n2
+ s1 ≤ b0 + b1 + o(n2). (17)

Inequalities (9), (10) and (17), and b0 ≤


v0
2


imply that

1
9

− c4 +
α2

2
− c3 ≤

1
18

+
α

3
+ c4 + o(1). (18)

Inequalities 1
9 +

α2

2 ≤
1
18 +

α
3 and 0 ≤ α ≤

1
3 imply that α = 1/3. It follows from (18) that, for

example, α ≥ 1/3 − c2, b0 ≥ (1/18 − c2)n2, s1 ≥ (α2/2 − c2)n2, and b1 ≥ (α/3 − c2)n2. But this
contradicts (16). The claim is proved. �

Claim 4. s1 ≥ (1/18 − c26 )n
2.

Proof of Claim. Let

V ′

1 =


y ∈ V1 :

Sy ∩


V2

2

 ≤ c7n2


. (19)

By (7), |V1 \ V ′

1| = o(n). In particular, the number of S0-edges intersecting V1 \ V ′

1 is o(n
2). By Claim 3

and (6), the average S0-degree of a vertex in V ′

1 is at least (3c5 + o(1))n. Take a vertex y ∈ V ′

1 whose
S0-degree is at least this average. Let D = S0y . For every distinct u, w ∈ D with uwy ∉ G, we have
uw ∈ B2 (to avoid G3). Thus

|B2
[D]| ≥


|D|

2


− c7n2. (20)
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Fix this D. Let z ∈ V ′

1 be arbitrary. Let D′
= D \ S0z . For every pair uw ∈


D′

2


, we have uw ∉ B2 or

uwz ∈ S (to avoid G0 on uwxz). Thus


|D′
|

2


≤ (c7 + c7 + o(1))n2 by (19) and (20). Hence,

|S0z ∩ D| ≥ |D| − (2
√
c7 + o(1))n

for every z ∈ V ′

1. We conclude that

|S0[D, V ′

1]| ≥ (|D| − 2
√
c7n) × |V ′

1| + o(n2) ≥ |D| |V ′

1| −
√
c7n2. (21)

Define D′′
=


z ∈ D :

Bz ∩


V1
2

 ≤ c7n2

. Then D′′ contains all but o(n) vertices of D. Pick z ∈ D′′

whose S0-degree is at least the average, which is at least (1/3 −
√
c7/(3c5) + o(1))n by (21). For

every distinct u, w ∈ S0z we have uwz ∈ B or uw ∈ S1 (to avoid G3 on uwxz). Thus the edges in the

complement S1 of S1 are restricted to pairs that intersect V1 \ S0z and to Bz ∩


V1
2


. Thus

|S1| ≤ (
√
c7/(3c2) + c7 + o(1))n2

≤ c26n
2/2,

proving the claim. �

Claim 5. b1 ≥ (1/9 − 2c6)n2.

Proof of Claim. Let V ′

0 =


z ∈ V0 :

Sz ∩


V1
2

 ≤ c7n2

. By (6) and (7), |V ′

0| = (1/3 + o(1))n. Take

z ∈ V ′

0. Let D = V ′

1 \ B1
z , where V ′

1 is defined by (19). For every distinct u, w ∈ D, we have uwz ∈ S or
uw ∉ S1 (to avoid G3 on uwxz). Thus

|D|

2


≤ |S1| + |Sz | ≤ (c26 + c7 + o(1))n2,

where we used Claim 4. Thus |D| ≤ ((2c26 + 2c7)1/2 + o(1))n. Since z ∈ V ′

0 was arbitrary, it follows
that |B1[V0, V1]|, the number of pairs connecting V0 to V1 that are not in B1, is at most

|V0 \ V ′

0| × v1 + (2c26 + 2c7)1/2n × (n/3) + o(n2) ≤ c6n2,

giving the claim. �
Claims 3, 4, and 5 imply that b1 + s0 + s1 ≥ (1/9− 2c6 + c5 + 1/18− c26 + o(1))n2, contradicting

(15). This final contradiction proves Theorem 6.

5.2. Proof of Theorem 1

Let ε > 0 be the constant returned by Theorem 6. Let c = c(ε) > 0 be the constant returned by
Theorem 2 on input ε. Assume that c ≤ ε. Let us show that n0 = (1/c)3 suffices. Let G be an arbitrary
{G0,G3}-free 3-graph on n ≥ n0 vertices with at most tn edges.

Initially, define Gn = G and m = n. If 1(Gm) ≤ 1(Tm), then we stop. Otherwise, pick a vertex x of
Gm of degree at least 1(Tm) + 1, let Gm−1 = Gm − x be obtained from Gm by removing this vertex x
(and all edges that contain it), decreasem by 1, and repeat.

When we stop, thenm ≥ 2 and we have

0 ≤ |Gm| ≤ tm − (n − m) ≤

m
3


+ m − n < m3

− n. (22)

Thus m > n1/3
≥ 1/c. Theorem 2 implies that Gm is εm3-close to Tm in the edit distance. (Note that

|Gm| ≤ tm by (22).) Since m ≥ 1/c ≥ 1/ε, Theorem 6 implies that Gm ∼= Tm. By (22), we have m = n.
Thus G ∼= Tn, proving Theorem 1.

Acknowledgements

The author thanks Peter Keevash and Alexander Razborov for helpful comments. This researchwas
partially supported by the National Science Foundation, Grant DMS-0758057.



O. Pikhurko / European Journal of Combinatorics 32 (2011) 1142–1155 1155

References

[1] R. Baber, J. Talbot, Hypergraphs do jump, Combin. Probab. Comput. (2010) (in press).
[2] C. Borgs, J. Chayes, L. Lovász, V.T. Sós, K. Vesztergombi, Convergent sequences of dense graphs I: subgraph frequencies,

metric properties and testing, Adv. Math. 219 (2008) 1801–1851.
[3] W.G. Brown, On an open problem of Paul Turán concerning 3-graphs, in: Studies in Pure Mathematics, Birkhäuser, Basel,

1983, pp. 91–93.
[4] F. Chung, L. Lu, An upper bound for the Turán number t3(n, 4), J. Combin. Theory Ser. A 87 (1999) 381–389.
[5] D. de Caen, The current status of Turán’s problem on hypergraphs, in: Extremal Problems for Finite Sets, Visegrád, 1991,

in: Bolyai Soc. Math. Stud., vol. 3, János Bolyai Math. Soc., Budapest, 1994, pp. 187–197.
[6] G. Elek, B. Szegedy, Ameasure-theoretic approach to the theory of dense hypergraphs, E-print, 2008. arXiv.org:0810.4062.
[7] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983) 181–192.
[8] D.G. Fon-der-Flaass, A method for constructing (3, 4)-graphs, Math. Z. 44 (1988) 546–550.
[9] Z. Füredi, Turán type problems, in: Surveys in Combinatorics, in: LondonMath. Soc. Lecture Notes Ser., vol. 166, Cambridge

Univ. Press, 1991, pp. 253–300.
[10] Z. Füredi, D. Mubayi, O. Pikhurko, Quadruple systems with independent neighborhoods, J. Combin. Theory Ser. A 115

(2008) 1552–1560.
[11] Z. Füredi, M. Simonovits, Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (2005) 467–488.
[12] P. Keevash, Hypergraph Turán problem, Preprint, 2011.
[13] P. Keevash, D. Mubayi, Stability results for cancellative hypergraphs, J. Combin. Theory Ser. B 92 (2004) 163–175.
[14] P. Keevash, B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica 25 (2005) 673–706.
[15] P. Keevash, B. Sudakov, The Turán number of the Fano plane, Combinatorica 25 (2005) 561–574.
[16] A.V. Kostochka, A class of constructions for Turán (3, 4)-problem, Combinatorica 2 (1982) 187–192.
[17] L. Lovász, B. Szegedy, Limits of dense graph sequences, J. Combin. Theory Ser. B 96 (2006) 933–957.
[18] D.Mubayi, O. Pikhurko, A new generalization ofMantel’s theorem to k-graphs, J. Combin. Theory Ser. B 97 (2007) 669–678.
[19] O. Pikhurko, An exact Turán result for the generalized triangle, Combinatorica 28 (2008) 187–208.
[20] A. Razborov, Flag algebras, J. Symbolic Logic 72 (2007) 1239–1282.
[21] A. Razborov, On the Fon-der-Flaass interpretation of extremal examples for Turán’s (3, 4)-problem, Manuscript, 2010.
[22] A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Discrete Math. 24 (2010) 946–963.
[23] V. Rödl, M. Schacht, Generalizations of the removal lemma, Combinatorica 29 (2009) 467–501.
[24] A. Sidorenko, What we know and what we do not know about Turán numbers, Graphs Combin. 11 (1995) 179–199.
[25] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc.

Colloq., Tihany, 1966, Academic Press, 1968, pp. 279–319.
[26] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452 (in Hungarian).

http://arxiv.org/0810.4062

	The minimum size of 3-graphs without a 4-set spanning no or exactly three edges
	Introduction
	Some notation
	Auxiliary results
	Stability for the  { G0, G3} -problem
	Exact result for the  { G0, G3} -problem
	Proof of Theorem 6
	Proof of Theorem 1

	Acknowledgements
	References


