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a b s t r a c t

The stability method is very useful for obtaining exact solutions of many extremal graph
problems. Its key step is to establish the stability property which, roughly speaking, states
that any two almost optimal graphs of the same order n can bemade isomorphic by chang-
ing o(n2) edges.
Here we show how the recently developed theory of graph limits can be used to give

an analytic approach to stability. As an application, we present a new proof of the Erdős–
Simonovits stability theorem.
Also, we investigate various properties of the edit distance. In particular, we show that

the combinatorial and fractional versions arewithin a constant factor from each other, thus
answering a question of Goldreich, Krivelevich, Newman, and Rozenberg.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The notion of the left convergence of graph sequences was introduced by Borgs, Chayes, Lovász, Sós, and Vesztergombi
(2003, unpublished) and was developed in [4,6–9,12,16,23,28,29,31] and other papers. Benjamini and Schramm [1]
introduced convergence for graphs of bounded maximum degree. Tardos [38] defined limits of trees. Lovász [27] presents a
nice survey of this area.
It is possible that graph limits will become a very powerful tool, especially in extremal graph theory. The left limits are

closely related to the (Weak) Regularity lemma, see Lovász and Szegedy [29], which is a very important and useful result. The
algebraic characterization of Lovász and Szegedy [28, Theorem 2.2] of possible limiting subgraph densities seems to have
great potential. Although these developments are very recent, Razborov [35,36] has already used graph limits to obtain a
spectacular progress on the long-standing Rademacher–Turán problem. Also, graph limits have proved helpful for property
and parameter testing, see Benjamini et al. [2], Borgs et al. [5], Elek [11], Lovász and Szegedy [30], and other.
Here is an example of how graph limits may be applied to extremal graph problems.
Suppose that the convergence on graphs is encoded by a compact metric space (X, δ) and a map that corresponds to

each graph G a point A(G) ofX and respects graph isomorphism (that is, A(G) = A(H)whenever G ∼= H). Then we say that a
sequence of graphs (Gn)n∈N converges if the sequence (A(Gn))n∈N is Cauchy in the metric δ. In this case, the limit of (Gn)n∈N
is the (unique) limiting point of the sequence (A(Gn))n∈N in (X, δ), which exists since (X, δ) is compact.
Suppose that we are given a graph parameter f , that is, a function on graphs that respects graph isomorphism, and a graph

property P , that is, a family of graphs closed under isomorphism. Let Pn = {G ∈ P : v(G) = n} consist of all graphs in P
with n vertices. The corresponding extremal (f ,P )-problem is to determine for each n

exf (n,P ) = max{f (G):G ∈ Pn},

EXf (n,P ) = {G ∈ Pn: f (G) = exf (n,P )},
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the maximum of f (G) over all graphs from Pn as well as the set of extremal graphs, i.e. graphs that achieve this maximum.
For example, if we let h(G) be the maximum size of a homogeneous set (a clique or an independent set) in a graph
G, f (G) = −h(G)/ log2 v(G) be its scaled version, and P be the family of all graphs, then we obtain the inverse problem
for the diagonal Ramsey numbers. Many extremal graph problems can be represented this way.
Let us try to formulate some approximation (the ‘‘limiting’’ case) of the problem as n → ∞. We suggest the following

definition. Let the limit set LIM(f ,P ) consist of those x ∈ X for which there is an infinite increasing sequence of indices
n1 < n2 < n3 < · · · and graphs Gni ∈ Pni such that

lim
i→∞

(f (Gni)− exf (ni,P )) = 0 (1)

and the sequence (Gni)i∈N converges to x, that is,

lim
i→∞

δ(A(Gni), x) = 0.

Although we are ultimately interested in EXf (n,P ), we do not require that Gni ∈ EXf (ni,P ) here. One of the reasons is
that we often know exf (n,P ) asymptotically but not exactly, in which case one can test if (1) holds but not themembership
in EXf (n,P ).
Now, we can try to study the set LIM(f ,P ), which is independent of n. If we succeed in completely describing it, then

we might be able to discover some information about extremal graphs. Indeed, if we select arbitrary extremal graphs
Gn ∈ EXf (n,F ) for infinitelymany n, then, by the compactness of (X, δ), there always is a convergent subsequence, whose
limit belongs to LIM(f ,P ). Suppose that this convergence implies some structural statement (in purely graph theoretical
terms) that necessarily occurs for infinitelymany of the selected extremal graphs. Then one can conclude that the statement
fails only for finitely many extremal graphs overall.
One can call this approach the limit method. It applies in principle to very general settings. For example, the families Pn

need not be related to each other for different n nor the graph parameter f has to behave well with respects to taking limits:
the above definitions make perfect sense for arbitrary f and P (and LIM(f ,P ) 6= ∅ provided infinitely many of Pn’s are
non-empty). Also, the definition of the limit set may be modified to work with other extremal problems, those which are
indexed by a different parameter than the order of a graph.
Since the limit method deals only with some approximation of the extremal problem, one would hope to obtain only the

asymptotic of exf (n,P ) at best. However, this approach might work well together with the so-called stability method that
has proved very useful in solving many extremal problems exactly (including the description of EXf (n,P )) for all large n.
The stability method proceeds as follows. Suppose that we know the value of exf (n,P ) asymptotically and that we have

some setCn believed to be exactly the set EXf (n,P ) for all large n. Assume thatCn ⊆ Pn and f is constant onCn. (Of course,
these assumptions are necessary for Cn = EXf (n,P ) and, usually, they are easy to check.) Given Cn, we have to prove first
that for any almost extremal graph G ∈ Pn (i.e. G ∈ Pn satisfying f (G) = exf (n,P ) − o(1)) there is H ∈ Cn such that
δ̂1(G,H) = o(1), where

δ̂1(G,H) =
2
n2
min{|E(G)∆σ(E(H))|: bijective σ : V (H)→ V (G)} (2)

is the edit distance between two graphs of the same order n: it is 2/n2 times the minimum number of adjacencies that one
has to change in G to make it isomorphic to H . Next, pick an arbitrary G ∈ EXf (n,P ) for a sufficiently large n. By the above,
we know that G is close in the distance δ̂1 to the graph property Cn. In order to complete the proof, it is enough to argue
that G is necessarily in Cn. Here we can use various arguments, such as applying ‘‘local improvements’’ to G or arguing that
every ‘‘wrong’’ adjacency in G bears too much penalty. Knowing all but o(n2) edges of G greatly helps in this task; this is
what makes this method so successful. This approach was pioneered by Simonovits [37] in the late 1960s. It has been used
to obtain exact solutions for an impressive array of problems since then.
The term ‘‘stability’’ refers to the property that every almost extremal graph has structure almost the same as some

extremal graph. A class of extremal problems for which this method seems to be particularly suited is when there is only
one pattern independent of n for all almost extremal graphs. In order to state this property formally, we have to define a
version of edit distance for arbitrary pairs of graphs. Namely, the δ1-distance, denoted by δ1(G,H), between graphs G and H
on vertex sets {x1, . . . , xm} and {y1, . . . , yn} respectively is the minimum over all non-negative m × n-matrices A = (αi,j)
with row sums 1/m and column sums 1/n of

δ1(G,H, A) =
∑

(i,j,g,h)∈∆

αi,gαj,h, (3)

where∆ consists of all quadruples (i, j, g, h) ∈ [m]2×[n]2 such that exactly one of the following two relations holds: either
{xi, xj} ∈ E(G) or {yg , yh} ∈ E(H). Informally speaking, we viewG andH as uniformly vertex-weighted graphs of total weight
1 while αi,j tells what fraction of vertex xi is mapped into vertex yj. It is not hard to show (see Section 3) that this defines a
pre-metric on the set of graphs, that is, δ1 is symmetric, non-negative and satisfies the Triangle Inequality (but may assume
value zero on distinct graphs: e.g. δ1(Km,m, Kn,n) = 0 for anym, n > 0).
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Note that, for graphs G1 and G2 of the same order, we trivially have δ̂1(G1,G2) ≥ δ1(G1,G2). This inequality is in general
strict (see Arie Matsliah’s example presented in the technical report [20, Appendix B] or Example 13 here). However, we
prove in Lemma 14 that

δ̂1(G1,G2) ≤ 3δ1(G1,G2), (4)

answering in the affirmative an open question posed by Goldreich et al. [20, Section 6] (see [21] for the journal version).
Now, let us say that the extremal (f ,P )-problem is stable if for every ε > 0 there are ε′ > 0 and n0 such that for every

n1, n2 ≥ n0 and every two graphs G1,G2 with Gi ∈ Pni and f (Gi) ≥ exf (ni,P ) − ε
′, for i = 1, 2, we necessarily have

δ1(G1,G2) < ε. Theorem 15 here gives an alternative characterization of stable extremal problems. However, we postpone
the exact statement as well as the proof until Section 5 after we define graph limits in Section 2 and extend the distance δ1
to them in Section 3.
For example, our approach applies to the Turán problem that asks for the maximum size of an F -free graph of order n.

This is a central question of extremal graph theory that was introduced by Turán [39]. Its scaled version can be represented
in our notation as exρ(n, Forb(F )), where ρ(G) = 2e(G)/(v(G))2 denotes the edge density of G and Forb(F ) consists of all
F -free graphs. By applying our Theorem 15, we obtain a new proof of the following celebrated result in Section 6.

Theorem 1 (The Erdős–Simonovits Stability Theorem [13,37]). For every (possibly infinite) family F of non-empty graphs the
extremal (ρ, Forb(F ))-problem is stable.

It is well-known that exρ(n, Forb(F )) = r−1
r + o(1), where

r = min{χ(F): F ∈ F } − 1 ≥ 1, (5)

and the lower bound is given by the Turán graph Tr(n) ∈ Forb(F ), the complete r-partite graph on [n] with parts of size
bn/rc or dn/re. Thus, by (4), Theorem 1 can be reformulated in the more familiar form that for any ε > 0 there are ε′ > 0
and n0 such that everyF -free graph with n ≥ n0 vertices and at least

( r−1
r − ε

′
) ( n
2

)
edges can bemade isomorphic to Tr(n)

by changing at most ε
( n
2

)
edges.

Theorem 1 was first applied by Simonovits [37] to determine the exact value of the Turán function ex(n, F) for various
forbidden graphs F . This theorem has a huge number of applications. For example, Theorem 1 turned up quite a few times
in the author’s research alone: see the papers with Jiang [24], Lazebnik andWoldar [25], Loh and Sudakov [26], Mubayi [32],
Yilma [34]. Another proof of Theorem 1 was recently discovered by Füredi [18].

2. Graph limits

Here we present the main definitions of ‘‘dense’’ graph limits. This notion of convergence (also called the left convergence
in [8, Section 2.2]) will be of main interest for this paper. We refer the reader to e.g. [8] for further details.
Until recently, the measure-theoretic methods were rare in discrete mathematics (if compared with, for example, linear

algebra or topological tools). Bearing inmind a combinatorialist readerwhodoes not use real analysis in research,wedecided
to take an extra care with measure theoretic concepts and to give references or detailed explanations whenever feasible
(even of some fairly standard results). For example, the result of Lemma 11 is stated in [30, page 5] without proof; here we
carefully fill in all missing details. All analytical terms that we do not define can be found in the book by Folland [15].
LetR denote the set of reals and I ⊆ R denote the closed unit interval [0, 1]. For Y ⊆ Rn, letLY = {A∩Y : A ∈ L} denote

the restriction of the σ -algebra L of Lebesgue measurable subsets of Rn to Y . If Y ⊆ Rn is Lebesgue measurable, then µY
denotes the restriction of the Lebesgue measure µ toLY . LetBY = {A ∩ Y : A ∈ B} be the restriction of the σ -algebraB of
Borel subsets ofRn to Y . When the set Y is clear from the context, wewriteL, µ, andB forLY , µY , andBY respectively. We
say that some property holds almost everywhere (abbreviated as a.e.) if the set of x for which it fails has Lebesgue measure
0. A measurable function is called simple if it assumes only finitely many values.
A function W : I2 → R is called symmetric if W (x, y) = W (y, x) for every x, y ∈ I . Let W consist of all symmetric

bounded measurable functionsW : (I2,L)→ (R,B). Following [8], we call the elements ofW graphons. LetWI consist of
those graphonsW ∈ W such that 0 ≤ W (x, y) ≤ 1 for every x, y ∈ I .
A function φ : (I,L, µ) → (I,L, µ) is called measure preserving if it is measurable and µ(φ−1(A)) = µ(A) for any

A ∈ LI . Let Φ consist of all such functions. Note that φ ∈ Φ may be very far from being invertible as e.g. φ(x) = 2x− b2xc
shows. Let Φ0 consist of bijections φ : I → I such that both φ and φ−1 belong to Φ . Clearly, each of Φ and Φ0 is closed
under taking compositions of functions. For φ ∈ Φ andW ∈ W , letWφ be defined byWφ(x, y) = W (φ(x), φ(y)). It is easy
to see thatWφ

∈ W and for any ψ ∈ Φ , we have

(Wφ)ψ = W (φ◦ψ). (6)

A few remarks are in order. It is standard (see e.g. [15, page 44]) to consider the σ -algebra B of Borel sets whenever (a
subset of) Rn is the range of a function from some measure space. This has many advantages: we can add or multiply such
functions [15, Proposition 2.6], take pointwise limits [15, Proposition 2.7], etc., with the resulting function beingmeasurable.
In particular, by [15, Theorem 6.6], the vector space
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L1 := L1(I2,L, µ) =
{
integrableW : (I2,L, µ)→ (R,B)

}
/ ∼, (7)

where we write U ∼ W iff U = W a.e., is a Banach space with respect to the `1-norm

‖W‖1 =
∫
I×I
|W (x, y)|dµ(x, y). (8)

On the other hand, DiBenedetto [10, Section 14.1] demonstrates that the set of measurable functions from (I,L) to (I,L) is
not closed under taking pointwise limits (nor under multiplication, nor under addition, even if we take the interval [0, 2] as
the new range, as some easymodifications of his example can show). Note that, by definition, the setΦ consists of Lebesgue-
to-Lebesgue measurable functions (so that, e.g., for everyW ∈ WI and φ ∈ Φ , we haveWφ

∈ WI ).
One can show that for any W ∈ W there is U ∈ W such that W = U a.e. and U is measurable as a function

(I2,B) → (R,B). (Indeed, by writing the values of W in base 2, represent W =
∑
i∈Z 2

i IXi as a linear combination of
the indicator functions of Lebesgue sets Xi ∈ LI2 and then replace each Xi by some Borel set Yi ∈ BI2 with µ(Xi∆Yi) = 0.)
This allows some flexibility in the definitions above. Still, in order to eliminate any ambiguity, we decided to specify the
corresponding σ -algebras whenever the measurability of functions may matter.
Also, note that every graphon W ∈ W , as a bounded measurable function on the finite measure space (I2,L, µ), is

integrable (see [15, Section 2.2]), that is,W ∈ L1.
Finally, let us remark that the standard definition of L1 allows functions to assume values±∞. (This is convenient in the

statements of many theorems of real analysis.) Since any integrable function assumes value±∞ on a set of measure 0 and
we identify a.e. equal functions, we can restrict ourselves in (7) to functions with values in R only.
For any integrable functionW : (I2,L, µ)→ (R,B) (in particular, for any graphonW ), define its cut-norm (also called

the box-norm, rectangle-norm, etc.) by

‖W‖� = sup
S,T∈LI

∣∣∣∣∫
S×T
W (x, y)dµ(x, y)

∣∣∣∣ . (9)

The cut-distance δ�(U,W ) between U,W ∈ W is the infimum of ‖U −Wφ
‖� over all φ ∈ Φ0. See [8, Lemma 3.5] for other

equivalent ways to define this distance. For any S, T ∈ LI , φ ∈ Φ0, and an integrable functionW : (I2,L, µ) → (R,B),
we have∫

S×T
W (x, y)dµ(x, y) =

∫
φ−1(S)×φ−1(T )

Wφ(x, y)dµ(x, y), (10)

which is easiest to see from the definition of the Lebesgue integral by approximatingW by simple functions [15, Section 2.2].
It follows that ‖U −Wφ

‖� = ‖Uφ
−1
−W‖� and that δ� is a pre-metric onWI (see the argument leading to (18)).

For a graphonW ∈ W we consider its equivalence class

[W ] = {U ∈ W : δ�(U,W ) = 0}.

Let

X = {[W ]:W ∈ WI} (11)

consist of those equivalence classes that have a representative inWI . We call elements ofX graph limits. The pre-metric δ�

induces a metric onX, which we still denote by the same symbol δ�.
Usually, it is more convenient to operate with graphons, understanding equivalence classes implicitly. But here we try

to be as explicit as it is reasonably possible. Since the words ‘‘graph’’ and ‘‘limit’’ are frequently used in this paper in various
contexts, we will use (in the absence of a better name) the term graphit when referring to an equivalence class [W ] with
W ∈ WI . (One might view terms ‘‘graphon’’ and ‘‘graphit’’ as abbreviations of ‘‘graph function’’ and ‘‘graph limit’’.)
For a graph G on vertices {x1, . . . , xn}, the corresponding element ofX is A(G) = [WG], whereWG ∈ WI is defined by

WG(x, y) =

1, if (x, y) ∈
[
k− 1
n

,
k
n

)
×

[
l− 1
n
,
l
n

)
and {xk, xl} ∈ E(G),

0, for all other (x, y) ∈ I2,
(12)

that is, we encode the adjacencymatrix ofG by a functionWG ∈ WI . Clearly, the graphit A(G) does not depend on the labeling
of V (G) (while the graphonWG does in general).
We have completely defined the metric space (X, δ�) and the special points A(G). This determines the promised

convergence on graphs. Let us give some brief pointers to the main properties of this construction.
Lovász and Szegedy [29, Theorem 5.1] proved that the metric space (X, δ�) is compact. Also, they showed [28,

Theorem 2.2] that the set { [WG]:G is a graph} is dense in (X, δ�), that is, every graphit [W ] with W ∈ WI is a limit of
some sequence of graphs.
Any graph sequence Gn with e(Gn) = o(v(Gn)2) as n → ∞, converges to the graphit [Const(0)], where for α ∈ I ,

Const(α) ∈ WI is the constant function that assumes the value α. This is why the phrase ‘‘convergence of dense graphs’’ is
often used.
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The graphonWG can be viewed as a version of the adjacencymatrix of a graphG. However, a better informal interpretation
of a general graphon W ∈ WI is as a continuous version of the matrix that encodes densities between parts of a (weak)
regularity partition, see [29, Section 5]. This also hints why, although we start with 0/1-valued functions WG, we have to
allowgeneral real-valued functionswhenwepass to limits. Having this data for the graph, one can approximate, for example,
the value of a max-cut: for graphons the corresponding computation is the supremum of the integral in (9) over disjoint
measurable S, T ⊆ I .
For graphs F and G the density t(F ,G) of F in G is the probability that a random (not necessarily injective) map

V (F)→ V (G) induces a homomorphism from F into G.
As it turns out, the subgraph densities behave well with respect to the δ�-distance. In combinatorial terms, this says,

roughly speaking, that if for two graphs G and H on [n]we have

|e(G[A, B])− e(H[A, B])| = o(n2), for every A, B ⊆ [n], (13)

then for every fixed graph F we have |t(F ,G)− t(F ,H)| = o(1). We refer the reader to [28, Lemma 4.1] or [8, Theorems 2.3
and 3.7] for the precise statements and proofs. This may be viewed as a version of the Counting Lemma: if we know the
pairwise densities in a regularity partition V (G) = V1 ∪ · · · ∪ Vk of a graph G, and generate the corresponding k-partite
random graph H on V (G), then as v(G) and k tend to infinity, with high probability (13) holds, and we can approximate
subgraph densities in G by those inH . This greatlymotivates why the cut-norm is chosen to define the distance on graphons.
The role of φ in the definition of δ� is, in the discrete language, to overlay fractionally the vertex sets of two graphs, cf. (3)
here and [8, Section 5.1].
It is natural to define the density of a graph F on [k] in a graphit [W ] by picking an arbitrary graph sequence (Gn)

convergent to [W ] and letting

t(F , [W ]) = lim
n→∞

t(F ,Gn). (14)

This is well-defined and does not depend on the choice of (Gn). In fact, bywriting t(F ,Gn) as a k-fold sum and approximating
it by a k-fold integral, one can show (see [28, Lemma 4.1] or [8, Theorem 3.7.a]) that

t(F , [W ]) =
∫
Ik

∏
{i,j}∈E(F)

W (xi, xj)dµ(x1, . . . , xk). (15)

Furthermore, neither of these definitions depends on the choice ofW ∈ [W ], so we can write t(F ,W ) in place of t(F , [W ]).
Also, we have t(F ,G) = t(F ,WG).
More generally, in terms of graphons, [28, Lemma 4.1] (see also [8, Theorem 3.7.a]) implies that the induced function

t(F ,−) : (X, δ�) → I is continuous for any F . Thus if (Wn)n∈N is δ�-Cauchy, then the sequence (t(F ,Wn))n∈N of reals
is Cauchy for every fixed graph F . The converse of this also holds, by a result of Borgs et al. [8, Theorem 3.7.b]. Thus for
W ,W1,W2, . . . ∈ WI ,

lim
n→∞

δ�(Wn,W ) = 0 if and only if ∀ graph F lim
n→∞

t(F ,Wn) = t(F ,W ). (16)

It follows that each graphit [W ] is uniquely determined by its ‘‘moments function’’ t(−,W ). An algebraic characterization
of all possible functions t(−,W ) realizable by someW ∈ WI is given by Lovász and Szegedy [28, Theorem 2.2].
Let us also say a few words about graph limits and property testing. (See [19] for a precise definition of property testing

and several fundamental results.) In the most restrictive sense (the oblivious or order independent testing), we have a (very
big) unknown graph G and are told the subgraph G[X] induced by a randomm-set X of vertices, wherem is a fixed number.
It is known that with probability at least 1− ε we have δ�(WG[X],WG) ≤ ε, providedm ≥ m0(ε) (see [28, Theorem 2.5] or
[8, Theorem 3.7]). This means that we can learn a good δ�-approximation to the graph G. The objective of property testing
is to approximate with high probability how far G is from a given property P , but the edit distance δ̂1 is to be used here.
Graphons seem to provide very convenient tools and language for dealing with this problem (which essentially amounts to
relating the δ̂1 and δ� distances from an arbitrary graph to the given property), see [5,30].

3. Extending the δ1-distance to graph limits

Here we show how to extend the distance δ1 from graphs to graphits. This definition is standard but it seems that no
formal proofs of some of its properties have appeared in the literature. Therefore we give careful proofs of all claims (or
references to them). The author thanks László Lovász for pointing out that Lemma 11 can be deduced from the results in [4,
30], which is the proof presented here.
Here is the definition of δ1 for graphits. First, we define δ1 onW , the set of graphons. For U,W ∈ W , let

δ1(U,W ) = inf
{
‖U −Wφ

‖1:φ ∈ Φ0
}
, (17)

where ‖U −Wφ
‖1 is the standard `1-norm of U −Wφ as defined by (8).
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Clearly, δ1 is non-negative. It is symmetric by (10). Also, δ1 satisfies the Triangle Inequality. Indeed, for everyU, V ,W ∈ W
and ε > 0 we can choose φ,ψ ∈ Φ0 such that ‖Uφ − V‖1 ≤ δ1(U, V ) + ε and ‖V −Wψ

‖1 ≤ δ1(V ,W ) + ε. Now, by the
Triangle Inequality for the `1-norm,

δ1(U,W ) ≤ ‖U − (Wψ )φ
−1
‖1 = ‖Uφ −Wψ

‖1

≤ ‖Uφ − V‖1 + ‖V −Wψ
‖1 ≤ δ1(U, V )+ δ1(V ,W )+ 2ε. (18)

Since ε > 0 was arbitrary, the claim follows. Hence, δ1 is a pre-metric onWI .
We will present an equivalent definition of δ1 in Lemma 9 and will conclude in Corollary 12 that δ1 gives a metric onX.

Let us state a few auxiliary or related results first.

Lemma 2. Let an integrable W : (I2,L, µ) → (R,B) satisfy ‖W‖� = 0. Then W = 0 a.e. In particular, for any
U,W ∈ W, ‖U −W‖� = 0 implies that ‖U −W‖1 = 0.

Proof. Let Z be the Lebesgue set of the functionW , which can be defined as the set of those (x, y) in the interior of I2 such
that

lim
c→0
c>0

1
µ(Rx,y,c)

∫
(x′,y′)∈Rx,y,c

|W (x′, y′)−W (x, y)|dµ(x′, y′) = 0, (19)

where Rx,y,c is the open rectangle (x− c, x+ c)× (y− c, y+ c).
The Lebesgue Differentiation Theorem ([15, Theorem 3.21]) implies that µ(Z) = 1. IfW (x, y) 6= 0 for some (x, y) ∈ Z ,

then by (19) there is c > 0 such that∣∣∣∣∣W (x, y)− 1
4c2

∫
Rx,y,c

W

∣∣∣∣∣ < |W (x, y)|2
.

Thus ‖W‖� ≥ |
∫
Rx,y,c

W | ≥ 2c2|W (x, y)| > 0, a contradiction. ThusW = 0 a.e. �

A function U : I2 → R is called an interval step function if there is a partition I = I1 ∪ · · · ∪ Ik into finitely many intervals
such thatU is constant on each rectangle Ii×Ij. Any interval step function is a simple function. Of course, suchU is necessarily
measurable, even in the strongest sense as a function from (I2,B) to (R, 2R).

Lemma 3. For any ε > 0 and any integrable function W : (I2,L, µ) → (R,B) there is an interval step function U such that
‖W − U‖1 < ε. Moreover, if W ∈ WI , then we can also require that U ∈ WI .

Proof. The first part of the lemma follows from [15, Theorem2.41] (see also [8, Lemma 3.2]). Let us establish the second part.
LetW ∈ WI and U0 be the interval step function with ‖W − U0‖1 < ε, given by the first part. Let U1(x, y) = g(U0(x, y)),
where g(z) = max(0,min(1, z)) maps z ∈ R to the nearest point from I . Since for every z ′ ∈ I and z ∈ R we have
|g(z)− z ′| ≤ |z − z ′|, we conclude that ‖U1 −W‖1 ≤ ‖U0 −W‖1 ≤ ε. Finally, we take U(x, y) = (U1(x, y)+ U1(y, x))/2.
Then the new interval step function U belongs toWI . Also, in view of inequality |a− c| + |b− c| ≥ 2| a+b2 − c| valid for any
a, b, c ∈ R, we have ‖W − U‖1 ≤ ‖W − U1‖1 ≤ ε, as desired. �

Remark. This approximation reminds the one given by theWeak Regularity lemma of Frieze and Kannan [17] (see also [29,
Section 2]) with respect to the cut-norm, except we cannot bound the number of parts in Lemma 3 in terms of ε only. This
is an important distinction between the cut-norm and the `1-norm, giving another motivation for taking δ� as the distance
between graphons. This allows one to construct a finite ε-net for the metric space (X, δ�). Namely, let n = n(ε) be large
and take all interval steps functions with steps

[ i
n ,
i+1
n

)
that assume values in

{ 1
n , . . . ,

n
n

}
; there are at most nn

2
<∞ such

functions. Thus (X, δ�) is totally bounded, which is one of the ingredients needed for compactness. See [29, Theorem 5.1]
for more details.

Lemma 4. Let X, Y ∈ LI have measure 1 and let ψ be a bijection from X onto Y such that for any interval J ⊆ I the setsψ(J∩X)
and ψ−1(J ∩ Y ) are Lebesgue measurable with µ(ψ(J ∩ X)) = µ(ψ−1(J ∩ Y )) = µ(J). Then there is φ ∈ Φ0 such that φ = ψ
a.e.

Proof. Suppose first that |I \ X | = |I \ Y | = c, that is, the cardinality of both I \ X and I \ Y is continuum. Let φ be an
arbitrary bijection between I \ X and I \ Y while φ(x) = ψ(x) if x ∈ X . Then φ = ψ a.e. Also, for any interval J ⊆ I , the
pre-image φ−1(J) differs from ψ−1(J ∩ Y ) ∈ L on a set of measure 0, so it is Lebesgue measurable of measure µ(J). Since
B is generated by intervals as a σ -algebra ([15, Theorem 1.6]), it follows (e.g. by application of the uniqueness claim of [15,
Theorem 1.14]) that φ is a measure preserving function from (I,L) to (I,B). But a subset of I is Lebesgue measurable set if
and only if it can be sandwiched between two Borel sets of the same measure ([15, Theorem 1.19]). This easily implies that
φ is a measure preserving map from (I,L) to (I,L), that is, φ ∈ Φ . Likewise, φ−1 ∈ Φ , giving φ ∈ Φ0 as required.
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Finally, suppose that, for example, |I \X | < c. Let C ⊆ I be the Cantor set, which hasmeasure 0 and cardinality continuum
[15, Proposition 1.22]. Let X ′ = X \ C and Y ′ = Y \ ψ(X ∩ C). Then ψ maps X ′ bijectively onto Y ′. Also, µ(ψ(X ∩ C)) = 0.
Indeed, for every ε > 0, we can find a set J ⊇ C which is the union of finitely many intervals of total length at most ε that
covers C . By the assumption of the lemma, ψ(X ∩ J) has measure at most ε. Since ε > 0 was arbitrary, µ(ψ(X ∩ C)) = 0.
Thusµ(X \X ′) = µ(Y \ Y ′) = 0 and the restrictionψ |X ′ satisfies the assumptions of the lemma. Since |I \X ′| = |I \ Y ′| = c,
we already know how to find the required φ ∈ Φ0 for ψ |X ′ . The very same function φ works for ψ as well. �

Let us call a point x lying inside a Lebesgue set A ⊆ R a density point of A if

lim
c→0
c>0

µ(A ∩ (x− c, x+ c))
2c

= 1,

or equivalently, if xbelongs to the Lebesgue set (as defined by the 1-dimensional version of (19)) of the characteristic function
IA : R→ {0, 1} of A. Again, Theorem 3.21 in [15] implies that almost every point of A is a density point.
The arithmetic operations and the linear order on I = [0, 1] play no role in the definition of graphons; see [4, Section 2.1]

for a more general point of view. The following simple lemma suffices for our purposes.

Lemma 5. For every partition of I = A1 ∪ · · · ∪ Ak into Lebesgue measurable sets Ai there are a partition I = I1 ∪ · · · ∪ Ik into
intervals and ψ ∈ Φ0 such that µ(ψ(Ai)∆Ii) = 0 for each i ∈ [k].

Proof. It is enough to prove the case k = 2 with the general claim following by a simple induction on k.
Let a1 = 0, a2 = µ(A1), I1 = [0, a2], and I2 = I \ I1. Assume that 0 < a2 < 1 (for otherwise any ψ ∈ Φ0 works).
Let i = 1 or 2. Let Xi ⊆ Ai be the set of density points of Ai. For x ∈ Xi let

ψ(x) = ai + µ(Ai ∩ [0, x]).

Then ψ(Xi) lies in the interior of Ii. Indeed, if, for example, ψ(x) = ai, then µ(Ai ∩ (−∞, x)) = 0, so x cannot be a density
point for Ai. Likewise, if y ∈ Xi \ {x} is another density point of Ai, then ψ(y) 6= ψ(x). Let Yi = ψ(Xi). The pre-image under
ψ of any open interval J = (ai, ai + b) ⊆ Ii is the intersection of the interval (0, c)with Xi, where

c = sup{x ∈ I:µ(Ai ∩ [0, x]) < b} = sup{x ∈ I:µ(Xi ∩ [0, x]) < b}.

Since b ≤ µ(Xi) and themeasureµ is continuous frombelow ([15, Theorem1.8.c]),we conclude thatµ(ψ−1(J)) = b = µ(J).
Also, for any open interval J = (b, c) ⊆ I , the image under ψ of Xi ∩ J is Yi ∩ Ji, where

Ji = (ai + µ(Ai ∩ [0, b]), ai + µ(Ai ∩ [0, c]))

is a subinterval of Ii with µ(Ji) = µ(J ∩ Xi).
Let X = X1 ∪ X2 and Y = Y1 ∪ Y2. It routinely follows that all assumptions of Lemma 4 with respect to the bijection

ψ : X → Y are satisfied. The element φ ∈ Φ0 returned by Lemma 4 has the required properties. �

Lemma 6. For every interval step function U ∈ W and φ ∈ Φ , there is ψ ∈ Φ0 such that (Uφ)ψ = U a.e.

Proof. Let I = I1 ∪ · · · ∪ Ik be a partition into intervals such that U is constant on each rectangle Ii × Ij. For i, j ∈ [k],
let αi,j = µ(Ai,j), where Ai,j = Ij ∩ φ−1(Ii). Since φ is measure preserving,

∑k
j=1 αi,j = µ(Ii) for every i ∈ [k]. Partition

the interval Ii = Ii,1 ∪ · · · ∪ Ii,k into intervals of lengths respectively αi,1, . . . , αi,k. By Lemma 5 find η ∈ Φ0 such that
µ(η(Ai,j)∆Ii,j) = 0. The element ψ = η−1 ∈ Φ0 has the required properties by (6) because for a.e. x ∈ Ii,j we have
ψ(x) ∈ Ai,j and φ(ψ(x)) ∈ Ii. �

Lemmas 3 and 6 easily imply the following result.

Corollary 7. For any U,W ∈ W and φ ∈ Φ , we have δ1(U,W ) = δ1(Uφ,W ). �

Theorem 8. For U,W ∈ WI , the following are equivalent.
(a) For every graph F , we have t(F ,U) = t(F ,W ).
(b) δ�(U,W ) = 0.
(c) There are φ,ψ ∈ Φ such that Uφ = Wψ a.e.

Proof. The equivalence of (a) and (b) follows from (16) (i.e. from [28, Lemma 4.1] and [8, Theorem 3.7]). The equivalence of
(a) and (c) is proved by Borgs et al. [4, Corollary 2.2]. �

Lemma 9. For any U,W ∈ W , we have

δ1(U,W ) = inf
φ,ψ∈Φ

‖Uφ −Wψ
‖1. (20)

Proof. Since Φ0 is a subset of Φ and Φ0 contains the identity function Id : I → I , the ‘‘≥’’-inequality in (20) easily follows.
Let us show the converse.
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Let U,W ∈ W and ε > 0. By Lemma 3 we can find interval step functions U0 andW0 lying within ε from respectively U
andW in the `1-norm. For any φ,ψ ∈ Φ , we have by (10)

‖Uφ −Wψ
‖1 ≥ ‖U

φ

0 −W
ψ

0 ‖1 − ‖U
φ
− Uφ0 ‖1 − ‖W

ψ
−Wψ

0 ‖1 ≥ ‖U
φ

0 −W
ψ

0 ‖1 − 2ε.

Likewise, ‖U−Wφ
‖1 ≤ ‖U0−W

φ

0 ‖1+2ε. Since ε > 0was arbitrary, it is enough to prove (20) on the additional assumption
that U andW are interval step functions.
Again, let ε > 0. Let φ,ψ ∈ Φ be such that ‖Uφ −Wψ

‖1 − ε is at most the right-hand side of (20). By Lemma 6 choose
η ∈ Φ0 such that (Wψ )η = W a.e. Then, by (6),

‖Uφ −Wψ
‖1 = ‖(Uφ)η − (Wψ )η‖1 = ‖U (φ◦η) −W‖1. (21)

Again, by Lemma 6 applied to U and φ ◦ η ∈ Φ , find ν ∈ Φ0 such that (U (φ◦η))ν = U a.e. From (21) we conclude that
‖Uφ −Wψ

‖1 = ‖U −W ν
‖1, which is at least the right-hand side of (17). Since ε was arbitrary, the lemma follows. �

Lemma 10. For any two graphs G and H, the δ1-distance δ1(G,H) defined by (3) is equal to δ1(WG,WH), where WG and WH are
defined by (12).

Proof. Let V (G) = {x1, . . . , xm} and V (H) = {y1, . . . , yn}. For φ ∈ Φ0, ‖W
φ

G −WH‖1 is equal to the expression in (3) with
αi,j = µ(Ii ∩ φ−1(Jj)), Ii =

( i−1
m ,

i
m

)
and Jj =

( j−1
n ,

j
n

)
. Conversely, given numbers αi,j such the matrix (αi,j)i,j∈[n] has row

sums 1/m and column sums 1/n, one can easily construct φ ∈ Φ0 giving these αi,j as above. �

Lemma 11. Let U,W ∈ W satisfy δ�(U,W ) = 0. Then δ1(U,W ) = 0.

Proof. By Theorem 8, there are φ,ψ ∈ Φ such that Uφ = Wψ a.e. The claim follows by using the equivalent definition of
δ1 from Lemma 9. �

Corollary 12. The function δ1 induces a metric on the set X of graphits, extending the δ1-distance from graphs. �

Remark. Let us point out that the convergence with respect to the cut-distance does not generally imply the convergence
with respect to δ1. For example, the infinite sequence of random graphs Gn ∈ Gn,1/2 converges in the δ�-distance with
probability 1 to the graphit [Const(1/2)] by [28, Corollary 2.6] while no graph sequence whatsoever can converge in the
δ1-distance to [Const(1/2)] by Theorem 17 here.

4. Comparing the discrete and fractional δ1-distances

Clearly, for graphsG andH of the same orderwehave δ̂1(G,H) ≥ δ1(G,H), where δ̂1 is defined by (2). The distances δ̂1 and
δ1 do not coincide in general as Example 13 demonstrates. Independently, Arie Matsliah (see [20, Appendix B]) presented
another construction that achieves ratio 6/5. Although our ratio is smaller (only 11/10), the ideas behind our construction
are different from those ofMatsliah andmight be useful in the quest for better ratios. Hence,we decided to keep this example
in the paper.

Example 13. There are graphs G and H such that v(G) = v(H) but

δ̂1(G,H) ≥
11
10
δ1(G,H) > 0.

Proof. Fix an integer n ≥ 24. Pick disjoint sets X = {x1, . . . , x4},M = M1 ∪ · · · ∪M4, and N = N1 ∪ · · · ∪ N5 with eachMi
having 4 elements and each Ni having n elements.
Let V (G) = V (H) = N ∪ M ∪ X . It will be the case that N ∪ M spans the same subgraph in both G and H . Namely, N

spans the complete graphwhile, for i ∈ [4], we put the complete bipartite graph betweenMi and∪ij=1 Nj. These are all edges
insideM ∪ N .
Fix another partitionM = L1 ∪ · · · ∪ L4 such that each Li has 4 elements and |Li ∩Mi| = |Li+1 ∩Mi| = 2 for i ∈ [4], where

we agree that L5 = L1.
In G, the edges incident to X are as follows: {xi, xj} for 1 ≤ i < j ≤ 4 with j − i even plus all pairs {xi, y} for i ∈ [4] and

y ∈ Mi. In H , the edges incident to X are as follows: {xi, xj} for 1 ≤ i < j ≤ 4 with j − i odd plus all pairs {xi, y} for i ∈ [4]
and y ∈ Li.
We have

|E(G)∆E(H)| =
4∑
i=1

|Mi∆Li| +
(
|X |
2

)
= 22. (22)

Let us show that this is smallest possible. Pick an optimal bijection σ : V (G)→ V (H). In each of G and H , every vertex
in N has degree at least 5n− 1 while any vertex inM ∪ X has degree at most 4n+ 1. Hence, if σ does not preserve N , then
the number of discrepancies will be at least (5n − 1) − (4n + 1) ≥ 22. So, assume that σ(N) = N . Likewise, we have
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σ(Mi) = Mi, for otherwise the number of discrepancies (betweenM and N) is at least n > 22. Finally, consider the action of
σ on X . For every x, y ∈ X , their neighborhoods inM with respect to G and H differ by at least 4. If σ does not map some xi
into {xi, xi+1}, where x5 = x1, then the neighborhoods NG(xi) and NH(σ (xi)) in M are disjoint and this vertex alone creates
at least 8 discrepancies. Moreover, since X spans 2 and 4 edges in G and H respectively, the total number of discrepancies is
at least 8 + 3 × 4 + 2 = 22 and we cannot improve (22). Thus let us assume that σ(xi) ∈ {xi, xi+1} for every i ∈ [4]. This
implies that either σ is constant on X or shifts indices by 1. In either case, this gives the same bound as in (22).
Hence, δ̂1(G,H) ≥ 2·22

(5n+20)2
. Let us establish an upper bound on δ1(G,H) now.

Let G[2] be the 2-fold blow-up of G, where each vertex x is replaced by two vertices x′, x′′ and each edge {x, y} by the
complete bipartite graph with parts {x′, x′′} and {y′, y′′}. For Y ⊆ V (G), let Y [2] = {y′, y′′: y ∈ Y }. Consider the following
bijection σ between the vertex sets of G[2] andH[2]. It is the identity bijection onM[2]∪N[2]. For i ∈ [4], let σ(x′i) = x

′

i and

σ(x′′i ) = x
′′

i+1. Easy checking shows that σ , when restricted to X[2], mismatches only 16 adjacencies (versus 4×
(
4
2

)
= 24

if σ were the identity). The number of discrepancies between X[2] andM[2] is 4× 16. We have

δ1(G,H) ≤ δ̂1(G[2],H[2]) ≤
2

4(5n+ 20)2
(4× 16+ 16) ≤

10
11
δ̂1(G,H). �

Lemma 14. For any two graphs G and H on the same vertex set [n], we have

δ̂1(G,H) ≤ 3δ1(G,H).

Proof. If G ∼= H , then δ1(G,H) = δ̂1(G,H) = 0, so assume G 6∼= H . Let ` = n2δ̂1(G,H)/2 be the smallest number of
adjacencies we have to change in G to make it isomorphic to H .
Let A = (αi,j)i,j∈[n] be an optimal overlay matrix as in (3), where we assume xi = i and yj = j. (Thus nA is doubly-

stochastic.)
Although nA can be represented as a convex combination of permutation matrices by Birkhoff’s theorem [3], we find it

more convenient to work with an approximation where all coefficients are equal. (Thus some permutation matrices may be
repeated more than once.) Such an approximation is easy to find as follows.
Pick a large m > m0(A). Inductively on i, we construct permutation matrices Pi as follows. Suppose that i ≥ 0 and we

have already found P1, . . . , Pi such that P ′ = P1 + · · · + Pi ≤ mnA (where matrix inequalities are meant component-wise).
If there is a permutation matrix Pi+1 such that P ′ + Pi+1 ≤ mnA, take it and repeat the step.
Suppose that no such Pi+1 exists. Let B = (βf ,g)f ,g∈[n] = mnA− P ′. This is a non-negative matrix with row/column sums

m− i. By Hall’s Marriage theorem [22], there is a set R ⊆ [n] of r rows and a set S ⊆ [n] of n− r + 1 columns such that each
entry of the R× S-submatrix of B is less than 1. Hence,

(m− i)r =
∑
f∈R

n∑
g=1

βf ,g =
∑
f∈R

∑
g∈S

βf ,g +
∑
f∈R

∑
g∈[n]\S

βf ,g

≤ r(n+ 1− r)+ (m− i)(n− (n− r + 1)),

and thereforem− i ≤ r(n+ 1− r) ≤ (n+ 1)2/4. Let Pi+1, . . . , Pm be arbitrary permutation matrices and P = 1
mn (P1 + · · ·

+ Pm). It follows that

‖A− P‖∞ ≤ 2×
(n+ 1)2

4mn
=
(n+ 1)2

2mn
.

Sincem is arbitrarily large, in order to prove the lemma it is enough to show that

δ̂1(G,H) ≤ 3δ1(G,H, P), (23)

where δ1(G,H, P) is defined by (3).
Let σ1, . . . , σm : [n] → [n] be the permutations encoded by P1, . . . , Pm respectively. As it was defined after (3),∆ is the

set of all quadruples (x, y, x′, y′) ∈ [n]4 such that exactly one of the relations {x, y} ∈ E(G) and {x′, y′} ∈ E(H) holds. Note
that we allow x = y or x′ = y′ but both equalities cannot hold simultaneously by the definition of∆.
For (i, j) ∈ [m]2, let∆(i, j) consist of (x, y) ∈ [n]2 such that (x, y, σi(x), σj(y)) ∈ ∆. For (x, y, x′, y′) ∈ ∆, let I(x, y, x′, y′)

consist of all pairs (i, j) ∈ [m]2 such that σi(x) = x′ and σj(y) = y′. Also, for X ⊆ [m], define

SX =
∑
i,j∈X :i<j

|∆(i, j)|.

We have

δ1(G,H, P) =
∑

(x,y,x′,y′)∈∆

Px,x′Py,y′



2960 O. Pikhurko / Discrete Mathematics 310 (2010) 2951–2964

=

∑
(x,y,x′,y′)∈∆

( ∑
i:σi(x)=x′

1
mn

) ∑
j:σj(y)=y′

1
mn


=

1
m2n2

∑
(x,y,x′,y′)∈∆

|I(x, y, x′, y′)|

=
1
m2n2

∑
i,j∈[m]

|∆(i, j)| =
2S[m] +

m∑
i=1
|∆(i, i)|

m2n2
. (24)

Let us show that for any 1 ≤ g < i < j ≤ mwe have

|∆(g, i)| + |∆(j, i)| + |∆(j, g)| ≥ |∆(g, g)|. (25)

Start with any (x, y) ∈ ∆(g, g). Let us transform (x, y) into (σg(x), σg(y)) in three steps, where we consecutively apply
(σg , σi), (σ

−1
j , σ−1i ), and (σj, σg):

(x, y)→ (σg(x), σi(y))→ (σ−1j (σg(x)), y)→ (σg(x), σg(y)).

Since (x, y, σg(x), σg(y)) ∈ ∆, at least one of these three steps changes adjacency. Depending on thenumber of the stepwhen
this happens, we get respectively that (x, y) ∈ ∆(g, i), (σ−1j (σg(x)), y) ∈ ∆(j, i), or (σ−1j (σg(x)), y) ∈ ∆(j, g). Conversely,
suppose that we are given the resulting conclusion of the form (u, v) ∈ ∆(a, b) with distinct a, b ∈ {i, j, g}. The pair (a, b)
determines the number k ∈ {1, 2, 3} of the step. This k, when combined with (u, v), easily allows us to reconstruct the
ordered pair (x, y). Thus no element in the left-hand side of (25) is doubly counted. This proves (25).
By (25) (and |∆(a, b)| = |∆(b, a)|) we conclude that S{g,i,j} ≥ |∆(g, g)| ≥ 2`. A simple averaging over all choices of

{i, g, h} ∈
(
[m]
3

)
implies that S[m] ≥ 2`

(
m
2

)
/
(
3
2

)
= `m(m− 1)/3. By (24), we have

δ1(G,H, P) ≥
2`m(m− 1)/3+ 2`m

m2n2
≥
2`
3n2
=
δ̂1(G,H)
3

,

finishing the proof of Lemma 14. �

Remark. The author thanks Alexander Razborov for the remarks that simplified the original proof of Lemma 14.

The interesting problem of finding the best possible constant in Lemma 14 remains open. At the moment, we know only
that it is between 6/5 (see [20, Appendix B]) and 3.
The situation for the cut-distance is somewhat similar: the discrete version δ̂� of δ�, as defined by [8, Equation (2.6)], is

not always equal to the δ�-distance ([8, Section 5.1]) while for any two graphs G and H of the same order we have

δ�(G,H) ≤ δ̂�(G,H) ≤ 32(δ�(G,H))1/67

([8, Theorem 2.3]). It is open whether δ̂�(G,H) can be bounded from above by a linear function of δ�(G,H), see e.g. [8,
page 1830].

5. Characterization of stability

Recall that in the Introduction we defined when an extremal (f ,P )-problem is stable. Here we give an alternative
characterization. Since stability deals with relating the δ1 and δ� distances, it is not surprising that the methods developed
by Lovász and Szegedy [30] in the context of property testing apply here.

Theorem 15. Let P be an arbitrary graph property with Pn 6= ∅ for infinitely many n and let f be a graph parameter. Then the
extremal (f ,P )-problem is stable if and only if LIM(f ,P ) consists of a single graphit [W ], where moreover W ∈ WI can be
chosen to assume values 0 and 1 only.

The rest of this section is dedicated to proving Theorem 15, in the course of which we observe an interesting dichotomy
result (Theorem 17).
We will need the following result, which is a special case of [30, Lemma 2.2].

Lemma 16. Let W ,W1,W2, . . . ∈ W be such that ‖Wn −W‖� → 0 as n→∞. Let S ∈ LI2 . Then
∫
S Wn dµ→

∫
S W dµ as

n→∞.

Sketch of Proof. If S is a rectangle, then the conclusion follows from the definition of the cut-norm. A general S ∈ LI2 can
be approximated within any ε > 0 by a finite union of disjoint rectangles, cf. Lemma 3. �

Theorem 17. Let W ∈ WI and let W1,W2, . . . ∈ WI be an arbitrary sequence such that δ�(Wn,W )→ 0 as n→∞.



O. Pikhurko / Discrete Mathematics 310 (2010) 2951–2964 2961

If µ(W−1({0, 1})) = 1 (that is, W assumes only values 0 and 1 a.e.), then the sequence (Wn)n∈N is necessarily convergent to
W in the δ1-distance.
If µ(W−1({0, 1})) < 1 and each Wn is a.e. {0, 1}-valued, then the sequence (Wn)n∈N does not contain any Cauchy

subsequence with respect to the δ1-distance.

Proof. Suppose first that W is {0, 1}-valued a.e. Let S = W−1(0) ∈ LI2 . For each n ∈ N choose φn ∈ Φ0 such that
‖Wφn

n −W‖� ≤ δ�(Wn,W )+ 1/n. Clearly, ‖W
φn
n −W‖� tends to 0, so by Lemma 16 we have

δ1(Wn,W ) ≤ ‖Wφn
n −W‖1 =

∫
S
Wφn
n dµ+

∫
I2\S
(1−Wφn

n )dµ

→

∫
S
Wdµ+

∫
I2\S
(1−W )dµ = 0.

Now, suppose thatµ(W−1({0, 1})) < 1 and that the second part of the theorem is false. By choosing a subsequence and
relabeling, we can assume that (Wn)n∈N itself is a Cauchy sequencewith δ1(Wm,Wn) ≤ 1/2m for everym ≤ n. Letφ1 : I → I
be the identity map and U1 = W1. Inductively on n = 2, 3, . . . , do the following. By induction, we assume that we have
Un−1 = W

φn−1
n−1 with φn−1 ∈ Φ0. By Corollary 7,

δ1(Un−1,Wn) = δ1(W
φn−1
n−1 ,Wn) = δ1(Wn−1,Wn) ≤

1
2n−1

.

Thus there is φn ∈ Φ0 such that, letting Un = Wφn , we have

‖Un−1 − Un‖1 ≤
1
2n−2

. (26)

The sequence (Un)n∈N is Cauchy with respect to the `1-norm: form ≤ nwe have

‖Un − Um‖1 ≤
n∑

i=m+1

‖Ui − Ui−1‖1 ≤
n∑

i=m+1

1
2i−2

<
1
2m−2

.

Since the normed space L1 defined by (7) is complete ([15, Theorem 6.6]), the sequence (Un)n∈N has a limit U ∈ L1:

lim
n→∞
‖Un − U‖1 = 0. (27)

We have
∫
I2 |U(x, y)− U(y, x)|dµ(x, y) = 0 because it is at most

2‖U − Un‖1 +
∫
I2
|Un(x, y)− Un(y, x)|dµ(x, y) = 2‖U − Un‖1 → 0.

Thus U is symmetric a.e. on I2 by e.g. [15, Proposition 2.16]. Likewise, 0 ≤ U(x, y) ≤ 1 a.e. By changing U on a subset of I2
of measure zero, we can assume that U ∈ WI . By the Triangle Inequality,

δ�(U,W ) ≤ δ�(U,Un)+ δ�(Un,W ) ≤ δ1(U,Un)+ δ�(Wφn
n ,W ).

This tends to 0 as n → ∞. Thus δ�(U,W ) = 0 and by Theorem 8, Uψ = Wφ a.e. for some ψ, φ ∈ Φ . Thus U is not
{0, 1}-valued a.e.
Form ∈ N, let

Am = {(x, y) ∈ I2: 1/m < U(x, y) < 1− 1/m}.

Each Am is Lebesguemeasurable since U is measurable. Also, Z = ∪m∈N Am = {z ∈ I2:U(z) 6∈ {0, 1}} has positive measure c .
By the continuity from below [15, Theorem 1.8.c] of themeasureµ, there ism ∈ Nwithµ(Am) > c/2. Since each Un = W

φn
n

is {0, 1}-valued by assumption, we have ‖Un−U‖1 ≥ c/2m. This contradicts (27), and finishes the proof of the lemma. �

Remark. The first part of Theorem 15 can also be deduced from [30, Lemma 2.9].

Corollary 18. Let a sequence of graphs G1,G2, . . . converge in the δ�-distance to a graphit [W ]. Then the sequence (Gn)n∈N
converges to [W ] in the δ1-distance if and only if W is {0, 1}-valued a.e. �

Proof of Theorem 15. Suppose first that the extremal (f ,P )-problem is stable, as defined in Section 1. Let [U], [W ] ∈
LIM(f ,P ). Choose witnesses of this, that is, sequences of almost extremal graphs (Gmi)i∈N and (Hni)i∈N with Gmi → U and
Hni → W in the cut-distance as i→∞. By stability, δ1(Gmi ,Hni)→ 0. Hence,

δ�(U,W ) ≤ δ�(U,Gmi)+ δ�(Gmi ,Hni)+ δ�(Hni ,W ) ≤ δ1(Gmi ,Hni)+ o(1) = o(1).
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Thus δ�(U,W ) = 0. Since [U], [W ] ∈ LIM(f ,P ) were arbitrary, the limit set LIM(f ,P ) consists of a single graphit [W ].
Since (Gmi) is Cauchy with respect to the δ1-distance, we conclude by Theorem 17 thatW is {0, 1}-valued a.e., proving one
direction of the theorem.
Conversely, suppose that LIM(f ,P ) = { [W ] } for a {0, 1}-valued W ∈ WI . Suppose on the contrary that the extremal

problem is not stable. This implies that there is some ε > 0 such that for every i ∈ N there are mi, ni ≥ i,Gmi ∈ Pmi ,
Hni ∈ Pni such that f (Gmi) ≥ exf (mi,P )− 1/i, f (Hni) ≥ exf (ni,P )− 1/i, and

δ1(Gmi ,Hni) ≥ ε. (28)

By choosing a subsequence and relabeling, we can additionally assume that for every i < jwe havemi ≤ ni < mj ≤ nj.
By the compactness of (X, δ�)we can find a sequence i1 < i2 < · · · such that (Gmik )k∈N is convergent in the δ�-distance.

Since (Gmik )k∈N is a sequence of almost optimal graphswith increasing orders, its limit is necessarily [W ], the unique element
of LIM(f ,P ). Likewise, we can find a subsequence j1 < j2 < · · · of (ik)k∈N such that the graph sequence (Hnjk )j∈N converges
to [W ] in δ�. Clearly, the intertwined sequence (Gmj1 ,Hnj1 ,Gmj2 ,Hnj2 , . . .) still converges to [W ]. By Corollary 18, the last
sequence is Cauchy with respect to the δ1-distance. This contradicts (28) and finishes the proof of Theorem 15. �

6. The Erdős–Simonovits Stability Theorem

In this section,wewill prove Theorem1. For this purpose, we adopt the nice proof of Erdős [14] that every Kr+1-free graph
G is dominated by some r-partite graph H , that is, V (H) = V (G) and dH(x) ≥ dG(x) for every x ∈ V (G), where e.g. dH(x)
denotes the degree of x in H . In order to prove this, Erdős [14] uses induction on r as follows. The case r = 1 is trivially
true. Let x be a vertex of maximum degree in G and V ′ be the set of neighbors of x. Then, G[V ′] is Kr -free, so by the induction
assumption we can find an (r − 1)-partite graph H ′ that dominates G[V ′]. Let H be the r-partite graph obtained from H ′ by
adding a new part on V (G) \ V ′. It is not hard to check that H is the required graph, see [14] for details.
Unfortunately, our proof of the graphon version of this degree-domination result (Theorem20 in the previous version [33]

of this manuscript) is quite long and complicated. Later, during a discussion with Peter Keevash, it was realized that if one is
content to prove just Theorem 1, then the arguments dealing with graphons can be shortened. Here we present the shorter
proof, referring the interested reader to [33] for the more general result.
Since we are going to apply the Fubini Theorem a few times, we state it here. For a functionW : I2 → R and x ∈ I , let the

section functions Wx,W x : I → R be defined byWx(y) = W (x, y) andW x(y) = W (y, x). LetW∗(x) =
∫
I Wx(y) dµ(y) and

W ∗(x) =
∫
I W

x(y) dµ(y) (and let it be arbitrary if the integral is undefined). Clearly, for a symmetricW , we haveWx = W x

andW∗ = W ∗. Since (I2,LI2 , µI2) is not the product (I,LI , µI)× (I,LI , µI) but its completion, we have to use the Fubini
Theorem for CompleteMeasures ([15, Theorem 2.39]) which easily follows from the standard Fubini Theorem ([15, Theorem
2.37.a]), with the derivation being described in [15, Exercise 2.49].

Theorem 19 (The Fubini Theorem for the Lebesgue Measure). If W ∈ L1(I2,LI2 , µI2), then Wx,W x ∈ L1(I,LI , µI) for
a.e. x ∈ I . Furthermore, W∗,W ∗ ∈ L1(I,LI , µI) and∫

I2
W (x, y) dµ(x, y) =

∫
I
W∗(x) dµ(x) =

∫
I
W ∗(x) dµ(x). �

LetW ∈ WI and F be a graph on [n]. We callW F-free if for every (not necessarily distinct) x1, . . . , xn ∈ I there is a pair
{i, j} ∈ E(F) such that W (xi, xj) = 0. Equivalently, W is F-free if and only if W (x, x) = 0 for every x ∈ I and there is no
homomorphism from F to the infinite (uncountable) graph with vertex set I in which x, y are connected ifW (x, y) > 0.
IfW ∈ WI is F-free, then t(F ,W ) = 0. The converse is not true: for example, fix distinct x1, . . . , xn ∈ I and letW (x, y) = 0

exceptW (xi, xj) = 1 for all distinct i, j ∈ [n]. However, please note the following Lemma20,which is a rewording of a special
case of a result of Elek and Szegedy [12, Lemma 3.4].

Lemma 20 (The Infinite Removal Lemma). For every W ∈ WI there is U ∈ WI such that W = U a.e. and for every graph F either
t(F ,U) > 0 or U is F-free.

Sketch of Proof. Let Z be the Lebesgue set ofW , as defined by (19). Clearly, Z ⊆ I2 is symmetric. Let U(x, y) = W (x, y) if
(x, y) ∈ Z and U(x, y) = 0 otherwise. Since µ(Z) = 1,U = W a.e. Also, if x1, . . . , xn give an F-subgraph in U , then there is
c > 0 such that for any {i, j} ∈ E(F), the measure of

{(x, y) ∈ (xi + c, xi − c)× (xj − c, xj + c):W (x, y) > W (xi, xj)/2 > 0}

is, for example, at least (1− n−2) · 4c2. It follows that t(F ,W ) > 0. �

Remark. Note thatW = U a.e. implies that t(F ,U) = t(F ,W ) for every graph F .

For the rest of the section, fix an arbitrary familyF of graphs. Recall that ρ(G) = 2e(G)/(v(G))2 denotes the edge density
and Forb(F ) consists of all F -free graphs. For a graphit [W ], define ρ([W ]) = t(K2, [W ]). For convenience, we just write
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ρ(W ). This is compatible with the previous definition in the sense that for every graph G we have ρ(G) = ρ(WG). Define r
by (5) and assume that r ≥ 1.
LetA consist of those graphits [W ] that maximize ρ(W ) given that t(F ,W ) = 0 for every F ∈ F . By the compactness of

(X, δ�) and the continuity of each function t(F ,−), the maximum is attainable. Denote this maximum value by a.

Lemma 21. LIM(ρ, Forb(F )) = A.

Proof. Let [W ] ∈ LIM(ρ, Forb(F )). Pick a sequence of almost extremal graphs (Gni) convergent to [W ]. Since each Gni is
F -free, we have t(F ,W ) = 0 for each F ∈ F by the first definition (14) of t(F ,W ). We conclude that ρ(W ) ≤ a.
Thus, in order to prove the lemma, it is enough to construct for every [W ] ∈ A a sequence of F -free graphs (Gn)n∈N

convergent to [W ] with ρ(Gn) ≥ a− o(1). Let U ∈ [W ] be obtained fromW by applying Lemma 20. For each integer n we
generate a random graph Gn on [n] as follows. Pick uniformly at random n elements x1, . . . , xn ∈ I and let a pair {i, j} be
an edge of Gn with probability U(xi, xj), with all n +

( n
2

)
random choices being mutually independent. With probability 1

we have that the sequence (Gn) converges to [U] = [W ] (see [8, Theorem 4.5] or [28, Corollary 2.6]). Thus at least one such
sequence (Gn) exists. In particular, we have limn→∞ ρ(Gn) = ρ(U) = a. Also, since U does not contain any copy of F ∈ F ,
each Gn is (surely) F -free, as desired. �

Remark. The above proof, which is applicable to many other extremal problems, gives another justification why it is better
not to restrict ourselves to extremal graphs when defining the limit set LIM(f ,P ).

Lemma 20 implies that

A = {[W ]:∀F ∈ F F 6⊆ W and ρ(W ) is maximum}. (29)

SinceW∗ is the analytic analog of the degree sequence, the following lemma can be informally rephrased that extremal
graphons are degree-regular. The combinatorial interpretation of the proof is that if we have toomuch discrepancy between
degrees in an almost extremal graph G, then by deleting εv(G) vertices of smaller degree and cloning εv(G) vertices of
larger degree, we would substantially increase the size of G, which would be a contradiction (provided we do not create any
forbidden subgraph).

Lemma 22. For every [W ] ∈ A we have W∗(x) = a for a.e. x ∈ I .

Proof. The Fubini Theorem implies that ifW = U a.e., thenW∗ = U∗ a.e. (Indeed, if e.g.W∗ > U∗ on a set X ⊆ I of positive
measure, then

∫
X×I(W − U) =

∫
X (W∗ − U∗) > 0, a contradiction.) Hence we can assume by Lemma 20 thatW is F -free.

Suppose on the contrary that the lemma is false. Let Xn = {x ∈ I:W∗(x) ≤ a− 1/n} and Yn = {y ∈ I:W∗(y) ≥ a+ 1/n}.
Note that e.g.∪n∈N Xn = {x ∈ I:W∗(x) < a}. Since∪n∈N(Xn∪Yn) has positive measure, there is some nwithµ(Xn∪Yn) > 0.
Assume, for example, thatµ(Yn) is positive. By the Fubini Theorem

(
and

∫
I2 W = a

)
, we conclude thatµ(∪m∈N Xm) > 0. By

increasing n, assume that c = min(µ(Xn), µ(Yn)) is positive.
Let ε = min(c, 1/3n). By Lemma 5, we can find φ ∈ Φ0 such that µ(φ([0, ε]) \ Xn) = 0 and µ(φ([ε, 2ε]) \ Yn) = 0. Let

U = Wφ . Then U ∈ [W ] is still F -free while U∗(x) is at most a− 1/n (resp. at least a+ 1/n) for a.e. x in the interval [0, ε]
(resp. [ε, 2ε]).
For x ∈ I , let ψ(x) = x if x ≥ ε and ψ(x) = x + ε if x < ε. Let V = Uψ ∈ WI . (Although ψ is not measure preserving,

this definition makes perfect sense.) Note that V is F -free: if x1, . . . , xm ∈ I induce a copy of F in V , thenψ(x1), . . . , ψ(xm)
induce a copy of F in U . Moreover,

ρ(V ) =
∫
I
V∗ ≥

∫
I
U∗ −

∫
[0,ε]
U∗ +

∫
[ε,2ε]

U∗ − (2ε)2 ≥ a− ε(a− 1/n)+ ε(a+ 1/n)− 4ε2 > a.

This contradicts the maximality of a. �

For disjointmeasurable sets A1, . . . , Ar ⊆ I , the complete r-partite graphon KA1,...,Ar is the simple function from I
2 to {0, 1}

that assumes value 1 on ∪i∈[r] ∪j∈[r]\{i} Ai × Aj and 0 on the remaining part of I2. (In other words,W (x, y) = 1 if x, y come
from two different sets Ai and 0 otherwise.) Clearly, KA1,...,Ar is Kr+1-free.
Next, we prove that the graphon problem has the unique solution when we forbid the clique Kr+1 only.

Lemma 23. If F = {Kr+1} and [W ] ∈ A, then there is a partition I = A1 ∪ · · · ∪ Ar into sets of measure 1/r such that
W = KA1,...,Ar a.e.

Proof. We use induction on r with the case r = 1 being trivially true.
Let r ≥ 2. The F -free graphonWKr demonstrates that a ≥ (r − 1)/r . Let [W ] ∈ A. Assume thatW is Kr+1-free by (29)

(that is, by Lemma 20). Pick u ∈ I such that W∗(u) = a which exists by Lemma 22. Let B = {w ∈ I:W (u, w) > 0} and
A1 = I \ B. Let b = µ(B). Since W ≤ 1, we have b ≥ a. We are free to replace W by Wφ with any φ ∈ Φ0; thus we can
assume by Lemma 5 that µ(B∆[0, b]) = 0. The graphon U(x, y) = W (bx, by) is Kr -free: if x1, . . . , xr ∈ I induce Kr in U ,
then bx1, . . . , bxr , u ∈ I induce Kr+1 inW , a contradiction. Note that, by the Fubini Theorem,

a = ρ(W ) =
∫
B2
W + 2

∫
A1
W∗ −

∫
A21

W = b2ρ(U)+ 2(1− b)a−
∫
A21

W . (30)
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The inductive assumption implies that ρ(U) ≤ (r − 2)/(r − 1). Thus

r − 1
r
≤ a ≤

r − 2
r − 1

b2 + 2(1− b)a ≤
r − 2
r − 1

b2 + 2(1− b)b.

Routine algebra implies that a = b = (r − 1)/r and all inequalities are in fact equalities. Thus W (x, y) = 0 for
a.e. (x, y) ∈ A21. SinceW∗(x) = a = 1−µ(A1) for almost every x ∈ A1, we have by the Fubini Theorem thatW (x, y) = 1 for
a.e. (x, y) ∈ A1 × B. Furthermore, by the uniqueness part of the induction assumption, U = KB2,...,Br a.e. for some equitable
partiton I = B2 ∪ · · · ∪ Br . Letting Ai = {bx: x ∈ Bi}, we getW = KA1,...,Ar a.e., as required. �

Proof of Theorem 1. By Theorem 15, it suffices to show that any [W ] ∈ LIM(ρ, Forb(F )) we have δ�(W , Kr) = 0. By
Lemma 21 and (29), we can assume thatW is F -free.
Let us show that W is Kr+1-free. Suppose on the contrary that x1, . . . , xr+1 ∈ I induce Kr+1 in W . Select F ∈ F of

chromatic number χ(F) = r + 1 and fix a proper coloring c : V (F)→ [r + 1]. Then the map f : V (F)→ I with f (u) = xc(u)
shows that F ⊆ W , a contradiction.
Turán graphs Tr(n) (or the graphon WKr and Lemma 21) show that ρ(W ) ≥ (r − 1)/r . By Lemma 23 we have that

ρ(W ) ≤ ρ(Kr) ≤ (r − 1)/r . Thus [W ] is extremal for the (ρ, Forb({Kr+1}))-problem and (again by Lemma 23) is equal to
[WKr ], as required. �
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