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Let c(G) be the smallest number of edges we have to test in order to determine an unknown acyclic
orientation of the given graph G in the worst case. For example, if G is the complete graph on n

vertices, then c(G) is the smallest number of comparisons needed to sort n numbers.
We prove that c(G) � (1/4 + o(1)) n2 for any graph G on n vertices, answering in the affirm-

ative a question of Aigner, Triesch and Tuza [Discrete Mathematics 144 (1995) 3–10]. Also, we
show that, for every ε > 0, it is NP-hard to approximate the parameter c(G) within a multiplicative
factor 74/73 − ε.

1. Introduction

The acyclic orientation game is as follows. There are two players, Algy and Strategist, to whom
we shall also refer as him and her correspondingly. Let G be a given graph, known to both
players. At each step of the game, Algy selects any edge of G and Strategist has to orient this
edge. The only restriction on Strategist’s replies is that the revealed orientation has to be acyclic,
that is, it does not contain directed cycles. The game ends when the current partial orientation
extends to a unique acyclic orientation of the whole graph G. Algy tries to minimize the number
of steps while Strategist aims at the opposite. Let c(G) be the length of the game, assuming that
both players play optimally.

In other words, Algy wants to discover a ‘hidden’ acyclic orientation of G by querying edges.
The parameter c(G) measures the worst-case complexity, that is, it is the smallest number such
that Algy has a strategy that needs at most c(G) steps for every acyclic orientation of G.

The special case when G = Kn (the complete graph on n vertices) is equivalent to the well-
known minimum-comparison sorting problem. While the asymptotic result c(Kn) = (1 +

o(1)) n log2 n of Ford and Johnson [9] is not hard to prove, the exact computation of c(Kn) seems
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very difficult. For example, the problem of computing c(K13) that appeared in Knuth’s book [15,
Chapter 5.3.1, Exercise 35] was solved only some 30 years later by Peczarski [21] (see also [22]).

One interpretation of c(G) for a general order-n graph G is that Algy has to discover as much
information as possible about the relative order of n elements given that certain pairs (namely,
those corresponding to the edges of the complementary graph G) cannot be queried. Manber and
Tompa [17, 18] considered a related but different problem where the player can query any of the(
n
2

)
possible pairs but has to find the relative order for every edge of the given graph G.

Various results and bounds on c(G) for general graphs were obtained by Aigner, Triesch and
Tuza [2], who in particular studied graphs with c(G) = e(G), calling them exhaustive. Even this
property seems out of grasp. For example, the computational complexity of checking whether
c(G) = e(G) is not known; see Tuza [29, Problem 58]. Alon and Tuza [3] studied c(G), where G ∈
Gn,p is a random graph of order n with edge probability p. They obtained, among other results, the
correct order of magnitude when p is a non-zero constant: in this case c(G) = Θ(n log n) almost
surely.

The parameter c(G) is not monotone with respect to the subgraph relation. For example, while
c(Kn) = (1 + o(1))n log2 n, there are graphs G of order n with c(G) � �n2/4�. Indeed, let G be
obtained from the Turán graph T2(n), the complete bipartite graph with vertex parts V1 and V2

of size �n/2� and �n/2�, by adding an arbitrary bipartite graph H inside one part of T2(n). Let
V (H) = U1 ∪ U2 be a bipartition of H . Suppose, for example, that U1, U2 ⊆ V1. Strategist, in
her replies, orients all edges from U1 to V (G) \ U1 and from V2 to V1 \ U1. It is easy to see that
Algy has to ask about the orientation of every edge of the original Turán graph T2(n), giving the
claimed bound c(G) � �n/2� �n/2� = �n2/4�. We did not see any improvement over this bound
in the literature; our Proposition 3.1 improves it by 1.

Aigner, Triesch and Tuza [2, p. 10] asked whether the above bound is asymptotically sharp,
that is, whether c(G) � (1/4 + o(1)) n2 for every graph G of order n. This open question is also
mentioned by Alon and Tuza [3, p. 263] and by Tuza [29, Problem 55]. Here we answer it in the
affirmative.

Theorem 1.1. For every ε > 0 there exists n0 such that c(G) � (1/4 + ε)n2 for every graph G

of order n � n0.

Aigner, Triesch and Tuza [2, p. 10] also asked if, furthermore, the upper bound can be im-
proved to n2/4 + C for some absolute constant C. Unfortunately, we cannot prove this strength-
ening.

Our proof of Theorem 1.1 shows more. Namely, for every ε > 0 there exists C such that, for
any graph G of order n, Algy can point (in one go) a set D of at most Cn3/2(ln n)1/2 edges so that
every acyclic orientation of D implies the orientation of all but at most (1/4 + ε)n2 remaining
edges of G. Strategies of this type (when Algy has to send his questions in a few rounds) are
useful in situations where the main limitation is on the number of times that the players can
exchange (large amounts of) information. The study of comparison sorting in rounds was initiated
by Valiant [30]. We refer the reader to a survey by Gasarch, Golub and Kruskal [10] for more
information on the topic.

Aigner, Triesch and Tuza [2, p. 10] also asked about the computational complexity of deciding
whether c(G) � k on the input (G, k); see also Tuza [29, Problem 59]. We obtain some progress
on this question as follows.
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Theorem 1.2. For every ε > 0 it is NP-hard to approximate c(G) within a multiplicative factor
74/73 − ε.

It is possible that the acyclic orientation game is PSPACE-complete, but the author could not
show this.

Also, one would like to complement Theorem 1.2 by providing a polynomial-time algorithm
that approximates c(G) within a multiplicative factor O(1). Unfortunately, the best approximab-
ility ratio in terms of n = v(G) that the author could find is O(n/ log n): output e(G) as an upper
bound on c(G) and e(G) log2 n/(Cn) as a lower bound, where C is the constant given below in
Theorem 5.1. It is a remaining open problem to close this gap.

2. Notation

We will use the standard graph terminology that can be found, for example, in the books by
Bollobás [4] or Diestel [7]. Some of the less common conventions are as follows.

For brevity, we usually abbreviate an unordered pair {x, y} as xy. We write (x, y) to denote
that an edge xy is oriented from x to y. Let [n] = {1, . . . , n}.

For a graph G and disjoint sets of vertices X,Y ⊆ V (G), G[X,Y ] denotes the bipartite graph
on X ∪ Y consisting of all edges of G connecting X to Y . A cut of G is a partition V (G) =

V1 ∪ V2. Its value is e(G[V1, V2]), the number of edges connecting V1 to V2. If the graph G

comes equipped with the edge weight function w : E(G) → R, then the value of the cut {V1, V2}
is

∑
x1∈V1

∑
x2∈V2

w(x1x2). The max-cut parameter MAX-CUT(G) is the maximum value of a cut
of G.

A partial order ≺ on V (G) and an acyclic orientation of E(G) are compatible if, for every edge
xy ∈ E(G), the elements x and y are comparable in the ≺-ordering and, moreover, (x, y) if and
only if x ≺ y. In this case, the phrases and expressions ‘(x, y)’, ‘y is above x’, ‘x is smaller than
y’, ‘y � x’, and so on, are all synonymous.

3. Bounding c(G) for order-n graphs

Proposition 3.1. For every n � 3 there is a graph G of order n with c(G) � �n2/4� + 1.

Proof. Let G be the complete 3-partite graph with parts X ∪ Y ∪ Z where |X| = |Y | =

�(n − 1)/2�. (Thus, depending on the parity, n = 2k + 1 or n = 2k, the part sizes are either
(k, k, 1) or (k − 1, k − 1, 2).)

Strategist orients (x, y) for every x ∈ X and y ∈ Y and answers Algy’s questions about these
edges accordingly.

For every z ∈ Z , Strategist does the following. She waits until Algy queries an edge incident to
z for the first time. If this is an edge xz with x ∈ X, then Strategist orients all edges from X ∪ Y

to z (and answers all Algy’s questions accordingly). Note that Algy has to query every edge
yz with y ∈ Y because neither of its orientations would create a directed cycle in Strategist’s
ordering. Thus, Algy has to query at least |Y | + 1 edges at z (including the first edge xz).
Likewise, if the first queried edge was yz with y ∈ Y , then Strategist orients all edges from
z to X ∪ Y and Algy has to query all edges xz with x ∈ X.
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Also, independently of the game scenario on the edges adjacent to Z , Algy has to query all
edges between X and Y . Thus c(G) � |X| × |Y | + |Z |(|X| + 1), which is easily seen to be the
required bound.

Next, we prove Theorem 1.1. Its proof, where Algy queries random edges in the first round,
is somewhat similar to the methods of Bollobás and Rosenfeld [5] (see also Häggkvist and
Hell [11]), who studied how much information about the unknown linear order can be obtained
in just one round with the given number of queries.

In order to prove Theorem 1.1 we will need the following auxiliary result.

Theorem 3.2 (Ruzsa and Szemerédi [23]). For every ε > 0 there exists δ > 0 such that if a
graph G of order n has at most δn3 triangles then we can remove at most εn2 edges from G,
making it triangle-free.

Proof of Theorem 1.1. Given ε > 0, let δ = δ(ε/2) > 0 be the constant returned by The-
orem 3.2 on the input ε/2. Fix an arbitrary positive constant C such that C2 > 2(1 + δ)/δ2. Let
n be sufficiently large. Let G be an arbitrary graph of order n. Let V = V (G), p = C

√
ln n/n,

and w = �δn/2�.
Algy selects a set D of edges of G by including each element of E(G) into D with probability

p, independently of the other choices. Let the acronym w.h.p. stand for ‘with high probability’,
meaning with probability 1 − o(1) as n → ∞.

Claim 1. With high probability, the following holds for every linear ordering L = (V ,≺) of V
and every 2w pairwise distinct vertices x1, . . . , xw, y1, . . . , yw ∈ V with xi ≺ yi for i ∈ [w]. For
i ∈ [w], define

Zi = {z ∈ V : xi ≺ z ≺ yi, xiz, zyi ∈ E(G)} \ {x1, . . . , xi−1, y1, . . . , yi−1}. (3.1)

If each Zi has at least δn elements, then there are i ∈ [w] and z ∈ Zi such that xiz and zyi belong
to D.

Proof of claim. Fix any linear order ≺ on V and any 2w pairwise distinct vertices x1, . . . , xw ,
y1, . . . , yw such that xi ≺ yi and |Zi| � δn for each i ∈ [w]. Clearly, there are at most n! n2w

choices of such a configuration.
The probability that this configuration violates the claim is at most (1 − p2)δnw because there

are at least w × δn choices of (i, z) with i ∈ [w] and z ∈ Zi, the probability that at least one of
the edges xiz and zyi of G is not in D is 1 − p2, while these probabilities are independent over
distinct pairs (i, z). (Indeed, the events for different pairs (i, z) involve disjoint sets of edges; this
was the reason for excluding any vertex in {x1, . . . , xi−1, y1, . . . , yi−1} from Zi in (3.1).)

The union bound shows that the total probability of failure is at most

n! n2w(1 − p2)δnw < en ln n+2w ln n−p2δnw � e(1+δ−C2δ2/2+o(1)) n ln n.

This is o(1) by the choice of C. The claim is proved.

Also, w.h.p. |D| � pn2 by the Chernoff bound [6]. Hence, there is a set D that satisfies the
conclusion of Claim 1 and has at most pn2 elements. Fix such a set D.
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During the first round, Algy asks about the orientation of all edges in D. After we have received
Strategist’s answers, let H be the spanning subgraph of G that consists of those edges of G whose
orientation is still undetermined from the revealed orientation of D.

We claim that H has at most δn3 triangles. Suppose on the contrary that this is false. Fix an
arbitrary linear ordering ≺ of V that is compatible with the orientation of D. Let us define xi and
yi inductively on i. Suppose that i ∈ [w] and we have already defined x1, . . . , xi−1 and y1, . . . , yi−1.

Let U = {x1, . . . , xi−1, y1, . . . , yi−1}. The vertices in U belong to at most 2(i − 1)
(
n
2

)
< wn2

triangles of H . So, the graph H ′ = H − U has at least δn3 − wn2 � δn3/2 triangles. By av-
eraging, H ′ contains a pair of vertices xi and yi such that there are at least (δn3/2)/

(
n
2

)
> δn

vertices z ∈ V (H ′) = V \ U for which xi ≺ z ≺ yi and {xi, yi, z} spans a triangle in H ′. Now,
increase i by 1 and iterate the above step if the new index i is still at most w.

For i ∈ [w], let Zi be defined by (3.1); we have |Zi| � δn. The obtained vertices x1, . . . , xw ,
y1, . . . , yw satisfy all assumptions of Claim 1 with respect to the linear order ≺. By the definition
of D (which was chosen to satisfy the conclusion of Claim 1), there are i ∈ [w] and z ∈ Zi

such that xiz, zyi ∈ D. By the definition of Zi, we have xi ≺ z ≺ yi. Since ≺ was chosen to be
compatible with Strategist’s replies, the edges xiz, yiz ∈ D are oriented as (xi, z) and (z, yi). Note
that xi and yi are adjacent in H because these two vertices belong to at least δn � 1 triangles of
H by the definition of xi and yi. But then the orientation of the edge xiyi ∈ E(G) is determined
after the first round, contradicting the fact that xiyi ∈ E(H). Thus the graph H of order n has at
most δn3 triangles.

By the choice of δ (that is, by Theorem 3.2) there is a set F of at most εn2/2 edges such that
E(H) \ F contains no triangles. By the Turán theorem [28] (or rather the special case which was
earlier proved by Mantel [19]) we have |E(H) \ F | � n2/4. Thus e(H) � n2/4 + εn2/2.

In the second round, Algy asks about the orientation of all edges of H . By the definition of
H , this completely determines the orientation of all edges of G. Assuming that Strategist plays
optimally, we have

c(G) � |D| + e(H) � pn2 +

(
n2

4
+

εn2

2

)
� n2

4
+ εn2,

finishing the proof of Theorem 1.1.

Remark. All known proofs of Theorem 3.2 use some version of Szemerédi’s Regularity Lemma
[25] and therefore return a function δ(ε) that approaches 0 extremely slowly and is of little
practical value. Tao Jiang [14] observed that, instead of Theorem 3.2, one can use the result
of Moon and Moser [20] that a graph of order n and size m contains at least (m/3n)(4m − n2)

triangles. His calculations [14] based on this idea show that c(G) � n2/4 + 2n7/4(ln n)1/4 for
any order-n graph G with n large. On the other hand, if we use Theorem 3.2, then we can deduce
some structural information about almost extremal graphs. Namely, if an order-n graph G satisfies
c(G) = ( 1

4
+ o(1))n2, then by the Stability Theorem of Erdős [8] and Simonovits [24] applied to

the triangle-free graph H \ F , there is a partition V (G) = V1 ∪ V2 with ( 1
4

+ o(1))n2 edges going
across (which is asymptotically largest possible). Unfortunately, neither of these two approaches
has led us to the complete answer so far.
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4. Inapproximability results

In order to prove Theorem 1.2 we will need the following auxiliary result.

Lemma 4.1. For every δ > 0, it is NP-hard to approximate the graph parameter

3e(G) + MAX-CUT(G)

within a multiplicative factor 74/73 − δ.

Proof. We will use the construction of Håstad [12, 13] that demonstrates that MAX-CUT is NP-
hard to approximate within a factor 17/16 − ε. Since we are interested in a parameter somewhat
different from just MAX-CUT, we have to unfold Håstad’s construction.

First, Håstad proves [12, Theorem 2.3] that it is NP-hard to approximate E3-LIN-2 within a
factor less than 2. That is, for every ε > 0 it is NP-hard to distinguish, for an input system S of
s equations over Z2 each of the form x + y + z = 0 or x + y + z = 1, between the cases when
some assignment of variables satisfies at least (1 − ε)s equations and when every assignment
satisfies at most (1/2 + ε)s equations.

Next, Håstad constructs [12, Theorem 4.2] a graph G from a given instance S of E3-LIN-
2 with s equations as follows. We can assume that s0 � s/2 equations of S are of the form
x + y + z = 0. (If s0 < s/2, we can simply replace each variable x by 1 − x.) Let s1 = s − s0 be
the number of equations of the form x + y + z = 1.

Each equation x + y + z = 0 and x + y + z = 1 is replaced respectively by the so-called 8-
gadget and 9-gadget of Trevisan, Sorkin, Sudan and Williams [26, 27]. The definition of these
gadgets can be found in the journal version [27, Lemmas 4.2 and 4.3]. For our purposes we need
to know only that, for α = 8 or 9, this particular α-gadget is an edge-weighted graph of total edge
weight α + 1 whose vertex set consists of the variables x, y, and z, the constant 0, and some new
vertices so that:

• every 0/1-assignment of x, y, and z that satisfies the equation can be extended to a cut of
value at least α but not to a cut of a strictly larger value;

• no 0/1-assignment of x, y, and z that violates the equation can be extended to a cut of value
strictly larger than α − 1.

(Here, a cut in a gadget H is encoded by an assignment f : V (H) → {0, 1} with f(0) = 0.) Also,
the special vertices (the variables and the constant 0) form an independent set in both gadgets.
Thus the constructed graph G has total edge weight 9s0 + 10s1.

The above properties imply that if we can satisfy at least (1 − ε)s equations of S then G has
a cut of value at least 8s0 + 9s1 − 10εs. Also, if every assignment of variables violates at least
(1/2 − ε)s equations, then no cut of G can have value larger than 8s0 + 9s1 − (1/2 − ε)s. Thus,
if we cannot distinguish these two alternatives for E3-LIN-2 in polynomial time, then we cannot
distinguish in polynomial time whether, for edge-weighted graphs, 3e(G) + MAX-CUT(G) is at
least u1 or at most u2, where

u1 = 3(9s0 + 10s1) + 8s0 + 9s1 − 10εs = −4s0 + 39s − 10εs,

u2 = 3(9s0 + 10s1) + 8s0 + 9s1 − (1/2 − ε)s = −4s0 + 38.5s + εs.
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When ε < 1/22, then the ratio u1/u2 is minimized when s0 = s/2 is as small as possible. Thus
u1/u2 � 74/73 − o(1) as ε → 0, giving the inapproximability result for edge-weighted graphs.

Finally, we can get rid of edge weights by choosing a large integer l, say l = s, cloning each
vertex of G l times, and replacing each edge of weight α by a pseudo-random bipartite graph
of edge density α. (The edge weights in each gadget are real numbers lying between 0 and 1.)
We refer the reader to a survey by Krivelevich and Sudakov [16] on the properties of pseudo-
random graphs. Up to a multiplicative error 1 + o(1) as l → ∞, any cut of the new graph G′

corresponds to a fractional cut of G, where the vertices of G may be sliced between the two
parts in some ratio and the value of the cut is defined in the obvious way. However, it is easy
to see that, for an arbitrary edge-weighted (loopless) graph, there is an integer vertex cut which
is at least as good as any fractional cut. Thus MAX-CUT(G′) = (1 + o(1))l2MAX-CUT(G) (and
e(G′) = (1 + o(1))l2e(G)) as l → ∞.

The obtained family of (unweighted) graphs G′ establishes the lemma.

Remark. The weaker result that it is NP-hard to approximate 3e(G) + MAX-CUT(G) within a
factor 113/112 − δ can be obtained from the statement of the 17/16-result of Håstad (without
analysing the structure of his graphs) by observing that MAX-CUT(G) � 1

2
e(G) for any G (and

doing some easy calculations).

Proof of Theorem 1.2. Let l be a positive integer and let G be an arbitrary graph. Define
n = v(G), m = e(G), and t = MAX-CUT(G).

We construct a new graph H = H(G, l) as follows. Let V = V (G). For each x ∈ V , introduce
a new vertex x′. Let V ′ = {x′ : x ∈ V } consist of all new vertices. For each edge xy ∈ E(G),
introduce a set Uxy of l new vertices. Let U = ∪xy∈E(G)Uxy. The new graph H has V ∪ V ′ ∪ U

for the vertex set. Thus the total number of vertices is v(H) = 2n + lm. The edges of H are as
follows. Let V span the complete graph. Connect x to x′ for each x ∈ V . Put a complete bipartite
graph between Uxy and {x, y, x′, y′} for every xy ∈ E(G). These are all the edges (all other pairs
of V (H) are non-adjacent). Thus, for example, the size of H is e(H) =

(
n
2

)
+ n + 4lm.

Claim 1. c(H) � 3lm + lt.

Proof of claim. Let V = X ∪ Y be a maximum cut of G, that is, e(G[X,Y ]) = t. Let V ′ =

X ′ ∪ Y ′ be the corresponding partition of V ′. Let X = {x1, . . . , xa} and Y = {y1, . . . , yb}.
Let P = (V (H),�) be the partially ordered set on V (H), where ≺ is the transitive closure of

the digraph D that consists of the following ordered pairs:

• (xi, xi+1) and (x′
i, x

′
i+1) for i ∈ [a − 1],

• (yi, yi+1) and (y′
i , y

′
i+1) for i ∈ [b − 1],

• (xi, x
′
i) for i ∈ [a],

• (y′
i , yi) for i ∈ [b],

• (xa, y1) and (y′
b, x

′
1),

• (xi, u), (u, xj), and (u, x′
i) for u ∈ Uxixj and xixj ∈ E(G[X]) with i < j,

• (yi, u), (y′
j , u), and (u, yj) for u ∈ Uyiyj and yiyj ∈ E(G[Y ]) with i < j,

• (x, u), (y′, u), (u, x′), and (u, y) for u ∈ Uxy and xy ∈ E(G[X,Y ]) with x ∈ X.
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Figure 1. The placement of the set U relative to V ∪ V ′.

In other words, we take two chains, namely x1 ≺ · · · ≺ xa ≺ y1 ≺ · · · ≺ yb and y′
1 ≺ · · · ≺

y′
b ≺ x′

1 ≺ · · · ≺ x′
a. We let x ≺ x′ for x ∈ X and y � y′ for y ∈ Y . For all xi ≺ xj that are

adjacent in G, we insert the set Uxixj (as an antichain) above xi but below xj and x′
i. For all

yi ≺ yj that are adjacent in G, we insert the set Uyiyj (as an antichain) above yi and y′
j but below

yj . For each xy ∈ E(G[X,Y ]) with x ∈ X, we insert the set Uxy (as an antichain) above x and y′

but below x′ and y. Figure 1 shows the placement of the vertices of U relative to V ∪ V ′. Finally,
we add those order relations that are implied by the above relations.

It is easy to check that D has no oriented cycles and that the obtained partial order P determines
the orientation of every edge of H . Strategist chooses this orientation and answers all Algy’s
questions accordingly.

The digraph D defined above is not in general the Hasse diagram of the poset P : for example,
if xixi+1 is an edge of G, then the relation xi ≺ xi+1 can be determined from xi ≺ u ≺ xi+1 for
some u ∈ Uxixi+1

. However (and this is the crucial property!) one can routinely check that every
arc of D that connects V ∪ V ′ and U (in either direction) does belong to the Hasse diagram of
P , that is, the orientation of this edge is not determined from the order relation of all other pairs
of P .

Clearly, Algy has to query every edge that belongs to the Hasse diagram of P . Thus, Algy has
to ask at least 3l (resp. 4l) questions per edge of G[X] and G[Y ] (resp. G[X,Y ]). This shows
that c(H) � 3l(m − t) + 4lt = 3lm + lt, as required.

Claim 2. c(H) � 3lm + lt + c(Kn) + n.

Proof of claim. Algy finds the orientation of all edges in the clique H[V ] by asking c(Kn)

questions. Then he asks about the orientation of every edge xx′ with x ∈ V . Let X consist of
those x ∈ V for which we have (x, x′). Let Y = V \ X.

Take any xy ∈ E(G[X]). Suppose without loss of generality that x ≺ y. For each u ∈ Uxy,
Algy asks about the orientation of the edge uy. Whatever the answer is, it determines the ori-
entation of ux or uy′. Hence, at most 3l questions are enough to determine the orientation of all
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edges incident to Uxy. The same applies to the case xy ∈ E(G[Y ]). Finally, Algy asks about all
edges incident to Uxy where xy ∈ E(G[X,Y ]), posing 4l questions per edge of the cut {X,Y }.
Thus the total number of questions is at most

c(Kn) + n + 3l
(
e(G[X]) + e(G[Y ])

)
+ 4le(G[X,Y ]) = c(Kn) + n + 3le(G) + le(G[X,Y ]),

giving the required bound.

As was shown by Ford and Johnson [9], c(Kn) = (1 + o(1))n log2 n. Thus Claims 1 and 2 show
that c(H) = (1 + o(1))l(3e(G) + MAX-CUT(G)) as n → ∞, if we take l � ln n, say l = n. (Note
that, by removing isolated vertices from G, we can assume that e(G) � v(G)/2.) Since the order
of H is bounded by a polynomial in v(G), the desired inapproximability result for the parameter
c follows from Lemma 4.1.

5. A general lower bound on c(G)

Here is the lower bound on c(G) that implies the approximability result mentioned at the end of
the Introduction.

Theorem 5.1. There is a constant C > 0 such that any graph G satisfies

c(G) � e(G) log2(v(G))

Cv(G)
. (5.1)

Proof. Fix a sufficiently large C. Let G be an arbitrary graph of order n and size m.
Clearly, it is enough to prove the theorem under the assumption that G has no isolated vertices.

Indeed, if we remove isolated vertices, then c(G) remains the same while the right-hand side
of (5.1) can only increase.

We have c(G) � n/2 because, for every vertex x of G, we have to query at least one edge
incident to x. It follows that (5.1) holds unless

m >
Cn2

2 log2 n
. (5.2)

So suppose that (5.2) holds. The average degree of G is 2m/n. If we remove a vertex whose
degree is less than m/n, then the average degree of G goes up. By iteratively repeating this step,
we can find a non-empty set X ⊆ V (G) such that the induced subgraph H = G[X] has minimum
degree at least d = �m/n�.

The graph H contains at least |X| d! � (d + 1)! directed paths P of length d: there are |X|
choices for the first vertex and, inductively for i = 2, . . . , d + 1, at least d − i + 2 choices for the
ith vertex. For every choice of P choose an acyclic orientation of the whole graph G compatible
with the orientation of P . Clearly, each orientation of G can appear this way for at most

(
n

d+1

)
�

2n different directed d-paths P . Hence, a(G), the number of acyclic orientations of G, is at least
(d + 1)!/2n. The usual information-theoretic lower bound (see, for example, Aigner [1, p. 24])
implies that

c(G) � log2(a(G)) � log2

(
(d + 1)!

2n

)
.



130 O. Pikhurko

If C is large, then also n is large by (5.2) and because m �
(
n
2

)
, namely n > 2C . Again by (5.2),

we have

d � m

n
>

Cn

2 log2 n
and log2 d >

log2 n

2
, (5.3)

so d is forced to be large too. By Stirling’s formula, log2((d + 1)!) > 0.9 d log2 d. We have
by (5.3) that, for example, d log2 d > (Cn/(2 log2 n)) × (log2 n)/2 > 2n. Thus

log2

(
(d + 1)!

2n

)
> 0.9 d log2 d − n > 0.4 d log2 d � 0.4 × m

n
× log2 n

2
,

as required.

Remark. The inequality in (5.1) is sharp (up to an O(1)-factor) when G is the complete graph
Kn or, more generally, when G is a typical graph in Gn,p with constant edge probability p > 0 by
the result of Alon and Tuza [3].

Acknowledgements

The author thanks Alan Frieze, Tao Jiang and Oleg Verbitsky for helpful comments.

References

[1] Aigner, M. (1988) Combinatorial Search, Wiley–Teubner Series in Computer Science, Wiley,
Chichester.

[2] Aigner, M., Triesch, E. and Tuza, Z. (1995) Searching for acyclic orientations of graphs. Discrete
Math. 144 3–10.

[3] Alon, N. and Tuza, Z. (1995) The acyclic orientation game on random graphs. Random Struct. Alg. 6
261–268.

[4] Bollobás, B. (1998) Modern Graph Theory, Springer, Berlin.
[5] Bollobás, B. and Rosenfeld, M. (1981) Sorting in one round. Israel J. Math. 38 154–160.
[6] Chernoff, H. (1952) A measure of asymptotic efficiency for tests of a hypothesis based on the sum of

observations. Ann. Math. Statist. 23 493–507.
[7] Diestel, R. (2006) Graph Theory, 3rd edn, Springer, Berlin.
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