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Abstract. For a k-graph F , let tl (n, m, F) be the smallest integer t such that every k-graph G
on n vertices in which every l-set of vertices is included in at least t edges contains a collection
of vertex-disjoint F-subgraphs covering all but at most m vertices of G. Let K k

m denote the
complete k-graph on m vertices.

The function tk−1(kn, 0, K k
k ) (i.e. when we want to guarantee a perfect matching) has

been previously determined by Kühn and Osthus [9] (asymptotically) and by Rödl, Ruciński,
and Szemerédi [13] (exactly). Here we obtain asymptotic formulae for some other l. Namely,
we prove that for any k ≥ 4 and k/2 ≤ l ≤ k − 2,

tl (kn, 0, K k
k ) =

(
1
2

+ o(1)

)(
kn

k − l

)
.

Also, we present various bounds in another special but interesting case: t2(n, m, K 3
4 ) with

m = 0 or m = o(n), that is, when we want to tile (almost) all vertices by copies of K 3
4 , the

complete 3-graph on 4 vertices.

Key words. Complete 3-graph on 4 vertices, Hajnal-Szemerédi Theorem, hypergraph
codegree, hypergraph matching.

1. Introduction

A k-graph (or a k-uniform set system) is a pair G = (V, E), where the edge set E is
a collection of k-subsets of the vertex set V . The order of G is v(G) = |V | and the
size of G is e(G) = |E |. In the obvious way we define the notions of isomorphism,
subgraph, etc. (Note that we do not restrict the notion of subgraph to induced
subgraphs only.) When the vertex set is not important, we may identify a k-graph G
with its edge set. Thus, for example, |G| = e(G) denotes the number of edges in G.

Let K k
m denote the complete k-graph on m vertices. Also, we use the following

notation: [n] = {1, . . . , n} and, for a set A,
(A

k

) = {B : B ⊆ A, |B| = k}. All
logarithms are base e = 2.718... .

� Reverts to public domain 28 years from publication.
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Given k-graphs F and G, an F-tiling in G is a collection of vertex-disjoint
F-subgraphs of G (i.e. subgraphs isomorphic to F). For the single-edge k-graph
K k

k , a K k
k -tiling is also called a K k

k -matching or simply a matching.
For graphs (that is, 2-graphs) there is a large body of research on finding condi-

tions on the minimal degree in terms of the order that guarantee an (almost) perfect
F-tiling. This direction of research was motivated by the seminal paper of Hajnal
and Szemerédi [6]. More recently, this problem was considered for general k-graphs,
in which case it seems to become more difficult.

Let G = (V, E)be a k-graph and let 0 ≤ l ≤ k. The neighborhood of l distinct ver-
tices x1, . . . , xl ∈ V (which we may interchangeably view as an l-set X = {x1, . . . , xl})
is

N (x1, . . . , xl) = N (X) =
{

D ∈
(

V (G) \ X

k − l

)
: D ∪ X ∈ E

}
,

that is, it consists of those (k − l)-sets D ⊆ V (G) \ X for which D ∪ X is an edge of
G. The codegree of X is |N (X)| and the l-codegree of G is

δl(G) = min
{
|N (X)| : X ∈

(
V (G)

l

)}
.

Here is the main definition of this paper. Given a k-graph F and integers l, n,
and m such that 0 ≤ m < n and 0 ≤ l < k, let tl(n, m, F) be the smallest integer t
such that every k-graph of order n and l-codegree at least t has an F-tiling of size
at least (n − m)/v(F) (that is, an F-tiling that covers all but at most m vertices).

Determining tl(n, m, F) is a very general problem. For example, if m = n−v(F),
then we want to guarantee at least one copy of a k-graph F . It is not hard to
show that the function t1(n, n − v(F), F) determines the Turán density π(F) =
limn→∞ ex(n, F)/

(n
k

)
, the last problem being notoriously hard for virtually all

hypergraphs.
Here we are interested in almost perfect F-tilings, that is, the case when m = o(n)

(especially the case m = 0). Unlike the 2-graph case, there are not many results of
this type for k ≥ 3. Let us very briefly mention some of them, referring the reader to
the original papers for all details. Kühn and Osthus [9] showed that, for fixed k ≥ 3,

tk−1(kn, 0, K k
k ) = 1

2
kn + O(

√
n log n) (1)

and that tk−1(n, m, K k
k ) = n/k + o(n) when 2k2 ≤ m ≤ o(n). Rödl, Ruciński, and

Szemerédi [12,13] were able to reduce or completely eliminate the error terms in the
above estimates using their ‘absorbing’ technique. In particular, they determined
tk−1(n, k − 1, K k

k ) exactly for all n ≥ n0(k). Kühn and Osthus [8] showed, among
other things, that t2(4n, 0, F) = (1 + o(1))n, where F is the (unique) 3-graph of
order 4 and size 2.

Abassi (unpublished) asked if t2(4n, 0, K 3
4 ) ≤ 2n. Czygrinow and Nagle [3,

Theorem 2.1] disproved this by showing that t2(n, m, K 3
4 ) ≥ 3n/5 − m + o(n). The

latter paper motivated the author’s interest in this area. The 3-graph K 3
4 is a very



Perfect Matchings and K 3
4 -Tilings in Hypergraphs 393

interesting case; for example, determining the Turán function ex(n, K 3
4 ) of K 3

4 is one
of the most famous open problems in extremal combinatorics.

Here we present the following lower bounds, in particular improving the above
bound of Czygrinow and Nagle [3] for all m.

Proposition 1. There is a constant C > 0 such that for any 0 ≤ m < n we have

t2(n, m, K 3
4 ) ≥ 5

8
n − 1

8
m − C

√
n log n. (2)

Also, for any n = 8q + r with integers q ≥ 0 and r ∈ {0, 4}, we have

t2(n, 0, K 3
4 ) ≥ 6q + r − 2 ≥ 3

4
n − 2. (3)

On the other hand, we have the following upper bounds.

Theorem 1. For every n ≥ 15,

t2(n, 14, K 3
4 ) ≤

⌈
2n + 	(n − 15)/4
 − 2

3

⌉
≤ 3

4
n − 5

4
. (4)

Also, there is a constant C such that for all integers n ≥ 1 we have

t2(4n, 0, K 3
4 ) ≤ α × 4n + C

√
n log n, (5)

where

α = 2 + √
10

6
= 0.8603... .

It is unlikely that (5) is sharp. But, given the absence of any upper bounds on
t2(4n, 0, K 3

4 ) in the literature, we feel we should present at least some non-trivial
bound. Hopefully, the quest for improving (5) would lead to new ideas and better
bounds.

In fact, the proof of (5) required estimating the function t2(4n, 0, K 4
4 ). After

the author determined the latter function asymptotically, he realized that the proof
extends to some other values of the parameters, giving the following result of inde-
pendent interest.

Theorem 2. Let k ≥ 3 be fixed and let k/2 ≤ l ≤ k − 1. Let n be large. Then

1
2

(
kn

k − l

)
− O(nk−l−1) ≤ tl(kn, 0, K k

k ) ≤ 1
2

(
kn

k − l

)
+ O(nk−l−1/2

√
log n). (6)
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The lower bound in (6) is obtained as follows. Partition [kn] = A ∪ B into parts
of sizes a and b such that |a − b| ≤ 2 and a is odd. Take as edges all k-tuples
that intersect A in an even number of vertices. Since any K k

k -matching uses an even
number of vertices from A, there is no perfect K k

k -matching.

For any k-graph G, l ∈ [k], and A ∈ (V (G)
l−1

)
with |N (A)| = δl−1(G), we have

δl−1(G) = |N (A)| = 1
k − l + 1

∑
x∈V (G)\A

|N (A ∪ {x})| ≥ v(G) − l + 1
k − l + 1

δl(G). (7)

Hence, it is enough to prove the upper bound in (6) for l = �k/2 only. Theorem 2
includes the upper bound (1) of Kühn and Osthus [9], except the constants in our
error terms are larger.

We prove the upper bound of Theorem 2 by modifying the ideas in [9]. It is not
surprising that our proof shares many features with that from [9]. In particular, we
consider a certain k-partite version of the problem first and then deduce Theorem 2.

For a k-partite k-graph G with vertex parts labeled as V1, . . . , Vk ⊆ V (G) and
an index set L ⊆ [k], let δL(G) be the minimum of |N (X)| over all sets X ⊆ V (G)

such that |X | = |L| and X intersects every Vi with i ∈ L (in other words, |X ∩ Vi | is
either 1 or 0 depending on whether i ∈ L or i ∈ [k]\L).

Theorem 3. Let k ≥ 2, l ∈ [k − 1], and L ∈ ([k]
l

)
be fixed. Let n be sufficiently large

and let

λ = √
257kn log n. (8)

Let H = (V, E) be a k-uniform k-partite hypergraph with parts V1 ∪ · · · ∪ Vk = V
such that |Vi | = n for each i ∈ [k]. If

δL(H)nl + δ[k]\L(H)nk−l ≥ nk + kλnk−1, (9)

then H admits a perfect K k
k -matching.

Note that in Theorem 3 we look at the codegrees of sequences of vertices of two
special types only. The constant factor 1 in front of nk in the right-hand side of (9)
is easily seen to be sharp (see, for example, the construction in [9, Lemma 10]). We
do not try to optimize the constants in the error term.

Recently, Aharoni, Georgakopoulos, and Sprüssel [1, Theorem 2] showed that
every k-partite k-graph H with parts V1, . . . , Vk , each of size n, has a perfect K k

k -
matching provided δ[k−1](G) > n/2 and δ{2,...,k}(G) ≥ n/2. They also conjectured
[1, Conjecture 1] that, for any l ∈ [k −1] the above assumptions can be weakened to
δ[l](G) > nk−l/2 and δ{l+1,...,k}(G) ≥ nl/2. Our Theorem 3 implies an asymptotic
version of this conjecture for all large n (with the factor 1/2 replaced by 1/2 +
((257k3 log n)/n)1/2 in one of the codegree conditions).

Section 5 contains some concluding remarks and open problems.
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2. K3
4 -Tilings

Proof of Proposition 1. Let us first prove (2). Given n and m, let V = [n]. Partition
[n] = A ∪ B with |A| = 	(n − m − 1)/4
. Let G consist of all triples intersecting A
plus a K 3

4 -free 3-graph H on B with

δ2(H) >
|B|
2

− C
√

n log n. (10)

Such a 3-graph H was constructed by Czygrinow and Nagle [3, Proposition 2.3].
Let us briefly recall their construction. We generate a random tournament T on B
and let a triple {x, y, z} ∈ (B

3

)
with x < y < z in the order induced from [n] belong

to H if of the two pairs {x, y} and {x, z} exactly one is directed toward x in the
tournament T . It is not hard to see that H is always K 3

4 -free. On the other hand, the
codegree of any x, y in H (once, for simplicity, we fix the orientation of {x, y}) has
the binomial distribution with parameters (|B|−2, 1/2). By Chernoff’s bounds, the
probability that |NH (x, y)| ≤ |B|/2 − C

√
n log n is at most o(|B|−2). (When there

are two different hypergraphs on a common set of vertices, we may use the subscript
to clarify in which one we take the neighborhood.) So (10) holds almost surely.

Every K 3
4 -subgraph of G must intersect A. Thus, any K 3

4 -tiling in G has at
most |A| elements and at least m + 1 vertices remain uncovered. Since all triples
intersecting A belong to G, we have δ2(G) = δ2(H) + |A|. By (10), this proves the
required bound (2).

The following construction establishes (3). If r = 4, let a0 = 2q + 1. Otherwise
(if r = 0), we let a0 be either 2q + 1 or 2q − 1, with both choices giving the same
bound. Partition [n] = A0 ∪ A1 ∪ A2 ∪ A3 into parts of sizes a0 + a1 + a2 + a3 = n,
where a1, a2, a3 are nearly equal, that is, |ai − a j | ≤ 1 for 1 ≤ i < j ≤ 3. Let G
consist of all triples that satisfy one of the following (mutually exclusive) properties:

– have exactly two vertices in A0;
– intersect each of A0, Ai , A j for some 1 ≤ i < j ≤ 3;
– lie inside Ai for some i ∈ [3];
– have two vertices in A j and one vertex in Ai for some distinct i, j ∈ [3].

Since A0 spans no edge, no K 3
4 -subgraph of G can intersect it in more than 2

vertices. Also, no K 3
4 -subgraph can have exactly one vertex in A0. Indeed, other-

wise its other three vertices x1, x2, x3 must come from A1, A2, A3, one from each
part, which contradicts the fact that such a triple {x1, x2, x3} is not an edge of G
by definition. Thus every K 3

4 has an even number of vertices in A0. So, a perfect
K 3

4 -tiling is impossible because a0 = |A0| is odd. Also, the easy case analysis shows
that

δ2(G) = a0 + a1 + a2 + a3 − max(a0, a1, a2, a3) − 2 = 6q + r − 3,

where the 2-codegree of G can be achieved by a pair of vertices connecting some two
of the parts A1, A2, A3 or lying inside a largest set among A1, A2, A3. The inequality
t2(n, 0, K 3

4 ) ≥ δ2(G) + 1 gives (3). �
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Remark 1. Czygrinow and Nagle [3, Conjecture 3.1] conjectured that the 2-codegree
of an arbitrary K 3

4 -free 3-graph of order n is at most ( 1
2 + o(1))n. If this conjecture

is false, then our bound (2) can be improved.

Proof of Theorem 1. We prove (4). Our proof is obtained by adopting the proof of
Theorem 2.1 in Fischer [5].

Take an arbitrary 3-graph G = (V, E) of order n ≥ 15 and 2-codegree a = δ2(G)

with

a >
2n + 	(n − 15)/4
 − 3

3
. (11)

Recall that K 3
m is the complete 3-graph on m vertices. In particular, K 3

3 denotes
the single 3-edge while K 3

2 denotes the 3-graph of order 2 without any edges. For a
family F of 3-graphs, let an F-tiling in G be a collection of vertex-disjoint subgraphs
of G, each isomorphic to a member of F . Define the weight factors to be w2 = 2,
w3 = 6, and w4 = 11. Let T be a {K 3

2 , K 3
3 , K 3

4 }-tiling in G that maximizes the total
weight w(T ) = w2l2 + w3l3 + w4l4, where li denotes the number of copies of K 3

i in
T . Since an arbitrary pair of vertices forms a K 3

2 -subgraph (and w2 > 0), at most
one vertex of V is missed by the tiling T .

We claim that the K 3
4 -subgraphs of T cover all but at most 14 vertices of V ,

which proves the theorem. Suppose on the contrary that the claim is false.
Let us say that a 3-graph F ∈ T and a vertex x ∈ V \ V (F) make a connection

(denoted by (F, x) ∈ C) if v(F) ≤ 3 and V (F) ∪ {x} spans a complete 3-graph.
Thus, each connection produces another {K 3

2 , K 3
3 , K 3

4 }-tiling when we move x to
V (F). We are going to explore this fact (and the maximality of T ). For example, if
a K 3

i -subgraph F ∈ T with i ≤ 3 makes a connection with some x , then x belongs
to a K 3

j -subgraph of T with j > i for otherwise we can strictly increase the weight
of T by moving x to F . (Note that w4 + w2 − 2w3 = 1, w3 − 2w2 = 2, and other
possible weight changes are all positive.)

Clearly, each K 3
2 -subgraph of F makes at least a = δ2(G) connections. Also,

for each K 3
3 -subgraph of F there are at least 3δ2(G) − 3 = 3a − 3 edges that

intersect it in exactly two vertices. Hence, if c is the number of connections made by a
K 3

3 -subgraph, then 3a − 3 ≤ 3c + 2(n − 3 − c), i.e.

c ≥ 3a − 2n + 3.

Suppose first that l3 ≥ 4. Let F1, . . . , F4 be some K 3
3 -subgraphs of T . As we have

already observed, all connections created by Fi ’s belong to K 3
4 -subgraphs of T . By

our assumption, T has at most 	(n − 15)/4
 K 3
4 -subgraphs. Since 4(3a − 2n + 3) >

4	(n − 15)/4
, the vertices of some K 3
4 -subgraph F ∈ T make in total at least 5

connections with F1, . . . , F4. Consider the bipartite graph B with parts {F1, . . . , F4}
and V (F) whose edge sets consists of those pairs that make a connection. Since B
has at least 5 edges, the König-Egerváry Theorem (see e.g. [4, Theorem 2.1.1]) or a
direct analysis shows that B has two disjoint edges. This gives us distinct i, j ∈ [4]
and distinct x, y ∈ V (F) such that (Fi , x), (Fj , y) ∈ C. By moving x to Fi and y to Fj
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(thus reducing F to K 3
2 ), we increase the total weight of T by 2(w4−w3)+(w2−w4) =

1, which contradicts the maximality of T .
Thus l3 ≤ 3. Since the number of vertices of G that are not covered by

K 3
4 -subgraphs of T is at least 15 and at most 1+2l2+3l3, we conclude that l2 ≥ 3. Let

F1, F2, F3 be some K 3
2 -subgraphs of T . The vertices of no K 3

3 -subgraph F ∈ T make
more than 3 connections to F1, F2, F3. Indeed, otherwise (by König-Egerváry) we
get distinct i, j ∈ [3] and distinct x, y ∈ V (F) such that (Fi , x), (Fj , y) ∈ C. By mov-
ing x to Fi and y to Fj (thus eliminating F from T completely), we increase the total
weight of T by 2(w3−w2)−w3 = 2, a contradiction to the maximality of T . Likewise,
the vertices of no K 3

4 -subgraph F ∈ T make more than 8 connections to F1, F2, F3.
Indeed, otherwise (again, by König-Egerváry) we find distinct x1, x2, x3 ∈ V (F)

such that (Fi , xi ) ∈ C for every i ∈ [3]. Thus by moving each xi to Fi , we create
three new K 3

3 -subgraphs, increasing the weight of T by 3(w3 − w2) − w4 = 1, a
contradiction.

Therefore, by estimating from above and below the number of connections cre-
ated by F1, F2, F3, we obtain that 3a ≤ 3l3 + 8l4. Since T has at most 	(n − 15)/4

K 3

4 -subgraphs and l3 ≤ 3, we have 3l3 + 8l4 ≤ 9 + 8	(n − 15)/4
. Thus we have

3a ≤ 9 + 8	(n − 15)/4
 < 	(n − 15)/4
 + 2n − 3,

where it is routine to check that the second inequality holds for all n ≥ 15. This
contradicts (11) and proves (4).

Let us turn to (5). Fix large C and then let n be sufficiently large. Given a 3-graph
G on [4n] such that

a = δ2(G) ≥ α × 4n + C
√

n log n,

let us form the 4-graph H on [4n], where a 4-set A is an edge of H if and only if
G[A] is isomorphic to K 3

4 .
It is enough to show that H admits a perfect K 4

4 -matching. Take any distinct
x, y ∈ [4n]. Let A be a set of exactly a vertices that form an edge of G with {x, y}.
(Such a set A exists since |NG(x, y)| ≥ a.) Moreover, the neighborhood NG(x),
when restricted to

(A
2

)
has minimum degree (as a 2-graph) at least 2a − 4n + 1. The

same applies to NG(y) ∩ (A
2

)
. Hence, the neighborhood NH (x, y) in the 4-graph H

has size at least∣∣∣∣NG(x) ∩ NG(y) ∩
(

A

2

)∣∣∣∣ ≥ 2 × (2a − 4n + 1)a

2
−

(
a

2

)
>

1
2

(
4n

2

)
+ C ′n3/2

√
log n

for some C ′ that tends to infinity with C (in fact, we can take C ′ = (2
√

10−o(1))C).
Theorem 2 implies that H has a perfect matching, which gives the desired K 3

4 -
tiling in G. This finishes the proof of Theorem 1. �

Remark 2. It is easy to convert the proof of (4) into a polynomial-time algorithm
that produces a K 3

4 -tiling guaranteed by Theorem 1: just start with an arbitrary
collection of 	n/2
 vertex-disjoint K 3

2 -subgraphs and keep updating it (as stipulated
in the proof) until at most 14 vertices remain uncovered by K 3

4 -subgraphs. Since each
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update increases the total weight w(T ) at least by 1, the total number of updates is
at most w4n/4 − w2	n/2
 ≤ 9n/4 + 1.

The proof of (5) (see Section 4) gives a randomized polynomial time algorithm
that succeeds with high probability.

3. Auxiliary Lemmas

The purpose of this section is to provide a few auxiliary results needed for the proofs
of Theorems 2 and 3. First, we will use a special case of a more general result of
McDiarmid [11, Theorem 1.1] (see also Talagrand [14, Theorem 5.1]).

Lemma 1. Let c, r be positive reals. Let Z : Sn → R≥0 be a function from permuta-
tions on [n] to non-negative reals such that

– if σ, σ ′ ∈ Sn differ only in two places then |Z(σ ) − Z(σ ′)| ≤ c;
– if Z(σ ) = s then there is a subset W ⊆ [n] of size at most rs such that every σ ′ ∈ Sn

that coincides with σ on W satisfies Z(σ ′) ≥ s.

Let σ be a permutation from Sn , drawn uniformly at random, and let m be a median
of the random variable Z(σ ). Then, for each h ≥ 0, the probability of Z(σ ) ≤ m − h
satisfies the following inequality:

Pr{Z(σ ) ≤ m − h} ≤ 2 exp

(
− h2

16rc2m

)
.

�

The above lemma allows us to deduce the following corollary rather easily.

Corollary 1. Let G be an arbitrary subgraph of Kn,n and let h satisfy

h > 4np0, (12)

where we set p0 = 4 exp(−h2/(256n)). Let M be a perfect matching of Kn,n , chosen
uniformly at random. Then

Pr
{ ∣∣∣∣ |M ∩ E(G)| − e(G)

n

∣∣∣∣ ≥ h

}
≤ p0. (13)

Proof. Let {x1, . . . , xn} and {y1, . . . , yn} be the parts of Kn,n . We generate M by
taking a random permutation σ ∈ Sn and letting

M = { {xi , yσ(i)} : i ∈ [n] }.
Let Z(σ ) = |M ∩ E(G)| and let m be a median of Z(σ ). Clearly, the assumptions

of Lemma 1 are satisfied with c = 2 and r = 1. In view of m ≤ n, we have
Pr{Z(σ ) ≤ m − h/2} ≤ p0/2. The random variable Z ′(σ ) = n − Z(σ ) counts
|M ∩ E(G)| so it also satisfies the assumptions of Lemma 1 with c = 2 and r = 1.
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By applying Lemma 1 to Z ′(σ ) (with respect to a median m′ = n − m) we obtain
that

Pr{Z ′(σ ) ≤ m′ − h/2} = Pr{Z(σ ) ≥ m + h/2} ≤ 1
2

p0.

Thus the probability that Z(σ ) �∈ I is at most p0, where

I = {x ∈ R : |x − m| < h/2}.
We claim that the expectation

µ = E(Z(σ )) = e(G)

n

lies in I . Suppose on the contrary that this is not true, say µ ≥ m + h/2. Consider
the expectation of X = µ − Z(σ ), which is of course 0. Those σ with Z(σ ) ≤ m
contribute at least (1/2)×(h/2) to E(X). The contribution from σ with m < Z(σ ) ≤
m + h/2 is non-negative. The remaining σ contribute at least −p0n. However, this
contradicts the assumption (12) and the fact that E(X) = 0.

It follows from µ ∈ I that if |Z(σ ) − µ| ≥ h then Z(σ ) �∈ I . As we have already
demonstrated, the latter event has probability at most p0. The corollary is proved.

�

Remark 3. Kühn and Osthus [9, Lemma 8] proved a result analogous to Corollary 1
but their proof (based on Brégman’s theorem [2] on permanents) crucially relies
on the assumption that the minimum degree of G on one side is larger than n/2.
Also, another result of Kühn and Osthus [10, Theorem 1.1] implies a weaker version
of (13) (namely, that for any positive constant c there is ε = ε(c) > 0 such that (13)
holds when n > n0(c) h = cn, and p0 = e−εn). Since our proof is short and gives
better error terms (namely, h = O(

√
n log n) in our applications), we included it

here.

Also, we will make use of the following result [9, Proposition 13] proved by the
standard probabilistic tools.

Proposition 2. For each integer k ≥ 2 there exists an integer n0 such that the following
holds. Suppose n ≥ n0 and that H is a k-uniform hypergraph with kn vertices. Then
there exists a partition V1, . . . , Vk of V (H) into sets of size n such that for every i ∈ [k]
and every distinct x1, . . . , xk−1 ∈ V (H) we have

∣∣∣∣ |N (x1, . . . , xk−1) ∩ Vi | − |N (x1, . . . , xk−1)|
k

∣∣∣∣ ≤ 2k
√

n log n.

�

Let the symbol K denote the (generic) complete hypergraph and let K [V1, . . . , Vk]
consist of all k-sets A such that |A ∩ Vi | = 1 for each i ∈ [k].
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Corollary 2. For any k ≥ 2 there exists n0 such that the following holds. Suppose
n ≥ n0 and that H is a k-uniform hypergraph with kn vertices. Then there exists a
partition V1, . . . , Vk of V (H) into sets of size n such that for every l ∈ [k − 1], every
l-set X ⊆ V (H), and any distinct i1, . . . , im ∈ [k] we have

∣∣∣∣ km

m!
∣∣N (X) ∩ K [Vi1 , . . . , Vim ]∣∣ − |N (X)|

∣∣∣∣ ≤ 4km+1nm−1/2
√

log n, (14)

where m = k − l.

Proof. Let n be sufficiently large so that Proposition 2 applies. Given H = (V, E),
take the partition V (H) = V1 ∪ · · · ∪ Vk given by Proposition 2. Let us show that it
has the required properties. Let l ∈ [k − 1]. Take any l-set X ⊆ V . Let Ui = Vi \ X
and U = V \ X . Let F = (U, N (X)) be the m-graph on U having N (X) for the edge
set. Proposition 2 implies that for any (m − 1)-set Y ⊆ U and i, j ∈ [k]

− λ ≤ |NF (Y ) ∩ Ui | − |NF (Y ) ∩ U j | ≤ λ, (15)

where λ = 4k
√

n log n.
Let the distribution of a set A ⊆ U be the vector

d(A) = ( |A ∩ U1|, . . . , |A ∩ Uk | ).
Let D consist of all k-vectors of non-negative integers with sum m. The weight of a
vector d = (d1, . . . , dk) ∈ D is

w(d) = m!
d1! × · · · × dk ! × km

.

This is exactly the limit of the probability that a random m-set has the distribution
d, when the part sizes are equal and tend to infinity. In particular,

∑
d∈D

w(d) = 1. (16)

For d ∈ D, let Fd consist of the m-sets in E(F) whose distribution is d.
Suppose that d = (d1, . . . , dk) and d′ = (d ′

1, . . . , d ′
k), d, d′ ∈ D, are at �1-distance

2 (that is,
∑k

i=1 |di − d ′
i | = 2). Let i, j ∈ [k] satisfy di = d ′

i + 1 and d j = d ′
j − 1. Let

us sum (15) over all sets Y ∈ ( U
m−1

)
with distribution

(min(d1, d ′
1), . . . , min(dk, d ′

k)) = (d1, . . . , di−1, di − 1, di+1, . . . , dk).

Since there are at most nm−1 choices of Y , we obtain −λnm−1 ≤ di |Fd| − d ′
j |Fd′ | ≤

λnm−1. This implies that
∣∣∣∣∣

|Fd|
w(d)

− |Fd′ |
w(d′)

∣∣∣∣∣ ≤ λnm−1 × km ∏k
h=1 min(dh !, d ′

h !)
m! ≤ λnm−1 × km

m
. (17)
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Now, every two distributions from D are at �1-distance at most 2m apart. It
follows from (17) (and the Triangle Inequality) that for arbitrary d, d′ ∈ D we have

∣∣∣∣∣
|Fd|
w(d)

− |Fd′ |
w(d′)

∣∣∣∣∣ ≤ λnm−1km . (18)

Given distinct i1, . . . , im ∈ [k] as the input to the corollary, define the distribution
d ∈ D by di1 = · · · = dim = 1 with all other di ’s being 0. Now, (16) and (18) imply
that

|F | =
∑
d′∈D

|Fd′ | ≤
(

|Fd|
w(d)

+ λnm−1km

) ∑
d′∈D

w(d′) = |Fd|
w(d)

+ λnm−1km .

This proves one direction in (14). The other direction is proved analogously. �

4. Perfect Matchings in k-Partite k-Graphs

Proof of Theorem 3. At the first reading, the reader may find it useful to run the
proof in the special case k = 3 and L = {1, 2}, which illustrates the main idea well.

Assume without loss of generality that L = [l]. We will inductively produce
K 2

2 -matchings M1, . . . , Ml−1 where Mi is a perfect matching in the bipartite graph
K [Vi , Vi+1]. We need to introduce some notation first.

Given i ∈ [l − 1] and M1, . . . , Mi , let Ti be the perfect K i
i -matching in

K [V1, . . . , Vi ] obtained by ‘gluing’ the edges of M1, . . . , Mi−1 together. Formally,
T1 is the perfect K 1

1 -matching of V1, which consists of singletons while, for i ≥ 2,

Ti = { {x1, . . . , xi } : ∀ j ∈ [i − 1] {x j , x j+1} ∈ M j
}
.

Also, for a set X ∈ K [Vi+2, . . . , Vk], let FX ⊆ K [Vi , Vi+1] consist of those pairs
{xi , xi+1} with xi ∈ Vi and xi+1 ∈ Vi+1 such that D ∪ {xi+1} ∪ X ∈ E(H), where D
is the element of the perfect K i

i -matching Ti that contains xi .
We require that the following Property Pi holds for every i ∈ [l − 1]:

∣∣∣∣ |Mi ∩ FX | − |FX |
n

∣∣∣∣ ≤ λ, for every X ∈ K [Vi+2, . . . , Vk], (19)

where λ is defined by (8).
If l = 1, then we just define T1 to be the perfect K 1

1 -matching of V1 and there is
nothing else to do.

Suppose that l ≥ 2, i ∈ [l − 1], and we have already constructed M1, . . . , Mi−1
(and thus we also have the matching Ti ). Let Mi be a random perfect matching of
K [Vi , Vi+1]. For any fixed X ∈ K [Vi+2, . . . , Vk], the probability that (19) is false is
at most

p0 = 4 exp

(
− λ2

256n

)
= o(n−k), (20)
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by Corollary 1 applied to FX with h = λ. (Note that (12) is satisfied by (8) and (20).)
Since there are nk−i−1 ≤ nk choices of X , the union bound implies that with prob-
ability 1 − o(1) Mi satisfies Property Pi . Fix any such Mi and, if i < l − 1, repeat
the argument for i + 1.

Thus the required matchings M1, . . . , Ml−1 exist.
Now, let us prove that for any i ∈ [l − 1] and any X ∈ K [Vi+2, . . . , Vk], we have∣∣∣∣ |N (X) ∩ Ti+1| − |N (X)|

ni

∣∣∣∣ ≤ iλ. (21)

We prove this by induction on i , the case i = 1 being exactly Property P1. Suppose
that 2 ≤ i ≤ l − 1 and that (21) holds for i − 1. Let X ∈ K [Vi+2, . . . , Vk]. We have,
by Property Pi and the induction assumption, that

|N (X) ∩ Ti+1| = |FX ∩ Mi | ≤ λ + 1
n

|FX |

= λ + 1
n

∑
x∈Vi+1

|N (X ∪ {x}) ∩ Ti |

≤ λ + 1
n

∑
x∈Vi+1

( |N (X ∪ {x})|
ni−1

+ (i − 1)λ

)
= iλ + |N (X)|

ni
.

This proves one direction of (21). The other direction is proved in the same way.
Hence, (21) holds for all i ∈ [l − 1].

We will need only the case i = l − 1 of (21) which implies that for every X ∈
K [Vl+1, . . . , Vk] we have

|N (X) ∩ Tl | ≥ |N (X)|
nl−1

− (l − 1)λ ≥ δ[k]\L(H)

nl−1
− (l − 1)λ. (22)

Similarly, we build matchings from the other end. Namely, inductively for j =
k, k − 1, . . . , l + 2 we consider a random matching M ′

j ⊆ K [Vj−1, Vj ] and take

a ‘typical’ one. Similarly to above, we show that there is a K k−l
k−l -matching T ′

k−l ⊆
K [Vl+1, . . . , Vk] such that any l-set Y ∈ K [V1, . . . , Vl ] forms an H -edge with at least

δL(H)

nk−l−1
− (k − l − 1)λ (23)

edges of T ′
k−l .

Finally, we consider the bipartite graph B with parts U1 = Tl and U2 = T ′
k−l ,

where we connect X ∈ Tl to Y ∈ T ′
k−l if and only if X ∪ Y ∈ E(H). By (22), (23),

and our assumption (9) we have

δ{1}(B) + δ{2}(B) ≥ δ[k]\L(H)

nl−1
− (l − 1)λ + δL(H)

nk−l−1
− (k − l − 1)λ ≥ n,

where e.g. δ{1}(B) is the smallest B-degree of a vertex from U1. Let us check that the
bipartite graph B satisfies Hall’s condition. Let X be an arbitrary non-empty subset
of U1 and let 	(X) consist of all vertices in U2 that send at least one edge to X . If
|X | ≤ δ{1}(B), then |	(X)| ≥ δ{1}(B) ≥ |X |, as desired. Otherwise, every x ∈ U2 is
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connected to X (since |U1 \ X | < n − δ{1}(B) ≤ δ{2}(B)) and |	(X)| = n ≥ |X |.
Thus, by Hall’s Marriage Theorem, B contains a perfect matching which, in turn,
gives a perfect K k

k -matching in H , proving Theorem 3. �
Proof of Theorem 2. We have already established the lower bound in (6). Also,
by (7), it suffices to prove the upper bound in (6) for l = �k/2 only. Given k ≥ 3,
let l = �k/2 and let C = C(k) be sufficiently large. Let n be arbitrary and let G be
a k-graph on kn vertices with

δl(G) ≥ 1
2

(
kn

k − l

)
+ Cnk−l−1/2

√
log n. (24)

(Since C(k) is large, n is also forced to be large with respect to k.)
Apply Corollary 2 to G obtaining a balanced k-partite k-graph H with partition

V (H) = V1 ∪ · · · ∪ Vk . Let L = [l] and m = k − l. By (14) and (24), we have

δL(H) ≥ m!
km

(
δl(G) − 4km+1nm−1/2

√
log n

)
>

nk−l

2
+ kλnk−l−1,

where λ is defined by (8). Likewise, δ[k]\L(H) ≥ nl/2 + kλnl−1. Hence, the assump-
tions of Theorem 3 are satisfied, which implies that H has a perfect K k

k -matching.
This gives the required K k

k -matching in G ⊇ H . �

5. Concluding Remarks

Many problems remain open. One is to close the gaps in our bounds on (almost)
perfect K 3

4 -tilings.
It is possible that there is an ‘
(n)-jump’ in t2(n, m, K 3

4 ) when m goes from 0
to 14 or that the ratio t2(n, 3, K 3

4 )/n tends to different limits as n → ∞, depending
on the residue of n modulo 4. Such phenomena do occur for tk−1(n, m, K k

k ) with
k ≥ 3, see [9,12,13]. Unfortunately, our bounds are not strong enough to show or
refute this.

An interesting open problem on perfect matchings is to determine the exact value
of tl(kn, 0, K k

k ) for k/2 ≤ l ≤ k −2 and all large n. Also, it is not clear what happens
for the remaining values of l. Unfortunately, our method breaks down when l < k/2.
The simplest open case is t1(3n, 0, K 3

3 ). The author conjectured in the first version

of the paper that t1(3n, 0, K 3
3 ) = ( 1

2 +o(1))
(3n

2

)
. This was disproved by Hán, Person,

and Schacht [7] who showed that t1(3n, 0, K 3
3 ) = ( 5

9 + o(1))
(3n

2

)
. The lower bound

is demonstrated by the following simple construction: partition [3n] = A ∪ B with
|A| = n − 1 and take all triples that intersect A (see also Aharoni, Georgakopoulos,
and Sprüssel [1, Section 3] where a 3-partite version of this construction appears).

Hopefully, this paper (and the open problems stated here) will generate more
interest and work in this difficult but fascinating area.

Note added in proof: After this paper was written, the author learned that Peter
Keevash and Benny Sudakov had observed that t2(n, 0, K 3

4 ) ≥ (5/8−o(1))n several
years ago, and Peter Keevash and Yi Zhao also proved (unpublished) that 2n/3−1 ≤
t2(n, 0, K 3

4 ) ≤ ( 2+√
10

6 + o(1))n, where n is a large integer divisible by 4.
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