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Let Σk consist of all k-graphs with three edges D1,D2,D3 such that |D1∩D2|=k−1 and
D1 �D2 ⊆D3. The exact value of the Turán function ex(n,Σk) was computed for k = 3
by Bollobás [Discrete Math. 8 (1974), 21–24] and for k=4 by Sidorenko [Math Notes 41
(1987), 247–259].

Let the k-graph Tk ∈Σk have edges

{1, . . . , k}, {1, 2, . . . , k − 1, k + 1}, and {k, k + 1, . . . , 2k − 1}.

Frankl and Füredi [J. Combin. Theory Ser. (A) 52 (1989), 129–147] conjectured that
there is n0 =n0(k) such that ex(n,Tk)=ex(n,Σk) for all n≥n0 and had previously proved
this for k = 3 in [Combinatorica 3 (1983), 341–349]. Here we settle the case k = 4 of the
conjecture.

1. Introduction

Let Tk be the family of all k-graphs (i.e. k-uniform set systems) with three
edges such that one edge contains the symmetric difference of the other two.
The family Σk consists of all k-graphs with three edges D1,D2,D3 such that
|D1∩D2|=k−1 and D1�D2⊆D3. Also, let the generalized triangle Tk be
the k-graph with edges

{1, . . . , k}, {1, 2, . . . , k − 1, k + 1}, and {k, k + 1, . . . , 2k − 1}.
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Please note that Tk∈Σk and Σk is a subfamily of Tk. For k=2 we obtain in
each case the single triangle K2

3 . Also, we have Σ3 =T3.
Let F be a family of k-graphs. A k-graph G is F-free if it does not

contain any member of F as a subgraph. The Turán function ex(n,F) is the
maximum size of an F-free k-graph of order n:

ex(n,F) = max
{
|G| : G ⊆

(
[n]
k

)
, G is F-free

}
,

where [n] = {1, . . . ,n}. Please note that we identify hypergraphs with their
edge sets. For a k-graph F , we write ex(n,F ) for ex(n,{F}).

As a possible generalization of the problem of computing ex(n,K2
3 ), which

was solved by Mantel [14] and Turán [23], to 3-graphs, Katona [9] suggested
to consider ex(n,T3). This function was determined by Bollobás [1] who
showed that for any n ≥ 3 the complete balanced 3-partite 3-graph (that
is, the sizes of any two parts differ at most by one) is the unique extremal
graph. Thus

(1) ex(n,T3) =
⌊n

3

⌋
×

⌊n + 1
3

⌋
×

⌊n + 2
3

⌋
.

In turn, Bollobás conjectured that the same is true for k≥4, that is, the
value of ex(n,Tk) is given by the balanced k-partite k-graph. De Caen [2]
raised the problem of computing ex(n,Σk).

Sidorenko [21] settled the case k = 4 of Bollobás’ conjecture. In fact,
Sidorenko proved that forbidding Σ4 alone suffices for the upper bound,
that is,

(2) ex(n,T4) = ex(n,Σ4) =
⌊n

4

⌋
×

⌊n + 1
4

⌋
×

⌊n + 2
4

⌋
×

⌊n + 3
4

⌋
, n ≥ 4,

with the complete balanced 4-partite 4-graph being the unique extremal
graph.

Shearer [20] showed that Bollobás’ conjecture fails for k≥10.
Frankl and Füredi [6] proved various results on Σk-free k-graphs for k=

5,6. In particular, they computed the exact value of ex(n,Σ5) for all n
divisible by 11 and the exact value of ex(n,Σ6) for all n divisible by 12.
For these n the extremal graphs are blow-ups of the unique (11,5,4) and
(12,6,5) Steiner systems.

Clearly, ex(n,Tk) ≥ ex(n,Σk). The super-saturation technique of Erdős
and Simonovits [4] (or, alternatively, the proof of Lemma 9 here) shows that
for any fixed k we have

(3) ex(n, Tk) − ex(n,Σk) = o(nk).
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Frankl and Füredi [6] conjectured that, for any fixed k ≥ 4, if n≥ n0(k) is
sufficiently large, then in fact

(4) ex(n, Tk) = ex(n,Σk).

Previously, Frankl and Füredi [5] had proved the case k=3 of (4). Very
recently, Keevash and Mubayi [11] presented a different proof of ex(n,T3)=
ex(n,Σ3), which shows that we can take n0(3)=33.

In this paper, we settle the conjecture for k=4.

Theorem 1. There is n0 such that for all n ≥ n0 we have ex(n,T4) =
ex(n,Σ4) and, moreover, the complete balanced 4-partite 4-graph is the
unique extremal 4-graph.

Unfortunately, the bound on n0 given by our proof of Theorem 1 is rather
large.

Our argument can be modified to prove the case k=3 of the conjecture.
We do not describe the corresponding modifications since they are fairly
obvious. (And there are already two shorter proofs of this case.) The con-
jecture is still open for k≥5. Our method seems promising in attacking the
cases k=5 or 6, given the above results of Frankl and Füredi [6] on Σk-free
graphs. Unfortunately, we have not been able to settle these cases.

2. An Outline of the Proof

Here we sketch our argument establishing Theorem 1 as well as give some
important definitions needed in the proof.

Two k-graphs F and G of the same order are m-close if we can add or
remove at most m edges to/from the first hypergraph and make it isomorphic
to the second. In other words, for some bijection σ : V (F ) → V (G) the
symmetric difference between σ(F )= {σ(D) :D ∈F} and G has at most m
edges.

Let F be a family of k-graphs. Its Turán density is

π(F) = lim
n→∞

ex(n,F)(n
k

) .

(The limit is known to exist, see Katona, Nemetz, and Simonovits [10].)
Let us call the family F s-stable if for any ε > 0 there are c > 0 and

n0 such that for arbitrary F-free k-graphs G1, . . . ,Gs+1 of the same order
n≥ n0, each of size at least (π(F)− c)

(n
k

)
, some two are ε

(n
k

)
-close. Please
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note that if F is s-stable for some s then it is also t-stable for any t>s. Let
the bare term stable mean 1-stable.

Let us return to Theorem 1. By (2) and (3) we know ex(n,T4) asymp-
totically but we have to compute the exact value for all large n. We proceed
by showing that T4 is stable.

This is not an easy task so first we prove that Σ4 is stable. This is done by
modifying Sidorenko’s proof of (2), so let us very briefly recall his argument.
It will be presented here somewhat differently than usually, in order to be
more conformal with our strengthening.

Let G be a maximum Σ4-free 4-graph of order n. If some two vertices
of G are not covered by a common edge, we can delete one and clone (that
is, duplicate) the other without introducing any forbidden subgraph nor
decreasing the size of G. This symmetrization trick can be applied to whole
groups of vertices, showing that it suffices to prove the upper bound (2) for
4-graphs G constructed in the following way. Take m≤n and a Σ4-free 4-
graph H on [m] such that every two vertices are covered by an edge. Choose
positive integers v1 + · · ·+ vm = n and blow-up H correspondingly, that is,
replace each vertex i ∈ [m] by a set Vi of size vi and replace each edge of
H by the corresponding complete 4-partite 4-graph. Clearly, the obtained
4-graph G has size n4 λH(v1

n , . . . , vm
n ), where

λH(y1, . . . , ym) =
∑
D∈H

∏
i∈D

yi

is the Lagrange polynomial of H. Hence, ex(n,Σ4)≤n4 ΛH , where

(5) ΛH = max{λH(y1, . . . , ym) : yi ∈ R, yi ≥ 0, y1 + · · · + ym = 1}

is the Lagrangian of H. Take any real vector y = (y1, . . . ,ym) attaining the
maximum in (5). By deleting vertices of H if necessary, we can assume
without loss of generality that each yi is strictly positive. It is not hard to
see that all partial derivatives ∂

∂i
λH(y) must be the same and, in view of

the trivial identity
∑m

i=1 yi
∂
∂i

λH(y)=4ΛH , are all equal to 4ΛH . Moreover,
our assumptions on H imply that every triple of vertices is contained in at
most one edge. Hence,

4m ΛH =
m∑

i=1

∂

∂i
λH(y) ≤ λ([m]

3 )(y) ≤ Λ([m]
3 ) ≤

1
m3

(
m

3

)
.

The case m = 5 leads to a contradiction, see Section 3.5 here. So, ΛH ≤
sup

{ (m−1)(m−2)
24m3 :m∈N\{5}

}
= 1

44 . This implies (2) for all n divisible by 4.
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Some extra work is needed to prove (2) for all n. We refer the Reader to [21]
for further details.

The main difficulty in proving the stability of Σ4 via Sidorenko’s argu-
ment is that the Symmetrization phase (or even just one step of it) may in
principle change the hypergraph essentially. In particular, it is difficult to
see why it should preserve the property of being close to a 4-partite 4-graph.
We overcome this by iteratively and constantly removing vertices whose de-
gree becomes too small at any step of Symmetrization. This ensures that
every time we are about to apply a deletion-cloning step we have the large
minimum degree. Then, when we reverse one step, each undeleted vertex
must have many incident edges, which forces all of them to fit perfectly into
the 4-partition we already have. All details of the proof that Σ4 is stable
can be found in Sections 3–4.

For any k, the stability of Tk easily follows from the stability of Σk,
see Section 5. Unfortunately, we do not know how prove the stability of T4

directly, without doing this for Σ4 first.
The stability of T4 implies by (2) and (3) that any maximum T4-free

graph G is close to a complete 4-partite 4-graph P on the same vertex set.
We choose P (not necessarily balanced) to maximize |G∩P |. If G⊆P , we
are done. Otherwise, there is at least one bad edge (i.e. an edge of G\P 	=∅).
Roughly speaking, we argue in Section 6 that each bad edge forces many
missing edges (i.e. the edges in P\G). The inequality |G\P |≥|P\G| allows us
to find a vertex x belonging to Ω(nk−1) bad edges. These bad edges block
almost all properly placed edges containing x, so |G∩ P | can be strictly
increased by moving x to another part of P , a contradiction.

Let us remark here that the fact that stability may help in exact compu-
tation of the hypergraph Turán function was observed and used by Füredi
and Simonovits [7], Keevash and Mubayi [11], Keevash and Sudakov [13,12],
Mubayi and Pikhurko [15], Pikhurko [17], and others.

As we have already mentioned, we were not able to settle other open cases
of Frankl and Füredi’s conjecture. However, we hope that our approach (or
some parts of it) may be useful in attacking the cases k≥5 of the conjecture.

3. Symmetrization

Here we describe the Symmetrization process.
Let δ=π(Σ4), which is 3/32 by (2). Suppose that reals c2, c1, c0 >0, and

an integer n0 satisfy 1� c2� c1� c0� 1
n0

, where b�a means that a>0 is
a sufficiently small real, depending on b. Let n≥n0 and G be an arbitrary
Σ4-free 4-graph on [n] with at least (δ−c0)

(n
4

)
edges.
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Informally speaking, we iterate the following two-part procedure. During
Cleaning Up, we consecutively remove vertices whose relative degree is too
small. When we reach a sufficiently large minimum degree, we apply Merg-
ing : if there are two groups of vertices such that no edge of G intersects
both, we ‘merge’ them together and return to Cleaning Up (even if there
are other groups that can be merged). If there is nothing to merge, then the
whole procedure terminates.

Here is the formal description (and the analysis) of this procedure, which
we call Symmetrization. It consists of several parts. For the ease of reference,
we put each part into a separate section.

3.1. The Initial Configuration and the Maintained Properties

Initially, let G0 =G, V0 =U0 =[n], and P0,u ={u} for u∈ [n].
Suppose that, after i iterations of Cleaning Up and Merging, we have a

4-graph Gi on Vi, a subset Ui ⊆Vi, and a partition Pi ={Pi,u :u∈Vi} of Vi,
where Pi,u denotes the part containing u. Thus the same set Pi,u is listed
|Pi,u| times in the sequence (Pi,v)v∈Vi .

Let l denote the total number of iterations until we stop. It will be the
case that the following Properties 1–4 hold for every i≤ l:

1. For any 0≤j≤ i, Uj∩Vi is a transversal for the partition {Pj,u∩Vi :u∈Vi},
that is, it intersects every part in precisely one vertex. (In particular, Ui

is a transversal for the partition {Pi,u :u∈Vi}.)
2. G[Ui] = Gi[Ui], where e.g. G[Ui] denotes the subgraph of G induced by

the set Ui.
3. Gi is the union of the complete 4-partite 4-graphs with the parts from Pi

corresponding to the edges of G[Ui]. (In other words, no edge of Gi can
intersect a part in more than one vertex while permuting vertices inside
any part we get an automorphism of Gi.)

4. If i≥1, then Ui⊆Ui−1 and Vi⊆Vi−1.

Trivially, Properties 1–4 are valid for i=0.

3.2. Cleaning Up

Let us describe the Cleaning Up part. Suppose we have already performed
i≥ 0 rounds of Cleaning Up and Merging. Let Gi, Vi, Ui, and Pi describe
the current configuration.
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Initially, we set G′
i = Gi, V ′

i = Vi, and n′
i = |V ′

i |. These three variables
(with primes) will be iteratively updated while Gi, Vi, Ui, and Pi, remain
unchanged (throughout the whole proof).

If every u∈V ′
i is incident to at least (δ−c1)

(n′
i−1
3

)
edges of G′

i, then we
have finished Cleaning Up. The final values of G′

i, V ′
i , and n′

i serve as the
input for the second part, Merging.

Suppose that some u∈V ′
i has G′

i-degree less than (δ−c1)
(n′

i−1
3

)
.

We are going to remove some vertex v of Pi,u from G′
i. It does not really

matter which vertex we delete, since all vertices of Pi,u look the same with
respect to G′

i by Property 3. However, it is convenient to note which vertices
come from which parts. Also, when we analyze the whole Symmetrization
procedure in Section 4, we restrict our attention the final set Vl and our proof
needs that if Pi,w is merged into Pi,u and Pi,w∩Vl 	=∅, then Pi,u∩Vl 	=∅. The
last property is formally stated and proved in Lemma 6. For these purposes
we require that the following always holds during Cleaning Up:

(6) Pj,v ∩ Uj ∩ V ′
i 	= ∅, ∀ v ∈ V ′

i , ∀ j ∈ [0, i],

where [s,t] denotes the interval {s,s+1, . . . , t} for integers s≤ t. Informally,
(6) states that if all vertices of some part Pj,v are later removed, then the
special vertex u∈Pj,v∩Uj is removed last.

If we have not removed any vertices in the current (i.e. i-th) Cleaning Up
step, then (6) holds by Property 1. In order to maintain the validity of (6),
we select a vertex v of Pi,u to be deleted as follows (assuming that (6) holds
beforehand). By (6), Pi,u∩Ui∩V ′

i 	=∅, so assume that u∈Ui∩V ′
i . Initially let

j = i and v =u. If Pj,v ∩V ′
i = {v}, we are done: select this v. Otherwise, let

h∈ [j−1] be the largest index such that Pj,v∩V ′
i intersects two parts of Ph.

(Such h exists because |Pj,v∩V ′
i |≥2, P0 consists of singletons while, as we

will see, each partition is obtained from the previous one by gluing some two
parts together.) One of these two parts of Ph is Ph,v. Let the other be Ph,w.
By the inductive assumption (6) we can assume that w∈Uh∩V ′

i . Redefine
j = h and v = w and repeat. Clearly, j strictly decreases each time, so this
selection procedure always terminates.

Having selected v, we remove it from G′
i (with all incident edges) and

from V ′
i . We redefine n′

i = |V ′
i |; thus it decreases by 1. One can check that (6)

remains valid after the removal.
We keep repeating the above removal step until the minimal degree of

G′
i becomes at least (δ−c1)

(n′
i−1
3

)
.

This finishes the description of Cleaning Up.
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3.3. Merging

Now, let us describe the Merging part. Suppose first that we have some
distinct u,w∈Ui∩V ′

i such that no edge of G′
i intersects both Pi,u and Pi,w.

(Note that by Property 3 this is equivalent to no edge of G containing both
u and w.) Without loss of generality assume that

(7) dG′
i
(u) ≥ dG′

i
(w),

where, for example, dG′
i
(u) is the G′

i-degree of u, that is, the number of
edges of G′

i that contain u. We let Ui+1 =(Ui∩V ′
i )\{w} and Vi+1 =V ′

i . For
v∈Vi+1, let

Pi+1,v =
{

(Pi,u ∪ Pi,w) ∩ Vi+1, if v ∈ Pi,u ∪ Pi,w,
Pi,v ∩ Vi+1, otherwise.

The 4-graph Gi+1 is defined by blowing-up G[Ui+1] in the obvious way.
Informally speaking, we merge Pi,w into Pi,u with w being erased from the
new transversal set Ui+1. After this (even if there are other pairs that can
be merged), we start the new round of Cleaning Up and Merging.

If no u and w as above exist, then we are done with Merging as well as
with the whole Symmetrization: let Gi+1 =G′

i, Ui+1 =Ui∩V ′
i , Vi+1 =V ′

i , and
Pi+1,v =Pi,v∩V ′

i for v∈V ′
i , and stop.

This finishes the description of Merging.

3.4. Verifying Properties 1–4

Let us note some important properties of the above steps. First of all, let us
point out that during Cleaning Up we repeat removals until we have attained
the large minimum degree while in the Merging step we glue parts only
once. This gives us the crucial property that whenever we merge two parts
together, we have the minimum degree condition beforehand, having just
done Cleaning Up. Once a vertex is removed from V ′

i , it never returns and all
incident to it edges are discarded in the remaining stages of Symmetrization.

Suppose that Properties 1–4 are valid for some i. We claim that they
remain true for i+1, that is, after another round of Cleaning Up and Merging
is applied. Let G′

i and V ′
i be the final values after Cleaning Up is finished.

Property 4 is valid for i+1 since Ui+1⊆Ui∩V ′
i ⊆Ui and Vi+1 =V ′

i ⊆Vi. To
verify Property 1 for j∈ [0, i], recall that Uj is a transversal for the partition
{Pj,v∩V ′

i :v∈V ′
i } by (6) while if two parts are merged together then we take
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care to remove the corresponding vertex from the transversal set. Property 2
remains valid in view of

Gi+1[Ui+1] = G′
i[Ui+1] = Gi[Ui+1] = G[Ui+1],

where we used the established facts Ui+1 ⊆ Ui and Gi[Ui] = G[Ui]. Finally,
Property 3 follows from the definition of Merging.

3.5. Analyzing the Final Configuration

Suppose that we have done l steps in total. Of course, we have some freedom
while performing these steps so the final configuration may vary. However,
the following claims are always true, irrespective of the choices we made.

Lemma 2. For each i∈ [0, l], the 4-graph Gi, as a blown-up G[Ui], is Σ4-
free.

Lemma 3. Merging does not decrease size: |Gi+1|≥|G′
i| for any 0≤ i≤ l−1.

Proof. We can view the above Merging as removing all edges incident to
Pi,w and then cloning u the appropriate number of times. The claim now
follows from (7) and Property 3 of Gi. (Note that no edge can intersect both
Pi,u and Pi,w by the choice of u and w.)

Lemma 4. |Vl|≥(1− 2c0
c1

)n.

Proof. Let r=n−|Vl| be the number of the removed vertices. The number
of the corresponding removed edges is at most

(8) (δ−c1)
(

n − 1
3

)
+ · · ·+(δ−c1)

(
n − r

3

)
= (δ−c1)

((
n

4

)
−

(
n − r

4

))
.

Between any two consecutive removals, the 4-graph may change as the
result of Merging but its number of edges does not decrease by Lemma 3.

We can assume that for any m≥n0/2, we have ex(m,Σ4)≤ (δ+c0)
(m

4

)
.

(Recall that n0 is sufficiently large depending on c0.) Suppose first that
|Vl|≥n0/2. Then we have |Gl|≤(δ+c0)

(
n−r

4

)
since Gl is Σ4-free by Lemma 2.

The initial 4-graph G0 =G has at least (δ−c0)
(n
4

)
edges by our assumption

on G. Hence, by (8)

(δ − c0)
(

n

4

)
≤ (δ − c1)

((
n

4

)
−

(
n − r

4

))
+ (δ + c0)

(
n − r

4

)
.
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Simplifying, we obtain that c1

((n
4

)
−

(n−r
4

))
≤c0

((n
4

)
+

(n−r
4

))
≤2c0

(n
4

)
. Thus

2c0

c1
≥ 1 −

(n−r
4

)
(
n
4

) ≥ 1 −
(

n − r

n

)4

.

Hence, r≤
(
1−

(
1− 2c0

c1

)1/4)
n< 2c0

c1
n as required.

Note that the case |Vl| < n0/2 can never occur because then r > n/2,
which is at least 2c0

c1
n in view of c0 � c1. Therefore, the moment when we

removed the
⌈

2c0
c1

n
⌉
-th vertex would contradict the above calculations. This

completes the proof of the lemma.

Lemma 5. Under the assumptions and notation of Section 3, the partition
Pl has precisely 4 parts, each of size between n

4 −c2n and n
4 +c2n, while Gl

is the complete 4-partite 4-graph.

Proof. To prove the lemma, we have to apply another iterative procedure.
In order not to mess up the previous notation, we will be updating only
certain variables yi, i∈ [n].

Initially, let yu = |Pl,u|
|Vl| for u∈Ul (while all other yv are set to zero). For

brevity, let H =G[Ul]=Gl[Ul]. Clearly,
∑n

i=1 yi =1. We view y=(y1, . . . ,yn)
as vertex weights. For a set D⊆ [n], let yD =

∏
i∈D yi. For u∈Ul, let

Hu = {D : D 	� u, D ∪ {u} ∈ H}

denote the link graph of u. The weighted degree λi(y) of i∈Ul is
∑

D∈Hi
yD.

Please note that λi(y) does not depend on the weight yi of the vertex itself. In
fact, λi(y) is equal to the i-th partial derivative of the Lagrange polynomial
λH(y)=

∑
D∈H yD.

Initially, we have by Lemma 4 that

(9) λH(y) =
|Gl|
|Vl|4

≥
(δ − c0)

(n
4

)
− 2c0

c1
n

(n−1
3

)
n4

≥ δ

24
− c0

2c1
.

We repeat as long as possible the following Regularization procedure,
which, roughly speaking, makes the weighted degrees almost equal except
for those vertices i with yi =0.

Choose i,j∈Ul such that yi >0, yj >0, and λi(y)−λj(y)≥c1. (If no such
i,j exist we stop.) Let

d = min
(

c1
n , yj

)
.

Replace yi by yi +d and yj by yj −d. Observe that λH(y) changes by

Δ = d(λi(y) − λj(y)) − d2λij(y),
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where λij(y) =
∑

{a,b,i,j}∈H yayb. As, very roughly, λij(y) ≤ (
∑n

i=1 yi)2 = 1
and d≤ c1/2, we have Δ≥ dc1/2. This and the definition of d implies that
during each such transformation either λH(y) increases by at least c21

2n or at
least one new yj becomes 0 (while λH(y) does not decrease). The latter can
happen at most n times. As λH(y) never decreases, the former case takes
place at most

c0/(2c1)
c2
1/(2n)

= c0n/c3
1

times. Indeed, initially we had (9) while at the end we have λH(y) ≤ 4−4

since H is Σ4-free.
Thus the total amount of the shifted weight in the above procedure is at

most c1
n ×(c0n/c3

1 +n), which is at most c2/2 since c2�c1�c0.
When we are done with the Regularization procedure, define

A = {u ∈ Ul : yi > 0}.
For any i,j∈A we have

(10) |λi(y) − λu(y)| ≤ c1.

The identity ∑
i∈A

yiλi(y) = 4λH(y)

(and
∑n

i=1 yi =1) implies that for every i∈A we have

|λi(y) − 4λH(y)| ≤ c1.

Let a = |A|. Note that no two edges of H[A] = G[A] can intersect in 3
vertices (since every two vertices of Ul are covered by an edge of G by the
definition of Merging). We thus have

(11) 4λH(y) a − c1a ≤
∑
i∈A

λi(y) ≤ λ(A
3)

(y) ≤ Λ(A
3)

≤ 1
a3

(
a

3

)
.

To show the last inequality, pick any non-negative x1, . . . ,xa summing up to
1 and maximizing λ(A

3)
(x). Let B={i∈ [a] :xi >0} and b= |B|. Assume that

b ≥ 3 for otherwise there is nothing to do. We have xi = xj for all i,j ∈ B
(otherwise we get a contradiction by replacing xi and xj by (xi+xj)/2). The
required inequality now follows from b−3

(b
3

)
≤a−3

(a
3

)
.

By (9) and (11),

1
44

− c0

2c1
≤ λH(y) ≤ (a − 1)(a − 2)

24a3
+

c1

4
.
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As c1�c0 are sufficiently small, this implies that a=4 or 5.
If a=5, then A spans at most one edge D because no two edges of H can

intersect in three vertices. All vertices of H outside A have now weight 0, so
D is the only edge that contributes to λH(y) (at the final stage). It follows
that yD ≥ 4−4− c0

2c1
and each vertex of D has weight at least, for example,

1
4−c2. But then any pair i,j where i∈D and j is the unique element of A\D
contradicts (10): λi(y)≥(1

4 −c2)3 while λj(y)=0.
Hence a=4 and A∈H. We have yA ≥ 4−4− c0

2c1
. If follows that for each

i∈A we have
∣∣yi− 1

4

∣∣≤ c2
2 .

Let us analyze the initial position. Since the Regularization procedure
changed each yi by at most c2

2 , we have
∣∣yi− 1

4

∣∣≤c2 for all i∈A.
Thus, in order to finish the proof of the lemma, we have to derive a

contradiction from assuming that there is j ∈Ul \A with yj > 0 (initially).
Recall that the Symmetrization stops when there is nothing to merge. Since
we apply Cleaning Up before trying to merge anything, the final 4-graph Gl

has large minimum degree. In particular,

(12) (n − r)3λj(y) = dGl
(j) ≥ (δ − c1)

(
n − r

3

)
.

Since no edge of H \ {A} can intersect A in 3 vertices while
∑

i∈Ul\A yi ≤
1−4(1

4 −c2)=4c2, we have

(13) λj(y) ≤
(

4
2

)(
1
4

+ c2

)2

4c2 + 4
(

1
4

+ c2

)
(4c2)2 + (4c2)3.

The inequalities (12) and (13) contradict our choice 1 � c2 � c1 � c0 and
the fact that r≤ 2c0n

c1
by Lemma 4. This finishes the proof of the lemma.

Also, we will need the following easy corollary of Property 1.

Lemma 6. Suppose that Pi,w was merged into Pi,u during the i-th Merging
step, that is, we have u,w ∈ Ui, u ∈ Ui+1, and w ∈ Vi+1 \Ui+1. Then, if
Pi,u∩Vl =∅ then Pi,w∩Vl =∅.
Proof. Suppose that Pi,w∩Vl 	=∅. Since Pi+1,u∩Vl⊇Pi,w∩Vl is non-empty,
we conclude by Property 1 that u, the unique vertex of Ui+1∩Pi+1,u, belongs
to Vl. Thus, u∈Pi,u∩Vl and this set is non-empty, implying the lemma.

4. Reversing Symmetrization

Let δ = π(Σ4) = 3
32 . Here we will prove that Σ4 is stable. In fact, we will

show the following stronger claim.
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Theorem 7. For any c1 > 0 there are c0 > 0 and n0 such that any Σ4-free
4-graph with n ≥ n0 vertices and at least (δ − c0)

(n
4

)
edges can be made

4-partite by removing at most c1n vertices.

Proof. Fix some sufficiently small constant c2 >0. (For example, c2 =0.001
will do with room to spare.) By decreasing c1 if necessary, assume that
1�c2�c1�c0� 1

n0
. Let n≥n0 and G be an arbitrary Σ4-free 4-graph on

[n] with at least (δ−c0)
(
n
4

)
edges.

Apply Symmetrization to G with respect to the constants c2, c1, c0,n0 as
specified in Section 3. Let Gi,Vi,Ui,Pi, for i=0,1, . . . , l, describe the process.

By Lemma 5 we have |Ul|=4; let us assume that Ul =[4]. Thus Gl is the
complete 4-partite graph with the parts Pl,1, . . . ,Pl,4. Let V =Vl and m= |Vl|.

For i∈ [0, l], let G′
i and V ′

i denote the configuration after the i-th Cleaning
Up. We have V ′

i ⊇ V and G′
i[V ] = Gi[V ]. Thus the 4-graph Gi[V ] can be

obtained from G′
i by removing all vertices of V ′

i\V ; this reduces the minimum
degree by at most |V ′

i \V |
(n−2

2

)
. It follows from Lemma 4 that the minimal

degree of each Gi[V ], i∈ [0, l], is at least

(14) (δ − c1)
(

m − 1
3

)
− 2c0

c1
n

(
n − 2

2

)
≥ (δ − 2c1)

(
m − 1

3

)
.

Now, we reverse Merging. Let us call this process Splitting. Initially, define
Ql = Pl and denote its parts by Ql,u = Pl,u for u ∈ [4]. Inductively, for
i= l−1, l−2, . . . ,0 we define a partition Qi of V , namely V =∪4

j=1Qi,j, such
that the following Properties I–III hold.

I. For every j∈ [4] we have j∈Qi,j.
II. For any v ∈ V there is u∈ [4] such that Pi,v ∩V ⊆Qi,u, that is, Qi is a

coarser partition than Pi when restricted to V .
III. Gi[V ] is a 4-partite 4-graph (not necessarily complete or balanced) with

parts Qi,1, . . . ,Qi,4.

Let us remark here that, unlike Symmetrization, the Splitting process does
not change the vertex set: it remains V =Vl all the time. As we have already
said, once a vertex is deleted during Cleaning Up, it and all incident to it
edges never reappear again. Also, please note that we maintain the same
number of the parts (i.e. 4 parts) during Splitting.

If we can maintain Properties I–III, then, in view of |[n]\V |≤ 2c0
c1

n<c1n,
the partition V = Q0,1∪ ·· · ∪Q0,4 shows that G0[V ] = G[V ] is the required
4-partite subgraph of G, proving the theorem.

Clearly, Properties I–III hold for i = l. Suppose that for some i∈ [l] we
have already defined a partition Qi ={Qi,j :j∈ [4]} such that Properties I–III
hold. We have to show how to find the desired partition Qi−1.
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Note that the inequality (14) implies that |Gi[V ]| ≥ (δ− 2c1)
(m

4

)
. Also,

any 4-partite 4-graph of order m has at most (m/4)4 = δm4/4! edges, just
slightly more than (δ−2c1)

(m
4

)
. Routine calculations show that, for example,

(15)
∣∣∣ |Qi,j | −

m

4

∣∣∣ ≤ c2

30
m, ∀j ∈ [4],

and

(16)
∣∣∣∣dSi(x) − δ

(
m − 1

3

)∣∣∣∣ ≤ c2

10

(
m − 1

3

)
, ∀x ∈ V,

where Si is the complete 4-partite 4-graph with parts Qi,1, . . . ,Qi,4. By our
assumption, Gi[V ]⊆Si. This, (14), and (16) imply that

(17) dSi\H(x) ≤
(
2c1 +

c2

10

) (
m − 1

3

)
, ∀x ∈ V.

Assume that at the i-th Merging step we have merged Pi−1,w into Pi−1,u

with u,w∈Ui−1 so that u∈Ui but w 	∈Ui.
Let us recycle some of the previous variables by denoting H = Gi[V ],

H ′=Gi−1[V ], A=Pi−1,u∩V , and B=Pi−1,w∩V . Thus, H is obtained from
H ′ by merging B into A. By Property II, assume without loss of generality
that A∪B⊆Qi,1. Define W1 =Qi,1 \B and Wj =Qi,j for j∈ [2,4]. We know
that H is 4-partite and we want to prove the same claim about H ′. Recall
that Ul =[4] is a transversal for Qi.

If B = ∅, then we are trivially done: H ′ =H and we can let Qi−1,j =Wj

for j ∈ [4] (that is, Qi−1 = Qi). So, suppose that B 	= ∅. By Lemma 6, we
have A 	=∅. Also, Property 1 of Section 3.1 shows that u,w∈V .

By (15) we know that each of W2,W3,W4 has about m
4 elements. However,

although W1⊇A and B are non-empty, one of them may be very small. Thus
we have to be extra careful when doing any estimates involving |W1| and |B|.

The hypergraph H ′[V \B]=H[V \B] is 4-partite with parts W1, . . . ,W4.
To finish the proof of the theorem, it is enough to show that we can add B
to some part Wj, thus letting Qi−1,j = Wj ∪B and Qi−1,h = Wh for h 	= j.
Properties I–II will hold automatically (note that B∩ [4]=∅ by Property 1
of Section 3.1), so we have to care about Property III only.

Let us show that

(18) F1 = ∅ and |Fj | ≤ c2

(
m − 1

3

)
|B|, ∀ j ∈ [2, 4],

where
Fj = {D ∈ H ′ : D ∩ B 	= ∅, |D ∩ Wj| ≥ 2}.
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Suppose first on the contrary to our claim that (18) does not hold for some
j ∈ [2,4]. Assume without loss of generality that j = 4. Fix any v1 ∈A. We
know that A is non-empty. (This is why we needed Lemma 6.) The following
holds for any choices of an edge D ∈ F4, of vertices v2 ∈ W2, v3 ∈ W3, and
of two distinct vertices v4,v

′
4 ∈D∩W4: at least one of the two quadruples

{v1,v2,v3,v4} and {v1,v2,v3,v
′
4} is missing from H. (Indeed, their symmetric

difference is {v4,v
′
4} so together with D they form a forbidden subgraph.)

On the other hand, any such missing edge is counted at most
(m

2

)
|B| times,

which is a crude upper bound on the number of ways to pick an edge D that
contains a given vertex of W4 and intersects B. Since W2 and W3 have at
least

(
1
4 − c2

30

)
m vertices each by (15), we have identified at least

c2

(
m−1

3

)
|B| ×

((
1
4 − c2

30

)
m

)2

(m
2

)
|B| ≥ c2

9

(
m − 1

3

)

edges of Si \H which contain v1. This contradicts (17).
Suppose next that F1 	= ∅. Fix one edge D ∈ F1 and choose distinct

v1,v
′
1∈W1∩D. For every choice of vh∈Wh for 2≤h≤4, at least one of the

edges {v1,v2,v3,v4} or {v′1,v2,v3,v4} is missing from H. At least half of the
missing edges contain, say, v1. Thus, we have identified at least 1

2

((
1
4−c2

30

)
m

)3

edges of Si \H containing v1, contradicting (17). This finishes the proof
of (18).

Note that every edge of H ′ intersects B in at most one vertex. By (14),
when applied to H ′ = Gi−1[V ], we have at least |B| × (δ − 2c1)

(m−1
3

)
H ′-

edges intersecting B. By (18), we have |F1 ∪F2 ∪F3 ∪F4| ≤ 3c2

(
m−1

3

)
|B|.

The remaining edges through B are each intersecting 3 different parts Wj.
Therefore there is a 3-set J⊆ [4] such that

|FJ | ≥
δ − 2c1 − 3c2

4

(
m − 1

3

)
|B| ≥ δ

5

(
m − 1

3

)
|B|,

where

FJ =
{
D ∈ H ′ : D ∩ B 	= ∅ and ∀h ∈ J |D ∩ Wh| = 1

}
.

Let {j}=[4]\J . Also, recall that any permutation that moves only vertices
of B is an automorphism of H ′.

First, suppose that there is a vertex x∈Wj such that for some (equiva-
lently, arbitrary) y∈B the pair {x,y} is covered by an edge of H ′. For every
D∈FJ with y∈D, Si contains D′=(D∪{x})\{y}. The symmetric difference
of D and D′ is {x,y}. Hence D′ cannot belong to H ′. Since D′∩B = ∅, we
have D′ 	∈ H. Thus we have identified at least |FJ |/|B| ≥ δ

5

(m−1
3

)
edges of
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Si \H that pass through some fixed vertex x. Again, this contradicts (17).
Thus, let us assume that

(19) no edge of H ′ intersects both B and Wj.

In particular, we conclude that Fj =∅.
Let us define Qi−1,j =Wj ∪B and Qi−1,h =Wh for h∈J . Let Si−1 be the

complete 4-partite 4-graph with the parts Qi−1,1, . . . ,Qi−1,4.
We claim that this choice does the job. As we have already mentioned,

only Property III needs justification.
By (18) and (19) the number of edges in H ′ \Si−1 containing any x∈B

is at most 3c2

(
m−1

3

)
. Thus, by (14),

(20) dH′∩Si−1
(x) ≥ (δ − 2c1 − 3c2)

(
m − 1

3

)
, ∀x ∈ B.

Since Wj ∪B⊇Qi,j, we have by (15)

(21) |B ∪ Wj| ≥
(

1
4
− c2

30

)
m.

This implies that each Wh with h∈J has at least
(

1
4 −2

√
c2

)
m vertices for

otherwise we obtain from (20) and (21) that

(
1
4
− 2

√
c2

)
m × 1

4

(
m −

(
1
4
− c2

30

)
m −

(
1
4
− 2

√
c2

)
m

)2

≥ (δ − 2c1 − 3c2)
(

m − 1
3

)
,

which is impossible for 1�c2�c1 as routine calculations show.
Suppose on the contrary to Property III that some Fh with h ∈ J is

non-empty, say Fh�D. Fix distinct vh,v′h∈D∩Wh.
Suppose first that, for example, |Wj |≥ m

100 . Then for each choice of vf ∈
Wf , f ∈ [4] \ {h}, either E = {v1,v2,v3,v4} or (E ∪{v′h}) \ {vh} is missing
from H. This way we identify at least 1

2

((
1
4 −2

√
c2

)
m

)2 m
100 edges of Si \H

incident either to vh or to v′h, which contradicts (17). So, assume |Wj |< m
100 .

This implies that j=1 and, by (21), that |B|≥
(
0.24− c2

30

)
m. Since H ′[V \B]

is a 4-partite graph, we conclude, by (14) applied to H ′=Gi−1[V ], that each
of vh and v′h is in at least

(δ − 2c1)
(

m − 1
3

)
− |W1|

(
m

2

)
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H ′-edges intersecting B, of which at most 3c2

(m−1
3

)
m edges can intersect

some part Wf in more than one vertex by (18) and (19). The number of the
remaining edges is strictly more than

1
2
× (m − |W1| − |Wh| − |B|)2

4
× |B|,

that is, more than the half of the size of the complete 3-partite 3-graph with
parts B, Wf , and Wg, where {1,f,g,h}=[4]. So some two of the edges via vh

and v′h coincide on the complement of Wh. This means that their symmetric
difference is exactly {vh,v′h}, giving us a copy of Σ4. This final contradiction
proves Property III and completes the proof of the theorem.

A direct corollary of (2) and Theorem 7 is the following.

Theorem 8. Σ4 is stable.

5. The Stability of Σk Implies the Stability of Tk

The below Lemma 9 holds for any k. It directly follows from Pikhurko [17,
Lemma 4]. Since the latter result relies on the so-called Removal Lemma,
whose proof uses the Hypergraph Regularity Lemma (see Gowers [8], Nagle,
Rödl, Schacht, and Skokan [16,18,19], Tao [22], Elek and Szegedy [3]), we
give an alternative self-contained proof of Lemma 9. Informally, Lemma 9
follows from the fact that every Σk-free graph can be made Tk-free by re-
moving a small proportion of edges.

Lemma 9. Let k≥3. If Σk is s-stable, then Tk is s-stable.

Proof. Let ε > 0 be given. By the definition of s-stability, there are c > 0
and n0 such that of any s+1 Σk-free k-graphs, each having n≥n0 vertices
and at least (π(Σk)−c)

(
n
k

)
edges, some two are ε

2

(
n
k

)
-close to each other. We

can assume that c< ε
2 .

Let G1, . . . ,Gs+1 be arbitrary Tk-free k-graphs on the same vertex set [n],
n≥n0, each having at least

(
π(Tk)− c

2

)(
n
k

)
edges.

Take some i∈ [s+1]. Call a pair {x,y}∈
([n]

2

)
i-sparse if there are at most

(k−1)
(

n
k−3

)
Gi-edges containing both x and y. Let G′

i be obtained from Gi by
removing all edges containing sparse pairs, at most

(n
2

)
×(k−1)

( n
k−3

)
< c

2

(n
k

)
edges. Thus,

(22) |G′
i| ≥ (π(Tk) − c)

(
n

2

)
, ∀ i ∈ [s + 1].
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We claim that G′
i is Σk-free. Suppose on the contrary that E1 �E2 =

{x,y}⊆E3 with E1,E2,E3 ∈G′
i. As the edge E3 has not been deleted, the

pair {x,y} was not sparse (with respect to Gi). Thus Gi has more than
(k−1)

( n
k−3

)
edges containing both x,y, of which at least one, say E4, must

be disjoint from the (k− 1)-set E1 ∩E2. But then E1,E2,E4 ∈ Gi form a
Tk-subgraph, a contradiction.

By (22) and the s-stability of Σk, we conclude that some two k-graphs,
say G′

i and G′
j , are ε

2

(n
k

)
-close. But then Gi and Gj are ( ε

2 + c
2 + c

2)
(n
k

)
-close.

Since c< ε
2 and ε is arbitrary, we conclude that Tk is s-stable, as required.

Theorem 8 and Lemma 9 imply the following result.

Corollary 10. T4 is stable.

The stability of T3 was established by Keevash and Mubayi [11].

6. The Stability of T4 Gives the Exact Result

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let 1�c1�c0� 1
n0

. Let n≥n0 and let G be a max-
imum T4-free 4-graph on [n]. It is enough to prove the theorem under the
additional assumption that the minimal degree of G is at least t(n)−t(n−1),
where t(n) is the function in the right-hand side of (2). (Otherwise an “im-
proving induction” argument, see Keevash and Sudakov [13, Page 680], leads
to a contradiction.)

Let [n] = W1 ∪ ·· · ∪W4 be a partition such that |P ∩G| is maximum,
where P is the complete 4-partite 4-graph with parts W1, . . . ,W4. Assume
that G\P 	= ∅ for otherwise we are easily done. We are going to exhibit a
contradiction.

By the stability of T4 (Corollary 10) we have

(23) |G \ P | ≤ c0n
4.

Let wi = |Wi|. It easily follows from (23) and |G| ≥ t(n) that, for example,
each wi≥ n

5 .
The edges of P \G are called missing. The edges of G\P are called bad.

A pair {x,y} is bad if x,y lie in the same part Wi and {x,y} is covered by
an edge of G.

Clearly, P does not contain T4 as a subgraph. By the maximality of G,

(24) |G \ P | ≥ |P \ G|,
that is, the number of bad edges is at least the number of missing edges.

Let A ⊆ V consist of all vertices which belong to at least c1n
3 missing

edges.
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Claim 1. Each bad pair intersects |A|.
Proof of Claim 1. Let {x1,x

′
1} be a bad pair, say x1,x

′
1 ∈ W1 with

{x1,x
′
1,y,z}∈G. For all choices of xi ∈Wi \{y,z}, i=2,3,4, at least one of

the edges {x1,x2,x3,x4} or {x′
1,x2,x3,x4} is missing. This means that we

have encountered at least

(w2 − 2)(w3 − 2)(w4 − 2) > 2c1n
3

missing edges that intersect {x1,x
′
1}. One of x1 and x′

1 belongs to at least a
half of these edges, giving the required.

Let B be the 2-graph consisting of all bad pairs. Thus, by Claim 1, A is
an edge-dominating set for B. Since B is non-empty, A is non-empty. We
have, for example,

(25) |A| ≤ c2
1n,

for otherwise we encounter at least c2
1n× c1n

3/
(4
2

)
> c0n

4 missing edges, a
contradiction to (23). It follows that the number of bad pairs |B|≤c2

1n
2.

By the definition of A, there are at least |A|c1n
3/4 missing edges and

consequently at least |A|c1n
3/4 bad edges. Call a bad pair {x,y} dense if

there are at least 3n edges of G containing it. (All such edges are bad by
definition.) Let M consist of all pairs (E,D), where E is a bad edge and
D ⊆ E is a dense bad pair. Each bad edge contains at least one bad pair
while sparse pairs (that is, bad pairs which are not dense) belong to at most
3n×|B|≤3n×c2

1n
2 bad edges. Hence

|M| ≥ |A|c1n
3

4
− 3c2

1n
3 ×

(
4
2

)
>

|A|c1n
3

5
.

On the other hand, for each pair (E,D) ∈ M we have D ∩A 	= ∅ by
Claim 1. It follows that some vertex x1∈A belongs to D for at least c1n

3/5
pairs (E,D) ∈M. Assume that, for example, x1 ∈ W1. Let Y ⊆ W1 \ {x1}
consist of those y ∈ W1 such that {x1,y} is a dense bad pair. We have
|Y |≥ 1

5c1n
3/

(n
2

)
>c1n/3.

Let xi ∈ Wi, i = 2,3,4 be arbitrary. If {x1,x2,x3,x4} ∈ G, then for each
y ∈ Y the 4-tuple {y,x2,x3,x4} is a missing edge: this follows from the
fact that the pair {x1,y} is dense, so there must be a G-edge D � x1,y
disjoint from {x2,x3,x4}. Hence, for at most c1n

3 choices of x2,x3,x4 we
have {x1,x2,x3,x4} ∈ G, for otherwise we get at least c1n

3 × c1n/3 > c0n
4

missing edges, contradicting (23) and (24). Thus we have shown that

(26) dG∩P (x1) ≤ c1n
3.
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Now we argue that we can move x1 to some other part and increase |G∩P |,
which would be a contradiction to the choice of the partition W1, . . . ,W4.
We know that the minimal degree of G is at least t(n)−t(n−1)≥(δ−c0)

(n
3

)
,

where δ=π(T4)= 3
32 .

If there are at least c1n
3 G-edges D containing x1 such that D \ {x1}

intersects some part Wi, i∈ [4], in at least two vertices, then this creates at
least c1n

2 bad pairs. This in turn forces the dominating set A to have size
at least c1n>c2

1n, which contradicts (25).
So, let us assume otherwise. This means by (26) that there are at least

(δ−c0)
(n
3

)
−5c1n

3 >3c1n
3 edges of G which contain x1, intersect W1\{x1},

and then intersect some two of the parts W2, W3, and W4. Without loss
of generality assume that at least a third of these edges intersect both W2

and W3. Thus, if we move x1 to W4 and update P correspondingly, then all
these edges will belong to P ∩G. On the other hand, the number of edges
that P ∩G loses during this move is at most c1n

3 by (26). Thus |P ∩G|
strictly increases, which contradicts the choice of P , completing the proof.

7. Concluding Remarks

One of the difficulties in extending our approach to k = 5 or k = 6 is that
the corresponding analog of Theorem 7 is false. Let us outline an example
for k=5. Take the (unique) maximum Σ5-free 5-graph G of order n=11m,
which is a blow-up of the (11,5,4) Steiner system, see [6]. Choose some 5
parts spanning no edge and add into them m vertex-disjoint 5-edges, each
transversing these 5 parts. For each added edge D remove all G-edges D′
with |D′ ∩ D| = 4. The obtained 5-graph H is still Σ5-free and has size
(π(Σ5)+o(1))

(n
5

)
. However, in order to make H into a subgraph of a blown-

up Steiner system we have to remove either an almost whole part or at least
one vertex from each added edge, in either case at least

(
1
11+o(1)

)
n vertices.

Still, we believe that the following is true.

Conjecture 11. Both Σ5 and Σ6 are stable.
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[4] P. Erdős and M. Simonovits: Supersaturated graphs and hypergraphs, Combina-
torica 3(2) (1983), 181–192.

[5] P. Frankl and Z. Füredi: A new generalization of the Erdős–Ko–Rado theorem,
Combinatorica 3(3–4) (1983), 341–349.
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[16] B. Nagle, V. Rödl and M. Schacht: The counting lemma for regular k-uniform

hypergraphs, Random Struct. Algorithms 28 (2005), 113–179.
[17] O. Pikhurko: Exact computation of the hypergraph Turán function for expanded

complete 2-graphs, arXiv:math/0510227, accepted by J. Comb. Th. Ser. (B). The
publication is suspended because of a disagreement over copyright, see http://

www.math.cmu.edu/~pikhurko/Copyright.html, 2005.
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