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Abstract. A graph G is product anti-magic if one can bijectively label its edges with integers
1, . . . , e(G) so that no two vertices have the same product of incident labels. This prop-
erty was introduced by Figueroa-Centeno, Ichishima, and Muntaner-Batle who in particular
conjectured that every connected graph with at least 4 vertices is product anti-magic.

Here, we completely describe all product anti-magic graphs of sufficiently large order,
confirming the above conjecture in this case. Our proof uses probabilistic methods.
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1. Introduction

We will use the standard notation of graph theory, which can be found e.g. in Bol-
lobás’ book [3].

Let G be a graph. For the purposes of this paper, the term labeling will always
mean a bijection � : E(G) → [e(G)], where we denote [n] = {1, . . . , n}. In other
words, we label edges of G with integers 1, . . . , e(G) so that each integer is used
exactly once.

Following Figueroa-Centeno, Ichishima, and Muntaner-Batle [5], let us call the
graph G product anti-magic if there is a labeling � such that for any two distinct
vertices x, y ∈ V (G) we have �(x) �= �(y), where

�(x) =
∏

z∈Γ (x)

�(xz)

denotes the product of all labels incident to x and xz is a shortcut for {x, z}. (This
abbreviation should not cause any confusion, hopefully.)

The property of identifying each vertex of a graph by a unique value helps in
various situations (e.g. for the problem of describing graphs in first order logic, see
Bohman et al. [2, 9]). It also appears on its own in many graph labeling problems
(see, for example, the excellent survey by Gallian [6]).
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Figueroa-Centeno et al. [5] demonstrated that various special classes of graphs
are product anti-magic: 2-regular graphs, wheels, complete graphs, paths of of order
at least 4, and other. They also posed the following conjecture.

Conjecture 1 (Figueroa-Centeno et al. [5]). Every connected graph of order at least
4 is product anti-magic.

Kaplan, Lev, and Roditty [8] verified Conjecture 1 for further families of graphs
(dense graphs, complete bipartite graphs, and other).

Here we will completely describe all product anti-magic graphs of sufficiently
large order. Let the spider Sk,l be obtained by affixing k single edges and l paths of
length 2 to a fixed vertex x, called the center. (Alternatively, subdivide some l edges
of the star K1,k+l .)

Theorem 1. There is an n0 such that a graph with n ≥ n0 vertices is product anti-magic
if and only if it belongs to none of the following four classes.

1. Graphs that have at least one isolated edge.
2. Graphs that have at least two isolated vertices.
3. Unions of vertex-disjoint K1,2’s.
4. Graphs consisting of one isolated vertex and vertex-disjoint spiders.

Let us show now the trivial part of Theorem 1, namely that every graph G on
the list (in fact, of an arbitrary order n ≥ 2) does not admit a product anti-magic
labeling �.

1. If xy is an isolated edge, then �(x) = �(y) = �(xy).
2. If x and y are isolated vertices, then �(x) = �(y) = 1.
3. Let xy have the label 1 and let xz be the other edge of K1,2. Then �(x) =

�(z) = �(xz).
4. Let w be the isolated vertex and let xy have the label 1. If xy is a leaf, say

d(y) = 1, then �(y) = �(w) = 1. So assume that x is the center of a spider
and y has another neighbor z. Then �(y) = �(z) = �(yz).

The proof of the other implication of Theorem 1 occupies Sections 2 and 3. This
is done by means of a probabilistic labeling algorithm; its overview can be found at
the beginning of Section 3. Our calculations (omitted) indicate that, for example,
the value n0 = 101020

would suffice. This bound can be definitely lowered. However,
it seems that this approach would not give the complete characterization, of a rea-
sonable length, of all product anti-magic graphs. Therefore, we make no attempt to
optimize the constants.

Theorem 1 implies in particular that every connected graph of order at least n0
is product anti-magic, that is, we have verified Conjecture 1 for all but finitely many
graphs.

Our proof is quite versatile. It can deal with some modifications of the problem.
For example, if we wish to describe all graphs G of large order for which there is a
bijection � : E(G) → {2, . . . , e(G) + 1} with all products �(x), x ∈ V (G), being
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distinct, then our method shows that these are precisely the graphs not in Lists 1
and 2 of Theorem 1.

There is the related conjecture of Hartsfield and Ringel [7, p. 108] that every con-
nected graph G of order n ≥ 3 is sum anti-magic, that is, admits a labeling such that
for any distinct x, y ∈ V (G) the sums of incident labels are different. Alon, Kaplan,
Lev, Roditty, and Yuster [1] proved this conjecture for various classes including all
graphs of minimum degree at least C log n for some constant C. Unfortunately, our
method does not apply to this problem.

2. Notation and Auxiliary Lemmas

Let π(m) denote the number of primes less or equal to m. Let pi be the i-th prime.
Let ln denote the natural logarithm. Let a ± c denote a number between a − c and
a + c.

For a graph G, let d(x) denote the degree of a vertex x ∈ V (G) and for a set
of edges F ⊂ E(G), let V (F) = ∪D∈F D. Given a labeling � of G, two vertices
x, y are distinguishable if �(x) �= �(y). A vertex x ∈ V (G) is identifiable if it is
distinguishable from any other vertex, that is, �(x) �= �(y) for any y ∈ V (G) \ {x}.
Thus a labeling is product anti-magic if every vertex is identifiable.

Here we list some auxiliary results that will be needed in the proof of Theorem 1.
Since we are content just to prove the existence of the constant n0 in Theorem 1,
without an explicit bound on it, the following classical result from number theory
will suffice for this purpose.

Lemma 1 (The Prime Number Theorem). For every ε > 0 there is an m1 = m1(ε)

such that for every m ≥ m1 we have

pm = (1 ± ε) m ln m and π(m) = (1 ± ε)
m

ln m
.

�

The following lemma estimates how likely the product of two random numbers
is to hit any given target t .

Lemma 2. For every ε > 0 here is an m2 = m2(ε) such that for any m ≥ m2 the
following holds. Let Q ⊂ [m] be any subset of size q ≥ m/4. Let a1 < a2 be random
elements of Q, all

(
q
2

)
choices being equally probable. Then for any integer t , we have

Pr{a1a2 = t} ≤ (4 + ε)ln m/ ln ln m

m2
. (1)

Proof. Let m be sufficiently large. If t ≥ m2, then the required probability is 0, so
let us assume otherwise.

Clearly, the probability in question is at most ρ/
(
q
2

)
, where ρ is the number of

divisors of t . Take the prime factorization t = ∏
i∈I p

μi

i , where I consists of those
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indexes i for which μi > 0. Then ρ = ∏
i∈I (μi + 1). Define

s = ln m

(ln ln m)2
, I ′ = {i ∈ I : pi ≤ s}, I ′′ = I\I ′.

Note that, by Lemma 1,

|I ′| ≤ π(s) ≤ 2s

ln s
.

Moreover, for each i ∈ I ′ we have μi ≤ log2(m
2). Hence,

∏

i∈I ′
(μi + 1) ≤

(
log2(m

2) + 1
)2s/ ln s = eo(ln m/ ln ln m). (2)

Let us turn to I ′′. We have
∑

i∈I ′′
μi ≤ ln t/ ln s.

Given the sum of positive integers μi , if we want to maximize the product
∏

(μi +1),
then we have to take each μi to be 1. (Otherwise, replace μi ≥ 2 by μi − 1 and 1.)
Hence,

∏

i∈I ′′
(μi + 1) ≤ 2ln t/ ln s ≤ (4 + o(1))ln m/ ln ln m. (3)

The estimates (2) and (3) finish the proof. �

Remark 1. The constant 4 in the bound (1) is best possible. Here is a sketch of the
proof. Let m be large and Q = [m]. Take the smallest l such that pl ≥ ln m and let
t = ∏k

i=l pi , where k is as large as possible provided t < m2−1/ ln ln m. One can check
that

k − l = (2 + o(1))
ln m

ln ln m
.

Also, by Chernoff’s bound [4], almost all sums
∑k

i=l bi ln pi with bi ∈ {0, 1} are
within, for example, (k − l)2/3 ln ln m from the mean value 1

2 ln t . Hence, there are
at least

(1 + o(1)) 2k−l+1 = (4 + o(1))ln m/ ln ln m

ways to factor t = d1d2 with 1 ≤ d1 < d2 ≤ exp( 1
2 ln t + (k − l)2/3 ln ln m) ≤ m.

We will also need the following easy result.

Lemma 3. There is an m3 such that for any m ≥ m3 and any subset Q ⊂ [m] of size
q ≥ m/2 the following holds. Let a1, a2 be two distinct elements of Q chosen uniformly
at random. Then

Pr{a1a2 ≤ m} ≤ 5 ln m

m
.
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Proof. Given a1, there are at most m/a1 choices of a2 satisfying a1a2 ≤ m. Hence,
the required probability is at most

1
q

m∑

a1=1

m/a1

q − 1
≤ 4

m − 2

m∑

a1=1

1
a1

≤ 5 ln m

m
.

The lemma is proved. �

3. Proof of Theorem 1

Here we will prove Theorem 1. Let n be sufficiently large and let G be an arbitrary
graph of order n and size m that does not appear in any forbidden list of Theorem 1.
As we do not have two isolated vertices or an isolated edge,

m ≥ 2n

3
− 1. (4)

Let L consist of all primes between m/2 + 1 and m. By Lemma 1 we have

|L| ≥ m

3 ln m
. (5)

Let us briefly outline our argument. The existence of a product anti-magic label-
ing will be established by means of a probabilistic algorithm which consists of three
stages and, in fact, produces the required labeling with probability at least 1 − cn,
where cn does not depend on G and approaches 0 as n → ∞. In Stage 1 we (deter-
ministically) construct disjoint sets R, F ⊂ E(G) and assign to R ∪ F some labels
from L. In Stage 2 we randomly extend the partial labeling � to the whole of E(G).
There may be some pairs xy with �(x) = �(y). We correct each such pair xy in
Stage 3 by swapping some labels incident to x or y with some labels from F . Note
that if some edge uv is assigned a label from L then automatically �(u) differs from
any other �(w) with w �∈ {u, v} because �(w) cannot contain �(uv) as a prime
factor. Hence, an L-label borrowed from F is enough to repair one bad pair xy. On
the other hand, we take care to secure each vertex x ∈ V (F) by surrounding it by
R-edges in Stage 1, so that x stays identifiable even if the labels of F change. This
finishes our rough outline. The real proof is more complicated since we have to treat
vertices of degree 1 as well as the edge e1 with �(e1) = 1 in a special manner.

Now, let us formally state the properties of F, R, e1 that we will need and prove
that such sets always exist. A labeling � is called (R, e1)-proper if �(e1) = 1 and
�(R) ⊂ L. Let

f = �n1/3/4
. (6)

Lemma 4. There are disjoint R, F, {e1} ⊂ E(G) such that all the following conditions
hold.

1. |F | = f and |R| ≤ 4f + 4.
2. If G has an isolated vertex, then e1 is not a leaf.
3. For every (R, e1)-proper labeling �, any x ∈ V (F ∪ R) ∪ e1 is identifiable or has

degree 1.
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Proof. We start with R = F = ∅ and will be iteratively enlarging these sets. In the
proof we will have to check various alternatives. In each case it will be straightfor-
ward to see why the vertices in V (F ∪ R) ∪ e1 satisfy Condition 3 of the lemma.
We will justify a few such claims. But most of the time we will be leaving all
routine verifications to the Reader who should not have any problem filling up
the gaps.

First we define e1. If G contains a cycle C on vertices x1, . . . , xs , then for s ≤ 5
we let e1 = x1x2 and put all other edges of C into R and for s ≥ 6 we let e1 = x3x4
and put x1x2, x2x3, x4x5, x5x6 into R. For example, to argue that the vertex x4 is
identifiable for s ≥ 6 observe that �(x4) �= �(x5) because the latter is divisi-
ble by the prime �(x5x6) ∈ L; also, any �(x) for x �∈ {x4, x5} is not divisible by
�(x4x5) ∈ L which, however, divides �(x4). So suppose that G is a forest. If G

has no isolated vertex then, since G is not in Lists 1 and 3 of Theorem 1, we can
find x, y, z, w such that d(x) = 1 and either xy, yz, zw ∈ E(G) or xy, yz, yw ∈
E(G). In both cases we let e1 = xy and put the other two edges into R. Finally,
if the forest G has an isolated vertex, then a routine analysis shows that there are
wx, xy, yz ∈ E(G) and vertices u, v �∈ {w, x, y, z} such that u sends an edge to wx

and v sends an edge to yz. In this case we let e1 = xy and put the remaining 4 edges
into R.

Now, let us describe how to construct F and R. We start with F = ∅ and R

being the set of at most 4 edges used for ‘padding’ e1.
Suppose first that the maximal degree Δ(G) ≥ f + 3. Take a vertex x of max-

imum degree. Make sure that some two edges incident to x belong to R; then x is
automatically identifiable. We can always do this in such a way that at most 3 edges
at x have been assigned so far (the two R-edges and, perhaps, e1). Put some f of the
remaining edges incident to x into F .

Take any xy ∈ F . We have to put some edges into R to ensure the claimed
properties for y. If d(y) = 1 or y ∈ e1, then there is nothing to do. If d(y) ≥ 3,
make sure that at least some two edges incident to y are in R; this can be done by
adding at most two new edges to R. Suppose that d(y) = 2. Let z �= x be the other
neighbor of y. If d(z) = 1, put yz into R which takes care of y: for example,

�(y) = �(yz)�(xy) > �(yz) = �(z)

for any � with �(e1) = 1. If z has a neighbor w �∈ {x, y}, then we put both yz and
zw into R. Finally, if y and x are the only neighbors of z, then we put yz into R and
everything is fine: for example,

�(y) = �(xy)�(yz) �= �(xz)�(yz) = �(z),

because edge labels are distinct. Thus x alone supplies us with the required F and
R (note that |R| ≤ 2|F | + 6 ≤ 4f + 4).

Therefore let us assume that Δ(G) ≤ f + 2. We proceed iteratively, enlarging
the sets F and R as we go along. It will always be the case that |R| ≤ 4|F | + 4.

Here is the description of the iteration step. As long as |F | < f , take any edge
xy at distance at least 3 from any edge previously selected into F ∪ R ∪ {e1}, where
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the distance between two edges is the usual distance in the line graph of G. Such an
edge xy exists because at most

(|F ∪ R| + 1) × 2(f + 1)(f + 2) < e(G)

edges are excluded by the assumption on maximum degree. If xy lies in a triangle
xyz, then we can put xy into F and xz, yz into R, so suppose otherwise.

If xy lies on a path wxyz, then we do the following. Put xy in F and wx, yz in
R. If w has a neighbor u �= x (including the case u = y), then we choose one such
u and put wu into R. Likewise, if z has a neighbor v �= y, then we put zv into R.

It remains to consider the case when e.g. d(x) = 1. If d(y) ≥ 3, put some two
edges incident to y into R. Otherwise we have d(y) = 2 (because G does not have an
isolated edge). If the other neighbor z of y has a neighbor w �= y, put xy into F and
yz, zw into R; otherwise we have an isolated K1,2 so put xy into F and yz into R.

In each of the above cases, any edges we assign are at distance at most 2 from xy

so no collision with the previous assignments can arise. Also, we add at most four
edges to R per one edge of F .

This completes the proof of the lemma. �

Lemma 4 takes care of Stage 1: take any F , R, and e1 given by the lemma and
arbitrarily assign some labels from L to F ∪ R (and the label 1 to e1).

In Stage 2 we randomly extend this partial labeling to the whole of E(G), all
possible extensions being equally likely. Let us denote the resulting random labeling
by �.

Call a vertex x ∈ V (G) thin if x �∈ V (F ∪ R) ∪ e1, d(x) ≥ 2, and �(x) ≤ m. Let
T consist of all thin vertices. By Lemma 3 and (4) the expected value of |T | is at
most

n × 5 ln m

m
≤ 8 ln m.

(Note that the number of the random labels assigned in Stage 2 is at least m−5f −5 ≥
m/2 by (4) and (6).)

Call a pair of distinct vertices xy bad if x, y �∈ V (F ∪R)∪ e1, and �(x) = �(y).
Otherwise, we call xy good. Let B consist of all bad pairs.

Let us estimate the probability that two given vertices x, y �∈ V (F ∪R)∪e1 form
a bad pair. Let d ′(z) be the number of neighbors of z outside {x, y}. Assume that
d ′(x) ≥ d ′(y). We cannot have d ′(x) = d ′(y) = 0 because this would give either
two isolated vertices or an isolated edge. If d ′(x) = d ′(y) = 1, then �(x) �= �(y)

because all edge labels are distinct. If d ′(x) = 1 and d ′(y) = 0, say xz ∈ E(G),
then x and y are distinguishable because we have �(xz) �= 1. (Note that x �∈ e1.) It
remains to consider the case when d ′(x) ≥ 2. Pick some two edges xu, xv ∈ E(G)

with {u, v} �� y. Let us view Stage 2, the random extension, as a two-step process. At
the first step we assign random labels to all edges incident to {x, y} except the edges
xv, xu. Conditioned on this, �(xu) and �(xv) are two random distinct elements of
the set Q of the remaining labels. There is at most one possible value of the product
of these two labels that makes �(x) = �(y).
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If Δ(G) ≤ n/5, then Condition 1 of Lemma 4 and (4) imply that

|Q| ≥ e(G) − |F ∪ R| − 1 − 2Δ(G) ≥ m − 5f − 5 − 2n/5 ≥ m/4.

If Δ(G) > n/5, then the proof of Lemma 4 shows that at least one vertex z of
maximum degree belongs to V (R) and that at least Δ(G) − f − 4 edges incident to
z were not assigned labels in Stage 1. Since x, y �∈ V (R), we have z �∈ {x, y} and thus

|Q| ≥ max
(
m − 5f − 5 − 2Δ(G), Δ(G) − f − 6

)
≥ m/4.

We see that in all cases where the equality �(x) = �(y) is not ruled out auto-
matically, we have |Q| ≥ m/4. Lemma 2 applies to the random labels �(xu) and
�(xv) from Q and shows that the probability of xy being bad is at most, for exam-
ple, (5ln m/ ln ln m)/m2. Therefore, the expectation of the number of bad pairs plus
the number of thin vertices is

E
( |B ∪ T | ) ≤

(
n

2

)
× 5ln m/ ln ln m

m2
+ 8 ln m ≤ f.

We conclude that there is an extension � such that

|B ∪ T | ≤ f. (7)

(In fact, we have E( |B ∪ T | ) = o(f ), so almost every extension satisfies this prop-
erty.) Fix a labeling � satisfying (7).

In Stage 3 we modify this �, making it product anti-magic.
First, we eliminate all thin vertices by repeating the following step as long as

possible. If there is a thin vertex x, take some its neighbor y and swap the label of
xy with an L-label of some edge in F . Since d(x) ≥ 2, min L > m/2, and x �∈ e1,
the vertex x is not thin anymore. Note that this operation cannot create any new
bad pairs (nor new thin vertices). Indeed, the affected vertices x and y can be dis-
tinguished from any other vertex z �∈ {x, y} because �(xy) belongs to L now. Also,
if the pair xy was good, it stays so.

Next, we iteratively eliminate all bad pairs as follows. Each bad pair xy, say with
d ′(x) ≥ d ′(y), satisfies d ′(x) ≥ 2 and can be ‘repaired’ by swapping the label of
some edge xz �= xy with an L-label of an edge in F . As before, this does not create
any new thin vertices or bad pairs.

By (7), we can eliminate all thin vertices and bad pairs. We claim that the obtained
labeling � is product anti-magic. It remains to check that any two vertices x ∈
V (F ∪ R) ∪ e1 and y ∈ V (G) have different products. If d(x) ≥ 2, this follows from
Lemma 4. (Note that � is still (R, e1)-proper.) Assume that d(x) = 1. If d(y) = 1,
then �(x) �= �(y) holds since edge labels are pairwise distinct. So assume that
d(y) ≥ 2. If y ∈ V (F ∪ R) ∪ e1 then y is identifiable by Lemma 4; otherwise
�(y) > m ≥ �(x) because y is not thin.

This completes the proof of Theorem 1. �
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