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Abstract

Suppose that we know the vertex degrees in one part of a bipartite graph G. We compute
the smallest number of matchings of size m that G can have (provided there is at least one).

In fact, our results also apply to the more general problem of counting matchings in matroids.

1 Introduction

Let G be a bipartite graph with a bipartition V(G) = X UY. Let X := {x,...,zn}. Let

d; := d(z;) be the degree of z;. Here we solve the following problem.

Problem 1 Given d := (di,...,d,) and an integer m < n, what is the smallest number of

matchings of size m that G can have, provided there is at least one m-matching?

Ostrand [4] (see Hwang [2] for another proof) has settled the case m = n when the matchings
to count must contain every vertex of X. McCarthy [3] generalized Ostrand’s results to the
setting where we have a matroid on Y and we count the number of independent n-matchings,
that is, we additionally require that the set of matched vertices of Y is an independent set. Our

bound on partial matchings holds also for matroids, see Section 4.

One motivation behind this study is that sometimes the existence of a certain combinatorial
object can be proved by applying Hall’s Marriage Theorem (see [1, Chapter VIII.2] for some
examples). Thus a lower bound in Problem 1 should give a quantitative strengthening of these

results wherein we deduce a lower bound on the number of the constructed objects.



2 Notation and Preliminary Remarks

When dealing with matroids we will follow the terminology in [5]. Given a matroid M on Y,

let I,,,(G, M) denote the number of independent m-matchings. Rado’s theorem [6] implies that
(G, M) has an independent m-matching iff VA C X p(I'(4)) > |A| — n +m, (1)

where p is the rank function of M and I'(4) = {y : 3z € A {z,y} € E(G)}.

Any set A achieving the bound in (1) is called critical. It is easy to see that for any critical
A every independent m-matching contains p(I'(A)) vertices from I'(A) (the largest possible

number) as well as all vertices in X \ A but does not connect these two sets.

If M is the free matroid (that is, p(A) = |A| for all A C Y'), then (1) gives the well-known

defect version of Hall’s marriage theorem.

Note that m-matchings in G can be equivalently considered as systems of m distinct repre-
sentatives of the set system (I'(z1),...,I'(z,)). However, in this paper we will use the graph

version.

3 Construction and Its Properties

First of all, we can assume without loss of generality that each d; is positive (otherwise we

remove z;) and that d; < --- < d,.

To construct our graph H = H,,(d) we have to specify sets I'(z;). Let us assume that Y is an

initial segment of positive integers (and M is the free matroid). For i € [n] define

[di], ifd; >i—n+m,
[di —1]U{i —n+m}, otherwise.

Note that H contains a matching of size m: consider the edges {x;,i—n+m} fori € [n—m+1,n].

Let us state a few properties of H which we will need later. Let X; := {x1,...,%;}.

Lemma 2 If we have d; <i—n+m for some i, then I'(X;) = [i — n + m]. (In particular, X;

is critical and H has no matching of size m + 1.)

Proof. For any j < i we have d; < d; <i—n+m, so I'(z;) C [i —n+ m], proving I'(X;) C
[t —n + m]. The converse inclusion follows by observing that j € [m] is always connected to

Ljt+n—m- 1

Lemma 2 allows us to compute f,,(d), the number of m-matchings in H.



If d; < i —mn 4+ m for some i, then

1 - :

fm(d) = = il;[lmax(di—l—n—m—z—i—l,l). (2)
Indeed, if we add n — m new vertices to Y which are connected to everything in X, then, in
view of Lemma 2, the new graph H' has precisely (n — m)! - f,(d) matchings of size n. Note
that H' = H,(d1 +n—m,...,d, +n—m) and for this graph it is easy to compute the number

of n-matchings (alternatively, see Ostrand [4]), giving (2).

If di > i —n+ m for all i, then we have I'(z;) C I'(z;) for any ¢ < j and the number of

m-matchings can be expressed as

Frn(d) = > [ max(d,, — i+ 1,0). (3)
1<y < <vm<n =1

It seems that there is no nice formula, like (2), for f,,,(d) in this case.

In the remainder of this paper, when we write f,,(d) we will mean that we remove any zeros

from d, reorder d to be non-decreasing and then use the formulas (2) and (3).

Lemma 3 The function f,,(d) is non-decreasing with respect to each argument d;.

Proof. It is enough to prove the claim when we increase some d; by 1: d; = d;+1 while all other
d;- = dj. We can assume that either ¢ = n or d; < d;;1. When we analyze the corresponding
graphs, H and H', we see that H' is obtained from H by adding one more edge. Of course, this

cannot decrease the number of m-matchings. 1

4 Lower Bound
In this section the term ‘matching’ implicitly means ‘an independent matching.’

Theorem 4 Let G be a bipartite graph with a bipartition V(G) = XUY . Let M be a matroid on
Y with rank function p. Let X := {x1,...,x,} and d; := p(T(z;)). Assume 1 <dj < --- < d,.

If I,(G,M) > 1, then
In(G,M) > fa(da, ... dy). (4)

Proof. We use induction on n with the case n = 1 being trivially true. Let n > 2. The proof

splits into two cases. Recall that a set A C X is called critical if we have equality in (1).

Case 1 There is a critical A C X (possibly A = X).



This means that (G, M) admits no (m + 1)-matching. Let G’ be obtained from G by adding
n — m new vertices to Y which are connected to everything in X. Let the matroid M’ be the

matroid union of M and the free matroid on the new vertices; its rank function is
J(B) = p(BNY) +|B\Y].

Clearly, I,(G,M) = I,,(G', M")/(n — m)!. Now, the result of McCarthy [3], when applied to
(G', M), settles this case.

Case 2 There is no critical set.

Let us bound Nj, the number of m-matchings containing z;. We can choose a non-loop y €
['(x1) in at least d; possible ways.

Let us show that the pair (G', M), where G' := G — 21 —y and M’ := M/y, has an (m — 1)-
matching. If this is not true, then by (1) we can find A C X \ {z1} with

PTa(A) <A —(n—1)+(m—1)—1=|A —n+m— 1.

This implies that A is critical with respect to (G, M), a contradiction.

Clearly, p'(Tgr(z;)) > d; — 1. By the monotonicity of f,, and induction on n, we have

N1 >difm-1(d2—1,...,d, — 1). (5)

To bound Ny, the number of m-matchings omitting z1, let G’ := G — x;. Similarly to above,

one can show that (G’, M) has an m-matching. Thus

No > fn(da,. .., dy). (6)

To complete the proof, it is enough to prove that
fm(dl, - ,dn) < dlfm_l(dg -1,...,d, — 1) + fm(dg, - ,dn). (7)

If the value dy occurs in d at most d; + n — m times, then in H,,(d) we have I'(z;) C I'(x;)
for any i. Splitting m-matchings of H,,(d) into two groups according to whether or not they

contain z; we conclude that (7) holds. (It is an equality, in fact.)

So, suppose that d; appears j > di +n —m times in d: d; = --- = d;. Here we deduce first
that

fm(d) Sdlfmfl(d,)+fm(d2a---adn)a (8)

where d’ consists of d; — 1 repeated di +n — m — 1 times, then d; repeated j —d; —n +m

times, followed by dj;1 —1,...,d, — 1. But in H,,_1(d’) the vertices of degree d; — 1 form



a critical set by Lemma 2 so they claim the whole of [d; — 1] in any (m — 1)-matching. The
graph H,,_1(d’) is obtained from H,,_1(d2 —1,...,d,, — 1) by adding extra edges connecting
[d1 — 1] CY to degree-d; vertices in X. This shows that

fmfl(d,) = fmfl(d2 -1,.. -:dn - 1)

and implies (7) by (8), finishing the proof. 1

5 Concluding Remarks

Observe that Problem 1 can also be solved if we omit the condition that G contains an m-
matching. Indeed, it is straightforward to deduce from (1) that the restrictions on d, n force an

m-matching if and only if d; > ¢ — n + m for each i € [n].

The question of mazimizing the number of m-matchings is trivial with the extremal construction

being the disjoint union of stars K 4,. (While for matroids there is no upper bound at all.)
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