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Abstrat

Suppose that we know the vertex degrees in one part of a bipartite graph G. We ompute

the smallest number of mathings of size m that G an have (provided there is at least one).

In fat, our results also apply to the more general problem of ounting mathings in matroids.

1 Introdution

Let G be a bipartite graph with a bipartition V (G) = X [ Y . Let X := fx

1

; : : : ; x

n

g. Let

d

i

:= d(x

i

) be the degree of x

i

. Here we solve the following problem.

Problem 1 Given d := (d

1

; : : : ; d

n

) and an integer m � n, what is the smallest number of

mathings of size m that G an have, provided there is at least one m-mathing?

Ostrand [4℄ (see Hwang [2℄ for another proof) has settled the ase m = n when the mathings

to ount must ontain every vertex of X. MCarthy [3℄ generalized Ostrand's results to the

setting where we have a matroid on Y and we ount the number of independent n-mathings,

that is, we additionally require that the set of mathed verties of Y is an independent set. Our

bound on partial mathings holds also for matroids, see Setion 4.

One motivation behind this study is that sometimes the existene of a ertain ombinatorial

objet an be proved by applying Hall's Marriage Theorem (see [1, Chapter VIII.2℄ for some

examples). Thus a lower bound in Problem 1 should give a quantitative strengthening of these

results wherein we dedue a lower bound on the number of the onstruted objets.
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2 Notation and Preliminary Remarks

When dealing with matroids we will follow the terminology in [5℄. Given a matroid M on Y ,

let I

m

(G;M) denote the number of independent m-mathings. Rado's theorem [6℄ implies that

(G;M) has an independent m-mathing i� 8A � X �(�(A)) � jAj � n+m, (1)

where � is the rank funtion of M and �(A) =

�

y : 9x 2 A fx; yg 2 E(G)

	

.

Any set A ahieving the bound in (1) is alled ritial. It is easy to see that for any ritial

A every independent m-mathing ontains �(�(A)) verties from �(A) (the largest possible

number) as well as all verties in X nA but does not onnet these two sets.

If M is the free matroid (that is, �(A) = jAj for all A � Y ), then (1) gives the well-known

defet version of Hall's marriage theorem.

Note that m-mathings in G an be equivalently onsidered as systems of m distint repre-

sentatives of the set system (�(x

1

); : : : ;�(x

n

)). However, in this paper we will use the graph

version.

3 Constrution and Its Properties

First of all, we an assume without loss of generality that eah d

i

is positive (otherwise we

remove x

i

) and that d

1

� � � � � d

n

.

To onstrut our graph H = H

m

(d) we have to speify sets �(x

i

). Let us assume that Y is an

initial segment of positive integers (and M is the free matroid). For i 2 [n℄ de�ne

�(x

i

) :=

(

[d

i

℄; if d

i

� i� n+m;

[d

i

� 1℄ [ fi� n+mg; otherwise.

Note thatH ontains a mathing of sizem: onsider the edges fx

i

; i�n+mg for i 2 [n�m+1; n℄.

Let us state a few properties of H whih we will need later. Let X

i

:= fx

1

; : : : ; x

i

g.

Lemma 2 If we have d

i

� i� n+m for some i, then �(X

i

) = [i� n+m℄. (In partiular, X

i

is ritial and H has no mathing of size m+ 1.)

Proof. For any j � i we have d

j

� d

i

� i � n +m, so �(x

j

) � [i � n +m℄, proving �(X

i

) �

[i � n +m℄. The onverse inlusion follows by observing that j 2 [m℄ is always onneted to

x

j+n�m

.

Lemma 2 allows us to ompute f

m

(d), the number of m-mathings in H.
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If d

i

� i� n+m for some i, then

f

m

(d) =

1

(n�m)!

n

Y

i=1

max(d

i

+ n�m� i+ 1; 1): (2)

Indeed, if we add n �m new verties to Y whih are onneted to everything in X, then, in

view of Lemma 2, the new graph H

0

has preisely (n �m)! � f

m

(d) mathings of size n. Note

that H

0

�

=

H

n

(d

1

+n�m; : : : ; d

n

+n�m) and for this graph it is easy to ompute the number

of n-mathings (alternatively, see Ostrand [4℄), giving (2).

If d

i

> i � n + m for all i, then we have �(x

i

) � �(x

j

) for any i < j and the number of

m-mathings an be expressed as

f

m

(d) =

X

1��

1

<���<�

m

�n

m

Y

i=1

max(d

�

i

� i+ 1; 0): (3)

It seems that there is no nie formula, like (2), for f

m

(d) in this ase.

In the remainder of this paper, when we write f

m

(d) we will mean that we remove any zeros

from d, reorder d to be non-dereasing and then use the formulas (2) and (3).

Lemma 3 The funtion f

m

(d) is non-dereasing with respet to eah argument d

i

.

Proof. It is enough to prove the laim when we inrease some d

i

by 1: d

0

i

= d

i

+1 while all other

d

0

j

= d

j

. We an assume that either i = n or d

i

< d

i+1

. When we analyze the orresponding

graphs, H and H

0

, we see that H

0

is obtained from H by adding one more edge. Of ourse, this

annot derease the number of m-mathings.

4 Lower Bound

In this setion the term `mathing' impliitly means `an independent mathing.'

Theorem 4 Let G be a bipartite graph with a bipartition V (G) = X[Y . LetM be a matroid on

Y with rank funtion �. Let X := fx

1

; : : : ; x

n

g and d

i

:= �(�(x

i

)). Assume 1 � d

1

� � � � � d

n

.

If I

m

(G;M) � 1, then

I

m

(G;M) � f

m

(d

1

; : : : ; d

n

): (4)

Proof. We use indution on n with the ase n = 1 being trivially true. Let n � 2. The proof

splits into two ases. Reall that a set A � X is alled ritial if we have equality in (1).

Case 1 There is a ritial A � X (possibly A = X).
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This means that (G;M) admits no (m + 1)-mathing. Let G

0

be obtained from G by adding

n �m new verties to Y whih are onneted to everything in X. Let the matroid M

0

be the

matroid union of M and the free matroid on the new verties; its rank funtion is

�

0

(B) = �(B \ Y ) + jB n Y j:

Clearly, I

n

(G;M) = I

m

(G

0

;M

0

)=(n �m)!. Now, the result of MCarthy [3℄, when applied to

(G

0

;M

0

), settles this ase.

Case 2 There is no ritial set.

Let us bound N

1

, the number of m-mathings ontaining x

1

. We an hoose a non-loop y 2

�(x

1

) in at least d

1

possible ways.

Let us show that the pair (G

0

;M

0

), where G

0

:= G� x

1

� y and M

0

:=M=y, has an (m� 1)-

mathing. If this is not true, then by (1) we an �nd A � X n fx

1

g with

�

0

(�

G

0

(A)) � jAj � (n� 1) + (m� 1)� 1 = jAj � n+m� 1:

This implies that A is ritial with respet to (G;M), a ontradition.

Clearly, �

0

(�

G

0

(x

i

)) � d

i

� 1. By the monotoniity of f

m

and indution on n, we have

N

1

� d

1

f

m�1

(d

2

� 1; : : : ; d

n

� 1): (5)

To bound N

2

, the number of m-mathings omitting x

1

, let G

0

:= G � x

1

. Similarly to above,

one an show that (G

0

;M) has an m-mathing. Thus

N

2

� f

m

(d

2

; : : : ; d

n

): (6)

To omplete the proof, it is enough to prove that

f

m

(d

1

; : : : ; d

n

) � d

1

f

m�1

(d

2

� 1; : : : ; d

n

� 1) + f

m

(d

2

; : : : ; d

n

): (7)

If the value d

1

ours in d at most d

1

+ n �m times, then in H

m

(d) we have �(x

1

) � �(x

i

)

for any i. Splitting m-mathings of H

m

(d) into two groups aording to whether or not they

ontain x

1

we onlude that (7) holds. (It is an equality, in fat.)

So, suppose that d

1

appears j > d

1

+ n �m times in d: d

1

= � � � = d

j

. Here we dedue �rst

that

f

m

(d) � d

1

f

m�1

(d

0

) + f

m

(d

2

; : : : ; d

n

); (8)

where d

0

onsists of d

1

� 1 repeated d

1

+ n �m � 1 times, then d

1

repeated j � d

1

� n +m

times, followed by d

j+1

� 1; : : : ; d

n

� 1. But in H

m�1

(d

0

) the verties of degree d

1

� 1 form
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a ritial set by Lemma 2 so they laim the whole of [d

1

� 1℄ in any (m � 1)-mathing. The

graph H

m�1

(d

0

) is obtained from H

m�1

(d

2

� 1; : : : ; d

n

� 1) by adding extra edges onneting

[d

1

� 1℄ � Y to degree-d

1

verties in X. This shows that

f

m�1

(d

0

) = f

m�1

(d

2

� 1; : : : ; d

n

� 1)

and implies (7) by (8), �nishing the proof.

5 Conluding Remarks

Observe that Problem 1 an also be solved if we omit the ondition that G ontains an m-

mathing. Indeed, it is straightforward to dedue from (1) that the restritions on d; n fore an

m-mathing if and only if d

i

� i� n+m for eah i 2 [n℄.

The question ofmaximizing the number ofm-mathings is trivial with the extremal onstrution

being the disjoint union of stars K

1;d

i

. (While for matroids there is no upper bound at all.)
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