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Abstra
t

Suppose that we know the vertex degrees in one part of a bipartite graph G. We 
ompute

the smallest number of mat
hings of size m that G 
an have (provided there is at least one).

In fa
t, our results also apply to the more general problem of 
ounting mat
hings in matroids.

1 Introdu
tion

Let G be a bipartite graph with a bipartition V (G) = X [ Y . Let X := fx

1

; : : : ; x

n

g. Let

d

i

:= d(x

i

) be the degree of x

i

. Here we solve the following problem.

Problem 1 Given d := (d

1

; : : : ; d

n

) and an integer m � n, what is the smallest number of

mat
hings of size m that G 
an have, provided there is at least one m-mat
hing?

Ostrand [4℄ (see Hwang [2℄ for another proof) has settled the 
ase m = n when the mat
hings

to 
ount must 
ontain every vertex of X. M
Carthy [3℄ generalized Ostrand's results to the

setting where we have a matroid on Y and we 
ount the number of independent n-mat
hings,

that is, we additionally require that the set of mat
hed verti
es of Y is an independent set. Our

bound on partial mat
hings holds also for matroids, see Se
tion 4.

One motivation behind this study is that sometimes the existen
e of a 
ertain 
ombinatorial

obje
t 
an be proved by applying Hall's Marriage Theorem (see [1, Chapter VIII.2℄ for some

examples). Thus a lower bound in Problem 1 should give a quantitative strengthening of these

results wherein we dedu
e a lower bound on the number of the 
onstru
ted obje
ts.
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2 Notation and Preliminary Remarks

When dealing with matroids we will follow the terminology in [5℄. Given a matroid M on Y ,

let I

m

(G;M) denote the number of independent m-mat
hings. Rado's theorem [6℄ implies that

(G;M) has an independent m-mat
hing i� 8A � X �(�(A)) � jAj � n+m, (1)

where � is the rank fun
tion of M and �(A) =

�

y : 9x 2 A fx; yg 2 E(G)

	

.

Any set A a
hieving the bound in (1) is 
alled 
riti
al. It is easy to see that for any 
riti
al

A every independent m-mat
hing 
ontains �(�(A)) verti
es from �(A) (the largest possible

number) as well as all verti
es in X nA but does not 
onne
t these two sets.

If M is the free matroid (that is, �(A) = jAj for all A � Y ), then (1) gives the well-known

defe
t version of Hall's marriage theorem.

Note that m-mat
hings in G 
an be equivalently 
onsidered as systems of m distin
t repre-

sentatives of the set system (�(x

1

); : : : ;�(x

n

)). However, in this paper we will use the graph

version.

3 Constru
tion and Its Properties

First of all, we 
an assume without loss of generality that ea
h d

i

is positive (otherwise we

remove x

i

) and that d

1

� � � � � d

n

.

To 
onstru
t our graph H = H

m

(d) we have to spe
ify sets �(x

i

). Let us assume that Y is an

initial segment of positive integers (and M is the free matroid). For i 2 [n℄ de�ne

�(x

i

) :=

(

[d

i

℄; if d

i

� i� n+m;

[d

i

� 1℄ [ fi� n+mg; otherwise.

Note thatH 
ontains a mat
hing of sizem: 
onsider the edges fx

i

; i�n+mg for i 2 [n�m+1; n℄.

Let us state a few properties of H whi
h we will need later. Let X

i

:= fx

1

; : : : ; x

i

g.

Lemma 2 If we have d

i

� i� n+m for some i, then �(X

i

) = [i� n+m℄. (In parti
ular, X

i

is 
riti
al and H has no mat
hing of size m+ 1.)

Proof. For any j � i we have d

j

� d

i

� i � n +m, so �(x

j

) � [i � n +m℄, proving �(X

i

) �

[i � n +m℄. The 
onverse in
lusion follows by observing that j 2 [m℄ is always 
onne
ted to

x

j+n�m

.

Lemma 2 allows us to 
ompute f

m

(d), the number of m-mat
hings in H.
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If d

i

� i� n+m for some i, then

f

m

(d) =

1

(n�m)!

n

Y

i=1

max(d

i

+ n�m� i+ 1; 1): (2)

Indeed, if we add n �m new verti
es to Y whi
h are 
onne
ted to everything in X, then, in

view of Lemma 2, the new graph H

0

has pre
isely (n �m)! � f

m

(d) mat
hings of size n. Note

that H

0

�

=

H

n

(d

1

+n�m; : : : ; d

n

+n�m) and for this graph it is easy to 
ompute the number

of n-mat
hings (alternatively, see Ostrand [4℄), giving (2).

If d

i

> i � n + m for all i, then we have �(x

i

) � �(x

j

) for any i < j and the number of

m-mat
hings 
an be expressed as

f

m

(d) =

X

1��

1

<���<�

m

�n

m

Y

i=1

max(d

�

i

� i+ 1; 0): (3)

It seems that there is no ni
e formula, like (2), for f

m

(d) in this 
ase.

In the remainder of this paper, when we write f

m

(d) we will mean that we remove any zeros

from d, reorder d to be non-de
reasing and then use the formulas (2) and (3).

Lemma 3 The fun
tion f

m

(d) is non-de
reasing with respe
t to ea
h argument d

i

.

Proof. It is enough to prove the 
laim when we in
rease some d

i

by 1: d

0

i

= d

i

+1 while all other

d

0

j

= d

j

. We 
an assume that either i = n or d

i

< d

i+1

. When we analyze the 
orresponding

graphs, H and H

0

, we see that H

0

is obtained from H by adding one more edge. Of 
ourse, this


annot de
rease the number of m-mat
hings.

4 Lower Bound

In this se
tion the term `mat
hing' impli
itly means `an independent mat
hing.'

Theorem 4 Let G be a bipartite graph with a bipartition V (G) = X[Y . LetM be a matroid on

Y with rank fun
tion �. Let X := fx

1

; : : : ; x

n

g and d

i

:= �(�(x

i

)). Assume 1 � d

1

� � � � � d

n

.

If I

m

(G;M) � 1, then

I

m

(G;M) � f

m

(d

1

; : : : ; d

n

): (4)

Proof. We use indu
tion on n with the 
ase n = 1 being trivially true. Let n � 2. The proof

splits into two 
ases. Re
all that a set A � X is 
alled 
riti
al if we have equality in (1).

Case 1 There is a 
riti
al A � X (possibly A = X).
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This means that (G;M) admits no (m + 1)-mat
hing. Let G

0

be obtained from G by adding

n �m new verti
es to Y whi
h are 
onne
ted to everything in X. Let the matroid M

0

be the

matroid union of M and the free matroid on the new verti
es; its rank fun
tion is

�

0

(B) = �(B \ Y ) + jB n Y j:

Clearly, I

n

(G;M) = I

m

(G

0

;M

0

)=(n �m)!. Now, the result of M
Carthy [3℄, when applied to

(G

0

;M

0

), settles this 
ase.

Case 2 There is no 
riti
al set.

Let us bound N

1

, the number of m-mat
hings 
ontaining x

1

. We 
an 
hoose a non-loop y 2

�(x

1

) in at least d

1

possible ways.

Let us show that the pair (G

0

;M

0

), where G

0

:= G� x

1

� y and M

0

:=M=y, has an (m� 1)-

mat
hing. If this is not true, then by (1) we 
an �nd A � X n fx

1

g with

�

0

(�

G

0

(A)) � jAj � (n� 1) + (m� 1)� 1 = jAj � n+m� 1:

This implies that A is 
riti
al with respe
t to (G;M), a 
ontradi
tion.

Clearly, �

0

(�

G

0

(x

i

)) � d

i

� 1. By the monotoni
ity of f

m

and indu
tion on n, we have

N

1

� d

1

f

m�1

(d

2

� 1; : : : ; d

n

� 1): (5)

To bound N

2

, the number of m-mat
hings omitting x

1

, let G

0

:= G � x

1

. Similarly to above,

one 
an show that (G

0

;M) has an m-mat
hing. Thus

N

2

� f

m

(d

2

; : : : ; d

n

): (6)

To 
omplete the proof, it is enough to prove that

f

m

(d

1

; : : : ; d

n

) � d

1

f

m�1

(d

2

� 1; : : : ; d

n

� 1) + f

m

(d

2

; : : : ; d

n

): (7)

If the value d

1

o

urs in d at most d

1

+ n �m times, then in H

m

(d) we have �(x

1

) � �(x

i

)

for any i. Splitting m-mat
hings of H

m

(d) into two groups a

ording to whether or not they


ontain x

1

we 
on
lude that (7) holds. (It is an equality, in fa
t.)

So, suppose that d

1

appears j > d

1

+ n �m times in d: d

1

= � � � = d

j

. Here we dedu
e �rst

that

f

m

(d) � d

1

f

m�1

(d

0

) + f

m

(d

2

; : : : ; d

n

); (8)

where d

0


onsists of d

1

� 1 repeated d

1

+ n �m � 1 times, then d

1

repeated j � d

1

� n +m

times, followed by d

j+1

� 1; : : : ; d

n

� 1. But in H

m�1

(d

0

) the verti
es of degree d

1

� 1 form
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a 
riti
al set by Lemma 2 so they 
laim the whole of [d

1

� 1℄ in any (m � 1)-mat
hing. The

graph H

m�1

(d

0

) is obtained from H

m�1

(d

2

� 1; : : : ; d

n

� 1) by adding extra edges 
onne
ting

[d

1

� 1℄ � Y to degree-d

1

verti
es in X. This shows that

f

m�1

(d

0

) = f

m�1

(d

2

� 1; : : : ; d

n

� 1)

and implies (7) by (8), �nishing the proof.

5 Con
luding Remarks

Observe that Problem 1 
an also be solved if we omit the 
ondition that G 
ontains an m-

mat
hing. Indeed, it is straightforward to dedu
e from (1) that the restri
tions on d; n for
e an

m-mat
hing if and only if d

i

� i� n+m for ea
h i 2 [n℄.

The question ofmaximizing the number ofm-mat
hings is trivial with the extremal 
onstru
tion

being the disjoint union of stars K

1;d

i

. (While for matroids there is no upper bound at all.)
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