Generating Edge-Labeled Trees

Oleg Pikhurko

In this note we present a bijective enumeration of all edge-labeled trees (where we put
labels on edges, while vertices are indistinguishable from each other). These are not as
important as vertex-labeled trees, but they do appear in applications (see, for example,
Cameron [3], [4], Buneman et al. [1], Calcagno et al. [2], and Hage [7]). Cameron [4,
Proposition 2.1] demonstrated that the total number of edge-labeled trees with n (>2)
edges is (n + 1)"~2 by showing that the number of vertex-labeled trees of size n is
n + 1 times larger than the number of edge-labeled ones.

However, it is often desirable not only to know the total number of objects of a
given type but also to have a method for generating them in some linear ordering. For
example, this is helpful when one wishes to check some hypothesis for each object.
In our case, it would be ideal if we could find a bijection between the family of edge-
labeled trees with n edges and X"~2, where X is some standard set of size n + 1.
This would offer extra advantages, such as being able to sample uniformly distributed
random edge-labeled trees by taking a random element of X" 2.

There are many known bijections for vertex-labeled trees (see Priifer [9], Moon [8],
and Egecioglu and Remmel [5], to name just a few references). Combining these with
Cameron’s proof, one can write a bijection for edge-labeled trees, but the resulting
algorithms seem rather unwieldy. Cameron [4, Problem 1] asked for a direct bijection
(i.e., one not going through vertex-labeled trees). Here we give such a construction
based on the ideas of Foata [6].

Fix n > 2. Let T be any tree with n edges labeled by e, ..., e,, where the labels
are ordered ¢; < --- < ¢,. Let L consist of all leaves (i.e., pendant edges) e; with
1 <i <n — 1. Subdivide ¢, with a new vertex x, into two new edges e, and ¢/,. Here
we have two choices as to how to assign these labels, so we agree that ¢, is the edge
that lies on the path from x, to the smallest element of L.

Initially, let S be the empty sequence. Repeat the following procedure for each e;
in L, taking them in increasing order. Move along the path from e; to xy, naming
the edges encountered p, = ¢;, p», ps, ..., until the current edge p; is e, e, or an
element already in S. Then stop and append the sequence p;, ..., p3, p, to the end of
S. Note that we add elements in the order reverse to that in which they were visited
and we exclude p; = ¢;.

December 2005] NOTES 919

Clearly, the result of this construction is a sequence S that starts with e/ and has
length n — 1. The code C = C(T) of the tree T is obtained from S by deleting the
first e/,

€3

€s

€y €4

T S=S+(es, e S=8+(e5)

Figure 1. An illustration: computing C(T') = (ea, eg, e).

On the other hand, let C be any sequence of length n — 2 consisting of symbols
from {ey, ..., e,_1, €, e,}. Obtain a new sequence S from C by adding a leading e),.
Let L consist of those labels in {ey, .. ., e,_1} that do not occur in §, listed in increasing
order z; < --- < z. Clearly, an element of S equals ¢/, e/, or some previously occur-

ing element of S exactly / = |L| times. Cut S before each such element, producing [

subsequences Sy, ..., S;. Append z; to §; to create a sequence P;.
Now we are ready to assemble our tree 7. We start by taking 7 to be the path
consisting of edges e/, and e/ adjacent to a common vertex xo. Fori = 1, ...,/ we form

the elements of P; into a path and affix this path to T along their (unique) common
edge e. Of the two possible ways for doing this, we choose the one for which the path
connecting x to z; uses this edge e.

Finally, we remove the vertex x, replacing e/, and e, with a new edge e,. This is
the required tree T = T(C).

For example, if the input is n = 5 and C = (e, €, e,) (the same as in Figure 1),
then S = (e5, e,, €7, e;) and S is subdivided as

Sy =(e5,e), S=(e5), S3=(e).
Appending the remaining elements, the elements of L = {ey, e3, e4}, we obtain paths
Py = (e5,e2,€1), Pr=(e5,€3), P3=(er eq),
which gives us back our initial tree 7.
With these illustrations it is fairly clear that we indeed have a one-to-one correspon-

dence, so we do not provide any futher details.

REFERENCES

1. P. Buneman, S. Davidson, G. Hillerbrand, and D. Suciu, A query language and optimization technique for
unstructured data, in Proc. ACM SIGMOD Int. Conf. on Management of Data (Montreal), ACM Press,
New York, 1996, pp. 505-516.

2. C.Calcagno, L. Cardelli, and A. D. Gordon, Deciding validity in a spatial logic for trees, in ACM Workshop
on Types in Language Design and Implementation (New Orleans), ACM Press, New York, 2003, pp. 62—
73.

3. P.J. Cameron, Two-graphs and trees, Discrete Math. 127 (1994) 63-74.

4. , Counting two-graphs related to trees, Electronic J. Combin. 2 (1995) #R4, 8 pp.

920 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 112

9.

0. Egecioglu and J. B. Remmel, Bijection for Cayley trees, spanning trees, and their g-analogues, J.
Combin. Theory (A) 42 (1986) 15-30.

D. Foata, Enumerating k-trees, Discrete Math. 1 (1971) 181-186.

J. Hage, Enumerating submultisets of multisets, Inf. Proc. Letters 85 (2003) 221-226.

J. W. Moon, Various proofs of Cayley’s formula for counting trees, in A Seminar on Graph Theory,
F. Harary, ed., Holt, New York, 1967, pp. 70-78.

H. Priifer, Neuer Beweis eines Satzes iiber Permutationen, Arch. Math. Phys. 27 (1918) 142—144.

Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA 15213-3890

