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Generating Edge-Labeled Trees

Oleg Pikhurko

In this note we present a bijective enumeration of all edge-labeled trees (where we put
labels on edges, while vertices are indistinguishable from each other). These are not as
important as vertex-labeled trees, but they do appear in applications (see, for example,
Cameron [3], [4], Buneman et al. [1], Calcagno et al. [2], and Hage [7]). Cameron [4,
Proposition 2.1] demonstrated that the total number of edge-labeled trees with n (≥2)
edges is (n + 1)n−2 by showing that the number of vertex-labeled trees of size n is
n + 1 times larger than the number of edge-labeled ones.

However, it is often desirable not only to know the total number of objects of a
given type but also to have a method for generating them in some linear ordering. For
example, this is helpful when one wishes to check some hypothesis for each object.
In our case, it would be ideal if we could find a bijection between the family of edge-
labeled trees with n edges and X n−2, where X is some standard set of size n + 1.
This would offer extra advantages, such as being able to sample uniformly distributed
random edge-labeled trees by taking a random element of Xn−2.

There are many known bijections for vertex-labeled trees (see Prüfer [9], Moon [8],
and Eǧecioǧlu and Remmel [5], to name just a few references). Combining these with
Cameron’s proof, one can write a bijection for edge-labeled trees, but the resulting
algorithms seem rather unwieldy. Cameron [4, Problem 1] asked for a direct bijection
(i.e., one not going through vertex-labeled trees). Here we give such a construction
based on the ideas of Foata [6].

Fix n ≥ 2. Let T be any tree with n edges labeled by e1, . . . , en , where the labels
are ordered e1 < · · · < en . Let L consist of all leaves (i.e., pendant edges) ei with
1 ≤ i ≤ n − 1. Subdivide en with a new vertex x0 into two new edges e′

n and e′′
n . Here

we have two choices as to how to assign these labels, so we agree that e′
n is the edge

that lies on the path from x0 to the smallest element of L .
Initially, let S be the empty sequence. Repeat the following procedure for each ei

in L , taking them in increasing order. Move along the path from ei to x0, naming
the edges encountered p1 = ei , p2, p3, . . . , until the current edge p j is e′

n , e′′
n , or an

element already in S. Then stop and append the sequence p j , . . . , p3, p2 to the end of
S. Note that we add elements in the order reverse to that in which they were visited
and we exclude p1 = ei .
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Clearly, the result of this construction is a sequence S that starts with e′
n and has

length n − 1. The code C = C(T ) of the tree T is obtained from S by deleting the
first e′

n.

e3

e5

e1

e4e2

T

e3

e1

e4e2

x0

e'5

e''5

e3

e1

e4e2

x0

e'5

e''5

e3

e1

e4e2

x0

e'5

e''5

S = S + (e'5, e2) S = S + (e'' )5 S = S + (e2)

Figure 1. An illustration: computing C(T ) = (e2, e′′
5 , e2).

On the other hand, let C be any sequence of length n − 2 consisting of symbols
from {e1, . . . , en−1, e′

n, e′′
n}. Obtain a new sequence S from C by adding a leading e′

n .
Let L consist of those labels in {e1, . . . , en−1} that do not occur in S, listed in increasing
order z1 < · · · < zl . Clearly, an element of S equals e′

n , e′′
n , or some previously occur-

ing element of S exactly l = |L| times. Cut S before each such element, producing l
subsequences S1, . . . , Sl . Append zi to Si to create a sequence Pi .

Now we are ready to assemble our tree T . We start by taking T to be the path
consisting of edges e′

n and e′′
n adjacent to a common vertex x0. For i = 1, . . . , l we form

the elements of Pi into a path and affix this path to T along their (unique) common
edge e. Of the two possible ways for doing this, we choose the one for which the path
connecting x0 to zi uses this edge e.

Finally, we remove the vertex x0, replacing e′
n and e′′

n with a new edge en . This is
the required tree T = T (C).

For example, if the input is n = 5 and C = (e2, e′′
5, e2) (the same as in Figure 1),

then S = (e′
5, e2, e′′

5, e2) and S is subdivided as

S1 = (e′
5, e2), S2 = (e′′

5), S3 = (e2).

Appending the remaining elements, the elements of L = {e1, e3, e4}, we obtain paths

P1 = (e′
5, e2, e1), P2 = (e′′

5, e3), P3 = (e2, e4),

which gives us back our initial tree T .
With these illustrations it is fairly clear that we indeed have a one-to-one correspon-

dence, so we do not provide any futher details.
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A Remark on the Erdős-Szekeres Theorem
Adrian Dumitrescu

1. INTRODUCTION. A set S of points in the plane is in general position if no three
points of S are collinear. A finite set S of points is in convex position if the points
of S are the vertices of a convex polygon. If S is in convex position, we refer to the
resulting convex polygon as a convex |S|-gon. The following classical result of Erdős
and Szekeres is well known [5]:

Theorem 1. For each n ≥ 3 there exists an integer f (n) such that any set of at least
f (n) points in general position in the plane contains a subset of n points in convex
position.

We offer the following generalization:

Theorem 2. For each finite sequence h0, h1, . . . , hk with hi ≥ 3(i = 0, . . . , k) there
is an integer N = N (h0, h1, . . . , hk) such that any set S of at least N points in general
position in the plane contains either

(i) an empty convex h0-gon (i.e., a convex h0-gon that contains no points of S in
its interior)

or
(ii) k convex polygons P1, . . . , Pk, where Pi is an hi -gon such that Pi strictly con-

tains Pi+1 in its interior for i = 1, . . . , k − 1.

The special case k = 1 and h0 = h1 = n is clearly equivalent to Theorem 1.
In 1975, Erdős [4] asked whether the following sharpening of the Erdős-Szekeres

theorem holds: Is there for each n ≥ 3 a smallest number g(n) such that any set of
at least g(n) points in general position in the plane contains an empty convex n-gon?
This was answered in the negative by Horton [6], who constructed arbitrarily large
point sets containing no empty convex heptagon (thus g(n) does not exist when n ≥ 7).
The existence of g(n) is known for small n, namely, for n = 3, 4, and 5, but remains
a mystery for n = 6. It is generally believed, however, that sufficiently many points
determine an empty convex hexagon (the so-called empty hexagon conjecture; see
section 3).

Let S be a set of points in general position in the plane. We call S k-convex if
each triangle determined by S contains at most k points of S in its interior. Recently
Valtr [11] showed that k-convexity is sufficient to guarantee the existence of an empty
convex n-gon if the point set S is large enough.
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