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Abstra
t

Let F be a family of k-graphs. A k-graph G is 
alled F-saturated

if it a maximal graph not 
ontaining any member of F as a subgraph.

We investigate the smallest number of edges that an F-saturated

graph on n verti
es 
an have. We present new results and open

problems for di�erent instan
es of F .

1 Introdu
tion

A k-hypergraph H is, as usual, a pair (V (H); E(H)) (verti
es and edges)

where

E(H) �

�

V (H)

k

�

:= fA � V (H) : jAj = kg:

We sometimes 
all H a k-graph or even simply a graph when k is under-

stood. The size of H is e(H) := jE(H)j and the order is v(H) := jV (H)j.

Given a family F of k-graphs (whi
h are typi
ally 
alled forbidden), we

say that a k-graph H is F-free if no F 2 F is a subgraph of H . Next, H is

F-saturated if it is maximal F-free (that is, H is F-free but the addition

of any extra edge to H violates this property). Let

SAT(n;F) := fH : H is F-saturated; v(H) = ng

�
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onsist of all F-saturated graph of order n. We are interested in the smallest

size of a su
h graph, that is, in

sat(n;F) := minfe(H) : H 2 SAT(n;F)g: (1)

If F has only a single member F , we write sat(n; F ) instead of sat(n; fFg),

et
.

The �rst sat-type results were obtained by Erd}os, Hajnal and Moon [11℄

and by Bollob�as [4℄ (see (2)); the 
urrent notation 
omes from Bollob�as'

book [6℄.

K�aszonyi and Tuza [16℄ showed that sat(n;F) = O(n) for any (possi-

bly in�nite) family F of 2-graphs. The author [19℄ proved the estimate

sat(n;F) = O(n

k�1

) for any �nite family F of k-graphs.

Problem 1 Does sat(n;F) = O(n

k�1

) for any in�nite family F of k-

graphs?

The sat-fun
tion la
ks many natural regularity properties as it is ob-

served by K�aszonyi and Tuza [16℄. In Se
tion 2 we present a few further

results of this type. We demonstrate a pair of 
onne
ted graphs F

1

� F

2

on the same vertex set su
h that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Also, for any 
onstant d, we build a 2-graph F = F (d) su
h that

sat(n; F ) < min

�

sat(n� 1; F ); sat(n+ 1; F )

�

� d;

for a periodi
 series of values of n.

Tuza [25℄ made the following 
onje
ture.

Conje
ture 2 For any 2-graph F , the limit lim

n!1

sat(n; F )=n exists.

The author [19℄ demonstrated an example of an in�nite family F of

graphs su
h that sat(n;F)=n does not tend to a limit. Here we improve

on this by demonstrating a �nite `irregular' family F . But Tuza's 
onje
-

ture remains open as a smallest family that we 
an 
onstru
t 
onsists of 4

forbidden graphs.

A number of results have been obtained for spe
ial families F (see

e.g. [11, 4, 8, 18, 16, 26, 24, 10, 3, 28, 19, 20, 21℄). Here we present a

few more.

Bollob�as [4℄ 
omputed the sat-fun
tion for the 
omplete k-graph of order

m:

sat(n;K

k

m

) =

�

n

k

�

�

�

n�m+ k

k

�

: (2)

This extends the result of Erd}os, Hajnal and Moon [11℄ who had previously

proved (2) for k = 2. Minimum K

2

m

-saturated graphs of given minimum
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degree were studied by Du�us and Hanson [9℄ and by Alon, Erd}os, Holzman

and Krivelevi
h [2℄. A result from the latter paper is improved here in

Se
tion 3.

In Se
tion 4 we 
ompute sat(n;K

2

l

+

�

K

2

m

) for all n � n

0

(l;m).

In Se
tion 5 we forbid three k-edges su
h that the symmetri
 di�eren
e

of two is 
ontained in the third one and show that the 
orresponding sat-

fun
tion equals n�O(log n). For k = 3 we 
ompute the sat-fun
tion exa
tly.

(The 
ase k = 2 is trivial.)

The paper 
ontains some other results and open problems that are s
at-

tered throughout the text.

2 Irregularities

Here we demonstrate some irregularities of the sat-fun
tion in the 
ompar-

ison to the Tur�an fun
tion

ex(n;F) = maxfe(G) : G 2 SAT(n;F)g

= maxfe(G) : v(G) = n; G is F-freeg:

Clearly, ex(n; F

1

) � ex(n; F

2

) whenever F

1

is a subgraph of F

2

. K�aszonyi

and Tuza [16℄ demonstrated an example of F

1

� F

2

with sat(n; F

1

) >

sat(n; F

2

) for all large n. Tuza [27, p. 401℄ asked if there exists a 
onne
ted

irregular pair F

1

� F

2

; this is answered in the aÆrmative by the following

simple example.

Example 3 There is a pair of 
onne
ted graphs F

1

� F

2

on the same

vertex set su
h that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Proof. Let m � 4. Let F

1

be the star K

1;m

, that is, V (F

1

) = [m+ 1℄ and

E(F

1

) = ff1; ig : i 2 [2;m+1℄g, and let F

2

be obtained from F

1

by adding

the edge f2; 3g. Clearly, sat(n; F

2

) � n � 1, n � m + 1, as K

1;n�1

is an

example of an F

2

-saturated graph.

On the other hand, in any F

1

-saturated graph G, any two verti
es of

degree at most m� 2 must be 
onne
ted. (Otherwise the addition of this

edge 
annot 
reate a forbidden subgraph.) If we have v 2 [0;m � 1℄ su
h

verti
es, then e(G) �

�

v

2

�

+

m�1

2

(n�v), whi
h is easily seen to ex
eed n�1

for all n � m+ 1.

Clearly, for every n � v(F ), we have ex(n; F ) � ex(n + 1; F ). On the

other hand, K�aszonyi and Tuza [16℄ observed that, for any odd n = 2k� 1,

we have sat(n; P

3

) = k+1 > sat(n+1; P

3

) = k, where P

3

is the path with

three edges. Our next example ampli�es this irregularity.
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Example 4 For every 
onstant d, there is a 2-graph F = F (d) su
h that

sat(n; F ) < min

�

sat(n� 1; F ); sat(n+ 1; F )

�

� d;

for a periodi
 series of values of n.

Proof. Let m = 2d+ 3 and let F = B

m;m

be the dumb-bell

E(B

m;m

) =

�

[m℄

2

�

[

�

[m+ 1; 2m℄

2

�

[

�

f1;m+ 1g

	

;

that is, B

m;m

is the disjoint union of two 
opies of K

2

m

plus one edge


onne
ting them.

Let us show that the 
laim is true for any n = lm if l 2 N is large.

Clearly, sat(lm; F ) � lm(m � 1)=2 (in fa
t, this is sharp) as lK

2

m

2

SAT(lm; F ), where lF denotes the union of l disjoint 
opies of F . On

the other hand, let n = lm�1 and suppose that G 2 sat(n; F ) has at most

g = lm(m� 1)=2 + d edges.

Clearly, Æ(G), the minimal degree of G, is at least Æ(B

m;m

)�1 = m�2.

Suppose that for some x 2 V (G) we have d(x) = m� 2. Then for every y

non-in
ident to x the edge fx; yg 2 E(

�

G) 
annot be the bridge in a 
reated

B

m;m

-subgraph as the degree of x is too small; that is, x and y fall into

the same K

2

m

-half. Therefore, y must be 
onne
ted to all m�2 neighbours

of x and e(G) � (m� 2)n+O(1) whi
h is a 
ontradi
tion.

Hen
e Æ(G) � m�1. The inequality �(G)+(m�1)(n�1) � 2e(G) � 2g

implies that �(G) � 2(d +m � 1). If some x 2 V (G) does not belong to

an m-
lique then any missing edge fx; yg must 
reate a K

2

m

-subgraph and

we arrive at a 
ontradi
tion again, as d(x) � �(G) is bounded. Thus the

whole of V (G) is 
overed by m-
liques.

We want to �nd a set X � V (G) with the surplus s(X) = e(G[X ℄) �

m�1

2

jX j at least m� 1 as then we would obtain a 
ontradi
tion:

e(G) � e(G[X ℄) +

m� 1

2

(n� jX j) �

m� 1

2

n+m� 1 > g:

As m does not divide n, there are two distin
t 
liques A;B 2

�

V (G)

m

�

with i = jA \ Bj > 0. It is straightforward to verify that

s(A [ B) � 2

�

m

2

�

�

�

i

2

�

�

m� 1

2

(2m� i) �

m� 1

2

:

No m-
lique C 6= A;B 
an interse
t some other 
lique or A [B. (Oth-

erwise we gain another surplus of at least (m � 1)=2.) By the divisibility

argument, i = 1. As a (2m � 1)-
lique has surplus at least m � 1, there

4



exists some E 2 E(

�

G) lying within A [ B. It is easy to see that G + E

must 
ontain a K

2

m

-subgraph on some m-set C 6= A;B interse
ting A [ B

in at least two verti
es, whi
h implies s(A [ B [ C) � m� 1 as required.

Let n = ml+1 and G 2 SAT(n;B

m;m

). If Æ(G) = m�2, then we argue

as above that e(G) � (m�2)n+O(1); otherwise e(G) �

m�1

2

n > g, whi
h


ompletes the proof.

Next, we present an example of a �nite family F of 2-graphs su
h that

the ratio sat(n;F)=n does not tend to a limit. The fewest number of

elements in F that our proof gives is four (take m = 4). It may be possible

that working harder one 
an further redu
e this number but the ultimate

aim, a 
ounterexample to Conje
ture 2, seems out of rea
h to our method.

Example 5 There exists a �nite family F of 2-graphs su
h that, for some


 > 0 and for in�nitely many n,

sat(n;F) < min

�

sat(n� 1;F); sat(n+ 1;F)

�

� 
n:

In parti
ular, the ratio sat(n;F)=n does not tend to a limit.

Proof. Fix m � 4 and 
onsider the family F 
onsisting of the dumb-bell

B

m;m

and F

m;1

; : : : ; F

m;m�1

, where

E(F

m;i

) =

�

[m℄

2

�

[

�

[m� i+ 1; 2m� i℄

2

�

; i 2 [m� 1℄;

that is, F

m;i

is the union of two K

2

m

-graphs sharing i 
ommon verti
es.

Clearly, the disjoint union of K

2

m

-graphs is F-saturated as any miss-

ing edge 
onne
ts two di�erent 
opies and thus 
reates a B

m;m

-subgraph.

Hen
e, if m divides n then sat(n;F) �

n

m

�

m

2

�

.

On the other hand, suppose that m does not divide n and let G be any

F-saturated graph on [n℄. By the de�nition of F , no vertex 
an belong to

two di�erent K

2

m

-subgraphs of G; suppose that the sets A

i

= [m(i � 1) +

1;mi℄, i 2 [s℄, are all m-sets spanning 
omplete subgraphs in G. Denote

A

I

= [

i2I

A

i

, I � [s℄.

Note the following two properties of G. Property A: G[A

[s℄

℄

�

=

sK

2

m

.

(Be
ause B

m;m

is forbidden.) Property B: any missing edge E interse
t-

ing B = [n℄ n A

[s℄


reates a K

2

m

-subgraph. (Be
ause it is impossible that

B

m;m

� G+E with E being the bridge.)

We 
laim that these two properties and the fa
t that B 6= ; (as m is

not a divisor of n) imply that

e(G) �

n

m

��

m

2

�

+m� 2

�

�m

2

: (3)
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We use indu
tion on n. If some E 2

�

B

2

�

is not a G-edge then it is easy to


he
k that the graph G

0

obtained from G by 
ontra
ting the edge E has the

properties in question. The endverti
es of E have at least m� 2 
ommon

neighbours inG (be
ause E 
reates aK

2

m

-subgraph) so e(G) � e(G

0

)+m�2

and (3) follows by indu
tion. (Here we need the inequality m � 4.)

Suppose that B spans the 
omplete graph in G. If some E 2 E(

�

G)

interse
ts both A

i

and B then a K

2

m

-subgraph 
reated by E lies within

A

i

[B and so at least m� 2 G-edges interse
t both A

i

and B. Therefore,

e(G) � f(b) = (n� b)

m� 1

2

+

�

b

2

�

+

n� b

m

(m� 2);

where b = jBj. (We 
orrespondingly 
ount the edges within A

[s℄

, within B

and in between.) The minimum of f is a
hieved for b =

m

2

+

m�2

m

and our

estimate (3) follows rather 
rudely.

Hen
e, if we in
rease/de
rease n = ml by one, then sat(n;F) in
reases

at least by n

m�2

m

+O(1).

For k-graphs, k � 3, we are able to prove only the following.

Example 6 For any k � 3, there is a �nite family F

k

of k-graphs su
h that

sat(n;F

k

) = O(n) but sat(n;F

k

)=n does not tend to any limit as n!1.

Proof. Let I

k;i

be the �nite family 
onsisting of all (up to isomorphism)

k-graphs with at most k� i+2 edges whose 
ommon interse
tion has fewer

than i verti
es.

Note that any I

k;i

-free k-graph H is i-interse
ting, that is, j \

E2E(H)

Ej � i. Indeed, let I be any edge of H and then, as long as possible, if

there is E 2 E(H) with I 6� E, repla
e I by I \ E; if eventually jI j < i

then there must be at most k � i+ 2 edges whose interse
tion has size at

most i� 1, whi
h is forbidden.

Given a 2-graph G, we �x a (k�2)-set X disjoint from V (G) and de�ne

C

k�2

(G) by E(C

k�2

(G)) = fE [X : E 2 E(G)g.

Now, let F

k

= fC

k�2

(F ) : F 2 Fg [ I

k;k�2

, where F is the family


onstru
ted in Example 5. It is easy to see that sat(n;F

k

) = sat(n�k+2;F)

and the 
laim follows.

Problem 7 Is there a �nite family F of k-graphs, k � 3, for whi
h the

ratio sat(n;F)=n

k�1

does not tend to any limit?
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3 Complete Graphs

Du�us and Hanson [9℄ 
onsider sat(n;K

2

m

; l) whi
h is the minimum size of

a graph in

SAT(n;K

2

m

; l) := fG 2 SAT(n;K

2

m

) : Æ(G) � lg:

Of 
ourse, any K

2

m

-saturated graph G has minimum degree at least m� 2,

so we assume l � m� 1.

Du�us and Hanson [9℄ proved that, for n � 5, sat(n;K

2

3

; 2) = 2n � 5

and, for n � 10, sat(n;K

2

3

; 3) = 3n � 15. However, their general lower

bound [9, Theorem 2℄, whi
h states that sat(n;K

2

m

; l) �

l+m�2

2

n + O(1),

is far from the a
tual value. Trying to improve this bound, I showed that

sat(n;K

2

m

; l) = ln+ O(

n log log n

logn

) for any �xed l � m� 1. Later, I learned

that Alon, Erd}os, Holzman and Krivelevi
h [2, Theorem 2℄ had showed

that any G 2 SAT(n;K

2

m

) with O(n) edges has an independent set of

size n � O(

n

log logn

), whi
h implies that sat(n;K

2

m

; l) = ln + O(

n

log logn

).

However, I de
ided to present my proof be
ause it improves all these bounds

and I think that the general Theorem 8 is of independent interest.

However, the question of Bollob�as [7, p. 1271℄ whether sat(n;K

2

3

; l) =

ln+O(1) for any �xed l � 4, remains open.

Let us give a 
onstru
tion of G 2 SAT(n;K

2

m

; l) with ln+ O(1) edges:

take G = K

2

m�3

+K

l�m+3;n�l

whi
h has minimum degree l for n � 2l�m+

3. The 
omplete bipartite graph K

l�m+3;n�l

does not 
ontain a triangle

but the addition of any new edge violates this; hen
e, G is K

2

m

-saturated.

To prove our lower bound we need some preliminaries. Given any d,

de�ne a

d�m+2

= 2 and, 
onse
utively for j = d�m+ 1; d�m; : : : ; 1; 0,




j+1

= (m� 2)(a

j+1

� 1) + 1

b

j+1

= (m� 2)(


j+1

� 1) + 1

b

0

j+1

=

�

d�j�1

m�2

�

(b

j+1

� 1) + 1;

a

j

=

�

d�j�1

m�2

�

(b

0

j+1

� 1) + 2:

Finally, let a = (1 + 2(d� 1) + 2(d� 1)

2

)a

0

.

Given a K

2

m

-saturated graph G, let A denote the set of G-edges 
on-

ne
ting two verti
es of degree at most d in G:

A = ffx; yg 2 E(G) : d(x) � d; d(y) � dg:

The following theorem states that the size of A is bounded by a = a(d;m)

whi
h does not depend on n. Note that we do not impose any restri
tion

on the minimal degree of G.

7



Theorem 8 For any G 2 SAT(n;K

2

m

), m � 3, we have jAj < a.

Proof. Suppose, on the 
ontrary, that jAj � a.

We prove, by indu
tion on j = 0; 1; : : : ; d�m+2, that we 
an �nd the

following 
on�guration in G: a

j

-sets X

j

and Y

j

and j-sets U

j

and V

j

(all

disjoint) su
h that (i) X

j

[ Y

j

indu
es in G exa
tly a

j

edges whi
h form a

perfe
t mat
hing between X and Y and belong to A; (ii) �

U

j

[V

j

(x) = U

j

for any x 2 X

j

and �

U

j

[V

j

(y) = V

j

for any y 2 Y

j

.

For j = 0 (when U

0

and V

0

are empty), we take, one by one, edges from

A. On
e we have sele
ted an edge E 2 A, 
ross out all in
ident to E edges

(at most 2(d � 1) edges) and their neighbouring edges (of whi
h at most

2(d � 1)

2


an belong to A). Hen
e, we 
an build an indu
ed mat
hing of

size at least jAj=(1 + 2(d� 1) + 2(d� 1)

2

) � a

0

as required.

Suppose that j 2 [0; d � m + 1℄ and we have X

j

, et
., 
onstru
ted.

Choose x 2 X

j

; it has already got j + 1 neighbours in G: the neighbour

y 2 Y

j

plus all j verti
es of U

j

. Let N

x

denote the remaining neighbours

of x; thus jN

x

j � d� j � 1. For any z 2 Y

j

distin
t from y, the addition of

the edge fx; zg must 
reate a 
opy of K

2

m

, say on a set D

z

[ fx; zg. Now,

D

z

� �(x) \ �(z) � N

x

.

Thus some set D

z

, z 2 Y

j

n fyg, appears at least b

0

j+1

= d(a

j

�

1)=

�

d�j�1

m�2

�

e times; suppose it is D 2

�

N

x

m�2

�

whi
h equals D

z

for z 2 B

0

�

Y

j

n fyg, jB

0

j = b

0

j+1

. In a similar manner, we try to 
onne
t y to the

X

j

-mat
hes of B

0

-verti
es and �nd a set E 2

�

N

y

m�2

�

spanning the 
omplete

graph and 
onne
ted to every z from a set B � X

j

mat
hed into B

0

of


ardinality b

j+1

= db

0

j+1

=

�

d�j�1

m�2

�

e.

Clearly, no z 2 B 
an be 
onne
ted to every vertex of D; otherwise

D, z and the mat
h of z in B

0

span K

2

m

. Therefore, some v 2 D is not


onne
ted to at least 


j+1

= d

b

j+1

m�2

e verti
es of B; let C � B 
onsist of

all su
h verti
es. Similarly, we 
an �nd u 2 E, not 
onne
ted to an a

j+1

-

set Y

j+1

mat
hed into C. Of 
ourse, u 6= v. Now, let U

j+1

= U

j

[ fug,

V

j+1

= V

j

[ fvg, and let X

j+1

� X

j


onsist of the mat
hes of Y

j+1

, whi
h


ompletes our indu
tion.

At the end, we try to apply our argument again, for j = d � m + 2.

We obtain that x 2 X

j

has at least 1 + j + (m� 2) > d neighbours, whi
h


ontradi
ts the fa
t that fx; yg 2 A, where y is the Y

j

-mat
h of x.

Now we are ready to improve the result of Alon et al [2, Theorem 2℄

mentioned above. Let �(G) denote the maximum size of independent Y �

V (G).

8



Lemma 9 For any G 2 SAT(n;K

2

m

) with O(n) edges, we have

�(G) = n�O

�

n log logn

logn

�

:

Proof. Suppose e(G) � Cn. Let d =

" logn

log logn

for some �xed " > 0 and let

X = fx 2 V (G) : d(x) > dg. Now, djX j=2 � e(G) � Cn implies that

jX j �

2Cn log logn

" logn

:

By Theorem 8, Y = V (G) nX spans at most a � n

2"(m�2)+o(1)

edges. Re-

moving at most a verti
es we 
an make Y independent; it has the required

size if " <

1

2(m�2)

.

Clearly, e(G) � �(G)Æ(G). Therefore, Lemma 9 implies the following

result.

Theorem 10 For any �xed l � m�1, sat(n;K

2

m

; l) = ln+O(

n log logn

logn

).

4 Generalised Stars

The graph S

l;m

= K

2

l

+

�

K

2

m


an be viewed as a generalisation of a star

K

1;m

, so we 
all it a generalised star.

The sat-fun
tion for S

1;m

= K

1;m

was 
omputed by K�aszonyi and

Tuza [16℄:

sat(n;K

1;m

) =

�

�

m

2

�

+

�

n�m

2

�

; if m+ 1 � n � (3m� 1)=2;

d(m� 1)n=2�m

2

=8e; n � 3m=2

(4)

Clearly, G + K

2

l�1

is S

l;m

-saturated for any K

1;m

-saturated graph G.

This shows that

sat(n; S

l;m

) � sat(n� l + 1;K

1;m

) +

�

l� 1

2

�

+ (l � 1)(n� l + 1): (5)

We 
an show that this bound is sharp for all suÆ
iently large n. (This

may be true for all n � m + l but the author was not able to work this

out.)

Theorem 11 There is n

0

= n

0

(l;m) su
h that we have equality in (5) for

all n � n

0

.

9



Proof. We use indu
tion on l. There is nothing to do in the 
ase l = 1.

Let l � 2, n be large and G be a minimum S

l;m

-saturated graph of order

n. Observe that

e(G) �

�

l� 1 +

m� 1

2

�

n+O(1): (6)

If G has a vertex x of degree n � 1, then we are done by indu
tion as

G� x 2 SAT(n� 1; S

l�1;m

). Thus we assume that �(G) � n� 2 and try

to derive a 
ontradi
tion. Let the verti
es of G be x

1

; : : : ; x

n

of degrees

d

1

� � � � � d

n

respe
tively.

Let p be the number of indu
ed paths of length two in G. Observe that

every pair of adja
ent points of S

l;m


an be 
onne
ted by at least l � 1

edge-disjoint paths of length two. Hen
e, ea
h edge from

�

G 
ontributes at

least l� 1 to p, that is, p � (l� 1)e(

�

G). On the other hand, p �

P

n

i=1

�

d

i

2

�

.

Any two verti
es of degree at most l + m � 3 must be 
onne
ted in

G (otherwise the addition of this edge to G 
annot 
reate S

l;m

). Hen
e,

we have at most l +m � 2 su
h verti
es and the degrees of G satisfy the

following inequalities.

n� 2 � d

1

� � � � � d

n�l�m+2

� l +m� 2: (7)

For any x � y the expression

�

x

2

�

+

�

y

2

�

gets larger if we in
rease x

by 1 while de
reasing y by 1. Hen
e, we 
an �nd a sequen
e (d

0

i

)

i2[n℄

su
h that

P

n

i=1

d

i

=

P

n

i=1

d

0

i

,

P

n

i=1

�

d

i

2

�

�

P

n

i=1

�

d

0

i

2

�

and, for some j 2

[l; n� l �m+ 2℄, we have

d

0

i

=

8

<

:

d

i

; i 2 [l � 1℄ [ [n� l�m+ 3; n℄;

d

l�1

; i 2 [l; j � 1℄;

l+m� 2; i 2 [j + 1; n� l �m+ 2℄:

(We do not know anything about d

0

j

ex
ept that d

l�1

� d

0

j

� l +m � 2.)

Thus we obtain

(l�1)

�

n

2

�

�O(n) � p �

n

X

i=1

�

d

0

i

2

�

�

n

2

j

X

i=1

d

0

i

+

d

0

l�1

2

(d

0

l�1

�n)+O(n): (8)

Observe that d

0

l�1

= d

l�1

= 
(n) (otherwise

P

n

i=1

�

d

i

2

�

� (l � 2)

�

n

2

�

+

o(n

2

)). From (6) we 
on
lude that j = O(1).

If n� d

l�1

= 
(n), then d

0

1

+ � � � + d

0

j

� (l � 1)n+ 
(n) by (8). Also,

P

n

i=j+1

d

i

� (l +m� 2)n+O(1). But then we obtain the 
ontradi
tion

e(G) =

1

2

n

X

i=1

d

0

i

�

�

l � 1 +

m� 1

2

�

n+
(n):

10



Hen
e, ea
h of d

1

; : : : ; d

l�1

is n+o(n). Let X = fx

1

; : : : ; x

l�1

g. Choose

some y 2 V (G) n �(x

1

). Let H = G � X � y and A = �

�

X

(y) � V (H).

For any z 2 V (H) n A, the addition of the edge fy; zg to G 
reates a 
opy

of S

l;m

whi
h 
ontains a set B of at least l � 1 verti
es 
onne
ted to both

y and z. Of 
ourse, x

1

62 B; hen
e, B 6� X . Let v 2 B n X � A; we

have fv; zg 2 E(H). As z 2 V (H) n A was arbitrary, we 
on
lude that

A � V (H) is a dominating set in H .

We know that we have at most l+m� 2 verti
es of G-degree less than

l+m� 2. For any other vertex x 2 V (H) we 
learly have: d

H

(x) � m� 1

if x 2 V (H) nA and d

H

(x) � m� 2 if x 2 A. Let a = jAj. Note that

X

x2A

d

H

(x) � max

�

a(m� 2); n� a

�

+O(1)

be
ause A is a dominating set. Hen
e,

a+ e(H) � a+

1

2

((n� a)(m� 1) + max(a(m� 2); n� a)) +O(1)

�

�

m� 1

2

+

1

2(m� 1)

�

n+O(1);

where the latter inequality is obtained by the straightforward minimisation

with respe
t to a (the minimum o

urs when a =

n

m�1

+O(1)). We have

e(G�X) � jAj+ e(H) �

�

m� 1

2

+

1

2(m� 1)

�

n+O(1):

This gives at least (l� 1+

m�1

2

+

1

2(m�1)

)n+ o(n) edges in G, whi
h is

the desired 
ontradi
tion.

The above 
onstru
tion generalises to the following settings. Let S

k

l;m

have l +m verti
es and 
onsist of all edges interse
ting some �xed l-set of

verti
es 
alled the 
entre. Thus, S

l;m

= S

2

l;m

; also, for example, e(S

k

l;m

) =

�

l+m

k

�

�

�

m

k

�

. The value of sat(n; S

k

1;k

) was asymptoti
ally 
omputed by

Erd}os, F�uredi and Tuza [10℄ and sat(n; S

k

1;m

) by the author [20℄. What is

sat(n; S

k

l;m

) in general?

We have the following 
onstru
tion. Given n � l +m, let A = [l � 1℄,

u = m � k + 2 and n

0

= d(n � l + 1)=ue. Partition [n℄ n A into blo
ks

B

1

; : : : ; B

n

0

of size u ea
h ex
ept possibly the last one. Our k-graph G


onsists of the edges interse
ting A plus those edges interse
ting the �rst

blo
k they meet in at least 2 verti
es. It is easy to see that S

k

l;m

is not a

subgraph of G but the addition of any new edge E 
reates an S

k

l;m

-subgraph

on E [ A [ B

j


entred at A [ fvg, where B

j

is the �rst blo
k meeting E

and fvg = B

j

\E. Thus, G is S

k

l;m

-saturated and we have an upper bound

whi
h we 
onje
ture to be asymptoti
ally sharp.
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Conje
ture 12 For any �xed positive integers k; l;m with m � k, we have

sat(n; S

k

l;m

) =

m+ 2l� k � 1

2 (k � 1)!

n

k�1

+ o(n

k�1

):

5 Triangular Families

The notion of a triangle-free 2-graph 
an be extended to hypergraphs in

the following way suggested by Katona [17℄: a k-graph is triangle-free if the

symmetri
 di�eren
e of any two distin
t edges is not 
ontained in a third

edge. Clearly, this is the same as forbidding the triangular family T

k

whi
h


onsists of all k-graphs with three edges E

1

; E

2

; E

3

su
h that E

1

4E

2

� E

3

.

We have the following obvious example of a T

k

-saturated graph: the

pyramid P

k

n

whi
h 
onsists of all k-subsets of [n℄ 
ontaining the set [k� 1℄.

Indeed, any missing edge E interse
ts [k; n℄ in at least 2 points and 
reates

a forbidden subgraph on the set E [ [k � 1℄. Thus

sat(n; T

k

) � n� k + 1; n � k + 1:

and this might be sharp.

In the general 
ase we are able to prove only the following.

Theorem 13 Let k � 3 be �xed. Then

n�O(log n) � sat(n; T

k

) � n� k + 1:

Proof. We have to prove the lower bound. Let G be a minimum T

k

-

saturated graph on [n℄; e(G) � n�k+1. Conse
utively 
hooseG

1

; G

2

; : : : �

G as follows: let e

j+1

be the largest integer su
h that the k-graph H

j

,

E(H

j

) = E(G) n

�

E(G

1

) [ : : : [E(G

j

)

�

;


ontains a P

k

e

j+1

+k�1

-subgraph and let G

j+1

be any su
h subgraph. We

terminate the pro
edure when b

j

= n�e

[j℄

�j(k�1) is less than max(j; k).

(We denote e

[j℄

=

P

i2[j℄

e

i

, et
.)

Let j � 0 and suppose we have 
hosen G

1

; : : : ; G

j

. Let B

j


onsist

of some b

j

verti
es not 
overed by an edge of G

i

, i 2 [j℄; B

j

exists as

v(G

i

) = e

i

+ k � 1. (We let b

0

= n.) Label all (k � 1)-subsets of [n℄ by

A

1

; : : : ; A

l

, l =

�

n

k�1

�

. Let d

i

be the number of edges of H

j


ontaining A

i

,

i 2 [l℄. Clearly,

d

[l℄

= ke(H

j

) � k(n� k + 1� e

[j℄

) = k(b

j

+ (j � 1)(k � 1)) < k

2

b

j

: (9)

The number of ways to add an element of

�

B

j

k

�


reating a forbidden

subgraph with any givenE

1

; E

2

2

�

[n℄

k

�

is at most

�

b

j

�2

k�2

�

+O(1) if jE

1

\E

2

j =

12



k�1 and it is O(b

k�4

j

) otherwise. As the addition of any E 2

�

B

j

k

�

nE(H

j

)

to H

j


reates a forbidden subgraph (be
ause E is disjoint from any edge

of G

i

, i 2 [j℄), we 
on
lude that

O(b

k�4

j

)

�

e(H

j

)

2

�

+

�

b

j

� 2

k � 2

�

X

i2[l℄

�

d

i

2

�

�

�

b

j

k

�

� e(H

j

); (10)

whi
h implies by (9) that

X

i2[l℄

�

d

i

2

�

�

b

2

j

k(k � 1)

�O(b

j

): (11)

We have e

j+1

= max

i2[l℄

d

i

. The 
onvexity of the

�

x

2

�

-fun
tion implies

that the left-hand side of (11) does not ex
eed

d

[l℄

e

j+1

�

e

j+1

2

�

<

1

2

k

2

b

j

e

j+1

.

Therefore, we obtain that

e

j+1

�

2b

j

k

3

(k � 1)

�O(1):

From this inequality (and from the fa
t that e

j+1

� 1 if b

j

� k) we dedu
e

the following inequality

b

j+1

� min

��

1�

2

k

3

(k�1)

�

b

j

+O(1); b

j

� k

�

: (12)

It is 
lear that, starting with b

0

= n, we stop after j = O(log n) steps.

Now,

e(G) � e

[j℄

= n� b

j

� j(k � 1) = n�O(log n):

The theorem is proved.

Let us 
onsider the 
ase k = 3; note that T

3


ontains only 2 non-

isomorphi
 graphs, S

3

1;3

and T

3

:

E(S

3

1;3

) = f f1; 2; 3g; f1; 2; 4g; f1; 3; 4g g;

E(T

3

) = f f1; 2; 3g; f1; 2; 4g; f3; 4; 5g g:

Theorem 14 For any n � 4, sat(n; T

3

) = n� 2.

Proof. Let G be any T

3

-saturated graph on [n℄. Make a list of all edges of

G and, 
onse
utively and as long as possible, merge together any two sets

in the list sharing at least 2 verti
es (that is, repla
e then by their union.)

Call the resulting sets C

1

; : : : ; C

l

� [n℄ 
omponents. Let v

i

= jC

i

j. De�ne

the 2-graph H on [n℄ by

E(H) =

n

fx; yg 2

�

[n℄

2

�

: fx; yg = E

1

4E

2

for some E

1

; E

2

2 E(G)

o

:

13



Consider any 
omponent C. It is easy to see by indu
tion on jCj that

C is 
omposed of at least jCj � 2 edges of G.

Note that if E 2 E(H [C℄) then any E

1

; E

2

2 E(G) with E

1

4E

2

= E

share two verti
es and so belong to the same 
omponent C

0

; but E � C

0

\C

so ne
essarily C

0

= C.

Claim 1 For every 
omponent C, �(H [C℄) � e(G[C℄)� 1.

Proof of Claim. Let x 2 C be arbitrary. For ea
h fx; yg 2 E(H [C℄), 
hoose

D

y

; E

y

2 E(G) with D

y

4E

y

= fx; yg and E

y

3 y. If fx; zg is another edge

of H [C℄ then E

y

6= E

z

: indeed, otherwise D

z

4E

z

= fx; zg � D

y

and G


ontains a forbidden subgraph. Hen
e, d(x) � e(G[C℄) � 1 (we must have

at least one G-edge in
ident to x) and the 
laim is proved.

Claim 2 If e(G[C℄) � jCj�1 then for any x 2 [n℄nC there is a 
omponent

C

0

3 x interse
ting C.

Proof of Claim. By Claim 1, there exists fa; bg 2 E(

�

H [C℄). As x 62 C, E =

fa; b; xg 62 E(G). Consider a forbidden subgraph F 
reated by E. We are

home if fa; xg or fb; xg is 
overed by E

1

or E

2

, where E(F ) = fE;E

1

; E

2

g.

If fa; b; yg 2 E(F ) then y 2 C and the remaining edge of F 
ontains both

x and y. Finally, if E

1

4E

2

� E then, as fa; bg 62 E(H), x belongs to the


omponent 
ontaining E

1

and E

2

whi
h is the required one. The 
laim is

proved.

If every 
omponent C spans at least jCj edges, then we are done as the


omponents 
over all but at most one vertex; so assume otherwise. Now,

Claim 2 implies that C

[l℄

= [n℄.

If every 
omponent C spans at least jCj � 1 edges then we are home:

by Claim 2 relabel 
omponents C

1

; : : : ; C

l

so that C

i

\C

[i�1℄

6= ;, i 2 [2; l℄,

and it is easy to show by indu
tion on i that C

[i℄

is made of at least jC

[i℄

j�1

edges, whi
h gives e(G) � n� 1.

So, suppose that, for example, e(G[C

1

℄) = jC

1

j � 2. If for every x 2

[n℄ n C

1

, there are two distin
t 
omponents 
ontaining x and interse
ting

C

1

then are home:

e(G) �

X

i2[l℄

(v

i

� 2) = v

1

� l� 1 +

X

i2[2;l℄

(v

i

� 1)

� v

1

� l � 1 +max(2l � 2; 2(n� v

1

)) � n� 2: (13)

So let C

2

be the only 
omponent 
ontaining some vertex x 62 C

1

and

interse
ting C

1

. Let fyg = C

1

\ C

2

.

Let z 2 [n℄ n C

[2℄

be arbitrary. If fx; zg � C

i

, for some i 2 [3; l℄, then,

by the 
hoi
e of x, C

i

\ C

1

= ; and, by Claim 2, there exists another


omponent through z interse
ting C

1

.

14



If no 
omponent 
ontains both x and z then, for every y

0

2 C

1

n fyg,

E = fx; y

0

; zg 62 E(G) and 
onsidering a forbidden subgraph 
reated by

E we 
on
lude that, for some i 2 [3; l℄, fy

0

; zg � C

i

(as fx; y

0

g 
annot lie

within a 
omponent by the de�nition of x). As jC

1

j � 3, we have at least

2 distin
t 
omponents 
ontaining z and interse
ting C

1

.

Now the argument similar to (13) shows that C

[3;l℄

is made of at least

n� jC

1

[ C

2

j edges, whi
h gives e(G) � n� 3. (The 
on
lusion is true in

the 
ase l = 2 as well: then C

1

[ C

2

= [n℄.)

Can we have e(G) = n� 3? If we have the equality then every C

i

, i 2

[3; l℄, must interse
t C

1

[C

2

in exa
tly one vertex and e(G[C

j

℄) = jC

j

j � 2,

j 2 [l℄. By Claim 1, there exists y

i

2 C

i

su
h that fy; y

i

g 62 E(H), i = 1; 2.

But then fy; y

1

; y

2

g 62 E(G) (e.g. be
ause it interse
ts C

1

in two verti
es)

and the 
onsideration of a 
reated forbidden graph yields a 
omponent


ontaining both y

1

and y

2

. Hen
e, e(G) > n� 3 as required.

Remark. Our further analysis has not yet yielded any 
hara
terisation of

all extremal graphs: we have got stu
k 
onsidering di�erent 
ases and, even

if we had su

eeded, the proof would have been rather long. The diÆ
ulty

is that an extremal graph may be not unique. For example, there is another

minimum T

3

-saturated graph of order 7: let V (G) = [7℄ and

E(G) =

�

f1; 2; 5g; f1; 3; 6g; f1; 4; 7g; f2; 3; 4g; f5; 6; 7g

	

:

6 Some Other Open Problems

The following de�nition 
omes from the Ramsey theory. We say that

a graph F arrows a t-tuple (F

1

; : : : ; F

t

) of graphs, whi
h is denoted as

F ! (F

1

; : : : ; F

t

), if any t-
olouring of E(F ) 
ontains a mono
hromati


F

i

-subgraph of 
olour i for some i 2 [t℄.

Hanson and Toft [13℄ made the following 
onje
ture (whi
h we restate

here in the sat-type notation).

Conje
ture 15 Given t � 2 and numbers m

i

� 3, i 2 [t℄, let

F = fF : F ! (K

2

m

1

; : : : ;K

2

m

t

)g:

Let r = r(K

2

m

1

; : : : ;K

2

m

t

) be the 
lassi
al Ramsey number, that is, the min-

imum order of a 
omplete graph arrowing (K

2

m

1

; : : : ;K

2

m

t

). Then

sat(n;F) =

�

r � 2

2

�

+ (r � 2)(n� r + 2):
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Obviously, they had the graph S = K

2

r�2

+

�

K

2

n�r+1

in mind. Observe

that this graph is F-saturated, that is, a maximal graph not arrowing

(K

2

m

1

; : : : ;K

2

m

t

). Indeed, K

2

r�1

� S 
an be properly 
oloured and this


olouring extends on the whole of S by `
loning' some 
oloured vertex. On

the other hand, the addition of any edge to S 
reates K

2

r

2 F .

Tuza [27℄ de�nes the lo
al density d(F ) of a k-graph F by

d(F ) = min

E2E(F )

max

E

0

2E(F )

E

0

6=E

jE \ E

0

j

and 
onje
tures that

sat(n; F ) = O(n

d(F )

): (14)

(Or, even more strongly, that sat(n; F ) = 
n

d(F )

+ O(n

d(F )�1

).) This


onje
ture is motivated by his results on so-
alled monotoni
ally saturated

graphs, see [27℄.

Also, there are many interesting results and open problems on the re-

lated notion of weak saturation whi
h is studied in e.g. [5, 12, 14, 15, 1, 10,

27, 29, 22, 23℄.
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