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Abstrat

Let F be a family of k-graphs. A k-graph G is alled F-saturated

if it a maximal graph not ontaining any member of F as a subgraph.

We investigate the smallest number of edges that an F-saturated

graph on n verties an have. We present new results and open

problems for di�erent instanes of F .

1 Introdution

A k-hypergraph H is, as usual, a pair (V (H); E(H)) (verties and edges)

where

E(H) �

�

V (H)

k

�

:= fA � V (H) : jAj = kg:

We sometimes all H a k-graph or even simply a graph when k is under-

stood. The size of H is e(H) := jE(H)j and the order is v(H) := jV (H)j.

Given a family F of k-graphs (whih are typially alled forbidden), we

say that a k-graph H is F-free if no F 2 F is a subgraph of H . Next, H is

F-saturated if it is maximal F-free (that is, H is F-free but the addition

of any extra edge to H violates this property). Let

SAT(n;F) := fH : H is F-saturated; v(H) = ng

�
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onsist of all F-saturated graph of order n. We are interested in the smallest

size of a suh graph, that is, in

sat(n;F) := minfe(H) : H 2 SAT(n;F)g: (1)

If F has only a single member F , we write sat(n; F ) instead of sat(n; fFg),

et.

The �rst sat-type results were obtained by Erd}os, Hajnal and Moon [11℄

and by Bollob�as [4℄ (see (2)); the urrent notation omes from Bollob�as'

book [6℄.

K�aszonyi and Tuza [16℄ showed that sat(n;F) = O(n) for any (possi-

bly in�nite) family F of 2-graphs. The author [19℄ proved the estimate

sat(n;F) = O(n

k�1

) for any �nite family F of k-graphs.

Problem 1 Does sat(n;F) = O(n

k�1

) for any in�nite family F of k-

graphs?

The sat-funtion laks many natural regularity properties as it is ob-

served by K�aszonyi and Tuza [16℄. In Setion 2 we present a few further

results of this type. We demonstrate a pair of onneted graphs F

1

� F

2

on the same vertex set suh that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Also, for any onstant d, we build a 2-graph F = F (d) suh that

sat(n; F ) < min

�

sat(n� 1; F ); sat(n+ 1; F )

�

� d;

for a periodi series of values of n.

Tuza [25℄ made the following onjeture.

Conjeture 2 For any 2-graph F , the limit lim

n!1

sat(n; F )=n exists.

The author [19℄ demonstrated an example of an in�nite family F of

graphs suh that sat(n;F)=n does not tend to a limit. Here we improve

on this by demonstrating a �nite `irregular' family F . But Tuza's onje-

ture remains open as a smallest family that we an onstrut onsists of 4

forbidden graphs.

A number of results have been obtained for speial families F (see

e.g. [11, 4, 8, 18, 16, 26, 24, 10, 3, 28, 19, 20, 21℄). Here we present a

few more.

Bollob�as [4℄ omputed the sat-funtion for the omplete k-graph of order

m:

sat(n;K

k

m

) =

�

n

k

�

�

�

n�m+ k

k

�

: (2)

This extends the result of Erd}os, Hajnal and Moon [11℄ who had previously

proved (2) for k = 2. Minimum K

2

m

-saturated graphs of given minimum
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degree were studied by Du�us and Hanson [9℄ and by Alon, Erd}os, Holzman

and Krivelevih [2℄. A result from the latter paper is improved here in

Setion 3.

In Setion 4 we ompute sat(n;K

2

l

+

�

K

2

m

) for all n � n

0

(l;m).

In Setion 5 we forbid three k-edges suh that the symmetri di�erene

of two is ontained in the third one and show that the orresponding sat-

funtion equals n�O(log n). For k = 3 we ompute the sat-funtion exatly.

(The ase k = 2 is trivial.)

The paper ontains some other results and open problems that are sat-

tered throughout the text.

2 Irregularities

Here we demonstrate some irregularities of the sat-funtion in the ompar-

ison to the Tur�an funtion

ex(n;F) = maxfe(G) : G 2 SAT(n;F)g

= maxfe(G) : v(G) = n; G is F-freeg:

Clearly, ex(n; F

1

) � ex(n; F

2

) whenever F

1

is a subgraph of F

2

. K�aszonyi

and Tuza [16℄ demonstrated an example of F

1

� F

2

with sat(n; F

1

) >

sat(n; F

2

) for all large n. Tuza [27, p. 401℄ asked if there exists a onneted

irregular pair F

1

� F

2

; this is answered in the aÆrmative by the following

simple example.

Example 3 There is a pair of onneted graphs F

1

� F

2

on the same

vertex set suh that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Proof. Let m � 4. Let F

1

be the star K

1;m

, that is, V (F

1

) = [m+ 1℄ and

E(F

1

) = ff1; ig : i 2 [2;m+1℄g, and let F

2

be obtained from F

1

by adding

the edge f2; 3g. Clearly, sat(n; F

2

) � n � 1, n � m + 1, as K

1;n�1

is an

example of an F

2

-saturated graph.

On the other hand, in any F

1

-saturated graph G, any two verties of

degree at most m� 2 must be onneted. (Otherwise the addition of this

edge annot reate a forbidden subgraph.) If we have v 2 [0;m � 1℄ suh

verties, then e(G) �

�

v

2

�

+

m�1

2

(n�v), whih is easily seen to exeed n�1

for all n � m+ 1.

Clearly, for every n � v(F ), we have ex(n; F ) � ex(n + 1; F ). On the

other hand, K�aszonyi and Tuza [16℄ observed that, for any odd n = 2k� 1,

we have sat(n; P

3

) = k+1 > sat(n+1; P

3

) = k, where P

3

is the path with

three edges. Our next example ampli�es this irregularity.
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Example 4 For every onstant d, there is a 2-graph F = F (d) suh that

sat(n; F ) < min

�

sat(n� 1; F ); sat(n+ 1; F )

�

� d;

for a periodi series of values of n.

Proof. Let m = 2d+ 3 and let F = B

m;m

be the dumb-bell

E(B

m;m

) =

�

[m℄

2

�

[

�

[m+ 1; 2m℄

2

�

[

�

f1;m+ 1g

	

;

that is, B

m;m

is the disjoint union of two opies of K

2

m

plus one edge

onneting them.

Let us show that the laim is true for any n = lm if l 2 N is large.

Clearly, sat(lm; F ) � lm(m � 1)=2 (in fat, this is sharp) as lK

2

m

2

SAT(lm; F ), where lF denotes the union of l disjoint opies of F . On

the other hand, let n = lm�1 and suppose that G 2 sat(n; F ) has at most

g = lm(m� 1)=2 + d edges.

Clearly, Æ(G), the minimal degree of G, is at least Æ(B

m;m

)�1 = m�2.

Suppose that for some x 2 V (G) we have d(x) = m� 2. Then for every y

non-inident to x the edge fx; yg 2 E(

�

G) annot be the bridge in a reated

B

m;m

-subgraph as the degree of x is too small; that is, x and y fall into

the same K

2

m

-half. Therefore, y must be onneted to all m�2 neighbours

of x and e(G) � (m� 2)n+O(1) whih is a ontradition.

Hene Æ(G) � m�1. The inequality �(G)+(m�1)(n�1) � 2e(G) � 2g

implies that �(G) � 2(d +m � 1). If some x 2 V (G) does not belong to

an m-lique then any missing edge fx; yg must reate a K

2

m

-subgraph and

we arrive at a ontradition again, as d(x) � �(G) is bounded. Thus the

whole of V (G) is overed by m-liques.

We want to �nd a set X � V (G) with the surplus s(X) = e(G[X ℄) �

m�1

2

jX j at least m� 1 as then we would obtain a ontradition:

e(G) � e(G[X ℄) +

m� 1

2

(n� jX j) �

m� 1

2

n+m� 1 > g:

As m does not divide n, there are two distint liques A;B 2

�

V (G)

m

�

with i = jA \ Bj > 0. It is straightforward to verify that

s(A [ B) � 2

�

m

2

�

�

�

i

2

�

�

m� 1

2

(2m� i) �

m� 1

2

:

No m-lique C 6= A;B an interset some other lique or A [B. (Oth-

erwise we gain another surplus of at least (m � 1)=2.) By the divisibility

argument, i = 1. As a (2m � 1)-lique has surplus at least m � 1, there

4



exists some E 2 E(

�

G) lying within A [ B. It is easy to see that G + E

must ontain a K

2

m

-subgraph on some m-set C 6= A;B interseting A [ B

in at least two verties, whih implies s(A [ B [ C) � m� 1 as required.

Let n = ml+1 and G 2 SAT(n;B

m;m

). If Æ(G) = m�2, then we argue

as above that e(G) � (m�2)n+O(1); otherwise e(G) �

m�1

2

n > g, whih

ompletes the proof.

Next, we present an example of a �nite family F of 2-graphs suh that

the ratio sat(n;F)=n does not tend to a limit. The fewest number of

elements in F that our proof gives is four (take m = 4). It may be possible

that working harder one an further redue this number but the ultimate

aim, a ounterexample to Conjeture 2, seems out of reah to our method.

Example 5 There exists a �nite family F of 2-graphs suh that, for some

 > 0 and for in�nitely many n,

sat(n;F) < min

�

sat(n� 1;F); sat(n+ 1;F)

�

� n:

In partiular, the ratio sat(n;F)=n does not tend to a limit.

Proof. Fix m � 4 and onsider the family F onsisting of the dumb-bell

B

m;m

and F

m;1

; : : : ; F

m;m�1

, where

E(F

m;i

) =

�

[m℄

2

�

[

�

[m� i+ 1; 2m� i℄

2

�

; i 2 [m� 1℄;

that is, F

m;i

is the union of two K

2

m

-graphs sharing i ommon verties.

Clearly, the disjoint union of K

2

m

-graphs is F-saturated as any miss-

ing edge onnets two di�erent opies and thus reates a B

m;m

-subgraph.

Hene, if m divides n then sat(n;F) �

n

m

�

m

2

�

.

On the other hand, suppose that m does not divide n and let G be any

F-saturated graph on [n℄. By the de�nition of F , no vertex an belong to

two di�erent K

2

m

-subgraphs of G; suppose that the sets A

i

= [m(i � 1) +

1;mi℄, i 2 [s℄, are all m-sets spanning omplete subgraphs in G. Denote

A

I

= [

i2I

A

i

, I � [s℄.

Note the following two properties of G. Property A: G[A

[s℄

℄

�

=

sK

2

m

.

(Beause B

m;m

is forbidden.) Property B: any missing edge E interset-

ing B = [n℄ n A

[s℄

reates a K

2

m

-subgraph. (Beause it is impossible that

B

m;m

� G+E with E being the bridge.)

We laim that these two properties and the fat that B 6= ; (as m is

not a divisor of n) imply that

e(G) �

n

m

��

m

2

�

+m� 2

�

�m

2

: (3)
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We use indution on n. If some E 2

�

B

2

�

is not a G-edge then it is easy to

hek that the graph G

0

obtained from G by ontrating the edge E has the

properties in question. The endverties of E have at least m� 2 ommon

neighbours inG (beause E reates aK

2

m

-subgraph) so e(G) � e(G

0

)+m�2

and (3) follows by indution. (Here we need the inequality m � 4.)

Suppose that B spans the omplete graph in G. If some E 2 E(

�

G)

intersets both A

i

and B then a K

2

m

-subgraph reated by E lies within

A

i

[B and so at least m� 2 G-edges interset both A

i

and B. Therefore,

e(G) � f(b) = (n� b)

m� 1

2

+

�

b

2

�

+

n� b

m

(m� 2);

where b = jBj. (We orrespondingly ount the edges within A

[s℄

, within B

and in between.) The minimum of f is ahieved for b =

m

2

+

m�2

m

and our

estimate (3) follows rather rudely.

Hene, if we inrease/derease n = ml by one, then sat(n;F) inreases

at least by n

m�2

m

+O(1).

For k-graphs, k � 3, we are able to prove only the following.

Example 6 For any k � 3, there is a �nite family F

k

of k-graphs suh that

sat(n;F

k

) = O(n) but sat(n;F

k

)=n does not tend to any limit as n!1.

Proof. Let I

k;i

be the �nite family onsisting of all (up to isomorphism)

k-graphs with at most k� i+2 edges whose ommon intersetion has fewer

than i verties.

Note that any I

k;i

-free k-graph H is i-interseting, that is, j \

E2E(H)

Ej � i. Indeed, let I be any edge of H and then, as long as possible, if

there is E 2 E(H) with I 6� E, replae I by I \ E; if eventually jI j < i

then there must be at most k � i+ 2 edges whose intersetion has size at

most i� 1, whih is forbidden.

Given a 2-graph G, we �x a (k�2)-set X disjoint from V (G) and de�ne

C

k�2

(G) by E(C

k�2

(G)) = fE [X : E 2 E(G)g.

Now, let F

k

= fC

k�2

(F ) : F 2 Fg [ I

k;k�2

, where F is the family

onstruted in Example 5. It is easy to see that sat(n;F

k

) = sat(n�k+2;F)

and the laim follows.

Problem 7 Is there a �nite family F of k-graphs, k � 3, for whih the

ratio sat(n;F)=n

k�1

does not tend to any limit?

6



3 Complete Graphs

Du�us and Hanson [9℄ onsider sat(n;K

2

m

; l) whih is the minimum size of

a graph in

SAT(n;K

2

m

; l) := fG 2 SAT(n;K

2

m

) : Æ(G) � lg:

Of ourse, any K

2

m

-saturated graph G has minimum degree at least m� 2,

so we assume l � m� 1.

Du�us and Hanson [9℄ proved that, for n � 5, sat(n;K

2

3

; 2) = 2n � 5

and, for n � 10, sat(n;K

2

3

; 3) = 3n � 15. However, their general lower

bound [9, Theorem 2℄, whih states that sat(n;K

2

m

; l) �

l+m�2

2

n + O(1),

is far from the atual value. Trying to improve this bound, I showed that

sat(n;K

2

m

; l) = ln+ O(

n log log n

logn

) for any �xed l � m� 1. Later, I learned

that Alon, Erd}os, Holzman and Krivelevih [2, Theorem 2℄ had showed

that any G 2 SAT(n;K

2

m

) with O(n) edges has an independent set of

size n � O(

n

log logn

), whih implies that sat(n;K

2

m

; l) = ln + O(

n

log logn

).

However, I deided to present my proof beause it improves all these bounds

and I think that the general Theorem 8 is of independent interest.

However, the question of Bollob�as [7, p. 1271℄ whether sat(n;K

2

3

; l) =

ln+O(1) for any �xed l � 4, remains open.

Let us give a onstrution of G 2 SAT(n;K

2

m

; l) with ln+ O(1) edges:

take G = K

2

m�3

+K

l�m+3;n�l

whih has minimum degree l for n � 2l�m+

3. The omplete bipartite graph K

l�m+3;n�l

does not ontain a triangle

but the addition of any new edge violates this; hene, G is K

2

m

-saturated.

To prove our lower bound we need some preliminaries. Given any d,

de�ne a

d�m+2

= 2 and, onseutively for j = d�m+ 1; d�m; : : : ; 1; 0,



j+1

= (m� 2)(a

j+1

� 1) + 1

b

j+1

= (m� 2)(

j+1

� 1) + 1

b

0

j+1

=

�

d�j�1

m�2

�

(b

j+1

� 1) + 1;

a

j

=

�

d�j�1

m�2

�

(b

0

j+1

� 1) + 2:

Finally, let a = (1 + 2(d� 1) + 2(d� 1)

2

)a

0

.

Given a K

2

m

-saturated graph G, let A denote the set of G-edges on-

neting two verties of degree at most d in G:

A = ffx; yg 2 E(G) : d(x) � d; d(y) � dg:

The following theorem states that the size of A is bounded by a = a(d;m)

whih does not depend on n. Note that we do not impose any restrition

on the minimal degree of G.
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Theorem 8 For any G 2 SAT(n;K

2

m

), m � 3, we have jAj < a.

Proof. Suppose, on the ontrary, that jAj � a.

We prove, by indution on j = 0; 1; : : : ; d�m+2, that we an �nd the

following on�guration in G: a

j

-sets X

j

and Y

j

and j-sets U

j

and V

j

(all

disjoint) suh that (i) X

j

[ Y

j

indues in G exatly a

j

edges whih form a

perfet mathing between X and Y and belong to A; (ii) �

U

j

[V

j

(x) = U

j

for any x 2 X

j

and �

U

j

[V

j

(y) = V

j

for any y 2 Y

j

.

For j = 0 (when U

0

and V

0

are empty), we take, one by one, edges from

A. One we have seleted an edge E 2 A, ross out all inident to E edges

(at most 2(d � 1) edges) and their neighbouring edges (of whih at most

2(d � 1)

2

an belong to A). Hene, we an build an indued mathing of

size at least jAj=(1 + 2(d� 1) + 2(d� 1)

2

) � a

0

as required.

Suppose that j 2 [0; d � m + 1℄ and we have X

j

, et., onstruted.

Choose x 2 X

j

; it has already got j + 1 neighbours in G: the neighbour

y 2 Y

j

plus all j verties of U

j

. Let N

x

denote the remaining neighbours

of x; thus jN

x

j � d� j � 1. For any z 2 Y

j

distint from y, the addition of

the edge fx; zg must reate a opy of K

2

m

, say on a set D

z

[ fx; zg. Now,

D

z

� �(x) \ �(z) � N

x

.

Thus some set D

z

, z 2 Y

j

n fyg, appears at least b

0

j+1

= d(a

j

�

1)=

�

d�j�1

m�2

�

e times; suppose it is D 2

�

N

x

m�2

�

whih equals D

z

for z 2 B

0

�

Y

j

n fyg, jB

0

j = b

0

j+1

. In a similar manner, we try to onnet y to the

X

j

-mathes of B

0

-verties and �nd a set E 2

�

N

y

m�2

�

spanning the omplete

graph and onneted to every z from a set B � X

j

mathed into B

0

of

ardinality b

j+1

= db

0

j+1

=

�

d�j�1

m�2

�

e.

Clearly, no z 2 B an be onneted to every vertex of D; otherwise

D, z and the math of z in B

0

span K

2

m

. Therefore, some v 2 D is not

onneted to at least 

j+1

= d

b

j+1

m�2

e verties of B; let C � B onsist of

all suh verties. Similarly, we an �nd u 2 E, not onneted to an a

j+1

-

set Y

j+1

mathed into C. Of ourse, u 6= v. Now, let U

j+1

= U

j

[ fug,

V

j+1

= V

j

[ fvg, and let X

j+1

� X

j

onsist of the mathes of Y

j+1

, whih

ompletes our indution.

At the end, we try to apply our argument again, for j = d � m + 2.

We obtain that x 2 X

j

has at least 1 + j + (m� 2) > d neighbours, whih

ontradits the fat that fx; yg 2 A, where y is the Y

j

-math of x.

Now we are ready to improve the result of Alon et al [2, Theorem 2℄

mentioned above. Let �(G) denote the maximum size of independent Y �

V (G).
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Lemma 9 For any G 2 SAT(n;K

2

m

) with O(n) edges, we have

�(G) = n�O

�

n log logn

logn

�

:

Proof. Suppose e(G) � Cn. Let d =

" logn

log logn

for some �xed " > 0 and let

X = fx 2 V (G) : d(x) > dg. Now, djX j=2 � e(G) � Cn implies that

jX j �

2Cn log logn

" logn

:

By Theorem 8, Y = V (G) nX spans at most a � n

2"(m�2)+o(1)

edges. Re-

moving at most a verties we an make Y independent; it has the required

size if " <

1

2(m�2)

.

Clearly, e(G) � �(G)Æ(G). Therefore, Lemma 9 implies the following

result.

Theorem 10 For any �xed l � m�1, sat(n;K

2

m

; l) = ln+O(

n log logn

logn

).

4 Generalised Stars

The graph S

l;m

= K

2

l

+

�

K

2

m

an be viewed as a generalisation of a star

K

1;m

, so we all it a generalised star.

The sat-funtion for S

1;m

= K

1;m

was omputed by K�aszonyi and

Tuza [16℄:

sat(n;K

1;m

) =

�

�

m

2

�

+

�

n�m

2

�

; if m+ 1 � n � (3m� 1)=2;

d(m� 1)n=2�m

2

=8e; n � 3m=2

(4)

Clearly, G + K

2

l�1

is S

l;m

-saturated for any K

1;m

-saturated graph G.

This shows that

sat(n; S

l;m

) � sat(n� l + 1;K

1;m

) +

�

l� 1

2

�

+ (l � 1)(n� l + 1): (5)

We an show that this bound is sharp for all suÆiently large n. (This

may be true for all n � m + l but the author was not able to work this

out.)

Theorem 11 There is n

0

= n

0

(l;m) suh that we have equality in (5) for

all n � n

0

.

9



Proof. We use indution on l. There is nothing to do in the ase l = 1.

Let l � 2, n be large and G be a minimum S

l;m

-saturated graph of order

n. Observe that

e(G) �

�

l� 1 +

m� 1

2

�

n+O(1): (6)

If G has a vertex x of degree n � 1, then we are done by indution as

G� x 2 SAT(n� 1; S

l�1;m

). Thus we assume that �(G) � n� 2 and try

to derive a ontradition. Let the verties of G be x

1

; : : : ; x

n

of degrees

d

1

� � � � � d

n

respetively.

Let p be the number of indued paths of length two in G. Observe that

every pair of adjaent points of S

l;m

an be onneted by at least l � 1

edge-disjoint paths of length two. Hene, eah edge from

�

G ontributes at

least l� 1 to p, that is, p � (l� 1)e(

�

G). On the other hand, p �

P

n

i=1

�

d

i

2

�

.

Any two verties of degree at most l + m � 3 must be onneted in

G (otherwise the addition of this edge to G annot reate S

l;m

). Hene,

we have at most l +m � 2 suh verties and the degrees of G satisfy the

following inequalities.

n� 2 � d

1

� � � � � d

n�l�m+2

� l +m� 2: (7)

For any x � y the expression

�

x

2

�

+

�

y

2

�

gets larger if we inrease x

by 1 while dereasing y by 1. Hene, we an �nd a sequene (d

0

i

)

i2[n℄

suh that

P

n

i=1

d

i

=

P

n

i=1

d

0

i

,

P

n

i=1

�

d

i

2

�

�

P

n

i=1

�

d

0

i

2

�

and, for some j 2

[l; n� l �m+ 2℄, we have

d

0

i

=

8

<

:

d

i

; i 2 [l � 1℄ [ [n� l�m+ 3; n℄;

d

l�1

; i 2 [l; j � 1℄;

l+m� 2; i 2 [j + 1; n� l �m+ 2℄:

(We do not know anything about d

0

j

exept that d

l�1

� d

0

j

� l +m � 2.)

Thus we obtain

(l�1)

�

n

2

�

�O(n) � p �

n

X

i=1

�

d

0

i

2

�

�

n

2

j

X

i=1

d

0

i

+

d

0

l�1

2

(d

0

l�1

�n)+O(n): (8)

Observe that d

0

l�1

= d

l�1

= 
(n) (otherwise

P

n

i=1

�

d

i

2

�

� (l � 2)

�

n

2

�

+

o(n

2

)). From (6) we onlude that j = O(1).

If n� d

l�1

= 
(n), then d

0

1

+ � � � + d

0

j

� (l � 1)n+ 
(n) by (8). Also,

P

n

i=j+1

d

i

� (l +m� 2)n+O(1). But then we obtain the ontradition

e(G) =

1

2

n

X

i=1

d

0

i

�

�

l � 1 +

m� 1

2

�

n+
(n):

10



Hene, eah of d

1

; : : : ; d

l�1

is n+o(n). Let X = fx

1

; : : : ; x

l�1

g. Choose

some y 2 V (G) n �(x

1

). Let H = G � X � y and A = �

�

X

(y) � V (H).

For any z 2 V (H) n A, the addition of the edge fy; zg to G reates a opy

of S

l;m

whih ontains a set B of at least l � 1 verties onneted to both

y and z. Of ourse, x

1

62 B; hene, B 6� X . Let v 2 B n X � A; we

have fv; zg 2 E(H). As z 2 V (H) n A was arbitrary, we onlude that

A � V (H) is a dominating set in H .

We know that we have at most l+m� 2 verties of G-degree less than

l+m� 2. For any other vertex x 2 V (H) we learly have: d

H

(x) � m� 1

if x 2 V (H) nA and d

H

(x) � m� 2 if x 2 A. Let a = jAj. Note that

X

x2A

d

H

(x) � max

�

a(m� 2); n� a

�

+O(1)

beause A is a dominating set. Hene,

a+ e(H) � a+

1

2

((n� a)(m� 1) + max(a(m� 2); n� a)) +O(1)

�

�

m� 1

2

+

1

2(m� 1)

�

n+O(1);

where the latter inequality is obtained by the straightforward minimisation

with respet to a (the minimum ours when a =

n

m�1

+O(1)). We have

e(G�X) � jAj+ e(H) �

�

m� 1

2

+

1

2(m� 1)

�

n+O(1):

This gives at least (l� 1+

m�1

2

+

1

2(m�1)

)n+ o(n) edges in G, whih is

the desired ontradition.

The above onstrution generalises to the following settings. Let S

k

l;m

have l +m verties and onsist of all edges interseting some �xed l-set of

verties alled the entre. Thus, S

l;m

= S

2

l;m

; also, for example, e(S

k

l;m

) =

�

l+m

k

�

�

�

m

k

�

. The value of sat(n; S

k

1;k

) was asymptotially omputed by

Erd}os, F�uredi and Tuza [10℄ and sat(n; S

k

1;m

) by the author [20℄. What is

sat(n; S

k

l;m

) in general?

We have the following onstrution. Given n � l +m, let A = [l � 1℄,

u = m � k + 2 and n

0

= d(n � l + 1)=ue. Partition [n℄ n A into bloks

B

1

; : : : ; B

n

0

of size u eah exept possibly the last one. Our k-graph G

onsists of the edges interseting A plus those edges interseting the �rst

blok they meet in at least 2 verties. It is easy to see that S

k

l;m

is not a

subgraph of G but the addition of any new edge E reates an S

k

l;m

-subgraph

on E [ A [ B

j

entred at A [ fvg, where B

j

is the �rst blok meeting E

and fvg = B

j

\E. Thus, G is S

k

l;m

-saturated and we have an upper bound

whih we onjeture to be asymptotially sharp.

11



Conjeture 12 For any �xed positive integers k; l;m with m � k, we have

sat(n; S

k

l;m

) =

m+ 2l� k � 1

2 (k � 1)!

n

k�1

+ o(n

k�1

):

5 Triangular Families

The notion of a triangle-free 2-graph an be extended to hypergraphs in

the following way suggested by Katona [17℄: a k-graph is triangle-free if the

symmetri di�erene of any two distint edges is not ontained in a third

edge. Clearly, this is the same as forbidding the triangular family T

k

whih

onsists of all k-graphs with three edges E

1

; E

2

; E

3

suh that E

1

4E

2

� E

3

.

We have the following obvious example of a T

k

-saturated graph: the

pyramid P

k

n

whih onsists of all k-subsets of [n℄ ontaining the set [k� 1℄.

Indeed, any missing edge E intersets [k; n℄ in at least 2 points and reates

a forbidden subgraph on the set E [ [k � 1℄. Thus

sat(n; T

k

) � n� k + 1; n � k + 1:

and this might be sharp.

In the general ase we are able to prove only the following.

Theorem 13 Let k � 3 be �xed. Then

n�O(log n) � sat(n; T

k

) � n� k + 1:

Proof. We have to prove the lower bound. Let G be a minimum T

k

-

saturated graph on [n℄; e(G) � n�k+1. Conseutively hooseG

1

; G

2

; : : : �

G as follows: let e

j+1

be the largest integer suh that the k-graph H

j

,

E(H

j

) = E(G) n

�

E(G

1

) [ : : : [E(G

j

)

�

;

ontains a P

k

e

j+1

+k�1

-subgraph and let G

j+1

be any suh subgraph. We

terminate the proedure when b

j

= n�e

[j℄

�j(k�1) is less than max(j; k).

(We denote e

[j℄

=

P

i2[j℄

e

i

, et.)

Let j � 0 and suppose we have hosen G

1

; : : : ; G

j

. Let B

j

onsist

of some b

j

verties not overed by an edge of G

i

, i 2 [j℄; B

j

exists as

v(G

i

) = e

i

+ k � 1. (We let b

0

= n.) Label all (k � 1)-subsets of [n℄ by

A

1

; : : : ; A

l

, l =

�

n

k�1

�

. Let d

i

be the number of edges of H

j

ontaining A

i

,

i 2 [l℄. Clearly,

d

[l℄

= ke(H

j

) � k(n� k + 1� e

[j℄

) = k(b

j

+ (j � 1)(k � 1)) < k

2

b

j

: (9)

The number of ways to add an element of

�

B

j

k

�

reating a forbidden

subgraph with any givenE

1

; E

2

2

�

[n℄

k

�

is at most

�

b

j

�2

k�2

�

+O(1) if jE

1

\E

2

j =

12



k�1 and it is O(b

k�4

j

) otherwise. As the addition of any E 2

�

B

j

k

�

nE(H

j

)

to H

j

reates a forbidden subgraph (beause E is disjoint from any edge

of G

i

, i 2 [j℄), we onlude that

O(b

k�4

j

)

�

e(H

j

)

2

�

+

�

b

j

� 2

k � 2

�

X

i2[l℄

�

d

i

2

�

�

�

b

j

k

�

� e(H

j

); (10)

whih implies by (9) that

X

i2[l℄

�

d

i

2

�

�

b

2

j

k(k � 1)

�O(b

j

): (11)

We have e

j+1

= max

i2[l℄

d

i

. The onvexity of the

�

x

2

�

-funtion implies

that the left-hand side of (11) does not exeed

d

[l℄

e

j+1

�

e

j+1

2

�

<

1

2

k

2

b

j

e

j+1

.

Therefore, we obtain that

e

j+1

�

2b

j

k

3

(k � 1)

�O(1):

From this inequality (and from the fat that e

j+1

� 1 if b

j

� k) we dedue

the following inequality

b

j+1

� min

��

1�

2

k

3

(k�1)

�

b

j

+O(1); b

j

� k

�

: (12)

It is lear that, starting with b

0

= n, we stop after j = O(log n) steps.

Now,

e(G) � e

[j℄

= n� b

j

� j(k � 1) = n�O(log n):

The theorem is proved.

Let us onsider the ase k = 3; note that T

3

ontains only 2 non-

isomorphi graphs, S

3

1;3

and T

3

:

E(S

3

1;3

) = f f1; 2; 3g; f1; 2; 4g; f1; 3; 4g g;

E(T

3

) = f f1; 2; 3g; f1; 2; 4g; f3; 4; 5g g:

Theorem 14 For any n � 4, sat(n; T

3

) = n� 2.

Proof. Let G be any T

3

-saturated graph on [n℄. Make a list of all edges of

G and, onseutively and as long as possible, merge together any two sets

in the list sharing at least 2 verties (that is, replae then by their union.)

Call the resulting sets C

1

; : : : ; C

l

� [n℄ omponents. Let v

i

= jC

i

j. De�ne

the 2-graph H on [n℄ by

E(H) =

n

fx; yg 2

�

[n℄

2

�

: fx; yg = E

1

4E

2

for some E

1

; E

2

2 E(G)

o

:

13



Consider any omponent C. It is easy to see by indution on jCj that

C is omposed of at least jCj � 2 edges of G.

Note that if E 2 E(H [C℄) then any E

1

; E

2

2 E(G) with E

1

4E

2

= E

share two verties and so belong to the same omponent C

0

; but E � C

0

\C

so neessarily C

0

= C.

Claim 1 For every omponent C, �(H [C℄) � e(G[C℄)� 1.

Proof of Claim. Let x 2 C be arbitrary. For eah fx; yg 2 E(H [C℄), hoose

D

y

; E

y

2 E(G) with D

y

4E

y

= fx; yg and E

y

3 y. If fx; zg is another edge

of H [C℄ then E

y

6= E

z

: indeed, otherwise D

z

4E

z

= fx; zg � D

y

and G

ontains a forbidden subgraph. Hene, d(x) � e(G[C℄) � 1 (we must have

at least one G-edge inident to x) and the laim is proved.

Claim 2 If e(G[C℄) � jCj�1 then for any x 2 [n℄nC there is a omponent

C

0

3 x interseting C.

Proof of Claim. By Claim 1, there exists fa; bg 2 E(

�

H [C℄). As x 62 C, E =

fa; b; xg 62 E(G). Consider a forbidden subgraph F reated by E. We are

home if fa; xg or fb; xg is overed by E

1

or E

2

, where E(F ) = fE;E

1

; E

2

g.

If fa; b; yg 2 E(F ) then y 2 C and the remaining edge of F ontains both

x and y. Finally, if E

1

4E

2

� E then, as fa; bg 62 E(H), x belongs to the

omponent ontaining E

1

and E

2

whih is the required one. The laim is

proved.

If every omponent C spans at least jCj edges, then we are done as the

omponents over all but at most one vertex; so assume otherwise. Now,

Claim 2 implies that C

[l℄

= [n℄.

If every omponent C spans at least jCj � 1 edges then we are home:

by Claim 2 relabel omponents C

1

; : : : ; C

l

so that C

i

\C

[i�1℄

6= ;, i 2 [2; l℄,

and it is easy to show by indution on i that C

[i℄

is made of at least jC

[i℄

j�1

edges, whih gives e(G) � n� 1.

So, suppose that, for example, e(G[C

1

℄) = jC

1

j � 2. If for every x 2

[n℄ n C

1

, there are two distint omponents ontaining x and interseting

C

1

then are home:

e(G) �

X

i2[l℄

(v

i

� 2) = v

1

� l� 1 +

X

i2[2;l℄

(v

i

� 1)

� v

1

� l � 1 +max(2l � 2; 2(n� v

1

)) � n� 2: (13)

So let C

2

be the only omponent ontaining some vertex x 62 C

1

and

interseting C

1

. Let fyg = C

1

\ C

2

.

Let z 2 [n℄ n C

[2℄

be arbitrary. If fx; zg � C

i

, for some i 2 [3; l℄, then,

by the hoie of x, C

i

\ C

1

= ; and, by Claim 2, there exists another

omponent through z interseting C

1

.

14



If no omponent ontains both x and z then, for every y

0

2 C

1

n fyg,

E = fx; y

0

; zg 62 E(G) and onsidering a forbidden subgraph reated by

E we onlude that, for some i 2 [3; l℄, fy

0

; zg � C

i

(as fx; y

0

g annot lie

within a omponent by the de�nition of x). As jC

1

j � 3, we have at least

2 distint omponents ontaining z and interseting C

1

.

Now the argument similar to (13) shows that C

[3;l℄

is made of at least

n� jC

1

[ C

2

j edges, whih gives e(G) � n� 3. (The onlusion is true in

the ase l = 2 as well: then C

1

[ C

2

= [n℄.)

Can we have e(G) = n� 3? If we have the equality then every C

i

, i 2

[3; l℄, must interset C

1

[C

2

in exatly one vertex and e(G[C

j

℄) = jC

j

j � 2,

j 2 [l℄. By Claim 1, there exists y

i

2 C

i

suh that fy; y

i

g 62 E(H), i = 1; 2.

But then fy; y

1

; y

2

g 62 E(G) (e.g. beause it intersets C

1

in two verties)

and the onsideration of a reated forbidden graph yields a omponent

ontaining both y

1

and y

2

. Hene, e(G) > n� 3 as required.

Remark. Our further analysis has not yet yielded any haraterisation of

all extremal graphs: we have got stuk onsidering di�erent ases and, even

if we had sueeded, the proof would have been rather long. The diÆulty

is that an extremal graph may be not unique. For example, there is another

minimum T

3

-saturated graph of order 7: let V (G) = [7℄ and

E(G) =

�

f1; 2; 5g; f1; 3; 6g; f1; 4; 7g; f2; 3; 4g; f5; 6; 7g

	

:

6 Some Other Open Problems

The following de�nition omes from the Ramsey theory. We say that

a graph F arrows a t-tuple (F

1

; : : : ; F

t

) of graphs, whih is denoted as

F ! (F

1

; : : : ; F

t

), if any t-olouring of E(F ) ontains a monohromati

F

i

-subgraph of olour i for some i 2 [t℄.

Hanson and Toft [13℄ made the following onjeture (whih we restate

here in the sat-type notation).

Conjeture 15 Given t � 2 and numbers m

i

� 3, i 2 [t℄, let

F = fF : F ! (K

2

m

1

; : : : ;K

2

m

t

)g:

Let r = r(K

2

m

1

; : : : ;K

2

m

t

) be the lassial Ramsey number, that is, the min-

imum order of a omplete graph arrowing (K

2

m

1

; : : : ;K

2

m

t

). Then

sat(n;F) =

�

r � 2

2

�

+ (r � 2)(n� r + 2):
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Obviously, they had the graph S = K

2

r�2

+

�

K

2

n�r+1

in mind. Observe

that this graph is F-saturated, that is, a maximal graph not arrowing

(K

2

m

1

; : : : ;K

2

m

t

). Indeed, K

2

r�1

� S an be properly oloured and this

olouring extends on the whole of S by `loning' some oloured vertex. On

the other hand, the addition of any edge to S reates K

2

r

2 F .

Tuza [27℄ de�nes the loal density d(F ) of a k-graph F by

d(F ) = min

E2E(F )

max

E

0

2E(F )

E

0

6=E

jE \ E

0

j

and onjetures that

sat(n; F ) = O(n

d(F )

): (14)

(Or, even more strongly, that sat(n; F ) = n

d(F )

+ O(n

d(F )�1

).) This

onjeture is motivated by his results on so-alled monotonially saturated

graphs, see [27℄.

Also, there are many interesting results and open problems on the re-

lated notion of weak saturation whih is studied in e.g. [5, 12, 14, 15, 1, 10,

27, 29, 22, 23℄.
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