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Abstract

The size Ramsey number r̂(F1, F2) is the smallest number of edges that an
(F1, F2)-arrowing graph can have. Let Si,n be obtained from the star K1,n by
subdividing one edge by new i − 1 vertices. Bielak [Periodica Math. Hung. 18
(1987), 27–38] showed that r̂(S1,n, S1,n) = 4n − 2 and that r̂(S2,n, S2,n) ≤ 5n + 3.
We compute asymptotically all unknown values of r̂(Sµ,n, Sν,n), 0 ≤ µ ≤ ν ≤ 2. In
particular, we show that r̂(S2,n, S2,n) = 19

4
n + O(1).

1. Introduction

A graph G arrows a pair (F1, F2) of graphs, which is denoted by G → (F1, F2),
if for any blue-red colouring of the edge set of G there is a blue copy of F1 or a red
copy of F2. The size Ramsey number r̂(F1, F2) is the smallest number of edges in
a such graph G. This function is usually difficult to compute and often we do not
know the answer even for simple pairs (F1, F2).

This problem was first studied in a series of papers by Burr, Erdős, Faudree,
Rousseau, Schelp and others in the late 70s. The papers [6, 4, 1, 8, 9, 3, 2, 5, 7, 11,
10, 12, 13, 14], to name a few, as well as the present paper, deal with the case when
we forbid bipartite graphs.

Let Si,n be obtained from the star K1,n by replacing one edge with a path of
length i + 1. (In particular, S0,n = K1,n.) Bielak [3] showed that r̂(S1,n, S1,n) =
4n − 2 and that r̂(S2,n, S2,n) ≤ 5n + 3 for n ≥ 3.

This research initiated as an attempt to compute r̂(S2,n, S2,n) which happens
to be around 19

4 n. Then it has been realised that we can get, with little extra work,
some related asymptotic results as the following theorem asserts.

Theorem 1. For 0 ≤ µ ≤ ν ≤ 2 we have r̂(Sµ,n, Sν,n) = αµ,νn+O(1), where
α0,0 = 2, α0,1 = α0,2 = α1,1 = 4, α1,2 = 14

3 , and α2,2 = 19
4 .
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The case µ = ν = 0 is trivial while the case µ = ν = 1 is done by Bielak [3].
The rest of this paper is dedicated to settling the remaining cases. We do not go for
the exact computation as this would considerably increase the size of this article.
(The proof that r̂(S1,n, S1,n) = 4n− 2 occupies more than five pages in [3].)

2. Upper bounds

We have to prove the upper bound on α0,2, α1,2 and α2,2 only.

Lemma 2. r̂(S0,n, S2,n) ≤ 4n − 1, n ≥ 1.

Proof. Let G be obtained from K2,2n with parts V1 ∪ V2, V1 = {x1, x2}, by
removing one edge, incident to x2, say. For any colouring of G without a blue S0,n,
we have dred(x1) ≥ n + 1 and dred(x2) ≥ n, where, for example, dred(x1) = |Γred(x1)|
denotes the number vertices sending a red edge to x1. Thus, Γred(x1)∩Γred(x2) �= ∅
and we have a red S2,n, as required. �

Lemma 3. r̂(S1,n, S2,n) ≤ 5n − �n−1
3 	 + 7, n ≥ 1.

Proof. Take K2,2n+3 on V1∪V2. Insert into V2 a graph T formed from vertex-
disjoint copies of K1,2 plus at most one copy of K1,3 or K1,4 so that v(T ) = n + 2.
The graph G = K2,2n+3 ∪ T has the stated size. Suppose that we can find an
(S1,n, S2,n)-free colouring of G. Let V1 = {x1, x2}.

If there is y ∈ V2 such that both {x1, y} and {x2, y} are blue, then dblue(xi) ≤
n− 1, that is, dred(xi) ≥ n+4, i = 1, 2. In particular, Γred(x1)∩Γred(x2) �= ∅, which
gives us a red S2,n, a contradiction.

Next, suppose that there is z ∈ V2 such that both {x1, z} and {x2, z} are red.
If dred(x1) = 1, then G[x2, V2] is red. (For A, B ⊂ V (G), G[A, B] consists of all
edges of G connecting A to B.) Now, T contains a blue edge or a red K1,2, either
case leading to a contradiction. Thus, dred(x1) ≥ 2 and, likewise, dred(x2) ≥ 2. To
avoid a red S2,n, we must have dred(x1), dred(x2) ≤ n, which gives us y ∈ V2 sending
two blue edges to V1, which is, as we already know, impossible.

Let A ⊂ V2 consist of those vertices that send a red edge to x1. We know that
G[x2, A] is blue and G[x2, B] is red, where B = V2 \ A. Up to symmetry, we can
assume that |A| ≥ |B|. Then |A| ≥ n + 2 and A intersects some K1,2 ⊂ T . Trivial
considerations show that there is no feasible way to colour this K1,2, which finishes
the proof. �

Lemma 4. r̂(S2,n, S2,n) ≤ 5n − �n+2
4 	 + 8, n ≥ 2.

Proof. Take K2,2n+3 and add, to the bigger part V2, a graph T made of
vertex-disjoint K1,3’s plus at most one of K1,4, K1,5, or K1,6, so that v(T ) = n + 2.
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We have the required number of edges. Suppose that there is a colouring without a
monochromatic S2,n. Let V1 = {x1, x2}.

Suppose that, say, the blue degree of x1 is at most 1. Clearly, x2 can send at
most one red edge to Γred(x1). Some two edges of a K1,3 ⊂ T have the same colour,
which gives us a monochromatic S2,n, a contradiction. Thus we can assume that xi

is incident to at least 2 edges of each colour, i = 1, 2. Also, like in Lemma 3, one
can show that for any y ∈ V2 the edges {x1, y} and {x2, y} have different colours.
Assume, by symmetry, that dred(x1) ≥ dblue(x1). Now, V (T ) ∩ Γred(x1) �= ∅ but
there is no feasible way to colour a K1,3 intersecting Γred(x1). �

3. Lower bounds

We have to prove the lower bound on αµ,ν for (µ, ν) = (0, 1), (1, 2), and (2, 2)
only. Let n be large. First, we state a few lemmas applicable for any of these pairs
(µ, ν). Let G → (Sµ,n, Sν,n) be minimum. Let

H = {x ∈ V (G) | d(x) ≥ n},
H = V (G) \ H , h = |H |, and H = {x1, . . . , xh} with d(x1) ≥ · · · ≥ d(xh).

As e(G) < 5n − (
5
2

)
, we conclude that h ≤ 4.

Lemma 5. ∆(G) ≥ 2n − 1.

Proof. Otherwise, we can find a K1,n-free colouring of G by extending, for
i = 1, . . . , h, such a colouring from Gi−1 := G[{x1, . . . , xi−1}, V (G)] to Gi, which is
possible as n ≥ h. �

Thus, e(G) ≥ (2n−1)+(h−1)n− (
h
2

)
, which implies that h ≤ 3. Also, h = 1

is impossible: colour G[x1, H] red and G[H ] blue.

Lemma 6. h = 2.

Proof. Suppose on the contrary that h = 3. Define the partition

Γ(x1) ∩ H = G∅ ∪ G2 ∪ G3 ∪ G2,3,

where, for example, G2 consists of vertices connected to x2 but not to x3 while G∅—
to neither x2 nor x3. Let g∅ = |G∅|, etc. We want to find non-negative integers
a∅ ≤ g∅, a2 ≤ g2, a3 ≤ g3, a2,3 ≤ g2,3 such that

a∅ + a2 + a3 + a2,3 ≥ d(x1) − n + 1, (1)
ai + a2,3 ≤ n − 2, i = 2, 3. (2)
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Case 1: g2,3 ≥ n − 1.
We let a∅ = g∅, a2 = g2, a3 = g3, and a2,3 = d(x1) − n + 1 − g2 − g3 − g∅. As
d(x1) ≥ g∅ + g2 + g3 + g2,3, we have a2,3 ≥ 0. We have

a2 + a2,3 = d(x1) − g3 − g∅ − n + 1 ≤ (g2 + g2,3 + 2) − n + 1
≤ d(x2) − n + 3 ≤ n − 2.

The last inequality above follows from

d(x2) ≤ e(G) + 3 − d(x1) − d(x3)
≤ e(G) + 3 − (2n − 1) − n ≤ 7n/4 + O(1).

(3)

Likewise, a3 + a2,3 ≤ n − 2, as required.

Case 2: g2,3 ≤ n − 2.
We let a∅ = g∅, ai = min(gi, n − 3), i = 1, 2, and a2,3 = min(1, g2,3). Clearly, (2) is
satisfied. We have to check (1). If g2, g3 ≥ n − 3, then

a2 + a3 = 2n − 6 ≥ (e(G) − 2n + 3) − n + 1 ≥ d(x1) − n + 1,

as required. If, for example, g2 ≥ n − 3 > g3, then

a∅ + a2 + a3 = g∅ + n − 3 + g3 ≥ d(x1) − g2 − g2,3 + n − 5
≥ d(x1) − d(x2) + n − 5,

which is at least d(x1) − n + 1 by (3). Finally, (1) holds also if g2, g3 < n − 3:

a∅ + a2 + a3 = g∅ + g2 + g3 ≥ d(x1) − 2 − g2,3 ≥ d(x1) − n + 1 − a2,3.

Now, that we have found the a’s, choose any A ⊂ Γ(x1)∩H so that |A∩G∅| =
a∅, |A ∩ G2| = a2, etc. The inequalities (1) and (2) amount to |A| ≥ d(x1) − n + 1
and A ∩ Γ(xi) ≤ n − 2, i = 2, 3.

Colour G[x1, A] red, while all other edges intersecting A ∪ {x1} are blue. At
this stage the blue degree of any x ∈ H is strictly less than n. Now we colour the
remaining edges arbitrarily, keeping the red and blue degree of both x2 and x3 less
than n, which is possible by (3). This colouring contradicts the arrowing property:
for example, the red subgraph is a vertex-disjoint union of a star and a graph of
maximum degree at most n − 1. �

Lemma 7. |Γ(x1) ∩ Γ(x2)| ≥ 2n − 3.

Proof. If the claim is not true, take a partition Γ(x1)∩ Γ(x2) = A∪B with
|A|, |B| ≤ n− 2. Colour red G[x1, A \ {x2}] and G[x2, B \ {x1}]; all other edges are
blue. The blue graph has maximum degree at most n − 1 while the red graph is a
union of two vertex-disjoint stars, a contradiction. �

Now, we are able to establish the required lower bounds with little extra effort.

Lemma 8. r̂(S0,n, S1,n) ≥ 2 |Γ(x1) ∩ Γ(x2)| ≥ 4n − 6, all large n. �
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Lemma 9. r̂(S1,n, S2,n) ≥ 4n − 6 +
⌈

2(n−1)
3

⌉
, all large n.

Proof. Let A ⊂ H be the union of components of G[H ] which have at least
three vertices. Thus G[B] consists of isolated edges and vertices, where B = H \A.
If |A| ≥ n − 1, then the stated bound follows, so assume the contrary.

Colour blue: G[x1, A], G[x2, B], and G[A], while all other edges are red. The
blue graph does not contain S1,n: the component containing x2 is a star, while any
other component has at most n − 1 vertices. On the other hand, there is no red
S2,n: dred(x2) ≤ n − 1, while there is no red path of length 3 starting at x1, which
is a contradiction. �

Lemma 10. r̂(S2,n, S2,n) ≥ 4n − 6 +
⌈

3(n−1)
4

⌉
, all large n.

Proof. Let A ⊂ H be the union of components of G[H ] which have at least
four vertices. The required lower bound follows unless |A| ≤ n−2, which we assume.

Colour red: edge x1x2 (if it exists), G[x1, A], G[x2, B], and a maximal match-
ing in G[B], where B = H \ A. All other edges are blue. The set {x2} ∪ A, which
has at most n − 1 vertices, is a union of blue components. The remaining blue
graph contains no path of length 3 starting at x1. The red degree of x1 is at most
|A| + 1 ≤ n − 1. The red degree of x2 may be large but there is no red 3-path
starting at x2. Hence, there is no monochromatic S2,n, a contradiction. �
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(Cambridge 1983) (ed. by B. Bollobas), Cambridge Univ. Press, 1984, 273–281.



200 o. pikhurko

[9] R. J. Faudree and J. Sheehan, Size Ramsey numbers involving stars, Discrete
Math. 46 (1983), 151–157.

[10] P. E. Haxell and Y. Kohayakawa, The size-Ramsey number of trees, Israel J.
Math. 89 (1995), 261–274.

[11] X. Ke, The size Ramsey number of trees with bounded degree, Random Struct.
Algorithms 4 (1993), 85–97.

[12] R. Lortz and I. Mengersen, Size Ramsey results for paths versus stars, Australas.
J. Comb. 18 (1998), 3–12.

[13] O. Pikhurko, Asymptotic size Ramsey results for bipartite graphs, SIAM J. Discr.
Math. 16 (2003), 99–113.

[14] O. Pikhurko, Further asymptotic size Ramsey results obtained via linear program-
ming, Discrete Math. 273 (2003), 193–202.

(Received: April 16, 2002)

Oleg Pikhurko

Departement of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213-3890

USA

Web address: http://www.math.cmu.edu/~pikhurko/


