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1. INTRODUCTION

Given two graphs F1 and F2, we say that a graph G arrows the pair ðF1;F2Þ;
denoted by G ! ðF1;F2Þ; if for any blue-red colouring of the edge set of G, we

necessarily have either a blue copy of F1 or a red copy of F2 (or both). The size

Ramsey number r̂rðF1;F2Þ is the minimum number of edges of a graph G such that

G ! ðF1;F2Þ:
Here we investigate the size Ramsey number r̂rðK1;n;FÞ; the n-star K1;n versus

a fixed graph F, as n tends to infinity. Problems of this type were first

considered by Erdős, Faudree, Rousseau, and Schelp [5] who studied the

asymptotics of r̂rðK1;n;KkÞ as n tends to infinity and showed that r̂rðK1;n;KkÞ �
bðk � 2Þ2=4cn2=2 þ oðn2Þ; where Kk denotes the complete graph of order k.

Erdős [3] observed that Knþ1 þ Kn! r̂rðK1;n;K3Þ and conjectured that the

corresponding upper bound on r̂rðK1;n;K3Þ is sharp. Faudree and Sheehan

[8, Conjecture 1] made the more general conjecture that

r̂rðK1;n;KkÞ ¼
�
ðk � 1Þnþ 1

2

�
�
�
n

2

�
; n � 1; k � 3; ð1Þ

where the upper bound follows from the consideration of Kðk�2Þnþ1 þ Kn !
ðK1;n;KkÞ; see Section 2.

Some problems motivated by (1) were studied in [8,4,2]. But until recently

there had not been any progress on the original conjecture (1). It can well be that

there exists a simple argument proving (1) because the construction giving the

upper bound is so simple. Unfortunately, it has evaded us so far.

Let BkðnÞ be the family of all graphs G such that for any k-partition

VðGÞ ¼ A1 [ � � � [ Ak there is i 2 ½k� :¼ f1; . . . ; kg such that �ðG½Ai�Þ � n;
where �ðG½Ai�Þ denotes the maximum degree of the subgraph of G spanned by Ai.

Let bkðnÞ be the minimum size of G 2 BkðnÞ. The problem of computing b2ðnÞ
appears in Erdős [3]. The main motivation for this definition is that bkðnÞ is

clearly a lower bound on r̂rðK1;n;FÞ for any F with �ðFÞ ¼ k þ 1: But the function

bk is also of interest on its own.

Erdős’ conjecture (i.e., the case k ¼ 3 of (1)) has been recently disproved by

the author [11] who showed that r̂rðK1;n;FnÞ ¼ ð1 þ oð1ÞÞn2 if �ðFnÞ ¼ 3 and

vðFnÞ ¼ oðlog nÞ. Also, more precise estimates were obtained in special cases:

n2 þ ð0:557 þ oð1ÞÞn3=2 < b2ðnÞ � r̂rðK1;n;K3Þ < n2 þ
ffiffiffi
2

p
n3=2 þ n:

Here we show that for any fixed graph F with �ðFÞ � 4 we have

r̂rðK1;n;FÞ �
�ðFÞð�ðFÞ � 2Þ

2
n2 þ oðn2Þ

and conjecture that this is sharp.
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Conjecture 1.1. For any fixed graph F of chromatic number k � 4 we have

r̂rðK1;n;FÞ ¼
kðk � 2Þ

2
n2 þ oðn2Þ: ð2Þ

Note that (2) does not hold for k ¼ 3. If Conjecture 1.1 is true, then this would

mean that the case �ðFÞ ¼ 3 is exceptional.

We show that b3ðnÞ ¼ ð4 þ oð1ÞÞn2 which settles the case k ¼ 4 of Con-

jecture 1.1. Unfortunately, Conjecture 1.1 remains open for k � 5; although we

have rather tight lower bounds on bkðnÞ:
For �ðFÞ ¼ 2 we observe a different phenomenon: the size Ramsey number

r̂rðK1;n;FÞ is bounded from above by a function linear in n. The more general

results in [10] imply that the limit limn!1r̂rðK1;n;FÞ=n exists for any fixed

bipartite graph F. Unfortunately, the limiting value is known only for very few

(non-trivial) instances of F : K2;m (see Faudree, Rausseau, and Sheehan [7]);

more generally, Ks;t for any 2 � s � t (see Pikhurko [10]); a path with at most 6

edges (see Lortz and Mengersen [9]). The case �ðFÞ ¼ 2 is not treated here.

2. UPPER BOUNDS

Let KkðtÞ denote the complete k-partite graph with each part having t vertices.

The following lemma clearly establishes the upper bound in Conjecture 1.1. We

do not try to optimize the constants.

Lemma 2.1. Fix k � 3. Let " > 0 be arbitrary. Then there exist constants c > 0

and n0 such that Km þ Kn ! ðK1;n;KkðtÞÞ for all n � n0, where m ¼ dðk � 2þ
"Þne and t ¼ bc log nc:

Proof. Let n be sufficiently large. Assume " < 1=2. Let the vertex set of

G ¼ Km þ Kn be A [ B, where jAj¼ m; jBj¼ n and G½B� is the empty graph.

Given a blue-red colouring of EðGÞ without a blue K1;n, let G0 be the red subgraph.

The set A spans at most ðn� 1ÞjAj=2 blue edges, so the edge density of G0½A� is

at least 1� 1
k�2þ" : By the Erdős–Stone theorem [6], G0½A� contains a Kk�1ðsÞ-

subgraph K with s ¼ � ðlog nÞ:
Each vertex in V ¼ VðKÞ sends at least ðk � 2 þ "Þn� ðk � 1Þs red edges to

V , where we denote V ¼ VðGÞnV should the graph G be clear from the context.

Hence, the number of red edges connecting V to V is at least sðk � 1Þ
ðk � 2 þ "Þnþ Oðs2Þ. Let U consist of those vertices of V which send at least

ðk � 2 þ "=kÞs red edges to V. Of course, each vertex of U sends at most

jV j ¼ ðk � 1Þs red edges to V. Thus counting red edges between V and V , we

obtain

ðk � 1Þs � jUj þ ðk � 2 þ "=kÞs � jUj þ Oðs2Þ � ðk � 2 þ "Þn � ðk � 1Þs;
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which implies that jUj ¼ �ðnÞ. Let t ¼ bdsc with d � "=k. In G0 each vertex of

U covers at least one Kk�1ðtÞ-subgraph of K. Hence, some such subgraph appears

at least jUj= s
t

� �k�1
times, which is at least t if d is small enough. This gives us a

red KkðtÞ, as required. &

Finally, let us demonstrate that

Kðk�2Þnþ1 þ Kn ! ðK1;n;KkÞ; k � 2; n � 1: ð3Þ

The case k ¼ 2 is trivial. Assume k � 3 and take any blue-red colouring without

a blue K1;n. A vertex x of degree ðk � 1Þn is incident to at least ðk � 2Þnþ 1

red edges and the subgraph spanned by the red neighborhood of x contains

Kðk�3Þnþ1 þ Kn. Now deduce (3) by induction.

We believe that Kðk�1Þnþ1 þ Kn 2 BkðnÞ is extremal, that is,

bkðnÞ ¼ eðGÞ ¼
�
knþ 1

2

�
�
�
n

2

�
: ð4Þ

Of course, (4), if true, would imply (1).

3. EASY LOWER BOUND

Let us turn to proving lower bounds on bkðnÞ, which would give us lower bounds

on r̂rðK1;n;FÞ for any F with �ðFÞ ¼ k þ 1:
A simple (but very useful) lemma first.

Lemma 3.1. Let k � 1 and n � 1: If G 2 BkðnÞ; then �ðGÞ � kn:

Proof. Consider a partition VðGÞ ¼ A1 [ � � � [ Ak which minimizes

s ¼ �k
i¼1eðG½Ai�Þ. For some i 2 ½k�, there exists x 2 G½Ai� of degree at least n.

If we move x to any other part, then s does not decrease, so x sends at least n

edges to each part. Hence, dðxÞ � kn: &

Theorem 3.1. For any k � 2 and n � 1; we have bkðnÞ � k
2

� �
n2:

Proof. Given G 2 BkðnÞ, let A1 ¼ VðGÞ. Repeat the following for i ¼
1; 2; . . . ; k � 1. Given a set Ai such that G½Ai� 2 Bk�iþ1ðnÞ, let Bi � Ai be a set of

size n minimizing eðG½Aiþ1�Þ, where Aiþ1 ¼ AinBi. Clearly, G½Aiþ1� 2 Bk�iðnÞ.
So, if i � k � 2, we can repeat the step with the next i.

Let i 2 ½k � 1�. By Lemma 3.1, G½Aiþ1� contains a vertex x of degree at least

ðk � iÞn. Now, every y 2 Bi sends at least ðk � iÞn edges to Aiþ1, because the

exchange of x and y does not decrease eðG½Aiþ1�Þ:
Hence, eðGÞ � �k�1

i¼1 ðk � iÞn2 ¼ k
2

� �
n2, as required. &
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The bound of Theorem 3.1 is quite good, which becomes clear when we

compare it with the upper bound that follows from (3):

k2 � k

2
n2 � bkðnÞ �

�
knþ 1

2

�
�
�
n

2

�
¼ k2 � 1

2
n2 þ k þ 1

2
n: ð5Þ

In the remainder of the paper, we will work on improving the lower bound.

This, however, requires some new notions.

4. RELATED PROBLEM

As we have already mentioned, the function b2ðnÞ (or the case �ðFÞ ¼ 3 of ð2ÞÞ
seems rather exceptional: while the right-hand side of (2) is ð1:5 þ oð1ÞÞn2;
B2ðnÞ-graphs with only ð1þ oð1ÞÞn2 edges were constructed in [11]. Apparently,

this makes Conjecture 1.1 hard to prove.

However, the graphs in [11] have large maximum degree. And this is an

intristic feature of the problem: if the maximum degree of a B2ðnÞ-graph is not

large, then we can guarantee more than ð1þ oð1ÞÞn2 edges. This enables us to

improve our lower bounds on bkðnÞ by controlling the maximum degree of certain

subgraphs of G 2 BkðnÞ:
So, given d � 0 and n � 1; let

B2ðn; dÞ ¼ fG 2 B2ðnÞ : �ðGÞ � 2nþ dg

and let b2ðn; dÞ be the minimum size of G 2 B2ðn; dÞ. The function b2ðn; dÞ
was asymptotically computed by Pikhurko and Thomason [12]. However, we will

need not only the value of b2ðn; dÞ but also some information on the structure of

graphs in B2ðn; dÞ. This is provided by the following lemma.

Given a graph G and A;B � VðGÞ, let

eðA;BÞ ¼ jffx; yg 2 EðGÞ : x 2 A; y 2 Bgj;

be the number of edges connecting a vertex of A to a vertex of B. Note that

each edge of G½A \ B� is counted only once, so for example eðA;AÞ ¼
eðG½A�Þ:

Lemma 4.1. For any " > 0 there is n0 such that for any d � 0; any n � n0; any
G 2 B2ðn; dÞ with eðGÞ � n2 ln n and any A � VðGÞ with a :¼ jAj � ð1 � "Þn;
we have

�ðG� AÞ � n 1 þ n� a

nþ d
� "

� �
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and there exists a set C � A :¼ VðGÞnA such that jCj � n� a� "n and

eðC;AÞ � ðn� aÞnþ ðn� aÞ2
n

2nþ 2d
� 3"n2:

Proof. Without loss of generality assume that " < 1=2. Suppose that n is

sufficiently large. Let A and G be as above.

We are proving the first claim. If d > ð1 � "Þn=", then we are home:
n�a
nþd

� n
nþd

< " and �ðG� AÞ � n because G 2 B2ðnÞ. So, let us assume that

d � ð1� "Þn=". Let B ¼ A and

H ¼ fx 2 VðGÞ : dðxÞ � ng:

By our assumption on eðGÞ we have jHj � 2n ln n. Define

� ¼ "2; q ¼ ð1 þ �Þ nþ d

2nþ d � a
; p ¼ 1 � q:

We have 0 < q � 1:
Choose Y � B by placing independently each vertex of B into Y with

probability p. Let Z ¼ BnY . Let dYðxÞ denote the number of neighbours of x that

lie in Y, etc. By Chernoff’s bounds [1], in view of jHj ¼ Oðn ln nÞ, we have

almost surely that dYðxÞ (and so dZðxÞÞ differs from its expected value pdBðxÞ
(resp. qdBðxÞÞ by at most �2n for all x 2 H. So, there exists Y for which this

condition is true. We have

dA[YðxÞ � dAðxÞ þ pðdðxÞ � dAðxÞÞ þ �2n ¼ ð1 � pÞdAðxÞ þ pdðxÞ þ �2n

� ð1 � pÞaþ pð2nþ dÞ þ �2n < n; for all x 2 H:

In particular, �ðG½A [ Y �Þ < n. Hence, G½Z� contains a vertex x of degree at

least n. Of course, x 2 H and we have

dBðxÞ �
dZðxÞ � �2n

q
� ð1 � �2Þnð2nþ d � aÞ

ð1 þ �Þðnþ dÞ

¼ ð1 � �Þn 1 þ n� a

nþ d

� �
� n 1 þ n� a

nþ d
� "

� �
;

which proves the first claim.

Let us prove the second claim. Let n be large. Given G and A, we start with

C ¼ ; and B ¼ A and apply the following procedure until jA [ Cj ¼ bnð1 � "Þc:
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move a vertex x of maximum degree in G½B� from B to C. The first claim (which

we have already proved) implies that

dBðxÞ � n 1 þ n� jA [ Cj
nþ d

� "

� �
:

Hence the total number of edges encountered during the procedure is at least

Xbð1�"Þnc

i¼a

n 1 þ n� i

nþ d
� "

� �
� ðn� aÞnþ ðn� aÞ2

n

2nþ 2d
� 3"n2;

as required. &

In particular, we reprove the following result from Pikhurko and Thomason

[12], which is obtained by taking A ¼ ; in Lemma 4.1.

Corollary 4.1. b2ðn; dÞ � ð1 þ oð1ÞÞn2 1 þ n
2nþ2d

� �
as n ! 1. &

Remark 1. The above inequality is in fact sharp; see Pikhurko and Thomason

[12] for a construction of G 2 B2ðn; dÞ exhibiting the corresponding upper bound

on b2ðn; dÞ.
Remark 2. One is tempted to define analogously bkðn; dÞ as the minimum size

of G 2 BkðnÞ with �ðGÞ � knþ d. However, if (4) is true, then the function

bkðn; dÞ does not say anything new for k � 3 because an extremal graph

Kðk�1Þnþ1 þ Kn 2 BkðnÞ has maximum degree kn, while there is no G 2 BkðnÞ
with �ðGÞ < kn by Lemma 3.1.

5. USEFUL LEMMA

The following simple lemma seems very useful for our task.

Lemma 5.1. Let G be any graph. For any set S � VðGÞ; there exists T � VðGÞ
such that �ðG½T �Þ < n; each vertex of T sends at least n edges to T and T is

incident to at least nðjT j � jSjÞ þ eðS;VðGÞÞ edges.
Proof. Let T ¼ S. Repeat the following consecutively and as long as

possible. Either move to T a vertex y 2 T with dTðyÞ � n or move to T a vertex

y 2 T with dTðyÞ < n� 1.

Consider the function f ðTÞ ¼ eðT;VðGÞÞ � njT j. Clearly, neither of our

operations decreases f , while moving a vertex to T we increase f by at least 1.

In particular, this shows that the above procedure terminates at some point.

Let T be the final set. The first two conditions are obviously satisfied (otherwise

we can repeat the procedure). The third condition follows from the inequality

f ðTÞ � f ðSÞ. &
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Remark. Note that we do not impose any condition on G in Lemma 5.1 at all.

6. KEY STEP

Let G 2 BkðnÞ with k � 3. Let n be large. Assume that eðGÞ < n2 ln n.

Define Tk ¼ VðGÞ. Do the following consecutively for i ¼ k � 1; k � 2; . . . ; 2.

By Lemma 5.1, we know that there exists Ti � Tiþ1 such that �ðG½Tiþ1nTi�Þ < n

while each x 2 Ti sends at least n edges to Tiþ1nTi. Let Ti be such a set with

the minimum number of vertices. We deduce that G½Ti� 2 BiðnÞ by induction.

In particular, jTij > in by Lemma 3.1; let jTij ¼ inþ ti. Each vertex of the non-

empty set Ti sends at least n edges to Tiþ1nTi, so the latter set has at least

n vertices, which implies that ti < tiþ1.

The following lemma constitutes the core of our proof.

Lemma 6.1. Let 2 � i � k � 1 and let Ai�1 � Ti be any set of size ði� 1Þnþ
ai�1 with 0 � ai�1 � ti. Then there exists an ðinþ tiÞ-set Ai � Tiþ1 such that

eðAi;Tiþ1Þ � eðAi�1;TiÞ þ in2 þ tinþ
nððn� ai�1ÞþÞ

2

2nþ 2ti
þ oðn2Þ; ð6Þ

where for x 2 R we denote xþ ¼ x if x > 0 and xþ ¼ 0 otherwise.

Proof. First, suppose that ai�1 > n. As each vertex of Ai�1 sends at least

n edges to Tiþ1nTi, we have

eðAi�1;Tiþ1Þ � eðAi�1; TiÞ þ ðði� 1Þnþ ai�1Þn:

Apply Lemma 5.1 to the set Ai�1 with respect to G½Tiþ1�. The obtained set

has at least inþ ti elements by the choice of ti. Consider the moment when the

current set had precisely inþ ti elements; let it be Ai. From Lemma 5.1, we know

that

eðAi; Tiþ1Þ � nðjAij � jAi�1jÞ þ eðAi�1;Tiþ1Þ
� ðnþ ti � ai�1Þnþ eðAi�1; TiÞ þ ðði� 1Þnþ ai�1Þn;

which gives the required.

So, suppose that ai�1 � n.

Starting with Bi ¼ ;, iterate the following as long as possible or until

jBij ¼ n� ai�1: move to Bi a vertex of TinðAi�1 [ BiÞ which has at least

2nþ ti � ai�1 � jBij neighbours in Tiþ1nðAi�1 [ BiÞ. Let bi be the number of

elements in Bi when we stop. Also, let

Si ¼ Tiþ1nðAi�1 [ BiÞ:

SIZE RAMSEY NUMBERS OF GRAPHS 227



Note the inequality which we will need later:

eðBi; Tiþ1nAi�1Þ �
Xbi
i¼1

ð2nþ ti � ai�1 � iþ 1Þ

¼ bið2nþ ti � ai�1Þ �
bi

2

� �
: ð7Þ

Case 1. Suppose that bi < n� ai�1.

Let Ri � Ai�1 [ Bi be an ri-set minimizing eðRi;Ri [ SiÞ, where ri ¼ bi þ ai�1.

Set A0
i�1 ¼ ðAi�1 [ BiÞnRi:

The graph Gi ¼ G½Ri [ Si� has the B2ðnÞ-property: it is obtained by removing

the ði� 1Þn-set A0
i�1 from the Biþ1ðnÞ-graph G½Tiþ1�. Let us estimate the maxi-

mum degree of Gi. For x 2 Tiþ1nTi, we have by the definition of Ti � Tiþ1 that

dRi[SiðxÞ � dTiþ1nTiðxÞ þ jTi \ ðRi [ SiÞj < nþ ðnþ tiÞ ¼ 2nþ ti: ð8Þ

For x 2 TinðAi�1 [ BiÞ we have by the definition of Bi that

dRi[SiðxÞ � dSiðxÞ þ jRij < ð2nþ ti � ai�1 � biÞ þ ðbi þ ai�1Þ ¼ 2nþ ti: ð9Þ

It remains to consider vertices in Ri. Here we have two cases depending on

the value of

fi ¼ maxfdRi[SiðxÞ : x 2 Rig � 2n:

Case 1.1. Suppose that fi < ti.

We have �ðGiÞ < 2nþ ti. Applying Lemma 4.1 to Ri � VðGiÞ, we conclude

that there is a set Ci � Si of size n� ri incident to at least ðn� riÞnþ
nðn�riÞ2

2nþ2ti
þ oðn2Þ edges lying within Si. Also, each vertex of the set Ai�1 � Ti sends

at least n edges to Tiþ1nTi. Apply Lemma 5.1 to S0i ¼ Ai�1 [ Bi [ Ci with respect

to the graph G½Tiþ1� to construct a set T 0
i with the three corresponding properties.

By the extremality of ti, we have jT 0
i j � inþ ti. Let Ai equal the current set T 0

i at

the moment when its size was precisely inþ ti. The number of edges of G½Tiþ1�
incident to Ai is

e � nðjAij � jS0ijÞ þ eðS0i; Tiþ1Þ
� tinþ eðAi�1;TiÞ þ eðAi�1;Tiþ1nTiÞ þ eðBi; Tiþ1nAi�1Þ þ eðCi; SiÞ

� tinþ eðAi�1;TiÞ þ ðði� 1Þnþ ai�1Þnþ bið2nþ ti � ai�1Þ �
bi

2

� �

þ ðn� ai�1 � biÞnþ
nðn� ai�1 � biÞ2

2nþ 2ti
þ oðn2Þ:
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Disregarding the error term, the obtained expression (as a function of bi) is

monotone increasing for 0 � bi � n� ai�1; hence it is minimized for bi ¼ 0,

which gives the required.

Case 1.2. Suppose that fi � ti.

The graph Gi ¼ G½Ri [ Si� 2 B2ðnÞ has maximum degree 2nþ fi, so we can

find an ðn� riÞ-set Ci � Si incident to at least ðn� riÞnþ nðn�riÞ2

2nþ2fi
þ oðn2Þ edges

of G½Si� ¼ Gi � Ri by Lemma 4.1.

By the choice of Ri, each x 2 A0
i�1 sends at least 2nþ fi edges to Tiþ1nA0

i�1.

Hence,

dTiþ1nTiðxÞ � 2nþ fi � jTinA0
i�1j ¼ nþ fi � ti; x 2 A0

i�1: ð10Þ

Let qi ¼ jBi \ Rij; thus jAi�1 \ Rij ¼ bi þ ai�1 � qi and jAi�1nRij ¼ ði� 1Þn�
bi þ qi.

Like in Case 1.1, by applying Lemma 5.1 to S0i ¼ Ai�1 [ Bi [ Ci with respect to

the graph G½Tiþ1�, we find a set Ai � Tiþ1 of size precisely inþ ti such that the

number of edges of G½Tiþ1� incident to Ai is

e � nðjAij � jS0ijÞ þ eðS0i; Tiþ1Þ � tinþ eðAi�1;TiÞ þ eðAi�1nRi; Tiþ1nTiÞ

þ eðAi�1 \ Ri; Tiþ1nTiÞ þ eðBi;Tiþ1nAi�1Þ þ eðCi; SiÞ

� tinþ eðAi�1;TiÞ þ ðði� 1Þn� bi þ qiÞðnþ fi � tiÞ þ ðbi þ ai�1 � qiÞn

þ bið2nþ ti � ai�1Þ �
bi

2

� �
þ ðn� ai�1 � biÞnþ

nðn� ai�1 � biÞ2

2nþ 2fi
þ oðn2Þ:

The last expression (disregarding the error term) is monotone increasing in

both qi and fi for qi � 0 and fi � ti. (Recall that i � 2.) Hence it is at least its

value for qi ¼ 0 and fi ¼ ti, when we obtain precisely the lower bound from Case

1.1. Now the claim follows.

Case 2. Suppose that bi ¼ n� ai�1.

The set S0i ¼ Ai [ Bi has now precisely in vertices. Apply Lemma 5.1 to S0i
with respect to G½Tiþ1� stopping the iteration when the current set has size inþ ti;

call this set Ai. The number of G½Tiþ1�-edges incident to Ai is

e � nðjAij � jS0ijÞ þ eðS0i; Tiþ1Þ

� tinþ eðAi�1;TiÞ þ eðAi�1;Tiþ1nTiÞ þ eðBi; Tiþ1nAi�1Þ

� tinþ eðAi�1;TiÞ þ ðði� 1Þnþ ai�1Þn

þ ðn� ai�1Þð2nþ ti � ai�1Þ �
n� ai�1

2

� �
þ oðn2Þ:
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Let consider the difference d between e and the required bound.

d � tinþ
n2

2
� ai�1n� ai�1ti þ

a2
i�1

2
� nðn� ai�1Þ2

2nþ 2ti
þ oðn2Þ:

It is routine to check that the obtained expression is monotone increasing in ti.

Hence (in view of ti � ai�1) we obtain

d � n2

2
� a2

i�1

2
� nðn� ai�1Þ2

2nþ 2ai�1

þ oðn2Þ:

The last expression (disregarding the error term) is non-negative for 0 � ai�1 � n

which proves the claim and finishes the proof. &

7. ASYMPTOTIC COMPUTATION OF b3ðnÞ

Now the b3-case is a piece of cake.

Theorem 7.1. b3ðnÞ ¼ 4n2 þ oðn2Þ:
Proof. The upper bound follows from (3).

To prove the lower bound, let G 2 B3ðnÞ and let Ti’s and ti’s be as defined

before Lemma 6.1. Define A1 � T2 to be an n-set incident to as many as possible

edges of G0 ¼ G½T2�, which is at least n2ð1 þ n
2nþ2t2

þ oð1ÞÞ by Lemma 4.1

because G0 is a B2ðnÞ-graph with �ðG0Þ < vðG0Þ ¼ 2nþ t2. Apply Lemma 6.1

(with a1 ¼ 0) to find a set A2 of size 2nþ t2 with

eðGÞ � eðA2; T3Þ � eðA1; T2Þ þ 2n2 þ t2nþ
n3

2nþ 2t2
þ oðn2Þ

� 3n3 þ t2nþ
n3

nþ t2
þ oðn2Þ � 4n2 þ oðn2Þ: &

Corollary 7.1. Let ðFnÞn2N be a sequence of 4-chromatic graphs such that

vðFnÞ ¼ oðln nÞ. Then r̂rðK1;n;FnÞ ¼ 4n2 þ oðn2Þ. &

8. GENERAL LOWER BOUNDS ON bkðnÞ

Unfortunately, despite the author’s efforts, Conjecture 1.1 remains open for k � 5,

although we are able to improve the bound of Theorem 3.1 by using Lemma 6.1.

Let k � 4 and let G be a minimum BkðnÞ-graph. Assume that n is large;

in particular eðGÞ < n2 ln n. Let Ti’s and ti’s be defined as before Lemma 6.1.

Define A1 � T2 to be an n-set incident to as many as possible edges of G½T2�.
By Lemma 4.1, eðA1; T2Þ � n2 þ n3

2nþ2t2
þ oðn2Þ. Consecutively for i ¼ 2; 3; . . . ;
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k � 1 apply Lemma 6.1 to Ai�1 � Ti to obtain an ðinþ tiÞ-set Ai � Tiþ1 satisfying

(6). This gives the following lower bound on eðGÞ.

eðGÞ � 3n2 þ t2n
2 þ n3

nþ t2
þ
Xk�1

i¼3

inþ tinþ
nððn� ti�1ÞþÞ

2

2nþ 2ti

 !
þ oðn2Þ:

Thus,

bkðnÞ �
k

2

� �
n2 þ mn2 þ oðn2Þ; ð11Þ

where m is the minimum of

f ðx2; . . . ; xk�1Þ ¼ x2 þ
1

1 þ x2

þ
Xk�1

i¼3

xi þ
ðð1 � xi�1ÞþÞ

2

2 þ 2xi

 !
:

over all reals 0 � x2 � � � � � xk�1.

Unfortunately, (11) does not give the sharp lower bound for k � 4. Numerical

calculations show that we obtain, for example,

ð7:477 þ oð1ÞÞn2 < b4ðnÞ � 7:5n2 þ 2:5n; ð12Þ

ð11:944 þ oð1ÞÞn2 < b5ðnÞ � 12n2 þ 3n: ð13Þ

(We included here the upper bounds (5) for comparison.)

It seems that the lower bound (11) cannot be substantially simplified. So we

leave (11) as it is, especially that we believe it can be improved.

Working harder on the case k ¼ 4, we have improved the lower bound in (12) to

b4ðnÞ > ð7:494 þ oð1ÞÞn2: ð14Þ

We give only a sketch of the proof.

Let G 2 B4ðnÞ and Ti’s be as usual. The graph G½T3� has the property that

�ðG� BÞ � 2n for any n-set B � T3. One can show (similarly to the proof of

Lemma 4.1; see also [12]) that �ðG½T3nA�Þ � 2nþ 2nðn�jAjÞ
2nþt3

þ oðnÞ for any

A � T3 with jAj � ð1 � oð1ÞÞn.

Start with A ¼ ; and n times move to A a vertex of G½T3nA� of maximum

degree. Let f ¼ �ðG½T3nA�Þ � 2n. By the way we defined A, each moved vertex

was incident to least 2nþ f edges outside A at that moment. Hence,

eðA; T3Þ � oðn2Þ þ
Xn
i¼1

max 2nþ f ; 2nþ 2nðn� iÞ
2nþ t3

� �
: ð15Þ
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By Lemma 4.1, applied to G½T3nA� 2 B2ðn; f Þ; we can find an n-set B � T3nA
with

eðB;T3nAÞ � n2 þ n3

2nþ 2f
þ oðn2Þ: ð16Þ

Apply Lemma 5.1 to A [ B to find a set D � T3 of size 2nþ t2 incident to at

least eðA [ B; T3Þ þ t2n edges. Now, applying Lemma 6.1 to D we obtain:

eðGÞ � eðA; T3Þ þ eðB; T3nAÞ þ t2nþ 3n2 þ t3nþ
nððn� t2ÞþÞ

2

2nþ 2t3
þ oðn2Þ:

ð17Þ

We believe that the inequalities f � t3 and (15)–(17) imply (14), which

involves rather messy calculations. We do not provide any further details because

the last bound is not best possible anyway.
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