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Abstract

A graph of order n is called prime if we can bijectively label its vertices
with {1,...,n} so that any two adjacent vertices receive coprime labels.
Entringer conjectured that any tree is prime. Here we verify this con-
jecture for all trees with at most 34 vertices. Our proof does not utilize
computer search.

1 Introduction

Given a graph G of order n and a set S of n distinct natural numbers, we say that
G admits a prime S-labelling if there is an S-labelling of G (that is, a bijection
l:V(G) — S) such that any two adjacent vertices of G receive coprime labels.
The default case is S = [n] = {1,...,n} and a graph G admitting a prime
[n]-labelling is called prime.

Around 1980 Entringer conjectured that any tree is prime.

Many classes of trees have been shown to be prime (paths, stars, caterpillars,
complete binary trees, spiders); we refer the reader to the dynamic survey by
Gallian [2] which contains a section on prime labelling. In particular, Fu and
Huang [1] proved that all trees with at most 15 vertices are prime.

Here we verify Entringer’s conjecture for all trees with at most 34 vertices.
Our proof is not based on computer search and can be easily checked by hand.

The main ingredient of our proof is Lemma 2 which states that for every
tree T' we can find a vertex u cutting off a subgraph T whose structure we can
control. Namely, we can guarantee that 7" either contains exactly 3 vertices
or has a very simple structure. Our algorithm labels v with a number coprime
to any other in S. Now we can process the components of the forest 7' — u
independently. We label T" (typically by some of the larger elements of S)
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2 EVERY TREE WITH < 34 VERTICES IS PRIME

knowing its structure; we label T' — T — u with the remaining labels using
induction.

Unfortunately, we cannot always guarantee that the remaining labels form
an interval of integers; this is why we introduce the following predicate P(S):
“Every tree with |S| vertices admits a prime S-labelling.”

Thus, here we establish the validity of P; = P([i]) for all ¢ < 34. Let I(i)
be the induction step: “If every tree with fewer than ¢ vertices is prime, then
every tree of order i is prime.” In our notation,

1)) = PV (=P V-V (2Pio).

2 Warm-Up

A greatly simplified version of the above principle can be recognized in the proof
of the following lemma.

Lemma 1 Let p > 3 be a prime. Then I(p), I(p+ 1) and I(p + 2) are valid.

Proof. Suppose that every tree with at most p — 1 vertices is prime.

Every tree of order p is prime: assign p to some endvertex and label the
remaining graph by the assumption. Similarly, labelling an endvertex by p + 1
and its neighbour by p, one proves P,.

Finally, let T be a tree with p + 2 vertices. Let (x1,...,%n,) be a longest
path in T. If d(z2) = 2, then we let I(z1) = p+ 2, I(z2) = p+ 1 and I(z3) = p.
Otherwise, let I(z1) = p+ 2, [(z2) = p and I(v) = p+ 1, where v is a neighbour
of zy distinct from z; and x3; by the choice of the path, v is an endvertex. In
both cases our partial labelling extends to a prime labelling of 7. 1

3 Key Lemma
Here is the promised result.

Lemma 2 LetT be a tree with at least 4 vertices. Then there is a verter u such
that either some set A of 3 vertices can be represented as a union of (one or
more) components of T — u or there are a neighbour v of u of degree k+1 >3
such that its other k neighbours vy, ..., v have degree 2 each and are incident
to endvertices uy, ..., uy correspondingly.

Proof. Let (x1,...,%m,) be a longest path in 7.

If d(z2) > 4 or if d(x3) = 1, then x5 is connected to at least 3 endvertices
and we are done (take u = x2). Suppose that d(z2) < 3 and d(z3) > 2.

If d(xz2) = 3, then z» is incident to precisely 2 endvertices and we can take
u = x3 here. Let d(z2) = 2.

Let b be any neighbour of x5 different from z4. If d(b) = 1, then u = x3
with A = {x1, 2, u} does the job. By the choice of the path, all neighbours of b
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are endvertices. If d(b) = 3, we can take u = z3. If d(b) > 4, we can take u = b.
Thus, we may assume that d(b) = 2.

Finally, if d(z3) = 2, let v = x4 (and A = {x1, 22, 23}); otherwise we find
the second configuration with u = 24 and v = z3. 1

4 Labelling Table and its Properties

To prove that every tree with at most 34 vertices is prime, we validate each I(37),
i < 34.

Lemma 1 takes care of most of the cases except for i € {10, 16, 22,26, 27,28, 34}.
In each of these cases, we will follow the plan outlined in the introduction. Un-
fortunately, there is not a single partial labelling which works for each ¢. So
we wrote up a little table which contains directions how to label configurations
obtained by Lemma 2 in each case.

This will be described later; at the moment we claim that Table 1 enjoys all
of the following properties.

1. Each S = [i] for i € {10, 16,22, 26,27, 28,34} is present.

2. In each triple [(A) C S, there is a number coprime to the other two.

I(u) € S is coprime to any other element of S.

l[(v) € S is coprime to each I(u;), 1 <j < k.

For each j € [k], I(u;) € S and l(v;) € S are coprime.

S\ (AU {l(u)}) either equals some [m] or can be found in Table 1.

S\ (1), 1(0)} U (Ui, {1(u), [(v;)})) equals some [m].

This looks like a long list but each property can be easily checked by hand.

N ok w

5 Putting all together

Now we are ready to prove our main result which we state as follows.

Theorem 3 The property P(S) holds for every S = [i] with 1 <i < 34 and for
every S appearing in Table 1.

Proof. We use induction on |S|. Trivially P; and P, hold.

If S = [i] with 0 < i—p < 2 for some prime p, then we are home by Lemma 1.
Otherwise S appears in Table 1.

Let T be any tree of order |S| > 4. Apply Lemma 2 to T'.

If the first alternative of Lemma 2 holds, then in the corresponding row we
find the label for u (column [(u)) and three labels (column [(A4)) to be used for
A. Of these three labels, one is coprime to the other two and, as there are at
most two edges of T inside of A, we can find a prime labelling of T[A] with



d[qeL SupqeT T S[qRL

S I(A) l(u) 1(v) (U(uj))1<i<k (1(v;)1<j<k
[10] 8,9,10 | 7 8 9, (9 — 2j)a<j<k 10, (10 — 2j)2<j<k
[16] 14,15, 16 | 13 16 15, 11, (15 — 2j)3< < (16 — 2j)1<;<k
[22] 20, 21,22 | 19 22 21, 17 20, 18
16 21, 15, 17, (21 — 2j)a<;<k 20, 22, 18, (22 — 2j)a<;<k
[26] 24, 25,26 | 23 26 25, (25 — 2j)a< <k (26 — 2j)1<j<k
16 25, (25 — 2j)a<j<k 24, 26, 20, 18, 22, (26 — 2j)6<j<k
[17]U {26,27} 16, 26, 27 | 17 16 27, (19 — 2j)a< <k 26, (18 — 25)a<j<k
[17] U {19,20,21,22,26,27} | 20, 21,22 | 19 26 27, 21 22, 20
16 27, 21, 17, (23 — 2j)a<;<k 26, 22, 20, (22 — 2j)a<;<k
[27] 18,24, 25 | 23 23 27, 25, (27 — 2j)s<<k (28 — 2j)1<j<k
[22] U {24, 25} 18,24, 25 | 19 22 25, 21, (17) ;-3 24, 20, (18) ;3
16 25, 21, 17, 15, (23 — 2j)s<j<k 24, 20, 18, 22, (24 — 25)s<j<k
[28] 26, 27,28 | 23 26 27, 25, (27 — 2j)s<<k 28, (28 — 25)a<j<k
16 | 27,21, 25,15, 17,19, (27 — 2)7<j<k | (30 — 2j)1<j<6, (28 — 2j)7<j<k
[17]U {20,21,22} 20, 21,22 | 17 16 21, 15, (19 — 2j)s<<k 20, 22, (20 — 2j)s<,<k
[34] 32,33,34 | 31 32 33, (33 — 25)a<j<k 34, (34 — 25)a<j<k
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these labels. There are no edges between A and V(T') \ (AU {u}) and I(u) is
coprime to any other element of S. Thus, the task reduces to labelling the forest
T —A—wuwith S\ (I(4) U {l{(u)}), which can be done by induction because
S\ (1(A) U{l(w)}) is either an interval or can be found in Table 1.

The second alternative of Lemma 2 is treated in the same way except we
may have a few different label assignments depending on k. Also, if we have
I(u) = l(v) in the table, then we assign this label to v leaving u unlabelled. §

Remark. Of course, the validity of I(10) follows from the result of Fu and
Huang [1], but we get it at almost no extra cost while keeping our paper self-
contained.

Remark. Our proof gives a practical algorithm for labelling trees with at most
34 vertices.

6 Some Final Remarks

In the next open case P([35]) we were not able to find a proof within the above
framework, so we do not know if our method works here (our search was not
extensive).

As we see, in attacking Entringer’s conjecture it was helpful to introduce
the more general property P(S). Unfortunately, the natural generalization that
P({i,i+ 1,0 +2,...,j}) holds for any ¢ < j is not correct as the following
example demonstrates.

Let K 15 be the star with 18 edges, that is, some vertex, called the centre,
is connected to any other of 18 remaining vertices. One can choose ¢ such that
i equals 0 (mod 2), 0 (mod 3), 4 (mod 5), 1 (mod 7), 4 (mod 11), 8 (mod 13)
and 0 (mod 17). Then the consecutive members of S = {i,i+1,...,i+ 18} are
respectively divisible e.g. by

17,5,2,3,2,13,7,11,2,3,2,5,2,7,2,3,2,17,11- 13,

and there is no suitable label for the centre.

This indicates that it is probably hard to characterize all such S for which
P(S) holds. Salmasian [3] investigated the property P'(n,S): “Any tree T of
order n admits a prime S’'-labelling for some S' = S'(T') C S” and proved that
P'(n,[4n]) holds for all n > 50. Of course, this all makes Entringer’s conjecture
even more interesting.
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