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Abstract. We show that limn→∞ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr)/n exists, where the bipartite
graphs Fq+1, . . . , Fr do not depend on n while, for 1 ≤ i ≤ q, Fi,n is obtained from some bipartite
graph Fi with parts V1 ∪ V2 = V (Fi) by duplicating each vertex v ∈ V2 (cv + o(1))n times for some
real cv > 0.

In fact, the limit is the minimum of a certain mixed integer program. Using the Farkas lemma
we show how to compute it when each forbidden graph is a complete bipartite graph, in particular
answering the question of Erdős, Faudree, Rousseau, and Schelp [Period. Math. Hungar., 9 (1978),
pp. 145–161], who asked for the asymptotics of r̂(Ks,n,Ks,n) for fixed s and large n. Also, we prove
(for all sufficiently large n) the conjecture of Faudree, Rousseau, and Sheehan in [Graph Theory and
Combinatorics, B. Bollobas, ed., Cambridge University Press, Cambridge, UK, 1984, pp. 273–281]
that r̂(K2,n,K2,n) = 18n− 15.
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1. Introduction. Let (F1, . . . , Fr) be an r-tuple of graphs which are called for-
bidden. We say that a graph G arrows (F1, . . . , Fr) if for any r-coloring of E(G), the
edge set of G, there is a copy of Fi of color i for some i ∈ [r] := {1, . . . , r}. We denote
this arrowing property by G → (F1, . . . , Fr).

The (ordinary) Ramsey number asks for the minimum order of such G. Here,
however, we deal exclusively with the size Ramsey number

r̂(F1, . . . , Fr) = min{e(G) : G → (F1, . . . , Fr)}

which is the smallest number of edges that an arrowing graph can have.
Size Ramsey numbers seem hard to compute, even for simple forbidden graphs.

For example, the old conjecture of Erdős [6] that r̂(K1,n,K3) = 3n(n+1)/2 has only
recently been disproved in [16], where it is shown that r̂(K1,n, F ) = (1 + o(1))n2 for
any fixed 3-chromatic graph F . (Here, Km,n is the complete bipartite graph with
parts of sizes m and n; Kn is the complete graph of order n.)

This research has been initiated as an attempt to find the asymptotics of r̂(K1,n, F )
for a fixed graph F . The case χ(F ) ≥ 4 is treated in [14] (and [16] deals with
χ(F ) = 3). What can be said if F is a bipartite graph?

Faudree, Rousseau, and Sheehan [10] proved that

r̂(K1,n,K2,m) = 4n+ 2m− 4

for everym ≥ 9 if n is sufficiently large (depending onm) and stated that their method
shows that r̂(K1,n,K2,2) = 4n, n ≥ 3. They also observed that Ks,2n arrows the pair
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100 OLEG PIKHURKO

(K1,n, C2s) for n ≥ s, where C2s is the cycle of order 2s; hence r̂(K1,n, C2s) ≤ 2sn
then.

Let Ps be the path with s vertices. Lortz and Mengersen [13] showed that
Kk,2n−1 → (K1,n, P2k+1) and Kk + K2n−k−1 → (K1,n, P2k) and conjectured that
this is sharp for any s ≥ 4 provided n is sufficiently large; that is,

r̂(K1,n, Ps) =

{
2kn− k if s = 2k + 1,
2kn− k(k + 3)/2 if s = 2k,

n ≥ n0(s).(1.1)

The conjecture was proved for 4 ≤ s ≤ 7 in [13].

Size Ramsey numbers r̂(F1, F2) for bipartite graphs F1 and F2 are also studied
in [8, 5, 2, 3, 7, 9, 12, 11], for example.

It is not hard to see that, for fixed s1, . . . , sr ∈ N and t1, . . . , tr ∈ R>0, we have

r̂(Ks1,�t1n�, . . . ,Ksr,�trn�) = O(n).(1.2)

This follows, for example, by assuming that s1 = · · · = sr = s, t1 = · · · = tr = t
and considering Kv1,v2

, where v1 = (s − 1)r + 1 and v2 = 	rtn(v1

s

)
. The latter
graph has the required arrowing property. Indeed, for any r-coloring, each vertex
of V2 is incident to at least s edges of the same color; hence there are at least v2

monochromatic Ks,1-subgraphs and some S ∈ (V1

s

)
appears in at least v2/

(
v1

s

) ≥ rtn
such subgraphs of which at least tn have the same color.

Here we will show that the limit limn→∞ r̂(F1,n, . . . , Fr,n)/n exists if each forbid-
den graph is either a fixed bipartite graph or a subgraph of Ks,�tn� which “dilates”
uniformly with n. (The precise definition will be given in section 2.) In particular,
r̂(K1,n, F )/n tends to a limit for any fixed bipartite graph F .

The limit value can in fact be obtained as the minimum of a certain mixed integer
program (which does depend on n). We have been able to solve the MIP when
each Fi,n is a complete bipartite graph. In particular, we answer the question of
Erdős et al. [8, Problem B], who asked for the asymptotics of r̂(Ks,n,Ks,n). Working
harder on the case s = 2 we prove (for all sufficiently large n, n ≥ n0) the conjecture
of Faudree, Rousseau, and Sheehan [10, Conjecture 15] that

r̂(K2,n,K2,n) = 18n− 15,(1.3)

where the upper bound is obtained by considering K3,6n−5 → (K2,n,K2,n). The
identity (1.3) is not true for all n: for example, it is stated in [10] that r̂(K2,2,K2,2) =
15. The upper bound follows from K6 → (K2,2,K2,2), which is easy to verify. Our
method could produce a concrete value for n0 with extra tedious calculations, but
this would probably be rather large.

Unfortunately, our MIP is not well suited for practical calculations, and we were
not able to compute the asymptotics for any other nontrivial forbidden graphs; in
particular, we had no progress on (1.1). However, we hope that the introduced method
will produce more results: although the MIP is hard to solve, it may be possible that,
for example, some manageable relaxation of it gives good lower or upper bounds.

Our method does not work if we allow both vertex classes of forbidden graphs to
grow with n. In these settings, in fact, we do not know the asymptotics even in the
simplest cases. For example, the best known bounds on r = r̂(Kn,n,Kn,n) seem to
be r < 3

2n
32n for n ≥ 6 (Erdős et al. [8]) and r > 1

60n
22n for n ≥ n0 (Erdős and

Rousseau [9]).
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ASYMPTOTIC SIZE RAMSEY RESULTS 101

2. Main ideas and definitions. Let us briefly describe the main ideas behind
our approach and how they came into existence. As an illustration, suppose we want
to prove that r̂(K2,n,K2,n) ≥ (18 + o(1))n. Let n be large, and let G → (K2,n,K2,n)
be any graph with e(G) ≤ (18+ o(1))n. We try to get as much information about the
structure of G as possible.

Let L = {x ∈ V (G) : d(x) ≥ n}. Clearly, |L| ≤ 18. As no edge disjoint from L
lies inside a K2,n-subgraph of G, we can harmlessly remove all such edges from G;
that is, we can assume that V (G) \ L is an independent set in G.

Also, if we remove all edges within L, the arrowing property is only slightly
impaired: the obtained graph G′ arrows (K2,n′ ,K2,n′), where we can take n′ = n−16
(or even larger). So, replacing G by G′ and n by n′, we can assume that G ⊂ K18,m

for some m = m(n).
Also, we can assume that every vertex of L has degree at least 2n − 1. (This is

not crucial here, but this illustrates Lemma 3.1.) Indeed, if we remove any x ∈ L
of degree at most 2n − 2, then the obtained graph G′ arrows (K2,n−1,K2,n−1): any
(K2,n−1,K2,n−1)-free coloring of G′ extends to a (K2,n,K2,n)-free coloring of G by
coloring the remaining edges without a monochromatic K1,n centered at x.

Thus, we can assume that G ⊂ K9,m. How can we economically describe such a
graph? This brings us to new definitions.

Let F be a bipartite graph. We assume that bipartite graphs come equipped
with a fixed bipartition V (F ) = V1(F )∪V2(F ), although graph embeddings need not
preserve it. We denote vi(F ) = |Vi(F )|, i = 1, 2; thus v(F ) = v1(F ) + v2(F ). Define

FA = {v ∈ V2(F ) : ΓF (v) = A}, A ⊂ V1(F ),

where ΓF (v) denotes the neighborhood of v in F . (We will write Γ(v), etc. when the
encompassing graph F is clear from the context.) Clearly, in order to determine F
(up to an isomorphism) it is enough to know V1(F ) and |FA| for all A ∈ 2V1(F ).

Now, instead of dealing with G → (K2,n,K2,n) we prefer to work with the num-
bers |GA|. As e(G) = O(n), we can let n → ∞ over some sequence so that |GA|/n
tends to a limit gA for each A ∈ 2L. The how we call it “weight” g = (gA)A∈2L cannot
be arbitrary: the fact that G → (K2,n,K2,n) imposes some restrictions on g. The
question arises whether we can rephrase the arrowing property for weights without
appealing to the original graphs. This requires rewriting the notions of a subgraph,
coloring, etc. For the sake of generality, one would also wish to allow constant (i.e.,
not depending on n) forbidden subgraphs, which prompts one to define the mixed
relation “F ⊂ g” as well, where F is a graph and g is a weight. This is the first part
of the program, which culminates in Theorem 3.3, where it is shown that the “weight
size Ramsey number” indeed gives the asymptotics of the ordinary number. However,
the second part, to calculate the weight size Ramsey number, is not an easy task and
we are able to carry it out for complete bipartite graphs only.

Let us give formal definitions. A weight f on a set V (f) is a sequence (fA)A∈2V (f)

of nonnegative reals. A bipartite graph F agrees with f if V1(F ) = V (f) and FA = ∅
if and only if fA = 0, A ∈ 2V (f). A sequence of bipartite graphs (Fn)n∈N is a dilatation
of f (or dilates f) if each Fn agrees with f and

|FA
n | = fAn+ o(n) ∀A ∈ 2V (f).

(Of course, the latter condition is automatically true for all A ∈ 2V (f) with fA = 0.)
Clearly, e(Fn) = (e(f)+ o(1))n, where e(f) =

∑
A∈2V (f) fA |A|, so we call e(f) the size
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102 OLEG PIKHURKO

of f . Also, the order of f is v(f) = |V (f)| and the degree of x ∈ V (f) is

d(x) =
∑

A∈2V (f)

A�x

fA.

Clearly, e(f) =
∑

x∈V (f) d(x).

For example, given t ∈ R>0, the sequence (Ks,
tn�)n∈N is the dilatation of ks,t,
where the symbol ks,t will be reserved for the weight on [s] which has value t on [s]
and zero otherwise. (We assume that V1(Ks,m) = [s].) It is not hard to see that any
sequence of bipartite graphs described in the abstract is in fact a dilatation of some
weight.

We write F ⊂ f if for some bipartition V (F ) = V1(F )∪V2(F ) there is an injection
h : V1(F ) → V (f) such that for any A ⊂ V1(F ) dominated by a vertex of V2(F ) there
is B ⊂ V (f) with B ⊃ h(A) and fB > 0. This notation is motivated by the following
easy lemma. In fact, we will implicitly prove a sharper version during the proof of
Theorem 3.3, so we give no proof here.

Lemma 2.1. Let (Fn)n∈N be a dilatation of f . If F ⊂ f , then F is a subgraph
of Fn for all sufficiently large n. Otherwise, which is denoted by F �⊂ f , no Fn

contains F .
Next, we define the “⊂”-relation between two weights f and g. Assume that v(f) ≤

v(g) by adding new vertices to V (g) and letting g be zero on all new sets. We write
f ⊂ g if there is an injection h : V (f) → V (g) and numbers (wAB ≥ 0)A∈2V (f), B∈2V (g)

such that

∀A ∈ 2V (f), ∀B ∈ 2V (g) h(A) �⊂ B ⇒ wAB = 0,

∀A ∈ 2V (f)
∑

B∈2V (g)

B⊃h(A)

wAB ≥ fA,

∀B ∈ 2V (g)
∑

A∈2V (f)

h(A)⊂B

wAB ≤ gB .

This definition is a bit difficult to comprehend. In a sense, it corresponds to a graph
embedding F ⊂ G preserving the V1 ∪ V2-partition: h embeds V1(F ) into V1(G) and
wA,B says how much of FA ⊂ V2(F ) is mapped into GB . The motivation comes from
the following lemma which, like Lemma 2.1, is not used later and so is stated without
a proof.

Lemma 2.2. Let (Fn)n∈N and (Gn)n∈N be dilatations of f and g, respectively.
Then f ⊂ g implies that for any ε > 0 there is n0 such that Fn ⊂ Gm for any n ≥ n0

and m ≥ (1 + ε)n. Otherwise, which is denoted by f �⊂ g, there is ε > 0 and n0 such
that Fn �⊂ Gm for any n ≥ n0 and m ≤ (1 + ε)n.

The weight ⊂-relation enjoys many properties of the graph one. For example,
d(x) ≤ d(h(x)) for any x ∈ V (f):

d(x) =
∑

A∈2V (f)

A�x

fA ≤
∑

A∈2V (f)

A�x

∑
B∈2V (g)

B⊃h(A)

wA,B ≤
∑

B∈2V (g)

B�h(x)

∑
A∈2V (f)

h(A)⊂B

wA,B ≤
∑

B∈2V (g)

B�h(x)

gB = d(h(x)).

(2.1)
An r-coloring c of g is a sequence (cA1,...,Ar ) of nonnegative reals indexed by

r-tuples of pairwise disjoint subsets of V (g) such that∑
A1∪···∪Ar=A

cA1,...,Ar > gA ∀A ∈ 2V (g).(2.2)
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ASYMPTOTIC SIZE RAMSEY RESULTS 103

The ith color subweight ci is defined by V (ci) = V (g) and

ci,A =
∑

A1,...,Ar
Ai=A

cA1,...,Ar
, A ∈ 2V (g).(2.3)

The analogy is as follows: to define an r-coloring of G, it is enough to define, for
all disjoint A1, . . . , Ar ⊂ V1(G), how many vertices of GA1∪···∪Ar are connected, for
all i ∈ [r], by color i precisely to Ai. We put the strict inequality in (2.2) so that
Lemma 3.2 is true.

3. Existence of limit. Let r ≥ q ≥ 1. Consider a sequence F = (F1, . . . ,Fr),
where Fi = fi is a weight for i ∈ [q] and Fi = Fi is a bipartite graph for i ∈ [q+ 1, r].
Assume that Fi does not have an isolated vertex (that is, x ∈ V (Fi) with d(x) = 0),
i ∈ [r]. We say that a weight g arrows F (denoted by g → F) if for any r-coloring c
of g we have Fi ⊂ ci for some i ∈ [r]. Define

r̂(F) = inf{e(g) : g → F}.(3.1)

The definition (3.1) imitates that of the size Ramsey number, and we will show
that these are very closely related indeed. However, we need a few more preliminaries.

Observe that r̂(F) < ∞ by considering ka,b which arrows F if, for example,
a = 1 +

∑r
i=1(v(Fi) − 1) and b is sufficiently large; cf. (1.2). Let l be an integer

greater than r̂(F)/d0, where d0 =
∑q

i=1 di and

di = min{dfi(x) : x ∈ V (fi)} > 0, i ∈ [q].

Lemma 3.1. Let g → F have no isolated vertices. If dg(x) < d0 for some
x ∈ V (g) or if v(g) > l, then there is g′ → F with e(g′) < e(g) and v(g′) < v(g).

It follows that r̂(F) = r̂l(F), where r̂l(F) = min{e(g) : g → F, v(g) ≤ l}.
Proof. Let d(x) < d0. Choose δ > 0 with δ + did(x)/d0 < di for any i ∈ [q].

Define the weight g′ on V (g) \ {x} by g′A = gA + gA∪{x}, A ∈ 2V (g′). Clearly,
e(g′) = e(g)− d(x) < e(g).

We claim that g′ arrows F. Suppose that this is not true, and let c′ be an F-free
r-coloring of g′. We can assume that∑

A1∪···∪Ar=A

c′A1,...,Ar
≤ g′A + δ/2v(g′) for any A ∈ 2V (g′).

Define c by

cA1,...,Ar =




λA\{x}di

d0
· c′A1,...,Ai−1,Ai\{x},Ai+1,...,Ar

, x ∈ Ai, i ∈ [q],

0, x ∈ Aq+1 ∪ · · · ∪Ar,
(1− λA) · c′A1,...,Ar

, x /∈ A,

where we denote A = A1 ∪ · · · ∪ Ar, λA = gA∪{x}/g′A if g′A > 0, and λA = 1/2 if
g′A = 0. The reader can check that c is an r-coloring of g.

By the assumption on g, we have Fi ⊂ ci for some i ∈ [r]. However, this
embedding cannot use x because for i ∈ [q + 1, r] we have dci

(x) = 0 while for i ∈ [q]

dci(x) =
∑

A1,...,Ar⊂V (g′)

cA1,...,Ai−1,Ai∪{x},Ai+1,...,Ar
=

∑
A∈2V (g′)

λAdi
d0

∑
A1∪···∪Ar=A

c′A1,...,Ar

≤
∑

A∈2V (g′)

λAdi
d0

(g′A + δ/2v(g′)) ≤ diδ

d0
+

di
d0

∑
A∈2V (g′)

gA∪{x} ≤ δ + di
d(x)

d0
< di
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104 OLEG PIKHURKO

is too small; see (2.1). However, ci,A ≤ c′i,A for A ∈ 2V (g′); hence, Fi ⊂ c′i, which is
the desired contradiction proving the first claim.

Let v(g) > l. If e(g) ≥ r̂(F) + d0, replace g by any other arrowing weight with
e(g) < r̂(F) + d0. As e(g)/(l + 1) < d0, we can eventually ensure that v(g) ≤ l by
iterating the procedure which proved the first claim.

Hence, to compute r̂(F) it is enough to consider F-arrowing weights on L = [l]
only.

Lemma 3.2. There exists g → F with V (g) ⊂ L and e(g) = r̂(F). (We call such
a weight extremal.)

Proof. Choose gn → F with V (gn) ⊂ L, n ∈ N, such that e(gn) approaches r̂(F).
By choosing a subsequence, assume that V (gn) is constant and gA = limn→∞ gn,A
exists for each A ∈ 2L. Clearly, e(g) = r̂(F) so it remains to show that g → F.

Let c be an r-coloring of g. Let δ be the smallest slack in inequalities (2.2).
Choose sufficiently large n so that |gn,A − gA| < δ for all A ∈ 2L. We have

∑
A1∪···∪Ar=A

cA1,...,Ar
≥ gA + δ > gn,A, A ∈ 2L;

that is, c is a coloring of gn as well. Hence, Fi ⊂ ci for some i, as required.
Now we are ready to prove our general theorem. The proof essentially takes care of

itself. We just exploit the parallels between weights and graphs, which, unfortunately,
requires messing around with various constants.

Theorem 3.3. Let (Fi,n)n∈N be a dilatation of fi, i ∈ [q], and let Fi be a fixed
bipartite graph, i ∈ [q + 1, r]. Then, for all sufficiently large n,

r̂(F)n−M(1 + f0) ≤ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≤ r̂(F)n+M(1 + f0),(3.2)

where f0 = max{ | |FA
i,n| − fi,An | : i ∈ [q], A ∈ V (fi)} and M = M(F) is some

constant.
In particular, the limit limn→∞ r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr)/n exists.
Proof. Let v0 = max{v(Fi) : i ∈ [r]}, m1 = 2v0(f0 + 1), and m2 = rlm1 + 1,

where, as before, l > r̂(F)/d0.
We prove that

r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≤ r̂(F)n+ 2ll(m2 + 1), n ≥ 1.(3.3)

By Lemma 3.2 choose an extremal weight g on L. Define a bipartite graph G
as follows. Choose disjoint from each other (and from L) sets GA with |GA| =
	gAn + m2
, A ∈ 2L. Let V (G) = L ∪ (∪A∈2LGA). In G we connect x ∈ L to
everything in GA if x ∈ A. These are all the edges. Clearly,

e(G) =
∑
A∈2L

|GA| |A| ≤ 2ll(m2 + 1) +
∑
A∈2L

gAn |A| ≤ 2ll(m2 + 1) + r̂(F)n,

as required. Hence, it is enough to show that G has the arrowing property.
Consider any r-coloring c : E(G) → [r]. For every r-tuple of disjoint sets

B1, . . . , Br ⊂ L, let

CB1,...,Br = {y ∈ GB : ∀i ∈ [r] ∀x ∈ Bi c({x, y}) = i},
cB1,...,Br

=

{
(|CB1,...,Br | −m1)/n if |CB1,...,Br | ≥ m1,
0 otherwise,
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ASYMPTOTIC SIZE RAMSEY RESULTS 105

where B = B1 ∪ · · · ∪Br. In any case, ncB1,...,Br
≥ |CB1,...,Br

| −m1; hence, for every
B ∈ 2L we have

n
∑

B1∪···∪Br=B

cB1,...,Br
≥ −r|B|m1 +

∑
B1∪···∪Br=B

|CB1,...,Br
| ≥ −rlm1 + |GB | > ngB ;

that is, c is an r-coloring of g. Hence, Fi ⊂ ci for some i ∈ [r]. Now we show that G
contains a forbidden subgraph in the ith color.

Suppose that i ∈ [q]. By definition, we find appropriate h : V (fi) → L and w.
We aim at proving that Fi,n ⊂ Gi, where Gi ⊂ G is the color-i subgraph. Partition
FA
i,n = ∪B⊃h(A)WA,B so that WA,B = ∅ if wA,B = 0 and |WA,B | ≤ �wA,Bn+ f0 + 1�,

A ∈ 2V (fi), B ∈ 2L. This is possible for any A: if wA,B = 0 for all B ∈ 2L with
h(A) ⊂ B, then fi,A = 0 and FA

i,n = ∅; if wA,B > 0 for at least one B, then

∑
B∈2L

wA,B>0

(wA,Bn+ f0) ≥ f0 + n
∑
B∈2L

wA,B>0

wA,B ≥ f0 + fi,An ≥ |FA
i,n|.

Let B ∈ 2L. If ci,B = 0, then wAB = 0 and WA,B = ∅ for all A ∈ 2V (fi).
Otherwise,

nci,B = n
∑

B1,...,Br
Bi=B

cB1,...,Bi ≤ −m1 +
∑

B1,...,Br
Bi=B

|CB1,...,Bi | = |GB
i | −m1,

and we have∑
A∈2

V (Fi,n)

h(A)⊂B

|WA,B | ≤
∑

A∈2
V (Fi,n)

h(A)⊂B

(wA,Bn+ f0 + 1) ≤ ci,Bn+ 2v0(f0 + 1) ≤ |GB
i |.

Hence, we can extend h : V1(Fi,n) → L ⊂ V (Gi) to the whole of V (Fi,n) by mapping
∪h(A)⊂BWA,B injectively into GB

i , which proves that Fi,n ⊂ Gi.
Suppose that i ∈ [q+1, r]. The relation Fi ⊂ ci means that there exist appropriate

V1(Fi)∪V2(Fi) = V (Fi) and h : V1(Fi) → L. We view h as a partial embedding of Fi

into Gi and extend h to the whole of V (Fi).
Take consecutively y ∈ V2(Fi). There is Bi ⊂ L such that ci,Bi > 0 and h(Γ(y)) ⊂

Bi. The inequality ci,Bi > 0 implies that there are disjoint Bj ’s, j ∈ [r] \ {i}, such
that cB1,...,Br > 0. Each vertex in CB1,...,Br is connected by color i to the whole of
Bi ⊃ h(Γ(y)). The inequality cB1,...,Br > 0 means that |CB1,...,Br | ≥ m1 ≥ v(Fi), so
we can always extend h to y; that is, we find an Fi-subgraph of color i.

Thus the constructed graph G has the desired arrowing property, which proves
the upper bound.

Let d′ = mini∈[q] minx∈V (fi) dfi(x) > 0, l′ = 5ld0/d
′, m3 = max(rl

′
, 2v0(f0 + l′)).

As the lower bound, we show that, for all sufficiently large n,

r̂(F1,n, . . . , Fq,n, Fq+1, . . . , Fr) ≥ r̂(F)n− 2l
′
l′m3.(3.4)

Choose any asymptotically minimum graph G with the arrowing property. Let
L ⊂ V (G) be the set of vertices of degree at least d′n/2 in G. From d′n|L|/4 <
e(G) < (1 + o(1))ld0n, it follows that |L| ≤ l′ (assuming that n is sufficiently large).
For A ∈ 2L, define gA = (|GA|+m3)/n, where GA = {x ∈ V (G) \L : Γ(x)∩L = A}.
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106 OLEG PIKHURKO

Claim 1. g → F.
Suppose, on the contrary, that there is an F-free r-coloring c of g. We are going

to exhibit a contradictory r-coloring of E(G).
For each B ∈ 2L choose any disjoint sets CB1,...,Br ⊂ GB (indexed by r-tuples of

disjoint sets partitioning B) such that they partition GB and

|CB1,...,Br | ≤ �cB1,...,Br
· n�.(3.5)

This is possible because∑
B1∪···∪Br=B

�cB1,...,Br · n� ≥ gBn− rl
′ ≥ |GB |.

For j ∈ [r], x ∈ Bj , and y ∈ CB1,...,Br
, color the edge {x, y} ∈ E(G) with color j. All

the remaining edges of G (namely, those lying inside L or inside V (G)\L) are colored
with color 1.

There is i ∈ [r] such that Gi ⊂ G, the color-i subgraph, contains a forbidden
subgraph.

Suppose that i ∈ [q]. Let h : Fi,n → Gi be an embedding. If n is large, then

d(x) ≥ d′n+ o(n) > d′n/2, x ∈ V1(Fi,n),

which implies that h(V1(Fi,n)) ⊂ L. Define, for A ∈ 2V (fi) and B ∈ 2L with B ⊃ h(A)
and fi,A �= 0,

wA,B =
|h−1(GB) ∩ FA

i,n|+ f0 + l′

n
.

All other wA,B ’s are set to zero. For A ∈ 2V (fi) with fi,A �= 0, we have

∑
B∈2L

B⊃h(A)

wA,B ≥ |FA
i,n ∩ h−1(V (G) \ L)|+ f0 + l′

n
≥ |FA

i,n|+ f0

n
≥ fi,A.

For B ∈ 2L we have

∑
A∈2V (fi)

h(A)⊂B

wA,B ≤ 2v0(f0 + l′)
n

+
∑

A∈2V (fi)

h(A)⊂B

|h−1(GB) ∩ FA
i,n|

n
≤ 2v0(f0 + l′)

n
+

|GB |
n

≤ gB ;

that is, h (when restricted to V (fi)) and w demonstrate that fi ⊂ ci, which is a
contradiction.

Suppose that i ∈ [q+1, r]. Let V1(Fi) consist of those vertices which are mapped
by h : Fi → Gi into L, and let V2(Fi) = V (Fi)\V1(Fi). This is a legitimate bipartition
of Fi because any color-i edge of G connects L to V (G) \ L. Let y ∈ V2(Fi). The
sets CB1,...,Br partition V (G) \ L; let y ∈ CB1,...,Br . By (3.5) we have cB1,...,Br > 0.
However, h(Γ(y)) ⊂ Bi, which shows that Fi ⊂ gi. This contradiction proves Claim 1.

Hence, g → F and we have

r̂(F) ≤
∑
A∈2L

gA |A| ≤ 2l
′
l′m3

n
+

1

n

∑
A∈2L

|GA| |A| ≤ 2l
′
l′m3 + e(G)

n
,

which implies the desired inequality (3.4).
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A moment’s thought on Claim 1 reveals the following “characterization” of ex-
tremal graphs.

Theorem 3.4. Let F and the F ’s be as in Theorem 3.3, and let

Gn → (F1,n, . . . , Fq,n, Fq+1, . . . , Fr), n ∈ N,

be any sequence of asymptotically minimum graphs. Then there is an extremal weight
g → F and an increasing sequence (ni)i∈N such that, up to removing o(ni) edges and
relabelling vertices, Gni can be made into a bipartite graph with V1(Gni) = V (g) and
limi→∞ |GA

ni
|/ni = gA for each A ∈ 2V (G).

In particular, if g → F is the unique extremal weight, then we can take ni =
i.

4. Complete bipartite graphs. Here we will compute asymptotically the size
Ramsey number if each forbidden graph is a complete bipartite graph.

Theorem 4.1. Let r ≥ 2 and q ≥ 1. Suppose that we are given t1, . . . , tq ∈ R>0

and s1, . . . , sr, tq+1, . . . , tr ∈ N with ti ≥ si for i ∈ [q + 1, r]. Then there exist s ∈ N

and t ∈ R>0 such that ks,t → F and r̂(F) = e(ks,t) = st, where

F = (ks1,t1 , . . . ,ksq,tq ,Ksq+1,tq+1 , . . . ,Ksr,tr ).

Proof. Let us first describe an algorithm finding extremal s and t. Some by-
product information gathered by our algorithm will be used in the proof of the ex-
tremality of ks,t → F.

Choose l ∈ N bigger than r̂(F)/t0, where t0 =
∑q

i=1 ti, which is the same defini-
tion as that before Lemma 3.1.

We claim that l > σ, where σ =
∑r

i=1(si − 1). Indeed, take any extremal g → F
without isolated vertices. Lemma 3.1 implies that d(x) ≥ t0 for any x ∈ V (g). Also,
it is easy to see that v(g) > σ. Hence, l ≥ r̂(F)/t0 ≥ v(g) > σ, as claimed.

For each integer s ∈ [σ+1, l] let t′s > 0 be the infimum of t ∈ R such that ks,t → F.
Also, let Πs be the set of all sequences a = (a1, . . . , ar) of nonnegative integers with
ai = si − 1 for i ∈ [q + 1, r] and

∑r
i=1 ai = s. For a sequence a = (a1, . . . , ar) and

a set A of size
∑r

i=1 ai, let
(
A
a

)
consist of all sequences A = (A1, . . . , Ar) of sets

partitioning A with |Ai| = ai, i ∈ [r].
We claim that t′s is sol(Ls), the extremal value of the following linear program Ls:

“Find sol(Ls) = max
∑

a∈Πs
ua over all sequences (ua)a∈Πs of nonnegative reals such

that

∑
a∈Πs

ua

(
ai
si

)
≤ ti

(
s

si

)
∀i ∈ [q].”(4.1)

Claim 1. The weight ks,t does not arrow F for t < sol(Ls).
To prove this, let

λ =
t+ sol(Ls)

2sol(Ls)
< 1 and ε =

1− λ

2s+1
min{ti : i ∈ [q]} > 0.

Let V (ks,t) = [s]. Define an r-coloring c of ks,t by

cA =
λu|A1|,...,|Ar|(

s
|A1|,...,|Ar|

) , a ∈ Πs, A ∈
(
[s]

a

)
,(4.2)
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108 OLEG PIKHURKO

cB,∅,...,∅ = ε, B � [s], while all other c’s are zero. It is indeed a coloring of ks,t:∑
a∈Πs

∑
A∈([s]a )

cA =
∑
a∈Πs

λua = λ sol(Ls) > t.

We have ksi,ti �⊂ ci for i ∈ [q]: for example, for i = 1 and any S ∈ ([s]s1

)
, we have

∑
a∈Πs

∑
A∈([s]a )
A1⊃S

cA =
∑
a∈Πs
a1≥s1

(
s−s1

a1−s1,a2,...,ar

)
λua(

s
a1,...,ar

) = λ
∑
a∈Πs

(
a1

s1

)
ua(

s
s1

) ≤ λt1 < t1−
∑
B�[s]
B⊃S

cB,∅,...,∅.

Also, Ksi,ti �⊂ ci for i ∈ [q + 1, r] because cA1,...,Ar = 0 whenever |Ai| ≥ si for
some i ∈ [q + 1, r]. Claim 1 is proved.

Claim 2. ks,t → F for any t > sol(Ls).
Suppose that the claim is not true and we can find an F-free r-coloring c of

ks,t. By definition, cA1,...,Ar
= 0 whenever |Ai| ≥ si for some i ∈ [q + 1, r]. If some

cA1,...,Ar
= c > 0 with |Ai| ≤ si−2 for some i ∈ [q+1, r], then Aj �= ∅ for some j ∈ [q],

so we can pick x ∈ Aj and set cA1,...,Ar
= 0 while increasing c...,Aj\{x},...,Ai∪{x},... by c.

Clearly, c remains F-free. Thus, we can assume that all the c’s are zero except those
of the form cA, A ∈ ([s]a ) for some a ∈ Πs. Now, tracing back our proof of Claim 1,
we obtain a feasible solution ua =

∑
A∈([s]a ) cA, a ∈ Πs, to Ls with a larger objective

function, which is a contradiction. The claim is proved.
Thus, t′s = sol(Ls) and mu = min{st′s : s ∈ [σ+1, l]} is an upper bound on r̂(F).

Let us show that in fact r̂(F) = mu.
We rewrite the definition of r̂(F) so that we can apply the Farkas lemma. The

verification of the following easy claim is left to the reader.
Claim 3. r̂(F) = inf e(g) over all weights g on L = [l] such that there do not

exist nonnegative reals (cA)A∈(Aa), a∈Π|A|, A∈2L with the following properties:

∑
a∈Π|A|

∑
A∈(Aa)

cA ≥ gA, A ∈ 2L,

∑
A∈2L

∑
a∈Π|A|

∑
A∈(Aa)
Ai⊃S

cA ≤ ti, i ∈ [q], S ∈
(
L

si

)
.

Let g be any feasible solution to the above problem. By the Farkas lemma there
exist xA ≥ 0, A ∈ 2L, and yi,S ≥ 0, i ∈ [q], S ∈ (Lsi), such that

q∑
i=1

∑
S∈(Ai

si
)

yi,S ≥ xA, A ∈ 2L, a ∈ Π|A|, A ∈
(
A

a

)
,(4.3)

q∑
i=1

ti
∑

S∈(L
si
)

yi,S <
∑
A∈2L

gAxA.(4.4)

We deduce that xA ≤ 0 (and hence xA = 0) if |A| ≤ σ by considering (4.3) for
some A with |Ai| ≤ si − 1 for each i ∈ [r].
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For each A with a := |A| > σ repeat the following. Let (ua)a∈Πa
be an extremal

solution to La. For each a ∈ Πa, take the average of (4.3) over all A ∈ (Aa), multiply
it by ua, and add all these inequalities together to obtain the following:

xAt
′
a =

∑
a∈Πa

uaxA ≤
∑
a∈Πa

ua(
a

a1,...,ar

) ∑
A∈(Aa)

q∑
i=1

∑
S∈(Ai

si
)

yi,S

=

q∑
i=1

∑
S∈(A

si
)

yi,S
∑
a∈Πa
ai≥si

ua

(
a−si

a1,...,ai−1,ai−si,ai+1,...,aq

)
(

a
a1,...,ar

)

=

q∑
i=1

∑
S∈(A

si
)

yi,S
∑
a∈Πa
ai≥si

ua

(
ai

si

)
(
a
si

) ≤
q∑

i=1

ti
∑

S∈(A
si
)

yi,S .

(In the last inequality we used (4.1).)
Substituting the obtained inequalities on the xA’s into (4.4) we obtain

q∑
i=1

ti
∑

S∈(L
si
)

yi,S <
∑
A∈2L

|A|>σ

gA
t′|A|

q∑
i=1

ti
∑

S∈(A
si
)

yi,S .

As the yi,S ’s are nonnegative, one of these variables has a larger coefficient on the
right-hand side. Let it be yi,S . We have

ti < ti
∑

A∈( L
>σ)

A⊃S

gA
t′|A|

≤ ti
mu

∑
A∈2L

gA|A|.(4.5)

The last inequality follows, by comparing coefficients at each gA, from the fact that
for any integer a > σ we have 1/t′a ≤ a/mu by the definition of mu. Hence, e(g) =∑

A∈2L aA|A| > mu, as required.
Corollary 4.2. Let r ≥ q ≥ 1, t1, . . . , tq ∈ R>0 and s1, . . . , sr, tq+1, . . . , tr ∈ N

with ti ≥ si for i ∈ [q + 1, r]. For i ∈ [q], let (ti,n)n∈N be an integer sequence with
ti,n = tin+ o(n). Define

Fn = (Ks1,t1,n , . . . ,Ksq,tq,n ,Ksq+1,tq+1 , . . . ,Ksr,tr ).

Let l ∈ N be larger than limn→∞ r̂(Fn)/(t0n), where t0 =
∑q

i=1 ti. Then

lim
n→∞

r̂(Fn)

n
= lim

n→∞
min{e(Ks,t) : s ≤ l, Ks,t → Fn}

n
.(4.6)

In other words, in order to compute the limit in Corollary 4.2, it is sufficient
to consider only complete bipartite graphs arrowing Fn. It seems that there is no
simple general formula, but the proof of Theorem 4.1 gives an algorithm for com-
puting r̂(F). The author has realized the algorithm as a C program which calls the
lp solve 3.2 library. (The latter is a freely available linear programming software,
currently maintained by Berkelaar [4]). Later, Avis rewrote the program to be linked
with his lrslib 4.1 library [1]. The latter library has the advantage that its arith-
metic is exact (while lp solve operates with reals), so that any computed limit can
be considered as proved. The reader is welcome to experiment with the program;
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110 OLEG PIKHURKO

Table 4.1
Values of limn→∞ r̂(Ks,n,Kt,n)/n obtained with the lrslib library of Avis.

1 2

2 6 18

3 12 40 98

4 20 75 182 14
19

363

5 30 118 10
17

310 19
62

638 44
47

1156

6 42 172 4
5

469 6
7

1023 23
87

1952 15
22

3350 1
3

7 56 241 7
23

678 4
11

1538 36
55

3030 1
2

5456 92
209

9120 42
55

8 72 320 4
7

938 2
5

2211 579
1573

4517 317
504

8426 176
221

14523 595
4693

23781 7
34

(s,t) 1 2 3 4 5 6 7 8

its source can be found in [15]. Here, in Table 4.1, we present the asymptotics of
r̂(Ks,n,Kt,n) for 1 ≤ s ≤ t ≤ 8. Unfortunately, the number of iterations (which is
approximately 1

2 lim r̂(Ks,n,Kt,n)/n) increases rapidly with s and t.
For certain series of parameters we can get a more explicit expression. First, let

us treat the case q = 1, that is, when only the first forbidden graph dilates with n.
We can assume that t1 = 1 by scaling n.

Theorem 4.3. Let q = 1 and r ≥ 2. Then for any s1, . . . , sr, t2, . . . , tr ∈ N with
ti ≥ si, i ∈ [2, r], we have

r̂(Ks1,n,Ks2,t2 , . . . ,Ksr,tr ) = n ·min

{
s

(s)s1
(s− s′)s1

: s ∈ N>σ

}
+O(1),

where s′ = σ − s1 + 1, σ =
∑r

i=1(si − 1), and (s)k = s(s− 1) . . . (s− k + 1).
Proof. The problem Ls has only one variable us−s′,s2−1,...,sr−1. Trivially, t′s =(

s
s1

)
/
(
s−s′

s1

)
= (s)s1/(s− s′)s1 , and the theorem follows.

In the case s1 = 1 we obtain the following formula.
Corollary 4.4. For any s2, . . . , sr, t2, . . . , tr ∈ N with ti ≥ si, i ∈ [2, r], we

have

r̂(K1,n,Ks2,t2 , . . . ,Ksr,tr ) = 4

(
1− r +

r∑
i=2

si

)
n+O(1).

Proof. By Theorem 4.3, we have to compute mins>s′
s2

s−s′ , where s
′ =

∑r
i=2(si −

1). The differentiation d
ds (

s2

s−s′ ) = s(s−2s′)
(s−s′)2 shows that the minimum is attained for

s = 2s′.
Another case with a simple formula for r̂(F) is q = 2, s1 = s2, and t1 = t2. Again,

without loss of generality we can assume that t1 = t2 = 1.
Theorem 4.5. Let q = 2 and r ≥ 2. Then for any s, s3, . . . , sr, t3, . . . , tr ∈ N

with ti ≥ si, i ∈ [3, r], we have

r̂(Ks,n,Ks,n,Ks3,t3 , . . . ,Ksr,tr ) = n ·min {a · f(a) : a ∈ N>σ}+O(1),(4.7)

where σ = 2s− r +
∑r

i=3 si and

f(a) =
2
(
a
s

)
(�a′/2�

s

)
+
(
a′/2�

s

) ,
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with a′ = a−∑r
i=3(si − 1).

Proof. Let a ∈ N>σ, and let (ua)a∈Πa be an extremal solution to La (where we
obviously define s1 = s2 = s and t1 = t2 = 1). Excluding the constant indices in ua,
we assume that the index set Πa consists of pairs of integers (a1, a2) with a1+a2 = a′.

Clearly, (u′a1,a2
)(a1,a2)∈Πa

is also an extremal solution, where u′a1,a2
= 1

2 (ua1,a2 +
ua2,a1

). Thus we can assume that ua1,a2
= ua2,a1

for all (a1, a2) ∈ Πa.
If ua1,a2

= c > 0 for some a1 < �a′/2�, then we can set ua1,a2
= ua2,a1 = 0 while

increasing u�a′/2�,
a′/2� and u
a′/2�,�a′/2� by c. The easy inequality(
b+1
s

)
+
(
a′−b−1

s

)− (bs)− (a′−b
s

)
=
(

b
s−1

)− (a′−b−1
s−1

)
< 0, s− 1 ≤ b < �a′/2�,

implies inductively that the left-hand side of (4.1) strictly decreases while the objective
function

∑
a∈Πa

ua does not change, which clearly contradicts the minimality of u.
Now we deduce that, for any extremal solution (ua)a∈Πa , we have ua1,a2 = 0

unless {a1, a2} = {�a′/2�, 	a′/2
}; moreover, it follows that necessarily u�a′/2�,
a′/2� =
u
a′/2�,�a′/2�. Hence, t′a = f(a), which proves the theorem.

The special case r = 2 of Theorem 4.5 answers the question of Erdős et al. [8,
Problem B], who asked for the value of

rs = lim
n→∞

r̂(Ks,n,Ks,n)

n
.

The formula (4.7), which now reads rs = mina≥2s−1 af(a) with f(a) = 2
(
a
s

)
/(
(�a/2�

s

)
+(
a/2�

s

)
), can be further simplified in this case as follows.

Theorem 4.6. For s ≥ 4 we have rs = asf(as), where as = 2�s(s+ 3)/4� − 3.
Proof. For any b ≥ s we have f(2b) = f(2b− 1); hence, the minimum of af(a) is

attained for an odd a:

rs = min
b≥s

(2b− 1)f(2b− 1) = 2min
b≥s

(2b− 1)

(
2b− 1

s

)((
b− 1

s

)
+

(
b

s

))−1

.

We have
(
b−1
s

)
+
(
b
s

)
= (b−1)!(2b−s)

s!(b−s)! and, as it is routine to check,

(2b+ 1)f(2b+ 1)− (2b− 1)f(2b− 1) = cps(b),

where c = 2(2b−1)!(b−s)!
(2b−s+1)!(b−1)!(2b−s+2) and

ps(b) = 2(2b+1)2(b−s+1)−(2b−1)(2b−s+1)(2b−s+2) = 8b2−2bs2−6bs+12b+s2−5s+4.

The quadratic in b polymomial ps has two roots: one is less than 1 (because
ps(1) < 0) and the other is bigger than s (because ps(s) < 0). Thus, the function
(2b − 1)f(2b − 1), b ≥ s, first decreases and then increases; its minimum is attained
for bs, the smallest integer b ≥ s with ps(b) > 0. The value of bs can be computed
exactly:

bs =




4t2 + 3t− 1, s = 4t,
4t2 + 5t, s = 4t+ 1,
4t2 + 7t+ 1, s = 4t+ 2,
4t2 + 9t+ 3, s = 4t+ 3.

For example, let us check the case s ≡ 0 (mod 4):

ps(4t
2 + 3t− 2) = −32t+ 12 < 0 < ps(4t

2 + 3t− 1) = 32t2 − 8t.
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Also, 2bs − 1 = 2�s(s+ 3)/4� − 3 in each case, as required.
Remark. For 4 ≤ s ≤ 8, the values of rs given by Table 4.1 and Theorem 4.6

coincide, which is reassuring.
The natural question of how to characterize all extremal weights in Theorem 4.1

arises. We have a partial answer as follows. Let g → F be extremal. We know by
Lemma 3.1 that v(g) ≤ l, so assume that v(g) ⊂ [l]. It is easy to check that if we
increase each gA by some ε > 0, then the obtained weight is a feasible solution to the
system of Claim 3 from the proof of Theorem 4.1 and hence satisfies (4.5) for some
i and S. As ε > 0 is arbitrary and there are finitely many possible pairs (i, S), the
weight g satisfies the nonstrict inequality (4.5) for some (i, S). As g is extremal, we
have, in fact, an equality there. This implies that gA = 0 unless |A| · t′|A| = mu and
A ⊃ S.

However, in some cases we can get more precise information. As an example,
consider F = (k2,1,k2,1). Theorem 4.5 implies that r̂(F) = 18. However, we are able
to show more.

Theorem 4.7. k3,6 → (k2,1,k2,1) is the unique extremal weight. Also, there is
n0 such that, for all n > n0, we have r̂(K2,n,K2,n) = 18n − 15, and K3,6n−5 and
K3 +K6n−6 are the only extremal graphs (up to isolated vertices).

Proof. Let g → (k2,1,k2,1) have size 18 and no isolated vertices.
By Lemma 3.1 we have v(g) ≤ 9. It is routine to check that at′a > 18 for any

a ∈ [4, 9]. Thus we know that, for some S = {x, y} ⊂ L, we have gA = 0 whenever
|A| �= 3 or A �⊃ S. Let J be the set of those j ∈ L with g{x,y,j} > 0. We have∑

j∈J g{x,y,j} = 6. Suppose, on the contrary to the claim, that g � k3,6. Then we
have |J | ≥ 2.

Consider the 2-coloring c of g obtained by letting cA1,A2 = 2−18/10 for all disjoint
A1, A2 ∈ 2L except

c{x,j},{y} = c{y,j},{x} = c{x},{y,j} = c{y},{x,j} = 0.9,

c{x,y},{j} = c{j},{x,y} = (g{x,y,j} − 3.5)+/2,
j ∈ J,

where f+ = f if f > 0 and f+ = 0 if f ≤ 0. This is a coloring of g: for example,∑
A1∪A2={x,y,j}

cA1,A2
> 4× 0.9 + 2× (g{x,y,j} − 3.5)+/2 > g{x,y,j}.

Also, neither c1 nor c2 contains k2,1: for example,∑
A∈2L

A⊃{x,y}

ci,A < (5− 3.5)/2 + 0.1 < 1, i = 1, 2,

as dg(j) ≥ 1, j ∈ J . This contradiction proves that g ∼= k3,6.
Let Gn be a minimum (K2,n,K2,n)-arrowing graph, and let Ln = {x ∈ V (Gn) :

d(x) ≥ n}. By Theorem 3.4 |Ln| = 3 for all large n. By the minimality of Gn,
V (Gn) \ Ln spans no edge and each x ∈ V (Gn) \ Ln sends three edges to Ln.

If L spans one or two edges in Gn, then these edges can be removed without
affecting the arrowing property. Thus e(Gn[Ln]) equals 0 or 3. Now the easy analysis
completes the proof.

Acknowledgments. The author is grateful to Martin Henk, Deryk Osthus, and
Günter Ziegler for helpful discussions and to David Avis for help with programming
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