
LATTICE POINTS IN LATTICE POLYTOPES

OLEG PIKHURKO

Abstract. It is shown that, for any lattice polytope PaW1, the set
int {P)nlZd (provided that it is non-empty) contains a point whose coefficient
of asymmetry with respect to P is at most Sd- (8/+1)2' * . If, moreover, P is
a simplex, then this bound can be improved to 8 ( 8 / + I ) 2 . As an appli-
cation, new upper bounds on the volume of a lattice polytope are deduced,
given its dimension and the number of sublattice points in its interior.

§1. Introduction. A lattice polytope in W1 is a convex polytope whose ver-
tices are lattice points, that is, points in ~Ld. For an integer /2=1, let
I,(P) - int (P)nil.'' be the set of interior points of P whose coordinates are
integers divisible by /.

Of course, some points of I,{P) can lie "close" to dP, the boundary of P.
However, our Theorem 4 shows that, provided that I,(P)^0, there is
weI,{P) with

)^8^-(8/+7)22r f+ ' , (1)

where ca(w, P) is the coefficient of asymmetry of P about w:

max (A|w +Aye/3}
ca(w, P) - max — -.

|y| = i max {A|w - AyeP}
Although the function in the right-hand side of (1) is enormous, the main point
is that it depends only on d and /.

We prove an inequality of this type for the case of a simplex S first.
Namely, Theorem 2 implies that, for some weI/(S),

ca(w,S)s=8-(8/+7f+ ' . (2)

Here the claim essentially concerns the barycentric coordinates ( a 0 , . . . , ad) of
w inside S, because of the easy relation

ca(w, S) = max (^—^) - — 1, (3)
os«=srf\ a, / ( )

where Ws(w):=minos,S(/a, is the smallest barycentric coordinate of we S.
Define

J3(4/):=infmax{ms(w)|we//(S)}, (4)
s

where the infimum is taken over all lattice simplices S with I/(S) * 0 . (For
example, it is easy to see that j3(l,/)= l/(/+2).) Thus we have to prove a
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16 O. PIKHURKO

positive lower bound on j3(J, /). The gist of the proof is that, if we have
we/;(.S) with ms(w) "small", then using one approximation lemma of Lagarias
and Ziegler [3] we can "jump" to another vertex v/'eI/(S) with
ms(w')>ms(w); see Theorem 2.

In fact, one result of Lawrence [4, Theorem 3] implies that /5(d, l )>0 , but
does not give any explicit bound; see Section 7 here.

It would be interesting to know how far our bounds (1) and (2) are from
the best possible values. The best values that we know arise from the following
family of lattice simplices.

Define inductively the sequence tdJ by t\j = l+\ and td+u = tdj-tdJ + 1.
(This sequence appears in [3].) Consider the simplex

BdJ := conv {tuei ,...,td- u,ed-1, tdJed, -crfjcRl/, (5)

where (d , . . . , erf) is the standard basis. It is not hard to see that Ii(BdJ) -
{ll,l(l-ed)}, cf. [3, Proposition 2.6]. We have mBdl(l\) = mBdl(l{l ~ed)) =
l/(td,i~ 1): the vertex /I = ( / , . . . , /), for example, has barycentric coordinates

td-u tdJ-\ tdJ+\ tdJ-\ tdJ+\

;an show that tdyl

hence
One can show that tdJ^{l+ if 2 + l for d^=2 by considering udJ= tdJ-1;

(6)

Thus (2) establishes the correct type of dependence on d and /, although
the gap between the bounds is huge. Perhaps BdJ gives the actual value of the
function /3(d, /) as well as the sharp bound for (1).

To extend Theorem 2 to a general lattice poly tope PcUd (Theorem 4), we
try to find a lattice polytope P'czP with few vertices, such that / / ( / y )? t0 and
a homothetic copy of F covers P. The latter condition gives an upper bound
on ca(w, P) in terms of ca(w, P') for we int (/") (see Lemma 3), and is satisfied
if, for example, Pz)S, where S t P is a simplex of maximum volume. But to
get a non-empty I/(P') we may have to add as many as d extra vertices to S.
It is now possible to define our jumps within P" to get the required we/,(F/).
However, the bound (1) for J-polytopes that we obtain is comparable with
that for 2d-dimensional simplices; we believe that we lose too much here, but
we have not found any better argument.

Next, we investigate the following problem. Let p(d, k, I) (resp. s(d, k, I))
be the maximum volume of a lattice polytope (resp. simplex) PcU.d with
\li{P)| = k. Since for any d^2 there exist lattice simplices of arbitrarily large
volume with no lattice points in the interior, we restrict our consideration to
the case k 3= 1.

Trivially, p(l,k,l) = s(\,k,l) = (k+ 1)/. A result of Scott [7] implies that
p(2, 1, 1) = s(2,1, 1) = 9/2 and/?(2, k, 1) = 5(2, k, 1) = 2(k + 1) for k^2. Hensley
[2, Theorem 3.6] showed that p(d, k, 1) exists {i.e., it is finite) for k^ 1. The
method of Hensley was sharpened by Lagarias and Ziegler [3, Theorem 1],
who showed that

p(d, k, I) *£ kld{l{kl + 1 yf1"+', (7)
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LATTICE POINTS IN LATTICE POLYTOPES 17

and also observed that, for any fixed (d, k, I), there are finitely many (up to a
GLn(Z)-equivalence) lattice polytopes PczUd with |//(P)| =k^l.

Lagarias and Ziegler [3, Theorem 2.5] proved the following extension of a
theorem of Mahler [5]: A convex body KcUd with k = \li(K)\^l satisfies

vol (K) *£ (/(ca(w, K) + l))d- k, (8)

for any we/((X).
Combining (8) with (1) (or more exactly with (27)), we obtain

p(d, k, l)^(8dl)d- (8/+ l)d 22"+1 • k. (9)

A theorem of Blichfeldt [1] says that \PnZd\^d+ cP. vol (P); combined with
(9) it gives an upper bound on \PnZd\ in terms of \I/(P) | (if the latter set is
non-empty).

An upper bound on s(d, k, I) can be obtained by applying (8) to (2). How-
ever, we obtain a better bound in Theorem 6 by exploiting the geometry of a
simplex, namely, we show that

s(d, k, / ) « 2 M - 2 • I" • (8/+ If' l)2"+' • k/a. (10)

The best lower bound on p(d, k, /) and s(d, k, I) that we know (except for
(d, k, 1) = (2,1, 1)), comes from the consideration of the simplex

Sd.kj'•= conv {0, f M e i , . . . , trf_ uerf_ u(k+ \)(tdJ- l)erf},

which satisfies I,(SdrkJ) = {/I + ikd\0^i^k- 1}; see [3, Proposition 5.6]. This
demonstrates that

s(d, k, I) s* vol (Sd,kJ) > ^ (/ + if'';
a! • /

see formula (2.13) in [3]. The family (Sd<ktl) was found by Zaks, Perles and
Wills [9], and its generalization (the addition of the parameter /) by Lagarias
and Ziegler [3],

Again, we have the correct type of dependence of d, k and /, but the gap
between the known bounds is huge. The ultimate aim would be to find exact
values, which is probably not hopeless because the above constructions,
believed to be extremal, are rather simple.

§2. Jumping inside a simplex. We use the following lemma of Lagarias
and Ziegler [3, Lemma 2.1].

LEMMA 1. For a real As* 1 and integer n5= 1, define

5(«,A) = (7(A+l))-2"+1. (11)

Then, for all positive real numbers ax,... ,an satisfying

1-5(«,A)< £ a,=sl,
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18 O. PIKHURKO

there exist non-negative integers Px,... ,Pn,Q such that

g = P , + •••+/>„ > 0 , (12)

XP
a > f l ^

XQ + \^8{n,X)'\ (14)

The above lemma is the main ingredient in our "jumps". Here it is applied
with A = 8//7. There is nothing special about the constant 8/7 except that it
makes (11) look simpler; any fixed number greater than 1 would do as well.

THEOREM 2. Let /s* 1 and let S- conv {v 0 , . . . , Vj}cR" be a lattice sim-
plex. If relint (5 )o /Z" is non-empty, then it contains a point w with

Proof. We may assume that n- d, because we can always find a linear
transformation preserving the lattice Z" (and so W as well) and mapping S
mtO IK d IKi .

Let w = £(. = oa/v,-e//(S') with Z, = o a , = 1> be a vertex maximizing ws(w).
Suppose that the claim is not true. Assume that ao^- • -^arJ; then

ms(w) = a 0 < 7. Let j be the index with a, < 87 =sa / + , ; note that j^d-\ is
well-defined since a r f^ l/(<i+ 1)3587.

We have ]£"/ = otty <8y(./+1) which, as is easy to see, does not exceed
8{d-j, 8//7) for76[0, d- 1]. Hence, Lemma 1 is applicable to the d-j num-
bers a / + 1 , . . . ,ad, and yields integers Pj+1,..., Pd, Q satisfying (12)—(14).

Consider the vertex

w' = ( / g + l ) w - I lPi\,elZd.

We have w' = X, = o
a ' v " where, for /e[0,j], a ' := (IQ+ l)a, > ao and, for

ie[j+\,d],a'--=(lQ+l)ai~lPl>ai/S^ao by (13). As

£ a'j = (lQ+l) i a,- i IP,= \,
/ = 0 i = 0 i=j+\

the lattice point w' lies in the interior of S and so contradicts the choice
of w. n

Remark. For n-d, the inequality (2) claimed in the introduction follows
by applying (3) to the vertex vteI,(S) given by Theorem 2.

§3. f5(d, /) for small d and I. Let us try to deduce some estimates of
P(d, I) when d and / are small. We have a general upper bound (6) which.
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LATTICE POINTS IN LATTICE POLYTOPES 19

in particular, says that

/3(2, / ) s = ^ — = \ , (16)
tlj-X (/+l)(/2 + /+2)'

H 48

^ (17)

Here we present some results obtained with the help of a computer, show-
ing that (16)—(17) are probably sharp.

How can one get a lower bound on, for example, j3(2, 1)? Our approach is
the following.

Given a lattice simplex S = conv {v0, v1; v2}<z[R2, let w be a lattice vertex
maximizing ms over I\ (S) ^ 0 . Write the barycentric representation w =
X"=oa,v,. We have

ao + at + a2 = 1. (18)

Without loss of generality we may assume that

0 < a 0 = s a 1 ^ a 2 . (19)

Consider the vertex w' = 2w - v2, which is the jump of w corresponding to
P = (0,0,1). Its barycentric coordinates (a'o, a\, a2) = (2a0, 2at, 2a2 - 1)
satisfy a\ s* a'o > a0. By the choice of w, we must have

2 a 2 - l = s a 0 . (20)

Similarly, the (0,1, l)-jump w' = 3w - Vi - v2 satisfies a'o = 3a0 > cto and,
in view of a'2^a\, we obtain

3a,-l«a0. (21)

Not everything goes so smoothly if we consider, e.g., the (0, l,2)-jump,
when we can only deduce that

4 a , - l s £ a o or 4 a 2 - 2 « a 0 . (22)

How small can a0 be, given only the constraints (18)—(22) (which can be
realized as a mixed integer program)? Solving this MIP, we obtain that
<xo^2/19. Knowing this bound, we can enlarge our arsenal of jumps. For
example, the vertex w' = 12w - v0 - 4vi - 6v2 satisfies a'o = 12a0 - 1 > a0; hence

12ai-4=sa0 or 1 2 a 2 - 6 « a 0 - (23)

The addition of (23) to the system (18)—(22) improves our lower bound to
aos=2/17.

In this manner we can repeatedly add new constraints to our MIP as long
as this improves the lower bound on a0. This was realized as a program in C
which can be linked with either CPLEX (commercial) or l p _ s o l v e (public
domain) MIP solver. The source code is freely available [6], and the reader is
welcome to experiment with it.
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20 O. PIKHURKO

TableX. Computed lower bounds on P(d, I) using CPLEX.

d

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

upper bound

0125000
0041667
0017858
0009091
0005209
0003247
0002156
0001502
0001087
0000812
0000622
0000487
0000389
0000315
0000259

i

375
167
72
38
33
40
49
65
82
97
116
144
162
186
222

output

0124906
0041648
0017850
0009086
0005205
0003245
0002150
0001499
0001085
0000810
0000621
0000486
0000387
0000314
0000258

d

2
2
2
2
2
2
2
2
2
2
2
2
3
3

/

16
17
18
19
20
21
22
23
24
25
26
27
1
2

upper bound

0000215
0000181
0000153
0000131
0000113
0000098
0000086
0000076
0000067
0000059
OOOOO53
0000048
0020834
0001083

i

258
278
314
345
402
435
461
497
573
597
736
804
381
423

output

0000214
0000180
0000152
0000130
0 000112
0000097
0000085
0000073
0OOOO65
0000058
0 000051
0000046
0020795
0001077

We ran the program, with CPLEX 6.6, for various d and /; Table 1 records
the results obtained rounded to 1(T6. (The column "/" denotes the number of
iterations before the lower bound is obtained.) If the calculations were exact,
then the fifth column would give a lower bound on J3(rf, /). We consider the
obtained data not as a proof but rather as empirical evidence, although some
estimation of the calculation errors is done in [6].

Unfortunately, we had no success for other pairs (d, I): the lower bound
obtained was still zero when the MIP became too large to solve.

§4. Extending results to lattice poly topes. First, we have to express analyti-
cally the intuitively obvious fact that, if two polytopes cover each other (up to
a small homothety), then their coefficients of asymmetry cannot be far apart.

LEMMA 3. Let P'czP be two polytopes such that P can be covered by a
translate of XF. Then, for any we int (F),

ca(w, P)=£ |A|ca(w, F) (24)

Proof. Assume that |A| > 1, for otherwise P' = P and we are home. Also,
the case of 1-dimensional polytopes is trivial.

Let w,,w2e9P be two points with ffs[yv1,w2] and ca(w, P)-
|wi-w| : |w-w 2 | ; let 3P'n[w,, w] = {w-}, i= 1, 2, where [x,y] denotes the
straight line segment between x and y. Clearly,

|wi - w21 = (ca(w, P) + 1) |w - w21 s= (ca(w, P) +

Since XF covers {v/i, w2}, there are Ui, u2e F with

|w - w21. (25)

-u 2 ) . (26)

We can assume that Ui, u2edP. If Ui = ŵ  and u2 = w2, then we let v = u2.
Otherwise let v be the (well-defined, possibly "infinitely remote") point of
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LATTICE POINTS IN LATTICE POLYTOPES 21

intersection of L(u,, w) and L(u2, w2), where L(x, y) denotes the line though
the points x and y. Since veL(u2, w2) lies outside of int (F), w e have

lu, -w
w - v

u 1 -u 2 | - |w-w 2 |
w-w2|

which implies the required result by (25) and (26). •

Remark. Note that the bound in (24) is sharp, as is demonstrated, e.g.,
by Cda.\X\Cd and w = cl with 0 < c=£ 1/2, where Q c Rd is the 0/1-cube.

Now we are ready to prove our result on lattice polytopes.

THEOREM 4. Let /s= 1 be an integer and let PaW1 be a lattice polytope
with Ii(P)*0. Then there exists we//(P) with

8/7
ca(w, />)« 1 = %d- (8/ + 7)2M+' - 1. (27)

5(2rf, 8//7)

Proof. Let S - conv {v0, . . . \d} c f be a simplex of maximum volume; we
may assume that each v, is a vertex of P.

Choose ueli(P). Let uieint(5') be any vertex and let u2 be the point of
intersection of the ray {ii] + A,(u-u1)|X3=0} with the boundary of P. The ver-
tex u2 lies in the interior of some face which is spanned by at most d vertices
of P. Hence ue relint ([U], u2]) can be represented as a positive convex combi-
nation of M+1*52^+1 vertices of P including all vertices of S, say
u = X"=oa'v, with £" = o a ' = 1 and each a\ >0.

Let F - conv {v 0 , . . . , vn}. Choose a vertex weh{F) and a representation
w = X"=oa'v< with X"=o

a ' = 1 maximizing minOss,Sna,. Denote this maximum
by m(w)>0. The argument of Theorem 2 shows that m(w)s=<5(«, 8//7)/8^=
5(2d, 8//7)/8.

The polytope F can be represented as a projection of an n-simplex Sn such
that w is the image of v€int(5n) with mSn(v) = w(w). Now, it is easy to see
that a linear mapping cannot increase the coefficient of asymmetry; hence

ca(w, /")^ca(v, Sn) =
 l~m(yi\

wi(w)

It is known that Pc(-d)S + (d+ l)s, where s is the centroid of S, see, e.g.,
[3, Theorem 3]. By Lemma 3, we obtain

ca(w, P)^dca(v/, F) + d-\ 1 " " 1 ^ ^d ,
m(w) m(w)

which gives the required result by (11). •

Remark. The bound (27) is much worse than (2); the reason is that we
may have to approximate 2c?-tuples of numbers in Lemma 1. Unfortunately,
we cannot guarantee that F has much fewer than 2d+ 1 vertices, as, e.g.,
P = conv { ± e i , . . . , ±ed-l,(k+l)led} demonstrates. Perhaps one can show
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22 O. PIKHURKO

that no such example can be extremal for our problem, and thus improve on
(27).

Remark. It should be possible to generalize Theorems 2 and 4 by proving
the existence of a number b = b(d, I, m) > 0, such that any lattice polytope P
contains m distinct points in It{P) (provided that |//(.P)|3= m) with coefficient
of asymmetry of each at least b. The idea of the proof is the following. If P
is a simplex, take distinct W i , . . . , Y/meI/(P) with the largest mPs. Now each
jump of w, either does not increase mP(v/,) or maps w, into some other wy. We
are done if we can show that, if mP is very small, then there are at least m
distinct jumps increasing it. The latter claim would be achieved by rewriting
the proof of Lemma 1, so that in the conclusion we have at least m suitable
(«+l)-tuples of integers. To extend the claim to general lattice poly topes,
observe that m vertices in I,(P) can each be represented as a positive combi-
nation of d+ 1 vertices of a max-volume simplex and at most md other vertices
of P, and follow the argument of Theorem 4. We do not see any difficulties
arising here in principal, but it would take too much space to write the com-
plete proof, and so we restrict ourselves to this little observation only.

§5. Volume of lattice simplices. For simplices we have a better method
(than applying (8)) for bounding volume which appears in [2, Theorem 3.4]
(see also [3, Lemma 2.3]). We reproduce this simple argument here.

LEMMA 5. Let S = conv {v 0 , . . . , vrf} be any simplex and let v/eI,(S) have
barycentric coordinates (a0,..., ad). Then

vol(S)=£- \I,(S)\. (28)
d\ x a.\ x a2 x • • • x (Xj

Proof. Consider the region

d
+ £ /3,(v,-

; = 1

This is a centrally symmetric parallelepiped around the vertex we/Zrf, with
volume vol (X) = d\ vol (S) IT/= i(2a,). We have to show that the volume of X
cannot exceed (2l)d\Ii(S)\. If this is not true, then X contains (besides w) at
least |//(S)| pairs of vertices w + ue/Zrf by Corput's theorem [8] and, clearly,
at least one vertex of each such pair lies within Ii(S), which is a contradiction.

•
Now we can deduce the following result.

THEOREM 6. For any k^ 1, the inequality (10) holds.

Proof. Let SczW be a lattice simplex with \l,(S)\-k. By Theorem 2 there
exists we/,(S) with ms(w)^y = (8/+7)"2" + ' /8 . Assume that
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LATTICE POINTS IN LATTICE POLYTOPES 23

Then it is easy to see that nf= 1 «,& yd~ '(1 - yd). The claim now follows from
(28). •

§6. s(d, k, I) for small d and I. As we have already mentioned, s(2, k, 1)
was computed by Scott [7]. The simplex S2,k,i shows that
s(2,k,l)ss l(l+ \f(k+ l)/2. Upper bounds on s(2, k, I) can be obtained by
applying (28) to the lower bounds on /3(2,/) from Table 1. But even if we
knew that (16) were sharp, the best upper bound on s(2, k, I) that this method
would give is l5k/2 + 0{f)k, so there would still be an uncertainty about s(2,
k,l).

Also, an interesting problem is the determination of s(3, k, 1). The simplex
Syk.\ shows that s(3,k, l)s=6(A:+ 1). Theorem 6 gives, already for such small
d, very bad bounds. However, there is a very simple argument, following the
lines of Section 3, proving that

29791
s(3,k,l)=5 Ar< 14-106-A:. (29)

2112
Given a lattice simplex ScIR3, we can deduce as before that the barycentric

coordinates ( a 0 , . . . , a3) of a lattice vertex maximizing ms satisfy
2 a 3 - l ^ a 0 , 3 a 2 - l=sa0 and either 4 a 2 - l ^ a 0 or 4 a 3 - 2 = £ a 0 . These
inequalities do not yet guarantee that a 0 > 0, but they guarantee that
«; 3*2/31 and, as it is routine to see, that

2 11 16
ala.2a^— x— x—,

31 31 31

which implies (29) by (28).
Of course, we could write more equations on the as, but this method would

not lead to the best possible bound. For example, the simplex S^ii shows that
we cannot guarantee a vertex in I{ (S) with

1 1 1
ala2a3 > - x - x—,

2 3 12

and so the best bound we would hope to obtain this way is s(3,k, I)=sl2&
only.

§7. Lawrence's finiteness theorem. A result of Lawrence [4, Lemma 5]
implies that there exists y = y(d) > 0 such that, for any lattice simplex S =
conv {v0, ...,vd), the set A (S) (if non-empty) contains a vertex w with
« o ^ y, where ( a 0 , . . . , au) are the barycentric coordinates of w. This directly
follows from our Theorem 2, but unfortunately we could not find a simple
argument giving the converse implication. In fact, the corresponding extremal
functions are different: for example, /3(2, l)=£l/8, while it is claimed in [4,
p. 439] that we can take y(2) = 1/6.
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However, one can deduce from [4] that j5(d, 1) > 0, using the following simple
modification of Lawrence's proof. For ieN, let £/,= {weArf|ca(w, Arf)</},
where Ad = conv {0, e ] , . . . , erf}. Clearly, [JT=d+1Ut = int (Ad). By [4, Theorem
3], there exists i such that, for any we int (Ad), there are ye N and ue Zd with with
yw + ue £/,-. We claim that j3(d, 1)5* l/(z'+ 1). Indeed, let Sa Ud be any lattice sim-
plex and let ve/i (S). Choose any affine function/: Ud->Ud with f(S) = Ad, and
let w =/(v)e int (Ad). Given w, choose the corresponding ye N and ue Zd. It is
easy to check that v'=y"'(/w + u) belongs to I\(S) and satisfies
ms(V)^l /( i+l) .

But, as has already been remarked, Lawrence's argument does not give any
explicit bound.
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