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Abstract: Suppose that we consecutively remove edges from some k-graph of order n in which

every t vertices are covered by at least � edges to obtain a minimal such k-graph. What can be

said about the size of the eventual k-graph? While, by the result of RoÈdl [Europ. J. Combin. 5

(1985), 69±78], the minimum is � n
t

ÿ �
= k

t

ÿ �� o�nt�, we show that the maximum is � n
t

ÿ �� o�nt�.
Also, some partial results are obtained about possible size of a maximal k-graph covering every

t-set by at most � edges. # 2001 John Wiley & Sons, Inc.J Combin Designs 9: 100±106, 2001

Keywords: covering designs; packing designs

1. INTRODUCTION

Relaxing the de®nition of a t-�n; k; ��-design, we obtain the following notions. A
packing (given t; n; k; �) is a k-graph H (that is, a k-uniform set system) on
�n� � f1; . . . ; ng such that every t-subset of �n� is covered by at most � edges of H.
Analogously, the de®nition of a covering requires that any T 2 �n��t� is covered by at
least � H-edges.

One can try to construct a t-�n; k; ��-design in one of the two following ways. The
®rst possibility is to construct a maximal packing, that is, a k-graph H such that H is a
packing but the addition of any new k-edge violates this. This can be achieved by
starting with the empty graph and, consecutively and as long as possible, adding k-
edges. The second possibility is to consider minimal coverings which are easy to
construct by removing edges from some covering.

These two approaches are essentially equivalent, which can be seen by considering
the complement of H and replacing � by nÿt

kÿt

ÿ �ÿ �. However, we are interested in the
case when t; k; � are ®xed integers whilst n is suf®ciently large.
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For these settings, RoÈdl [9] showed that there always exist nearly optimal packings
and coverings, that is, having size

�
n

t

� �
k

t

� �ÿ1

� o�nt�: �1�

The error term in (1) was estimated by Gordon et al. [5] who showed it to be
O�gt;k�n��, where gt;k�n� � nt=�log n�1=D

with D � k
t

ÿ �ÿ 1.
On the other hand, we ask ourselves how bad the resulting packings and coverings

could be, that is, what are the values of

pt;k;��n� � min fe�H� j H is a maximal �t; k; ��-packing of order ng;
ct;k;��n� � max fe�H� j H is a minimal �t; k; ��-covering of order ng:

Concerning the function pt;k;��n�, we compute it exactly for t � 1 (except some
small n), asymptotically for t � 2, and establish some connections with TuraÂn
numbers for t � 3. The TuraÂn number ��n; t; k� is the smallest size of an �n; t; k�-
TuraÂn graph, that is, a t-graph on �n� such that any k-set contains at least one edge.
For example,

��n; 2; k� �
Xkÿ1

i�1

bn�iÿ1
kÿ1
c

2

� �
:

The function ct;k;� turned out to be easier to compute; we determined it with an
O�ntÿ2� error term.

In many cases we can obtain more precise information by working harder. But
trying to keep this paper short, the author had to omit less important results.

2. PACKINGS

The problem of computing pt;k;��n� is an instance of the more general sat-problem;
see BollobaÂs [2, Section 3] for a survey of the latter. From the saturation point of
view, KaÂszonyi and Tuza [6] determined p1;2;��n� for any �; n and the author [8]
computed p2;3;��n� asymptotically for n!1.

t � 1

The following theorem gives the exact answer in almost every case, except for some
small n when we have only a lower bound.

Theorem 1. Given � � 1 and k � 2, de®ne v by vÿ1
kÿ1

ÿ � � �=k � v
kÿ1

ÿ �
. Then

p1;k;� � v
k

ÿ �� d��nÿv�
k
e. If, furthermore, � � nÿvÿ1

kÿ1

ÿ �
, then we have in fact equality.

Proof. Given any maximal packing H, let S � V�H� consist of all vertices
contained in at most �ÿ 1 edges of H. Clearly, S must span the complete k-graph.
Thus e�H� � min s2�0;n�f �s�, where f �s� � s

k

ÿ �� ��nÿs�
k

, which implies the lower
bound.
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Conversely, let n0 � nÿ v. It is not hard to construct a k-graph H on �n0� such that
every vertex has degree � except a set D of at most k ÿ 1 vertices of degree �ÿ 1. (A
possible proof: let the vertices 1; . . . ; n0 form a regular n0-gon; as long as possible add
a missing k-set and all its circle rotations, sparing �k� for the very end when we add
certain rotations of it.)

Add to H the complete k-graph on S � �n0 � 1; n� plus, if D � fx 2 �n0� j
d�x� < �g 6� ;, an edge E intersecting �n0� in the set D. Note that the resulting graph
is a packing �if vÿ1

kÿ1

ÿ � � �, then we obtain the contradiction f �v� � �n=k > f �k ÿ 1��
and it is clearly a maximal one. &

t � 2

Theorem 2. Given � � 1 and k � 3, let � � �= k
2

ÿ �
. Then

���n; 2; k� � p2;k;��n� � ���n; 2; k� � O�n� � � n2

2�k ÿ 1� � O�n�; �2�

where the lower bound holds for any n � max �k � �ÿ 1; k�1=�kÿ2��.
Proof. Given a maximal packing H, we de®ne on the same vertex set the 2-graph G
so that fi; jg 2 E�G� if there are � H-edges containing fi; jg. Clearly, any k-set
independent in G must be an edge of H. This implies that

e�H� � L�G� � k2
k��G� � �e�G�; �3�

where k2
k��G� denotes the number of K2

k -subgraphs of �G, the complement of G. We
want to ®nd, for which 2-graphs G, the right-hand side of (3) is minimized. By a
theorem of BollobaÂs [1] (for some extensions see Schelp and Thomason [10]), this
happens if �G is a complete multipartite 2-graph (that is, if G is a disjoint union of
complete graphs). If the parts are of sizes n1 � n2 � � � � � nl, then we have to
minimize

L�G� � k2
k��G� � �e�G� �

X
A2�l��k�

Y
i2A

ni � �
Xl

i�1

ni

2

� �
; �4�

given the condition
Pl

i�1 ni � n.
Suppose that l � k. Let G0 be obtained from G by merging the smallest two parts

together. This adds nlÿ1nl extra edges to G, but this eliminates all K2
k -subgraphs of �G

intersecting both of the affected parts, that is,

k2
k��G� ÿ k2

k� �G0 � � nlÿ1nl

X
A2�lÿ2��kÿ2�

Y
i2A

ni: �5�

We claim that
P

A2�lÿ2��kÿ2�
Q

i2A ni � �. As nl and nlÿ1 are two smallest sizes, it is
enough to verify the inequality for n2 � � � � � nlÿ2 � nlÿ1 � nl � x in which case it
reduces to

g�x� � lÿ 3

k ÿ 2

� �
xkÿ2 � lÿ 3

k ÿ 3

� �
�nÿ �lÿ 1�x�xkÿ3 � �: �6�
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The routine algebraic work shows that (6) holds for any real x with 1 � x � n=l,
provided n satis®es our assumptions.

Thus L�G� � L�G0�, so we may assume that l � k ÿ 1. But then k2
k�G� � 0 and

e�G� is minimal if we have exactly k ÿ 1 parts of nearly equal sizes and the lower
bound follows.

Here is our construction establishing the upper bound. Choose the maximal integer
v � n

kÿ1
such that a 2-�v; k; ��-design exists. By the fundamental result of Wilson [12],

v � n
kÿ1
ÿ O�1�. Build such a design on Vi � �v�iÿ 1� � 1; iv� for i 2 �k ÿ 1�.

Completing the union of these to a maximal packing H on �n�, we add only O�n� extra
edges. Indeed, each new edge shares at most one vertex with each Vi while each of
the remaining O�1� vertices can belong to at at most � nÿ1

kÿ1
edges. Hence

e�H� � � n2

2�kÿ1� � O�n� as required. &

Remark. The lower bound in (2) is sharp if there exist 2-�b n
kÿ1
c; k; ��- and

2-�d n
kÿ1
e; k; ��-designs, which is the case for a periodic series of values of n when n is

large (see Wilson [12]).

t � 3

Finally, let us consider the general case t � 3. It seems that pt;k;��n� is related to the
TuraÂn number ��n; t; k�.
Theorem 3. For any ®xed t; k; �, and large n

pt;k;��n� � �1ÿ o�1�����n; t; k� k

t

� �ÿ1

: �7�

Proof. Let H be a maximal packing. Let the t-graph G consist of all t-sets covered
by � edges of H. Similar to the above, we note that any k-subset of �n� not spanning
an edge in G must belong to E�H�.Therefore,

e�H� � �e�G� k

t

� �ÿ1

� kt
k��G�: �8�

If e�G� � �1ÿ o�1����n; t; k� then the ®rst summand in the right-hand side of (8)
itself gives the desired lower bound. Otherwise, the result of ErdoÈs and Simonovits
[4] implies that the second summand is ��nk� which is far more than required. &

We do not have many structural results related to the TuraÂn problem for complete
hypergraphs. Sidorenko [11] mentions the following conjectures.

��n; 3; k� � 2

k ÿ 1

� �2
n

3

� �
� o�n3�; �9�

��n; 4; 5� � 5

16

n

4

� �
� o�n4�: �10�

Theorem 4. There exists a maximal 3-�n; 4; ��-packing with �
9

n
3

ÿ �� O�n2� edges.
There exists a maximal 3-�n; k; ��-packing with �� 2

kÿ1
�2 n

3

ÿ �
= k

3

ÿ �� O�g3;k�n�� edges if
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k � 5 is odd. In particular, if �9� is true, then these packings are asymptotically
smallest possible.

Proof. Consider k � 4. Let m � bn=3c. De®ne Ai � ��iÿ 1�m� 1; im�, i 2 �3�. The
graph G on �3m� consisting of all triples fx; y; zg with x; y 2 Ai and z 2 Ai [ Ai�1,
where A4 � A1, is a �3m; 3; 4�-TuraÂn graph with 4

9
n
3

ÿ �� O�n2� edges.
Consider the graph H consisting of edges E � fw; x; y; zg with fx; y; zg � Ai and

w 2 Ai�1 �then all 3-subsets of E belong to E�G��, i 2 �3�, such that w� x� y� z is
congruent modulo m to an element in ���. It is easy to see that each edge of G, except
O�n2� edges, is covered by exactly � edges of the packing H. Therefore, completing
H to a maximal packing on �n� we add only O�n2� edges, as required.

For k � 2l� 1, l � 2, an example of an �n; 3; k�-TuraÂn graph G attaining (9)
is obtained by partitioning �n� � A1 [ � � � [ Al into nearly equal parts and letting
G be the union of the complete graphs on Ai, i 2 �l�. By (1) we can ®nd an
almost optimal packing on each Ai; let H be the union of these. Completing it to a
maximal packing, we add only O�g3;k�n��-extra edges, which proves the claim. &

However, we do not know any matching construction for t � 3 and even k � 6 or
for t � 4 and k � 5. We have to ®nd a packing which covers almost every edge of a
corresponding TuraÂn graph exactly � times and covers only o�nt� edges outside this
graph. The constructions known to the author achieving (9) or (10) do not admit such
a packing by some trivial edge-counting. This includes the constructions presented by
Kostochka [7] and by de Caen, Kreher and Wiseman [3]. Unfortunately, the author
has no likely guess what pt;k;� could be then.

3. COVERINGS

Minimal coverings are easier to handle. Here is our main result.

Theorem 5. Let k > t � 1 and � � 1 be ®xed integers and let n be large. Let v be
the minimal integer such that v

kÿt

ÿ � � �. Then

ct;k;��n� � � n

t

� �
ÿ �v

n

t ÿ 1

� �
� O�ntÿ2�: �11�

Proof. First we provide a construction of a minimal covering H, which gives the
lower bound on ct;k;��n�. Let A � �v� and B � �n� n A.

To construct H add, for every X 2 B�t�, any � edges whose intersection with B
equals X. If n is large, we can additionally require that every t-set intersecting A in at
most k ÿ t vertices is covered by at least � edges. Now, consecutively let
i � t; t ÿ 1; . . . ; k ÿ t � 1. (If k � 2t, we do not do anything.) For each t-set X
which is covered by s < � edges and intersects A in exactly i vertices, add any new
�ÿ s edges of the form �A \ X� [ Y , where Y is a �k ÿ i�-subset of B. We claim that
the obtained covering is minimal. Indeed, any edge E added at the ®rst stage contains
a t-subset, namely E \ B, which is covered by exactly � edges, because all later edges
intersect B in at most t ÿ 1 vertices. Also, an edge E added for some i cannot be
removed: when it was added then the corresponding X � E was covered by exactly �
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edges, while any edge added later cannot contain X because we took i to be
decreasing.

The easy computation of e�H� gives the required lower bound.
Let us prove the upper bound. Let H be a minimal �t; k; ��-covering of the largest

size. Let the t-graph G consist of all those t-sets which are covered by exactly � edges
of H. Count the number s of pairs �K � T�, with K 2 E�H� and T 2 E�G�. As each
edge of H contains at least one suitable T as a subset, we conclude that

e�H� � r � s � �e�G� � � n

t

� �
; �12�

where r is the number of H-edges which contribute at least 2 to s. By the already
proved lower bound, we have r � O�ntÿ1�.

Let M be the set of (ordered) pairs �T1; T2� such that T1 2 E�G�, jT2j � t,
jT1 n T2j � 1, and there exists K 2 E�H� with T1 [ T2 � K.

It is not hard to see that an edge T1 2 E�G� appears as the ®rst coordinate in at
least tv elements of M. On the other hand, let T2 be any t-set. If, for some t-sets S1; S2

with S1 n T2 � S2 n T2 � fxg, we have �S1; T2�; �S2; T2� 2 M, then we have
K 2 E�H� containing both S1; S2 2 E�G�. If T2 2 E�G� and �T1; T2� 2 M for some
T1, then we have an H-edge containing both T1; T2 2 E�G�. Hence we have, rather
crudely,

tve�G� � jMj � �nÿ t�e��G� � k

t

� �2

r:

This implies e�G� � n
t

ÿ �ÿ v n
tÿ1

ÿ �� O�ntÿ2�, and the claim follows from the in-
equality e�H� � �e�G�. &

Remark. The proof (as it stands) gives that c1;k;��n� � ��nÿ v� for n � �v ÿ k�
��v ÿ 1� � �2k2v.
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