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Abstract. Given an r-graph G on [n], we are allowed to add consecutively new edges to it
provided that every time a new r-graph with at least / edges and at most m vertices appears.
Suppose we have been able to add all edges. What is the minimal number of edges in the
original graph? For all values of parameters, we present an example of G which we con-
jecture to be extremal and establish the validity of our conjecture for a range of parameters.
Our proof utilises count matroids which is a new family of matroids naturally extending that
of White and Whiteley. We characterise, in certain cases, the extremal graphs. In particular,
we answer a question by Erdés, Fiiredi and Tuza.

1. Uniform Families

An r-graph H 1is, a.s usual, a pair (V(H),E(H)) (vertices and edges), where E(H) is
a subset of V(H ) ={4A CV(H): |4 =r}. The size of H is e(H) = |E(H)| and
the order is v(H) = |V(H)|. When isolated vertices do not matter, we usually
identify H with E(H); then, for example, |H| stands for e(H).

This research is motivated by the following problem which could be traced to
Bollobas, see e.g. [2]. Given a family % of r-graphs, called forbidden, an r-graph G

n [n] ={1,...,n} is called weakly F -saturated, denoted G € w-SAT(n, F), if we
can consecutively add all missing edges to G so that each time we add an edge a
new forbldden subgraph appears. (Call the corresponding ordering of the edges of
G=|n ] \ G, the complement of G, F -proper.) What is the value of w-sat(n,#),
the minimal number of edges in the original graph?

Fix I,m,r ¢ N with 1 </ < (’:’) The uniform family # = #,(m,l) is the
family of all »-graphs of order m and size /. By definition, G € w-SAT(n, ),
n > m, if we can add the missing edges so that each creates a new subgraph
with at most m vertices and at least / edges. For simplicity denote
e(n,rym,l) = w-sat(n, #,.(m,1)).

Uniform families were considered by Tuza [16] who made a conjecture on
the value of &¢(n,r,r + 1,1). Earlier results of Frankl [5] and Kalai [7, 8] (cf. also
Lovasz [12] and Alon [1]) imply the validity of the conjecture for [/ =r+ 1.
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Erdés, Fiiredi and Tuza [4] verified the conjecture for / = 3. Recently, the
author [15] completely proved Tuza’s conjecture and, besides, computed
e(n,2,m,1) for any n,m,|.

In this work we present, for all sets of parameters, a construction of G which
we conjecture to be extremal. Our conjecture is in perfect accordance with the
above results.

Clearly, our construction gives an upper bound on & To establish some
lower bounds, we use the following observation of Kalai [8], see also Pik-
hurko [15]. Suppose we have a matroid .# on [n](r> such that every r-graph
Fe A (m,]) with V(F) C [n] is a circuit. Then any new edge, # -properly
added to G, must lie in the .#-closure of the existing edges. If G € w-SAT(n, #)
then G must span .# and therefore, ¢(n,r,m,1) > R(.#), the rank of M. Note
that if we have equality, then every minimum weakly s -saturated graph G
forms a base of ..

Thus, to prove some lower bounds we have to find some suitable .Z. A family
of matroids on [n](r), called count matroids, was introduced by White and
Whiteley [17], see also [19]. We generalise naturally the original definition to
obtain a much wider family of matroids for which we preserve the same name.
For example, our matroids admit many polynomials in n as the rank function
while the previous definition is confined to linear functions only.

Applying count matroids we verify our conjecture for more sets of parameters
although the question is still far from being resolved in the full generality. In
certain cases, we characterise the sets of minimum weakly #-saturated graphs. In
particular, we answer a question by Erdés et al. [4] who asked for a characteri-
sation of the extremal graphs for #,.(r + 1, 3).

We hope that count matroids will have other interesting applications; one (to
scene analysis and geometry) is presented by Whiteley [18].

2. Construction

Let n>m, 1 <1< (") and # = #,(m,[). We build, inductively on n, an ex-
ample of a weakly #-saturated graph G, = G(n,r,m,I) on [n]. If n =m then,
clearly, we can take for G, any member of #,(m,!/ — 1). If n > m then, induc-
tively, choose any G,_; = G(n— 1,r,m,[) and an (r — 1)-graph G’ = G(n — 1,
r—1,m—1,0'), where I'=1— (""). (If 1 < (') + 1 then we take the empty
graph for G'.) We let

G, =G, 1U{EU{n}: E€ G}

Let us show that G, is indeed weakly #-saturated. By the definition of G,_, we
can add edges so that [n — 1] spans the complete r-graph. Then add edges
EyU{n},...,E;U{n}, where (E|,...,E;) is any #,_;(m — 1,1')-proper ordering
of the complement of G'. As each E; creates a subgraph of size /' on some (m — 1)-
set M O E;, MU {n} spans at least /' + (" ') =1 edges after E; U {n} has been
added, which shows that G, € w-SAT(n, #).
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Conjecture 1. For any n,r,m,1 € N with m <n and 1 <1< ("), G(n,r,m,1) is a
minimum weakly J.(m,l)-saturated graph.

Remark. Generally, not all extremal graphs are given by our construction,
cf. Theorem 7.

Let us compute the size of G,. Given [ > 2, define (uniquely) ¢ and d so that
d—1 .
m—j—1 m—d—1
= 1 —1].
c+ —|—JZ;( P >, cE{( . d )], de|0,r—1]

The definition of G, implies, after some thought, the following formula for e(G,)
which, alternatively, can be routinely checked by induction on x.

S o5 ] (el ) [ P AR

(We agree that (}) = 1, for any i.)
For our purposes we have to find a representation e(G,) = ZZ:() ag (Z) A

substitution (") = S (=1)*(*) ("-F) which is an instance of Vander-

monde’s convolution (see e.g. [6, p. 174]), implies

S ()£ 07)

Now, occasionally applying the identity >} o (—1)'(/) = (=1)'(/;"). £ > 0, we can
find that a; = (—l)dﬁkc(”’;f;l) + (—1)%sy, where

T R R Ty

Therefore, in summary,
d
_ —k—1 m—k—1\(r—k—1 n
_ _1)d* m _ )
o =20 (" ) - () ) G

3. Count Matroids

A function p : X(<*) — R (from finite subsets of X to the reals) is called integral if
it is integer-valued, increasing if p(4) < p(B) whenever 4 C B, and submodular if

p(AUB) +p(ANB) < p(d) + p(B), A,Be X%, (1)
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Given p:2¥ — R, we say that non-empty 4 C X is p-balanced (or just
balanced if p is understood) if |4| > p(4) + 1 but for every proper B C A4 (that
is B # () and B # A) we have |B| < p(B).

Edmonds and Rota [3] observed the following.

Lemma 1. For any integral, increasing and submodular function p : 2% — R, the
Sfamily of p-balanced sets satisfies the circuit axioms and therefore defines a matroid
onX. O]

The proof is easy and can be found for example in Oxley [13, Proposition
12.1.1].

We are interested in defining a matroid on X = [n] ) (Then 2¥ is identified
with the set of r-graphs on [n].) White and Whiteley [17], see also [19], introduced
a family of count matroids on [n]") by defining p(H) = a\| Ugey E| + a0, H C [2]",
for some fixed a; and qy.

We found it possible to generalise this construction in the following way. For
H C [1]"), we denote p;(H) = |8;H|, where

8H ={D e [n)) : D C E for some E € H}, i€[0,r].

For example, p,(H) = e(H) and p|(H) = | Ugen E|.
We consider /linear functions, that is, functions defined by

H) :a0+zaipi(H)’ HC [n](r), (2)

for some constants a; € R, i € [0,7 — 1].

Let us see when the function L on X(<>), X = N), satisfies the above prop-
erties. Clearly, L is integral if and only if all coefficients are integers. Submodular
and increasing linear functions are characterised by the following two lemmas
which are of independent interest.

Lemma 2. A linear function L : X(<*°) — R is increasing if and only if
Za,c)>o ielr—1]. (3)

Proof. Suppose that L is increasing. Given i € [r — 1], consider the r-graph
H={Ee[n":|En[]| <i},n>2r—i+1. We must have

L(H U {[r]} ZaJ(J)>0

which is exactly inequality (3).
On the other hand, suppose that L satisfies (3). Clearly, it is enough to show
that, for any finite # CX and E € X\ H, we have L(H) < L(HU{E}). Let
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C[ = 8,(1‘[) ﬂE(’), Ci = |C,|/(:), D[ = E(l> \8,(H) and d,' = ‘D,|/(f), i€ [}" — 1]
Clearly, for any i and j, 1 <i < j<r—1, the set system D; U C; is an antichain in
2f. By the LYM inequality d; < 1 —¢; = d,, that is,

0<d < <d1 <1 (4)
It is easy to check that
r—1 -
L(HU{E}) — L(H) = Za,-d,-(l_). (5)
i=1

Consider the problem of minimising (5) given only the constraints (4). A
moment’s thought reveals that there exists i € [0,7 — 1] such that the extremum

is achieved when dy =---=d; =0 and d;;; =---=d,_; = 1. But then (5) is
non-negative by (3), so L is increasing. O
Lemma 3. A linear function L : X< — R is submodular if and only if a; >0,
iefr—1].

Proof. The trivial consideration shows that, for any i € [r] and H,G C []", we
have p;(H) + pi(G) > p;(H U G) + p;(H N G). This implies (1) if every coefficient
of L (except perhaps ag) is non-negative.

On the other hand, suppose that L is submodular. Given any i€ [r— 1]
consider the following set systems. Choose a ‘large’ m-set Z C N and (r — i)-
sets Dy and Ey, indexed by Y € Z0 so that all 2(’;7) + 1 selected sets are disjoint.

Let

H={DyuY:Y ez}
G={EyuY:Yez"}

Clearly, we have p;(HNG) =0, j€[r—1],as HNG = ), and

()0) i<jsrt

pi(H) = p;(G) =

2(’")() | i<j_§ r_—l,
(6

Routine calculations show that

pi(HUG) =

L(H)+ L(G) = L(HUG) - L(H N G) = a (’Z’) + o),

which, by the submodularity of L, implies a; > 0. O
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Thus we restrict our attention to integer coefficients satisfying

a;>0,ie[r—1], and Za,<) (6)

in which case, by Lemma 1, L defines a matroid 4"} on [n] <’), n > r, which we
still call a count matroid. The second condition in (6) excludes the degenerate
case when already a single edge is dependent. Obviously, A7 is a symmetric
matroid, that is, for any permutation ¢ of the vertex set [n], H C [2]” is inde-
pendent if and only if ¢’(H) is, where by ¢ we denote the induced action on
[n ]< Clearly, the nested sequence (A7),, is compatible, so, usually, we do not
specify n.

Actually, ./, admits an alternative definition if gy > 0. Let X = [n]<’) and let Y
be the disjoint union of a; copies of [2]"”, i € [0, — 1]. Define the bipartite graph
G on X UY by connecting £ € X to all elements of ¥ corresponding to subsets of
E € [n]"). (For example, every vertex in X has degree 3/, ya;(7).) It is easy to see
that the transversal matroid of G, in which H C X is independent if and only if H
can be matched into Y, equals A7

Any transversal matroid is representable over fields of every characteristics,
see Piff and Welsh [14]; this applies to all count matroids with ¢y > 0. It would be
of interest to know whether .47, is representable for ay < 0.

Let us investigate the rank of A7}.

Theorem 4. Let L satisfy (6). Then the rank of N equals min( (:f),L([n]m)).

Proof. We may assume that 4" = 4"} contains a non-trivial circuit for otherwise
R(A) = (") < L([n]")) and our claim is true.
Let an r-graph G form a base for 4"

Claim 1. There exists an ordering of G = {Ey, ...,Es} such that
F[j—]]mf}7é®7 j€[2,s], (7)

where F; denotes the (unique and, by (6), non-empty) subgraph of G such that F; + E;
is a circuit. (Also we denote F; = Ue/F;, F + E = F U{E}, etc.)

To prove the claim choose an arbitrary £y € G and, inductively, take for E;
any available edge satisfying (7). Suppose, on the contrary, that we are stuck after
having chosen Ey, ... ,E; |, some j € [2,s]. Let G| = jjand G, = G\ G. Both
G and G, are non-empty. Clearly, for any E € G we must have either ' C G or
F C G, where F + E is the circuit with F/ C G. Thus, if H; is the closure of G;,
i=1,2, then H, = G, +EU*1] and H, = [l’l](r) \Hl.

Let C be any A -circuit. We claim that C cannot intersect both H; and H,.
Suppose not. Let £ € C N H;. As G, spans Ha, the rank of (C N H;) U G, will not
decrease if we remove E. Therefore, there is a circuit C' 3 E such that
C' C (CNH;)UG,. Likewise, fixing some D € C'N G, # (), we obtain a circuit
C” C G which contradicts the independence of G.



Uniform Families and Count Matroids 735

Note that if we replace C by the r-graph C’' composed of the first e(C)
elements of [n]<”) in the colex order, then p;(C) would not increase by the
Kruskal-Katona Theorem [10, 11], so e(C’) > L(C'). If C’ is not a circuit, take
any proper subcircuit and repeat. The first two edges, [r] and [2,7+ 1], of the
eventual circuit C' (which by (6) has size at least 2) share r — 1 vertices and fall
into the same half of [n](’) = H; U H,. But every two edges can be connected by
a sequence of edges such that any two neighbours share » — 1 vertices. By the
symmetry of /", one of the halves must be empty, which is a contradiction
proving Claim 1.

Choose an ordering guaranteed by Claim 1. Let us prove, by induction on j,
the following.

Claim 2. L(Fm —l—Em) = L(Fm) = e(Fm),j € [s].
First we note that, for every i € [s],
e(Fi) < L(F) < L(F + Ei) <e(F + E)) — 1 = e(F),

which implies L(F; + E;) = L(F;) = e(F;); in particular, our claim is true for j = 1.
Now we argue as follows:

In the above transformations we use the submodularity of L, induction and the
inequality L(Fj;_jj NF;) > e(Fjj_;)NF;); the last inequality is valid because
Fj_yj N Fj is independent and non-empty. (Actually, Claim 1 could be skipped if
ap > 0.) Now, Claim 2 follows.

Clearly, Fiy = G. Therefore, L([n]")) = L(G) = e(G) = R(N}). O

Remark. Kalai [9] showed that, for any symmetric matroid .# on N, R,,zz([n](’))
is a polynomial in # for all sufficiently large n. We call this polynomial the growth
polynomial of /. Kalai [9] also characterised all possible polynomials. Unfor-
tunately, these are not confined to L([n](")) with some L satisfying (6). (For
example, the k-hyperconnectivity matroid on N® introduced by Kalai [8] gives
the polynomial kn — (kgl).) It would be of interest to have a purely combina-
torial construction (like that of a count matroid) producing every possible
growth polynomial. (Matroids in [9] are constructed by means of multilinear
algebra.)

4. Lower Bounds on g(n,r,m,l)

Recall that the size of G, = G(n,r,m, 1) is Y{_, ax ("), where

(NP R (e varss)) B



736 O. Pikhurko

We define L = Zf’lzo arpr, so that L([n]")) = e(G,). the conjectured value. If L

defines a matroid and every F € #,(m,[) is an .4 j-circuit then we can con-

clude that &(n,r,m, 1) = e(G,), which establishes the validity of our conjecture in

this case. (Of course, this approach might work for other forbidden families.)
Now, the condition a; > 0, k € [d], can be rewritten as

m—k—l) (r—k—l

d—k ar "D ) -k d—k(m—d—1
(_1) CZ(—l) W—( 1) V—k( v d )

The modulus of the latter expression is strictly decreasing with &, so, unfortu-
nately, no suitable ¢ would satisfy the conditions unless d < 2 and we have to
confine ourselves to the three cases below.

41.d=0

In this case the problem is trivial: it is easy to see directly that forn >m >r > 1
and 1 </ < (’";1) +1, ¢(n,r,m,I) =1—1 and all extremal graphs are can be
obtained by adding n — m isolated vertices to some H € #,(m,l — 1), which is
exactly as our construction goes.

42.d =1
Let r>2 and /= (") +1+4c with 1 <c < ("7}). By (8) we let a; =c and

m—1

ao = ( r ) —c¢(m —1). The condition 1 < a;r + ay implies that either m = r + 1
andc=1orm>r-+2and

m—1 m—1
Cémin<¢7 <m2>> :w7
m—r—1 r—1 m—r—1

which we assume.

Let us show that every F € #,(m, 1) is a circuit in A";. Obviously, p;(F) = m,
so e(F)=L(F)+1 and F is not independent. Take any proper F' C F. If
pi(F') =m then L(F') = L(F) > e(F'). If p;(F') <m —1 then F’ is independent
by Theorem 4 as L([m — 1]) = ("-"). Hence F is a circuit and we obtain the
following result.

Lemma 5. Given r, m, | and n with n>m>r>2 let c:l—(’”r_l)—l. If
m>r+land 1 <c< L~ ("orifm=r+1andc=1 (whenl=23), then

m—r—1 r

en,rym 1) = (I—1)+c(n—m). O

We can characterise extremal graphs in some cases by providing a combinatorial
proof.

Lemma 6. In addition to the assumptions of Lemma 5, assume that m > r + 1 and
c< ﬁ (’"r_l) Then any minimum G € w-SAT (n, #) is given by our construction.
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Proof. Let G = {E\,...,E;} be a proper ordering so that each E; creates a for-
bidden subgraph on an m-set M; C [n] and let L = a;p; + ao be as above. We know
that any 4 C [n] spans at most a;|4| + a¢ edges in G. (In fact, this is easy to see
directly for otherwise we could replace these edges by a copy of G(|4],r,m, ),
which would produce a smaller weakly # -saturated graph.)

We prove by induction on i that, for any i € [s], H; C G, the subgraph spanned
by My C [n], is given by our construction.

Clearly, this is the case for i = 1.

Let i > 1. We have to consider only the case when k = |M; \ M|;_)| > 1. Of ]
edges of a forbidden subgraph F created by E;, at most ('”r_k) can belong to H;_i,
which shows that

|HiU{Ef}\h’i1|2c+1+(mr‘1> _ <m—k>_

7

It is routine to check that the last expression is strictly greater than ck + 1 for
k € [2,m]. To prevent the contradiction |H;| > a1|Mj;| + ap, we must have k = 1
and E; \ M;_;; = {x} for some vertex x contained in exactly ¢ edges of FNG.
These edges (minus x) must lie within the (m — 1)-set M};_;; N M;, which is exactly
what our construction says. O

The value of &(n,r,r+ 1,3) was computed by Erdés, Firedi and Tuza [4].
They asked if there is a characterisation of the extremal graphs. Our Lemma 6
does not cover this case, but we can provide a different proof of the lower bound
which would give us the desired characterisation. Note that, up to isomorphism,
H.(r+ 1,3) consists of a single graph.

Theorem 7. For # = A,(r + 1,3) we have

w-sat(n, #)=n—r+1, n>r 9)

Every extremal graph G can be obtained in the following way. Start with the set
system G containing only one edge [n]. As long as possible, remove from G any edge
E of size at least r + 1, choose A € EV=Y)_ partition E\NA =X UXy, X1,X> # 0, and
add to G the edges AUX, and AUX;.

Proof. Although we have already established (9), we have to provide a combi-
natorial proof of the lower bound. Let G € w-SAT(n, #). Note that every vertex
in G is covered by at least one edge because, otherwise, the first edge added to G
and containing this vertex cannot create a forbidden subgraph.

Let £y, ..., E; be the edges of G. With this sequence we do, step by step and as
long as possible, the following operation. If some two sets have at least » — 1
common points we merge them together, that is, replace them by their union (so
the resulting system is no longer r-uniform).

We claim that we end up with the sequence containing a single member (which
then must be equal to V(G)). Suppose not. Let Y;,..., Y, ¢t > 2, be the eventual
family. Every two different resulting sets can have at most » — 2 common points.
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Obviously, every edge of G lies within some ¥;. Let E € G be the first edge added
to G which does not lie entirely within some Y;. (If for every E € [n]<”) there is
Y; D E, then, considering chains of r-sets with overlaps of size » — 1, we conclude
that ¥; = [n], some i.) The addition of £ must have created F € # . The two other
edges E|,E, € E(F) either belong to G or were added before £ and share » — 1
vertices, so they lie each within some set ¥;. But then ¥; must contain £ C E; UE,
which is a contradiction. The claim is proved.

Now it is easy to prove by induction that in the above process every set of size
m was a merger of at least m — r + 1 edges of G. Trivially, it was the case for all
initial sets which were precisely the edges of G. If we merge together 2 sets of sizes
m; and mp; made of ey > m; —r+ 1 and e; > my — r + 1 G-edges respectively, the
resulting set has at most m; + my — r+ 1 vertices and e; + ey > my +my —2r + 2
edges produced it, so the claim follows by induction.

If we have equality in (9), then in the merging procedure every two sets merged
together have exactly » — 1 common vertices, so every extremal graph can be
obtained by reversing the merging process described in the statement of the the-
orem (of course in many different ways, generally).

We have to show that any anti-merging produces an extremal graph. Clearly,
at the end we are left with r-subsets and we have exactly n — r + 1 of these. To
complete the theorem it is enough to show that a union of two complete r-graphs
H, and H, of order at least » each with |4| = |V(H,) NV (H,)| = r — 1, is weakly
A -saturated. But this is easy: fori =r — 2,7 — 1,..., add the missing edges which
intersect 4 in exactly i points. O

Remark. Our construction of G(n,r,r+ 1,3) does not cover all cases as is dem-
onstrated, for example, by » = 3, n = 6 and

G =1{{1,2,3},{2,3,4},{4,5,6},{5,6,1}}.

43. d=2
Assume 7 >3 and /= ("') + ("}) +c+1 with c€[("3)]. By (8), we let
a=c, a =—c(m—2)+ (") and ap = c(";") — (r — 1)(’”:1)
Let us check when L satisfies (6). Of course, a; > 1. Next, the condition a; > 0
2

is, in our case, ¢ < ("77)(m — 2)"'. It is false for m = r+ 1, so assume m > r + 2.
The inequality 0 < a, (;) + a7 + ag reduces to

O e TR (RET ) T

Note that (10) is automatically true if m = » + 2 (when the coefficient at ¢ is zero),
but then the condition a; > 0 implies ¢ = 1. So, we conclude that L satisfies (6) if
and only if either m =r+2and c=1or m > r+ 3 and

((m—l)(r—l)—r2>(”r’_12)<c<min<@ (’"‘3>> _U5) gy

r(”’*zr*l) m—2"\r—2
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Let us check that any F € #,(m,[) is a circuit in /. Clearly, every two vertices
in F are covered by an edge for otherwise we would have at most (") — ("=}) < I
edges in F. Therefore, L(F) = L(jm]®) =1 — 1 = e(F) — 1 and we conclude that
F is not .4 ;-independent. On the contrary suppose that L(H) < e(H) for some
r-graph H on [m] with at most / — | edges. Clearly, we may assume that H is
an initial segment of [m](’> in the colex order.

Note that L([m — 1])) = (") and, by Theorem 4, [m — 1]") is independent.
Therefore, H must have m vertices. Also, the 2-set {m — 1,m} cannot be covered
by an H-edge, as then e(H) > L(jm]")) + 1 > I. Let H' be the (r — 1)-graph on
[m — 2] satisfying

H=[m-1"u{DU{m}:DeH).

If we let L'=ayp;+a; then L'(m— 2]<’71)) = ’,":12) and, by Theorem 4,
H' C [m—2]""Y is independent in 4", and L'(H') > e(H').
Obviously, p»(H) = pi(H") + ('”2_1) Therefore,

L(H) = L([m — 1)) + L'(H') > (m ; 1) +e(H') = e(H),

which is the desired contradiction.

Theorem 8. Assume that r >3 and | = ("') + ("=}) + ¢ + 1 such that either m =

r

r+2andc=1o0rm>r+3 and c satisfies (11). Then our conjecture is true. []

Unfortunately, we do not have any characterization of the extremal graphs.

Acknowledgments. The author is very grateful to Andrew Thomason for helpful com-
ments.
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