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Given an r-graph F , an r-graph G is called weakly F-saturated if the edges missing from G

can be added, one at a time, in some order, each extra edge creating a new copy of F . Let

w-sat(n, F) be the minimal size of a weakly F-saturated graph of order n. We compute the

w-sat function for a wide class of r-graphs called pyramids: these include many examples

for which the w-sat function was known, as well as many new examples, such as the

computation of w-sat(n,Ks +Kt), and enable us to prove a conjecture of Tuza.

Our main technique, developed from ideas of Kalai, is based on matroids derived from

exterior algebra. We prove that if it succeeds for some graphs then the same is true for the

‘cones’ and ‘joins’ of such graphs, so that the w-sat function can be computed for many

graphs that are built up from certain elementary graphs by these operations.

1. Introduction

An r-graph F is a pair (V (F), E(F)) (vertices and edges), where

E(F) ⊂ V (F)(r) = {A ⊂ V (F) : |A| = r}.
By analogy with the case r = 2, the size of F is e(F) = |E(F)|, the order is v(G) =

|V (F)|, and in the obvious way we define the notions of an isomorphism, a subgraph, the

complementary graph F , etc.

Given a family F of r-graphs, an r-graph G of order n is called weakly F-saturated

(denoted by G ∈ w-SAT(n,F)) if we can consecutively add all missing edges to G so that,

every time we add an edge, a new F-subgraph (a subgraph isomorphic to F), for some

F ∈ F, appears. In other words, there exists an ordering E(G) = {E1, . . . , Ei} such that,

for every j 6 i, there is an F ∈ F such that the graph G+E1 + · · ·+Ej has an F-subgraph
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containing Ej as an edge. We call the corresponding ordering of E(G) F-proper. The

principal problem we consider is the determination of

w-sat(n,F) = min{e(G) : G ∈ w-SAT(n,F)}.
Note that we do not require that G is F-free, as this does not affect w-sat(n,F). If F
consists of a single forbidden graph F , we write w-SAT(n, F) for w-SAT(n, {F}), etc. The

related notion of (strong) saturation (studied in, e.g., [2, 9, 5, 12]) is not considered in this

work.

The w-sat function was introduced by Bollobás [3]. Its computation seems a difficult

task and few results are known. Usually, given F, it is easy to find a correct example of

G ∈ w-SAT(n,F) but it is hard to prove that G is indeed minimum. There does not seem

to be any systematic approach to the latter task.

Here we present the E-proof, a sufficient condition for G ∈ w-SAT(n,F) being extremal.

This is a deterministic procedure which uses matroids constructed via exterior algebra.

(Examples when other matroids apply can be found in [7, 13].) The links with matroid

theory are not surprising: loosely speaking, an F-proper addition of edges corresponds

to closure, and the notion of a minimum weakly saturated graph resembles that of a base.

Applying the E-proof and other related methods (e/e′/etc.-proofs), we obtain various

results as follows.

Let sequences r = (r1, . . . , rt) of nonnegative integers and S1, . . . , St of disjoint sets of

sizes s = (s1, . . . , st) be given. We define [t] = {1, ..., t} and, for I ⊂ [t], we use shortcuts

such as rI =
∑

i∈I ri and SI = ∪i∈ISi; also, we assume r0 = 0, S0 = ∅, etc. Then the pyramid

P = P (s, r) is the r-graph, r = r[t], on S = S[t] such that E ∈ S (r) is an edge of P if and

only if, for every i ∈ [t], we have |E ∩ S[i]| > r[i].
Perhaps our most important result is the exact computation (via the E-proof) of the

w-sat function for pyramids.

Theorem 1.1. Suppose we are given two non-empty sequences s = (s1, . . . , st) and r =

(r1, . . . , rt) of integers such that si > ri > 1 for i ∈ [t]. Then

w-sat(n, P (s; r)) =
∑

r′

(
n− s[t] + rt

r′t+1

)∏
i∈[t]

(
si + ri−1 − ri

r′i

)
, n > s[t], (1.1)

where the summation is taken over all sequences of nonnegative integers r′ = (r′1, . . . , r′t+1)

such that r′[t+1] = r[t] and, for some i ∈ [t], r′[i] > r[i−1].

The notion of pyramid is quite general. For example, for t = 1 we have P (s; r) = Kr
s

and we obtain the formula

w-sat(n,Kr
s ) =

(
n

r

)
−
(
n− s+ r

r

)
, n > s > r > 1, (1.2)

conjectured by Bollobás [3] and proved by Lovász [10], Frankl [6], and Kalai [7]. On the

other hand, we obtain new results even for 2-graphs: P (s, t; 1, 1) = K2
s +K2

t and we have

w-sat(n,K2
s +K2

t ) = (s− 1)n−
(
s

2

)
+

(
t

2

)
, n > s+ t, s, t > 1.
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Also, P (r − l + 1, l; r − l + 1, l − 1) is the only graph in Hr(r + 1, l), where the uniform

family Hr(m, l) consists of all r-graphs on m vertices with l edges. Hence, (1.1) implies the

following result conjectured by Tuza [14, Conjecture 7].

w-sat(n,Hr(r + 1, l)) =

(
n− r + l − 2

l − 2

)
, n > r + 1 > l > 2.

The case l = 3 of Tuza’s conjecture was proved by Erdős, Füredi and Tuza [5].

An advantage of the E-proof is that it might help in guessing answers. For example, a

correct example of G ∈ w-sat(n, P (s; r)) was obtained by the author by first guessing the

more transparent construction (3.2) which plays the key role in the proof.

The cone cn(F) of an r-graph F is obtained by adding to F a new vertex v and all

r-edges containing v:

E(cn(F)) = E(F) ∪ {D ∪ {v} : D ∈ V (F)(r−1)
}
.

For a family F of graphs we define cn(F) = {cn(F) : F ∈ F}. Our more general

Theorem 4.4 implies that the pair cn(G) ∈ w-SAT(n, cn(F)) admits E/e/e′-proof provided

the pair G ∈ w-SAT(n,F) does likewise and any r − 1 vertices in any F ∈ F are covered

by at least one edge. Of course, this result is only useful if we know many graphs admitting

E/e/e′-proof. Various examples of such graphs are indicated in this work. For 2-graphs,

they include complete graphs, stars, odd cycles, initial colex-segments of [n](2), disjoint

edges (more generally, almost every forest or tree). Therefore, we are able to compute the

w-sat function for cnl(F) = K2
l + F , where F is any of these graphs. Also, (1.2) can easily

be deduced from our cone-result by observing that cn(Kr
s ) = Kr

s+1.

In Section 5 we define the join-operator and prove that it ‘preserves’ E/e/r-proofs. (See

Theorem 5.3 for the precise statement.) For example, Alon’s [1] computation of the w-sat

function for joins of complete graphs (another proof is presented by Yu [15]) is a special

instance of our result.

Unfortunately, E/e/e′-proofs are not easy to handle and there are many concrete

examples for which we could not make our methods work. Besides, E/e/e′-proofs do not

provide the immediate characterization of all minimum graphs. But we hope that they

will lead to further results.

2. Proof techniques

In Section 2.2 we associate with every r-graph G its exterior matroid EG. As this definition

relies on exterior algebra, we provide some background in Section 2.1; for a comprehensive

introduction to the topic the reader can consult Marcus [11], for example. Then, in

Section 2.3, we describe how we apply these notions to w-sat-type problems.

2.1. Exterior algebra

Let V be an n-dimensional real vector space with basis e = {e1, . . . , en}. Its exterior algebra∧
V is a 2n-dimensional vector space with the formal basis (eA)A⊂[n]. (We identify ei

with e{i}, and e∅ with the scalar 1 ∈ R.) It comes equipped with the associative bilinear
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∧-product which is completely determined by ei ∧ ej = −ej ∧ ei, i, j ∈ [n], and

ev1
∧ · · · ∧ evk = e{v1 ,...,vk}, 1 6 v1 < · · · < vk 6 n.

Let (e∗A)A⊂[n] be the dual basis of (eA)A⊂[n]. We naturally identify
∧

(V ∗) and (
∧
V )∗ so that

e∗v1
∧ · · · ∧ e∗vk corresponds to e∗{v1 ,...,vk}, 1 6 v1 < · · · < vk 6 n.

Let f = (f1, . . . , fn) be another basis of V ; in the obvious way we define fA, f∗A, etc. By

M = (αij)i,j∈[n] we denote the (n× n)-matrix satisfying f ∗ = Me∗, that is,

f∗i = αi1e
∗
1 + · · ·+ αine

∗
n, i ∈ [n].

Assume that f is in the generic position with respect to e, that is, the entries of M are

n2 transcendentals algebraically independent over the rationals. Any equation we will

consider can be reduced to the form P = 0 for some polynomial P in the αs with integer

coefficients, and we agree that the statement is true if and only if P is the zero polynomial.

Let
∧i
V be the subspace of

∧
V spanned by (eA)A∈[n](i) . For h ∈ ∧V its support is

defined by supp(h) = {A ⊂ [n] : e∗A(h) 6= 0}. If we take the support in the basis f , we

emphasize this by adding a subscript: suppf (h) = {A ⊂ [n] : f∗A(h) 6= 0}. For g∗ ∈ ∧V ∗,
h ∈ ∧V denote 〈g∗, h〉 = g∗(h) and define the left interior product g∗ x h ∈ ∧V by

〈u∗, g∗ x h〉 = 〈u∗ ∧ g∗, h〉, for all u∗ ∈ ∧V ∗.
One can easily check that x is a bilinear function such that u∗ x (g∗ x h) = (u∗ ∧ g∗) x h
and, for the basis vectors, we have:

e∗A x eB =

{±eB\A, if A ⊂ B,

0, if A 6⊂ B.

(The actual signs of ±1-coefficients do not interest us.) Note that the cancellation (g∗ ∧
e∗A) x (h ∧ eA) = g∗ x h, which is not generally correct, can be applied if, for example, each

B ∈ supp(h) is disjoint from A.

2.2. Construction

Let us describe how to construct the exterior matroid EG of an r-graph G of order n. This

construction is not new: for instance, Kalai [8] used it to construct symmetric matroids

with a given growth polynomial. Also, in the special case G = P (k, n−k; 1, 1), the matroid

EG is exactly Kalai’s [7] k-hyperconnectivity matroid on [n](2), which was applied to w-sat-

type problems. These two papers by Kalai were the starting points for our research on

exterior matroids.

Let V (G) = [n] and let Z ⊂ ∧r
V be defined by the following linear relations:

Z = {h ∈ ∧r
V : f∗E x h = 0 for all E ∈ E(G)}. (2.1)

Clearly, dimZ =
(
n
r

)− e(G) and, in fact, Z is spanned by {fE : E ∈ E(G)}.
We define the exterior matroid EG on [n](r) so that an r-graph F on [n] is dependent if,

for some coefficients cE (not all zero), we have
∑

E∈E(F) cEeE ∈ Z , that is,∑
E∈E(F)

cEf
∗
D
x eE = 0, D ∈ E(G). (2.2)

By M(G, F) we denote the (e(G) × e(F))-matrix corresponding to (2.2). The columns of
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M(G, [n](r)) provide a representation of EG. Note that the matroid EG does not depend

on the choice of generic f . Also, EG is a symmetric matroid, that is, for any permutation

σ : [n]→ [n], A ⊂ [n](r) is EG-independent if and only if σ′(A) is, where σ′ is the induced

action on [n](r). Therefore, we can apply the notion of EG-dependence to an r-graph F

with any vertex set. (If v(F) > v(G), we add isolated vertices to G.)

The rank of EG is codim(Z) = e(G). It is easy to show that G is a base of EG. Indeed,

the determinant of M(G,G) is a polynomial in the αs which assumes value 1 when M (and

then M(G,G)) is the identity matrix. Therefore, the determinant is nonzero for generic M,

which proves the claim.

2.3. Our approach

The following observation, due to Kalai [7], is crucial to our work. Suppose that F is an

r-graph family and M is a matroid on [n](r) such that, for every F ∈ F and for every

embedding V (F) ⊂ [n], the set E(F) ⊂ [n](r) is anM-cycle, that is, every edge E ∈ E(F) is

dependent on E(F)\{E}. Let G ∈ w-SAT(n,F) and let E1, . . . , Ek be anF-proper ordering

of E(G). Then, for every i ∈ [k], there is an F-subgraph of Gi = G+ E1 + · · ·+ Ei which

contains Ei, for some F ∈ F. Thus, Ei lies in the M-closure of Gi−1, which inductively

implies that G spans [n](r) in M. Hence,

w-sat(n,F) > RM([n](r)). (2.3)

In this case we say that we can m-prove the inequality (2.3). IfM is an exterior matroid

or a representable matroid, then (2.3) is said to be e-proved or r-proved , correspondingly.

If the lower bound in (2.3) is sharp, then we say that F admits an m-proof for n. In

the obvious way we define an e-proof and an r-proof . (We use the indefinite article to

emphasize that M is not given and, if a suitable M exists, it might be not unique.)

Furthermore, define

DM(F) = min{DM(F) : F ∈ F},
where DM(F) = minF⊂[n] (e(F)− RM(E(F))). The first edge E1 added to G creates some

forbidden F ⊂ [n]; clearly, E(F) \ {E} ⊂ E(G). Therefore, there are DM(F)− 1 edges in G

which are dependent on the remaining edges and we can improve (2.3) as follows:

w-sat(n,F) > RM([n](r)) + DM(F)− 1. (2.4)

We say that (2.4) is m ′-proved. If M is an exterior or representable matroid, then we

respectively e ′-prove or r ′-prove (2.4). If (2.4) is sharp, then we obtain an m ′/e ′/r ′-proof ,

correspondingly.

As we have already mentioned, it is usually easy to find a correct example of G ∈
w-SAT(n,F) but hard to prove its extremality. Even if there exists an m-proof, it is not

at all obvious how to search for a suitable matroid. However, in our approach we suggest

considering the exterior matroid of G as a candidate for M. If each graph in F is an

EG-cycle, then we conclude by (2.3) that w-sat(n,F) > e(G), that is, G is extremal. In this

case we say that the pair (F, G) admits the E-proof. Hence, the E-proof can be viewed as

a sufficient criterion for G ∈ w-SAT(n, F) to be of the minimal size that does not require
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any choice of a matroid. When G is understood from the context, we simply say ‘F
admits the E-proof’.

It is easy to see that an r-graph F is an EG-cycle if and only if there is an h ∈ Z with

supp(h) = E(F). To verify this condition we have to find a solution (cE)E∈E(F) with all

entries nonzero of the system (2.2).

Let us prove one trivial lemma which, when combined with the results of Sections 4

and 5, has nontrivial consequences.

Lemma 2.1. Let K = lKr
r be the union of l disjoint r-edges. Then EK is the uniform

matroid of rank l, that is, an r-graph F is independent in EK if and only if e(F) 6 l.
In particular, for any family F of r-graphs and for any n with

(
n
r

)
> l, we can e-prove

that w-sat(n,F) > l, where l = min{e(F) : F ∈ F} − 1.

Proof. We show, by induction on l, that any r-graph H of size l is EK -independent.

Assume that E = [r] is an edge in both these graphs. One can see that

det(M(K,H)) = ±α11 · · · αrr det(M(K ′, H ′)) + (other terms),

where H ′ and K ′ are obtained, respectively, from H and K by removing E, and none

of the ‘other terms’ contains α11 · · · αrr as a factor. By induction, we conclude that

det(M(K,H)) 6= 0, and all claims follow.

3. Specific classes

Here we obtain various results for some particular forbidden families.

3.1. Pyramids

Here we calculate w-sat(n, P (s, r)) by showing that pyramids admit the E-proof. Note that

we obtain the exact answer for all feasible values of the parameters n, r and s.

Let P = P (s, r). Assume si > ri > 1 for i ∈ [t] as it is not hard to see that any non-empty

pyramid has such a representation.

Let us, for any n > s = s[t], provide a construction of G ∈ w-SAT(n, P ). Partition

[n] = A1 ∪ · · · ∪ At+1 so that ai = |Ai| = si + ri−1 − ri, i ∈ [t]; thus

at+1 = |At+1| = n−
t∑
i=1

(si + ri−1 − ri) = n− s+ rt.

We also assume that our partition is consecutive, that is, in [n], any element of Ai comes

before any element of Aj whenever i < j. Let E ∈ [n](r) be an edge of G if and only if for

some i ∈ [t] we have |E ∩ A[i]| > r[i−1]. Equivalently, the complement of G is isomorphic

to P (at+1, . . . , a1; rt, . . . , r1, 0), so, for example, any r-tuple intersecting A1 is in E(G).

Lemma 3.1. G ∈ w-SAT(n, P ).

Proof. Order the missing edges in any way so that the sequences(|A[1] ∩ E|, . . . , |A[t+1] ∩ E|) , E ∈ E(G),
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are non-increasing in the lexicographic order. (Thus, we start with (0, r1, . . . , rt) and end

with (0, . . . , 0, r).) Let us show that this ordering is P -proper. Consider the moment when

we add some edge E ∈ E(G). Let Ei = E ∩ Ai+1, i ∈ [t]. Also, let E = R1 ∪ · · · ∪ Rt and

[n] \ E = T1 ∪ · · · ∪ Tt+1 be the consecutive partitions with |Ri| = ri and |Ti| = si − ri,
i ∈ [t].

Let us show that E[i] ⊂ R[i] and T[i] ⊂ A[i] \ E[i−1], i ∈ [t]. As all partitions in

question are consecutive, it is enough to verify the sizes. By the definition of G we have

|E[i]| = |E ∩ A[i+1]| 6 r[i]. Also,

|A[i] \ E[i−1]| > |A[i]| − r[i−1] =

i∑
j=1

(sj + rj−1 − rj)− r[i−1] = |T[i]|,

and the claim follows.

Let Si = Ti ∪ Ri, i ∈ [t]. We claim that E creates a forbidden subgraph P on the set

S = S[t]. For every i ∈ [t] we have |E ∩ Si| = |Ri| = ri, so E ∈ E(P ).

Suppose, on the contrary, that there exists D ∈ E(P ) coming after E. Let us show by

induction on i that, for every i ∈ [0, t], we have

D ∩ S[i] = E ∩ S[i] and D ∩ A[i+1] = E ∩ A[i+1], (3.1)

which would be a contradiction to the assumption D 6= E. As D,E ∈ E(G) are disjoint

from A1, the claim is true for i = 0. Let i ∈ [t]. As T[i] ⊂ A[i], we conclude, by the inductive

assumption, that D ∩ T[i] = E ∩ T[i] = ∅. As S[i] = T[i] ∪ R[i], we have D ∩ S[i] ⊂ R[i]. On

the other hand, D ∈ E(P ), so |D ∩ S[i]| > r[i], which implies

D ∩ S[i] = R[i] = E ∩ S[i],

and the first part of (3.1) is proved. Now,

D ∩ A[i+1] ⊃ R[i] ∩ A[i+1] ⊃ E[i] ∩ A[i+1].

By induction, D ∩ A[i] = E ∩ A[i] and, as D was added later than E, we must have

|D ∩ A[i+1]| 6 |E ∩ A[i+1]|, which proves (3.1) completely.

Theorem 3.2. The pair (P ,G) admits the E-proof.

Proof. We have to show that P is an EG-cycle. Let us consider

h = h1 ∧ · · · ∧ ht, where hi = f∗A[i]

x eS[i]
∈ ∧riV , i ∈ [t]. (3.2)

Each E ∈ supp(h) is of the form E ′1 ∪ · · · ∪ E ′t, for some E ′i ∈ supp(hi), i ∈ [t]. Clearly,

|E ′i | = ri and E ′i ⊂ S[i]. Therefore, |E ∩ S[i]| > |E ′[i]| = r[i], so supp(h) ⊂ E(P ). Similarly,

suppf (hi) lives within A[i+1,t+1], i ∈ [t], which implies that suppf (h) ⊂ E(G).

So, to prove the theorem, it is enough to show that for any E ∈ E(P ) we have

PE = 〈e∗E, h〉 6= 0. To do so, we can assume that S is an initial segment in [n] and every

element of Si comes before every element of Sj whenever i < j. Furthermore, we can

assume that Ei = E ∩ Si is a final segment of Si. Note that A[i] ⊂ S[i] ⊂ A[i+1], and

Ri = S[i] \ A[i] consists of the last ri elements of Si, i ∈ [t]. Clearly, |E| = |R|, where

R = R[t], so let g : E \ R → R \ E be the order-preserving bijection.
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As PE is a polynomial in the αs, to show that PE 6= 0, it is enough to demonstrate a

particular example of the αs (or f ∗) such that PE 6= 0. Define

f∗x =

{
e∗x + e∗g(x), x ∈ E \ R,

e∗x, otherwise.
(3.3)

Let i ∈ [t]. Denote Wi = A[i] \ (E \ R) and

Xi = {x ∈ A[i] \Wi : g(x) ∈ A[i]},
Yi = {x ∈ A[i] \Wi : g(x) 6∈ S[i]},
Zi = {x ∈ A[i] \Wi : g(x) ∈ S[i] \ A[i]}.

As A[i] ⊂ S[i], we have a partition A[i] = Wi ∪ Xi ∪ Yi ∪ Zi. As f∗x = e∗x for x ∈ Wi and

g(x) ∈Wi for x ∈ Xi, we have

f∗A[i]
= ±e∗Wi

∧ f∗Xi∪Yi∪Zi = ±e∗Wi\g(Xi)
∧ (∧x∈Xi(e

∗
x + e∗g(x)) ∧ e∗g(x)

) ∧ f∗Yi∪Zi
= ±e∗Wi\g(Xi)

∧ (∧x∈Xie
∗
x ∧ e∗g(x)

) ∧ f∗Yi∪Zi = ±e∗Wi∪Xi ∧ f∗Yi∪Zi .
Next, g(Yi) ∩ S[i] = ∅ and g(Zi) ⊂ S[i] \ A[i] = Ri. Hence

hi = ±(e∗Wi∪Xi ∧
(∧

x∈Yi(e
∗
x + e∗g(x))

) ∧ f∗Zi) x eS[i]

= ± (e∗Wi∪Xi∪Yi ∧ f∗Zi
) x eS[i]

= ±f∗Zi x eZi∪Ri .
For i ∈ [t] we have |E[i−1]| > |R[i−1]|, and one of Ei and Ri is a subset of the other, so,

for each x ∈ Ei \R, g(x) lies in Rj = S[j] \A[j] and x ∈ Zj for some j ∈ [i+ 1, t]. Therefore,

Z[t] = E \ R.

When we compute PE = ±〈e∗E,∧i∈[t](f
∗
Zi
x eZi∪Ri)〉 by expanding further each hi in the

e-basis, we obtain h as a sum of terms each of the form eD , for some D ∈ [n](r). By

definition, 〈e∗E, eD〉 = 0 unless E = D. Consider some x ∈ Zi. As x 6∈ R and Z1, . . . , Zt are

disjoint, no element of supp(hj) can contain x unless j = i. Computing hi, we have

hi = ±(f∗Zi\{x} ∧ e∗g(x)

) x eZi∪Ri ± (f∗Zi\{x} ∧ e∗x) x eZi∪Ri ,
and no element in the e-support of the second summand can contain x. Thus we can

harmlessly replace f∗x by e∗g(x). (Clearly, this does not affect hj for j 6= i.) Now,

PE = ±〈e∗E,∧i∈[t]

(
e∗g(Zi)
x eZi∪Ri

)〉
= ±〈e∗E, eZ[t]∪R[t]\g(Z[t])

〉
= ±〈e∗E, eE〉 = ±1.

Thus PE is nonzero and the theorem is proved.

Now the promised Theorem 1.1 clearly follows.

3.2. Uniform families

Let us consider uniform families studied for example by Erdős, Füredi and Tuza [5]. By

definition, G ∈ w-SAT(n,Hr(m, l)) if we can consecutively add all missing edges to G so

that every time we create a new subgraph with at most m vertices and at least l edges.

In [13] we present a general construction of a weaklyHr(m, l)-saturated graph of order n,

which we conjecture to be extremal, and prove some partial cases of our conjecture. Here

we obtain further results confirming it: we compute w-sat(n,Hr(m, l)) asymptotically for

l >
(
m
r

)− m+ r and exactly for r = 2.
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First, we need one simple preliminary result.

Lemma 3.3. Let G be an r-graph of order n and size at least
(
n
r

)− n+m, where n > m >

r > 2. Then every E ∈ E(G) is contained in a complete subgraph of order m.

Proof. Given E ∈ E(G), remove from each missing edge one (arbitrary) vertex not

belonging to E. We are left with at least m vertices spanning a complete subgraph which

contains E.

Theorem 3.4. Let l =
(
m
r

)− k, c = m− k − r, and H =Hr(m, l). If m > r + k, then

w-sat(n,H) = c

(
n

r − 1

)
+ O(nr−2). (3.4)

Furthermore, if r = 2, then we have an e ′-proof that

w-sat(n,H2(m, l)) = c(n− m) + l − 1, n > m. (3.5)

Proof. The r-graph G on [n] consisting of all edges intersecting [m− r + 1] in at least 2

vertices plus all edges intersecting [c] is weakly H-saturated: we can add first all missing

edges intersecting [m− r+ 1] and then the remaining ones in any order. Computing e(G)

we obtain the upper bounds in (3.4) and (3.5).

On the other hand, in any F ∈ H, any edge lies within a Kr
m−k-subgraph by Lemma 3.3.

However, by Theorem 3.2, Kr
m−k is a cycle in EP , the exterior matroid of P = P (c, n −

c; 1, r−1), so each F ∈ H is an EP -cycle. By (2.3), w-sat(n,H) > REP ([n](r)) = e(P ), which

e-proves the required lower bound in (3.4).

Finally, let us e′-prove the lower bound in (3.5) for r = 2. Let F ∈ H. As F has m

vertices,

REP (F) 6 REP (K2
m) 6 e(P (c, m− c; 1, 1)) = cm− (c+1

2

)
.

(The second inequality is true because P (c, m− c; 1, 1) ∈ w-SAT(m,K2
m−k) and K2

m−k is an

EP -cycle.) Therefore DEP (F) > l − cm+
(
c+1

2

)
and we obtain

w-sat(n,H) > REP (Kn) + DEP (F)− 1 > c(n− m) + l − 1.

Remark. (1) It is trivial that, if 1 6 l 6
(
m−1
r

)
+ 1, then w-sat(n,Hr(m, l)) = l−1, n > m,

which settles all remaining cases of Theorem 3.4 for r = 2.
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(2) In fact, the graph G constructed in the proof is weakly F-saturated, where E(F)

consists of the first l elements of [m](r) in the colex order. So, Theorem 3.4 remains true if

F is the only member of F; this covers all possible cases for r = 2 except the trivial case

l =
(
m−1

2

)
+ 1.

3.3. Forests

By Lemma 2.1 we know that, if w-sat(n, T ) = e(T ) − 1, then T admits an e-proof for n.

In fact, we can show that we have the E-proof if T is a forest.

Lemma 3.5. Let F and H be any forests with e(F) 6 e(H). Then F is independent in EH .

In particular, if G ∈ w-SAT(n, F) and e(G) = e(F) − 1, then the pair (F,G) admits the

E-proof.

Proof. We use induction on l = e(H). It is enough to prove the claim for e(F) = e(H).

Assume that 1 is an end-vertex incident to the edge E = {1, 2} in both F and H . Clearly,

det(M(H, F)) = ±α1,1α2,2 det(M(H − E, F − E)) + (α1,1-free polynomial).

By induction we conclude that det(M(H, F)) 6= 0, which proves the lemma.

If T contains, for example, vertices a, b, c of degrees 1, 1, 2, respectively, such that

{a, c}, {c, d}, {b, d} ∈ E(T ), for some vertex d, then adding the edges {d, x} and {x, y} to T ,

for any x, y 6∈ V (T ), we create each time a new graph isomorphic to T ; this implies that

w-sat(n, T ) = e(T ) − 1 with possible exceptions for some n 6 2m, m = v(T ). Generating

a random tree by, for example, taking all mm−2 vertex-labelled trees to be equiprobable,

one can show that almost every tree contains the above ‘abc-configuration’ and therefore

admits the E-proof.

3.4. Complete bipartite graphs

Kalai [7] proved (in fact, e-proved) that w-sat(n,Ks,s) = (s − 1)n − (s−1
2

)
for n > 2s + 1.

The value of w-sat(n,Ks,t), t > s, is in general unknown. We can show that Ks,t is an

EG-cycle, where E(G) consists of elements of [n](2) intersecting A = [s− 1] or lying within

B = [t− 1]. (This can be done by considering h = (f∗A x e[s])∧ (f∗B x e[s+1,s+t]).) This gives a

better lower bound than the trivial inequality w-sat(n,Ks,t) > w-sat(n,Ks,s) for any s > 2

when t is sufficiently large. However, we do not have the matching upper bound, so we

do not provide any further details here.

3.5. Cycles

It is not hard to prove directly the following result on cycles.

Lemma 3.6. Let n > m. If m is odd, then w-sat(n, Cm) = n − 1 and all extremal graphs

are trees of order n and diameter at least m− 1. If m is even, then w-sat(n, Cm) = n and all

extremal graphs are trees of order n of diameter at least m− 1 plus an extra edge creating

an odd cycle.
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If n = m, then w-sat(n, Cm) = n and all extremal graphs are obtained from a Hamiltonian

cycle by adding an edge creating an odd cycle and removing any other edge.

In fact, any odd cycle Cm admits an e-proof for n > m. Indeed, consider E = EP (1,n−1;1,1).

Any edge of Cm is E-dependent on the remaining ones because the path with m edges is

weakly K2
3 -saturated and K2

3 is an E-cycle by Theorem 3.2. Clearly, RE([n](2)) = n− 1, so

the claim follows. (If restricted to [n](2), E is the usual cycle matroid .)

Even cycles admit an r-proof. Indeed, let M be Doob’s [4] even-cycle matroid on [n](2)

which can be represented by mapping {i, j} ∈ [n](2) to ei + ej , for some basis {e1, . . . , en}
of a real vector space V . It is easy to show that every even cycle is an M-circuit, and

RM([n](2)) = n, which implies our claim.

Probably, even cycles do not admit an e-proof, but we cannot prove this.

3.6. Disjoint edges

The case when lKr
r , the union of l disjoint r-edges, is forbidden is rather easy.

Lemma 3.7. For n > lr we have w-sat(n, lKr
r ) = l−1 and (l−1)Kr

r (plus isolated vertices)

is the only extremal graph. Hence, by Lemma 2.1, we have the E-proof here.

4. Cones

The definition of the cone of an r-graph was given in the introduction. In this section we

prove that cones ‘preserve’ E/e/g′-proofs.

Lemma 4.1. Suppose that any r − 1 vertices of an r-graph F are covered by at least one

edge. If F is an EG-cycle, for some r-graph G, then cn(F) is an Ecn(G)-cycle.

Proof. Suppose first that v(G) > v(F). Let G′ = cn(G), V (G) = [n − 1] and V (G′) = [n].

Identify the vertices of G′ with the basis {e1, . . . , en} of a vector space V ′. Let Z ′ be the

subspace of
∧r
V ′ and let EG′ be the exterior matroid on [n](r) corresponding to G′.

We may assume that F ′ = cn(F) is embedded into [n] so that V (F ′) \ V (F) = {n}.
We have to show that E(F ′) is a cycle in EG′ , that is, we have to find h′ ∈ Z ′ such that

supp(h′) = E(F ′). Define g∗n = f∗n and

g∗i = f∗i − αin

αnn
f∗n , i = 1, . . . , n− 1. (4.1)

Recall that f ∗ is a generic basis of (V ′)∗ and αij = f∗i (ej), so g∗i (en) = 0, i ∈ [n − 1], and

this is the main point of our definition. The matrix N = (g∗i (ej))i,j∈[n−1] is clearly a generic

matrix for a generic choice of the αs.

As F is an EG-cycle, the system of linear equations

g∗D x
( ∑

E∈E(F)

cEeE

)
= 0, D ∈ E(G), (4.2)

with respect to the undeterminants (cE)E∈E(F), has a solution with all c s being nonzero

for generic g (which is the case for generic f ). Apply elementary matrix transforms to
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write the system (4.2) in a diagonal form. For the free variables choose β1, . . . , βk which

(together with the αs) are algebraically independent over the rationals, and compute the

other variables, each being a rational function of the αs and βs.

Let h =
∑

E∈E(F) cEeE and h′ = f∗n x (h ∧ en). To complete the theorem it is enough to

show that h′ ∈ Z ′ and supp(h′) = E(F ′).
Let D ∈ E(G′). We want to show that f∗D x h′ = 0. This is clearly the case if D 3 n. If

D 63 n, then

〈f∗D, h′〉 =
〈∧

i∈D
(
g∗i + αin

αnn
f∗n
)
, f∗n x (h ∧ en)〉 = 〈g∗D ∧ f∗n , h ∧ en〉 = f∗n (en)〈g∗D, h〉 = 0,

where we used (4.1), the relations g∗i (en) = 0, i ∈ [n− 1], and the definition of h. Therefore

h′ ∈ Z ′.
Clearly, supp(h′) ⊂ E(F ′). On the other hand, take any E ∈ E(F ′). If E ∈ E(F) then

〈e∗E, h′〉 = 〈e∗E ∧ f∗n , h ∧ en〉 = 〈e∗E, h〉 · 〈f∗n , en〉 = cEf
∗
n (en) 6= 0,

because n 6∈ E. If E 3 n then let D1, . . . , Dl be the edges of F containing E ′ = E \ {n}. By

our assumption, l > 0. Let Di \ E = {di}. Then

PE = 〈e∗E, h′〉 = 〈e∗E′ ∧ e∗n ∧ f∗n , h ∧ en〉 = −〈e∗E′ ∧ f∗n , h〉

= −
〈
e∗E′ ∧ f∗n ,

∑
E∈E(F)

cEeE

〉
=

l∑
i=1

±cDi〈f∗n , edi〉 =

l∑
i=1

±cDiαn,di .

(The third equality is true as supp(h) = E(F) ⊂ [n− 1](r).)

As every cDi is a rational function in the αs and βs so is PE . To show that PE 6= 0

for a generic f , it is enough to demonstrate an example of f when PE 6= 0. Let αin = 0,

i ∈ [n− 1]. Then system (4.2) reduces to

f∗D x
( ∑

E∈E(F)

cEeE

)
= 0, D ∈ E(G). (4.3)

By the algebraic independence of (f∗i (ej))i,j∈[n−1], if we perform the diagonalization for (4.3)

in the same order as for (4.2), we will obtain the same set of free variables. Therefore,

(cE)E∈E(F) provides every solution for (4.3) when the βs range over the reals. Thus each cE
is nonzero (as F is an EG-cycle) and it can depend only on f∗i (ej) = αij , i, j ∈ [n− 1], and

the βs. Now it is obvious that PE =
∑l

i=1 cDiαn,di cannot be identically zero. This proves

the lemma if v(G) > v(F).

Otherwise, we can add v(F) − v(G) isolated vertices to G to obtain H . By the above,

cn(F) is a cycle in Ecn(H), that is, each edge of cn(F) is dependent on the other edges.

The latter claim is certainly true in Ecn(G) which has more dependences than Ecn(H) as

cn(G) ⊂ cn(H).

Lemma 4.2. If an r-graph F is independent in EG and v(F) 6 v(G), then cn(F) is indepen-

dent in Ecn(G).
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Proof. We assume the same conventions as those appearing in the proof of Lemma 4.1

before (4.2). It is enough to prove our claim in the case e(G) = e(F): if e(G) > e(F) we

can remove a G-edge with F still being EG-independent.

Let us show that the rank of M ′(G′, F ′) is e(F ′), where M ′(D,E) = 〈g∗D, eE〉, D ∈ E(G′),
E ∈ E(F ′), which implies the lemma.

By our assumption, the square submatrix M ′(G, F) ⊂M ′(G′, F ′) is nonsingular because

the matrix N is generic. As g∗i (en) = 0 for i ∈ [n− 1], we conclude that all entries of the

submatrix M ′(G, F ′′) are zeros, where E(F ′′) = E(F ′) \E(F). Therefore, to prove the claim

we have to show that the submatrix M ′(G′′, F ′′) has the maximal possible rank
(
v(F)
r−1

)
,

where E(G′′) = E(G′) \ E(G).

For any D′ = D ∪ {n} ∈ E(G′′), E ′ = E ∪ {n} ∈ E(F ′′), we have

〈g∗D′ , eE′ 〉 = g∗n(en) · 〈g∗D, eE〉,
because g∗i (en) = 0, i ∈ [n− 1]. (As n is the last element in D′ and E ′, we do not have ±1

in the formula.) Now,

M ′(G′′, F ′′) = g∗n(en) ·M ′
(
[n− 1](r−1), V (F)(r−1)

)
has rank

(
v(F)
r−1

)
because N is generic.

Remark. It is not hard to show that, if F is not independent in EG, then cn(F) is not

independent in Ecn(G) for any r-graphs F and G. But we do not need this.

Lemma 4.3. If G ∈ w-SAT(n− 1,F), then cn(G) ∈ w-SAT(n, cn(F)). In particular,

w-sat(n, cn(F)) 6 w-sat(n− 1,F) +

(
n− 1

r − 1

)
.

Proof. Let E1, . . . , Em be an F-proper ordering of E(G). To show that G′ = cn(G) is

weakly cn(F)-saturated, add these edges in the same order to G′. (Note that E(G′) = E(G).)

Every Ei creates an F-subgraph in G, F ∈ F, which, together with the extra vertex, creates

a copy of cn(F) in G′, so G′ ∈ w-SAT(n, cn(F)).

Theorem 4.4. Let F be a family of r-graphs such that, in each F ∈ F, any r− 1 vertices

are covered by at least one edge.

If (F, G) admits the E-proof, then so does the pair (cn(F), cn(G)).

If we can e-prove w-sat(n− 1,F) > l, then we can e-prove

w-sat(n, cn(F)) > l +

(
n− 1

r − 1

)
. (4.4)

In particular, if F admits an e-proof for n − 1, then cn(F) admits an e-proof for n. The

analogous claim is true for the e′-technique.

Proof. The claim about the E-proof follows from Lemmas 4.3 and 4.1.

Next, consider the e-technique. Take any G such that each F ∈ F is an EG-cycle and

REG(Kr
n−1) > l. Adding extra vertices to G, we may assume v(G) > n− 1. By Lemma 4.1,
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each graph in cn(F) is a cycle in Ecn(G). By Lemma 4.2, REcn(G)
(Kr

n) > l +
(
n−1
r−1

)
, that is, we

can e-prove (4.4), as required.

In the e′-case, choose G such that each F ∈ F is an EG-cycle, and

REG(Kr
n−1) + DEG(F)− 1 > l.

Now we proceed in the same way as in the e-case, except we have to show additionally

that, for any F ∈ F, we have DEG(F) 6 DEcn(G)
(cn(F)).

Note that, if we have F-edges E1, . . . , Ed whose removal does not decrease the EG-rank

of E(F), then the system of equations (4.2) has a solution in which cE1
, . . . , cEd can be

chosen to be the free variables β1, . . . , βd. Following the proof of Lemma 4.1 (note that F

is an EG-cycle), one can let (cE) be such a solution of (4.2) and observe that

〈e∗Ei , h′〉 = 〈e∗Ei ∧ f∗n , h ∧ en〉 = 〈e∗Ei , h〉 · 〈f∗n , en〉 = βiαnn, i ∈ [d],

since Ei ⊂ [n − 1]. This means that, choosing generic βs, we can obtain h′ ∈ Z ′ whose

support is E(cn(F)) with e∗Ei(h
′) being generic, which is precisely to say that E1, . . . , Ed

are Ecn(G)-dependent on the other edges of cn(F). Hence, DEcn(G)
(cn(F)) > d and the claim

follows.

Remark. We cannot generally discard the covering condition in Lemma 4.1 or

Theorem 4.4. (But note that we do not have any covering condition on G.) Consider, for

example, r = 2 when the condition rules out isolated vertices. Let F be a triangle plus

an isolated vertex and let G be a star K1,n−2, n > 5. Then (F,G) admits the E-proof (see

Section 3.1). But it is easy to see that w-sat(n, cn(F)) = 6 < e(cn(G)) = 2n − 3, and so

cn(F) cannot be an Ecn(G)-cycle.

5. Joins

Here we indicate how to extend the idea of E/e/etc.-proofs to layered graphs and prove

that joins ‘preserve’ E/e/r-proofs.

Let t ∈ N be fixed. A layered set X of signature n = (n1, . . . , nt) is a sequence of t

disjoint sets, X = (X1, . . . , Xt), such that |Xi| = ni, i ∈ [t]. The components of X are called

layers. Given r = (r1, . . . , rt), a layered r-graph G is a pair (V (G), E(G)) where V (G) is a

layered set and E(G) ⊂ V (G)(r). In other words, every r-graph G is an r-graph (usually,

given r, we denote r =
∑

i∈[t] ri) which comes with a fixed partition of the vertex set into

t layers such that every edge intersects the ith layer in exactly ri vertices. For example,

bipartite graphs are (1, 1)-graphs; for t = 1 we obtain the usual notion of an r-graph.

In the obvious way we define (within the class of r-graphs) the notions of the com-

plement, a subgraph, etc. (All morphisms, etc., between r-graphs respect the layers.) For

example, given an r-graph F, w-SAT(n,F) consists of all r-graphs G on an n-set such that

we can add consecutively all missing r-edges to G, creating an F-subgraph every time.

It is clear how to extend the notion of an m/r-proof to layered graphs. It is also possible

to introduce the exterior matroid of an r-graph G defined on an n-set X. Indeed, identify

each Xi with a basis ei = (ei,j)j∈[ni] of an ni-dimensional vector space Vi and consider
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V =

⊗
i∈[t]

∧
Vi. Let

∧rV be the linear subspace of
∧

V spanned by the elements

h = h1 ⊗ · · · ⊗ ht, hi ∈ ∧riVi, i ∈ [t].

Let fi = (fi,j)j∈[ni] be another basis of Vi lying in generic position with respect to ei, i ∈ [t].

In the obvious way we define supports, etc. For any r-subset E ⊂ X, let

fE =
⊗

i∈[t] fi,Ei and eE =
⊗

i∈[t] ei,Ei .

Let the linear subspace Z ⊂ ∧rV corresponding to G be spanned by the elements

{fE : E ∈ E(G)}, and let r-sets E1, . . . ,Ek be independent if no linear combination of

eE1
, . . . , eEk

(except 0) belongs to Z. The required matroid EG of rank codim(Z) = e(G) is

built.

Given t (usual) ri-graphs Fi, i ∈ [t], with disjoint vertex sets, their join (or tensor product)

F = F1 ⊗ · · · ⊗ Ft is the layered r-graph on the layered set

V (F) = (V (F1), . . . , V (Ft))

such that an r-subset E = (E1, . . . , Et) is an edge of F if and only if Ei ∈ E(Fi) for every

i ∈ [t]. Thus e(F) =
∏

i∈[t] e(Fi).

Suppose that we are given t families Fi of ri-graphs, i ∈ [t]. Define their join by

F =F1 ⊗ · · · ⊗Ft = {F1 ⊗ · · · ⊗ Ft : Fi ∈ Fi, i ∈ [t]} .
Let these conventions apply to the remainder of this section. We need the following

simple lemmas.

Lemma 5.1. If Gi ∈ w-SAT(ni,Fi), i ∈ [t], then G ∈ w-SAT(n,F), where G = G1⊗· · ·⊗Gt.
In particular,

w-sat(n,F) 6
∏
i∈[t]

(
ni

ri

)
−∏

i∈[t]

((
ni

ri

)
− w-sat(n,Fi)

)
.

Lemma 5.2. If Fi is a cycle in EGi , i ∈ [t], then F = F1 ⊗ · · · ⊗ Ft is a cycle in EG, where

G = G1 ⊗ · · · ⊗ Gt.

Proof. Given hi ∈ ZGi ⊂
∧riVi with suppei(hi) = E(Fi), i ∈ [t], consider h = h1⊗· · ·⊗ht ∈∧rV.

Theorem 5.3. Suppose that, for every i ∈ [t], the pair (Fi, Gi) admits the E-proof. Then so

does the pair (F,G), where G = G1 ⊗ · · · ⊗ Gt.
Suppose that, for each i ∈ [t], we can e-prove that w-sat(ni,Fi) > li. Then we can e-prove

that

w-sat(n,F) >
∏
i∈[t]

(
ni

ri

)
−∏

i∈[t]

((
ni

ri

)
− li
)
. (5.1)

In particular, by Lemma 5.1, if each Fi admits an e-proof for ni, then F admits an e-proof

for n. The analogous statement is true for the r-technique.
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Proof. The claim about the E-proof follows from Lemmas 5.1 and 5.2.

Now, consider the e-case. For i ∈ [t], choose Gi such that each graph inFi is an EGi-cycle

and the EGi-rank of Kri
ni

is at least li; let Hi ⊂ Kri
ni

be an EGi-independent subgraph of size

li and order ni. Let

G = G1 ⊗ · · · ⊗ Gt,
H = H1 ⊗ · · · ⊗Ht.

By Lemma 5.2, each F1 ⊗ · · · ⊗ Fk ∈ F is an EG-cycle.

Let us show that H is independent in EG. As each Hi is EGi-independent, we can find

a linear map pi :
∧riVi → ZGi , which is the identity map on ZGi while pi(eE) = 0 if

E ∈ E(Hi), i ∈ [t]. Define

p = p1 ⊗ · · · ⊗ pt :
∧rV → ZG1

⊗ · · · ⊗ ZGt ,
that is, p(u1⊗· · ·⊗ut) = p1(u1)⊗· · ·⊗pt(ut). Now, p is the identity map on ZG1

⊗· · ·⊗ZGt =

ZG, while p is zero on eE for each E = E1 ∪ · · · ∪ Et ∈ E(H). Hence, no nonzero linear

combination of eE, E ∈ E(H) can lie in ZG, that is, H is independent in EG. The size of

H equals the right-hand side of (5.1), as required.

In the r-case, our task is to construct a matroid M on the set of r-subsets of X such

that every graph in F is an M-cycle, should we be given appropriate matroids Mi on

Yi = X
(ri)
i , i ∈ [t].

Let ki : Yi → Vi, for some vector space Vi, be a representation of the matroid

Mi, i ∈ [t]. Identify Yi with a basis of some vector space Wi via gi : Yi ↪→ Wi. Let

hi : Wi → Vi be the linear map extending ki. Denote Zi = ker(hi) ⊂ Wi. Clearly,

codimZi = RMi
(Yi) = e(Gi) > li, where Gi is a base of Mi.

Let G = G1 ⊗ · · · ⊗ Gt. Identify the r-subsets of V (G) with a basis of W =
⊗

i∈[t] Wi

by mapping E = (E1, . . . , Et) into g(E) =
⊗

i∈[t] gi(Ei). Let Z =
⊗

i∈[t] Zi ⊂ W and

p : W→W/Z be the projection.

Let M be the matroid represented by p ◦ g : V (G)(r) → W/Z. Let us show that M
r-proves (5.1).

As g(V (G)(r)) is a basis for W, we conclude that the rank of M is

dim W− dim Z =
∏
i∈[t]

(
ni

ri

)
−∏

i∈[t]

e(Gi),

which is no smaller than the right-hand side of (5.1).

Thus, all we have to do is to check that any F = F1 ⊗ · · · ⊗ Ft ∈ F is an M-cycle. Fix

an edge E = (E1, . . . , Et) ∈ E(F). As Fi is anMi-cycle, we conclude that there are ci,E ∈ R,

E ∈ E(Fi) \ {Ei}, and zi ∈ Zi such that

gi(Ei) = zi +
∑

D∈E(Fi)\{Ei}
ci,Dgi(D), i ∈ [t]. (5.2)

If we take the tensor product of (5.2) over i ∈ [t], we obtain on the left-hand side the

element g(E), while on the right-hand side we will have z1 ⊗ · · · ⊗ zt ∈ Z plus some other

tensor products. Next, in the remaining tensor products replace each zi by the linear

combination of (gi(D))D∈E(Fi) derived from (5.2). Each term then becomes ⊗i∈[t]gi(Di) for
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some Di ∈ E(Fi), that is, it is of the form g(D), D = (D1, . . . , Dt) ∈ E(F) and, moreover,

we never have D = E. So we have a representation of g(E) as a linear combination

of an element of Z and of g(D), D ∈ E(F) \ {E}, precisely as required. The theorem is

proved.

Unfortunately, there does not seem to be a natural ⊗-operation for matroids (cf. Lovász

[10]), so we do not know if joins preserve m-proofs.
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