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Let K1,n be the star with n edges, K3 be the triangle, and Codd be the family of odd cycles.
We establish the following bounds on the corresponding size Ramsey numbers.

n2 + (0.577 + o(1))n3/2 < r̂(K1,n, Codd) ≤ r̂(K1,n, K3) < n2 +
√
2n3/2 + n.

The upper (constructive) bound disproves a conjecture of Erdős.
Also we show that r̂(K1,n,Fn) = (1+ o(1))n2 provided Fn is an odd cycle of length

o(n) or Fn is a 3-chromatic graph of order o(logn).

1. Introduction

Given two graphs F1 and F2, we say that a graph G arrows the pair (F1,F2),
denoted by G→(F1,F2), if for any blue-red colouring of the edge set of G we
necessarily have either a blue copy of F1 or a red copy of F2 (or both). The
size Ramsey number r̂(F1,F2) is the minimal number of edges of a graph G
such that G→(F1,F2).

For example, it is easy to verify that Pn+1,n→ (K1,n,K3), where Pm,n =
Km+En has m+n vertices of which m vertices are connected to every other
vertex. Erdős [3], see also e.g. [2,4], conjectured that Pn+1,n is a minimum
such graph, that is, r̂(K1,n,K3)=e(Pn+1,n)=

(2n+1
2

)
−
(n
2

)
.

In fact, Erdős [3] made a stronger conjecture which states that any graph
with

(2n+1
2

)
−
(n
2

)
−1 edges is a union of a bipartite graph and a graph with
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maximum degree less than n, n≥ 3. In the size Ramsey terminology, this
is equivalent to the statement that r̂(K1,n,Codd) =

(2n+1
2

)
−
(n
2

)
, where Codd

denotes the family of odd cycles.
We show, however, that both these size Ramsey numbers grow as n2

plus a term of order n3/2, so that the conjecture fails for all n≥5. More pre-
cisely, we establish the following bounds. (Note that trivially r̂(K1,n,K3)≥
r̂(K1,n,Codd).)

Theorem 1.

r̂(K1,n,K3) < n2 +
√

2n3/2 + n, for n ≥ 1,(1)

r̂(K1,n, Codd) > n2 + 0.577n3/2, for sufficiently large n.(2)

By modifying our construction we demonstrate, for any given constant
ε>0, a graph G of size at most (1+ε)n2 such that, for any blue-red colouring
of E(G) without a blueK1,n, we have red cycles of all lengths up to cn as well
as a red complete tripartite graph Ks,s,s with s≥ c logn, where c= c(ε)> 0
does not depend on n. This implies by (2) that r̂(K1,n,Fn)=(1+o(1))n2 if
Fn is a an odd cycle of order o(n) or any 3-chromatic graph of order o(logn).

Of course, many questions remain open. One is to find more precise
estimates of the error term in the formulas above. Also, it is not clear how, for
example, r̂(K1,n,C2m+1) behaves for m≥cn. A related direction of research
is to view the triangle as a complete graph and investigate r̂(K1,n,Km) for
small fixed m.

2. Upper bound

Proof of (1). We provide an explicit construction of a (K1,n,K3)-arrowing
graph G.

Take any representation n=k1 + . . .+km and let G be the disjoint union
of Pki,n, i ∈ [m], plus a vertex x connected to everything else. Consider
any blue-red colouring of E(G) without a blue K1,n. Among mn+n edges
incident to x there are at least mn+1 red ones. By the pigeon-hole principle,
x sends at least n+1 red edges to some Pkj ,n, say {x,yi}, i∈ [0,n], of which
at least one must be incident to a vertex of Kkj

⊂ Pkj ,n, say y0. But of n
edges {y0,yi}∈E(G), i∈ [n], one is necessarily red and creates a red triangle
whose third vertex is x. Hence, G→(K1,n,K3).

We have e(G)=(m+n+1)n+
∑

i∈[m]

(ki
2

)
. To minimise e(G) we take the

ki’s nearly equal; so they are essentially uniquely determined by m. Any
value of m we choose will give some upper bound for r̂(K1,n,K3). Choose m
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so that n=2m2+r, where |r|≤2m. So, for example, when n=2m2−2m we
could choose either m or m−1. We believe, though we do not prove, that such
a choice of m is optimal. (A supporting evidence is that the real relaxation
of the function e(G), where ki =n/m, has its minimum at m=

√
n/2.)

The verification of (1) is now best split into four cases. For example, for
0≤r≤m, ki =2m occurs m−r times and ki =2m+1 occurs r times. Routine
simplifications show that

2n3 − (e(G) − n2 − n/2 − r/2)2 = 3m2r2 + 2r3 ≥ 0,

which implies (1). The other cases can be verified similarly.

One can check that the bound (1) gives strictly better values than
(2n+1

2

)
−(n

2

)
for all n ≥ 6. In fact, Erdős’ conjecture fails also for n = 5 when the

representation n= 2+3 produces a graph with 44 edges, as opposed to the
conjectured value of 45.

We do not know any example beating our construction, which therefore
might be an extremal one, but we do not dare to make any conjecture yet.
It is surprising that a counterexample was not found earlier. An explanation
might be that Pn+1,n is perhaps minimum among all (K1,n,Codd)-arrowing
graphs of order v slightly greater than 2n. (Clearly, no (K1,n,Codd)-arrowing
graph of order v=2n exists.) As shown by Faudree (see [5] for a proof) this
is true for v=2n+1. The case v=2n+2 is open. Note that we can can beat
Pn+1,n on 3n+1 vertices for n≥5: take m=2 in our construction.

3. Lower bound

In this section we suppose on the contrary to (2) that there is a (K1,n,Codd)-
arrowing graph G with at most n2 + 0.577n3/2 edges and try to derive a
contradiction for large n.

Instead of 2-colourings of E(G) we find it more convenient to operate
with 2-partitions of V (G). Thus our assumption on G states that

max {∆(G[A]),∆(G[B])} ≥ n

for any partition V (G) = A∪B, where e.g. ∆(G[A]) denotes the maximal
degree of the subgraph of G spanned by A.

We refer to the following simple argument as the greedy algorithm.

Lemma 1 (Greedy Algorithm). Let A ⊂ V (G). Consecutively and as
long as possible let xi be any vertex (if it exists) of degree at least n in
G[A\{x1, . . . ,xi−1}]. Let X={x1, . . . ,xk}⊂A be the obtained set.

Then k ≥ n− |A| + 1, where A = V (G) \A. In particular, e(G[A]) ≥
n(n−|A|+1).
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Proof. By definition, ∆(G[A\X])<n. But then A∪X contains at least n+1
vertices (to allow a vertex of degree n), and the claim follows.

Taking A=V (G) we obtain e(G)≥n2 +n. We will add an n3/2-term to
this trivial bound by using a probabilistic argument. But before we can apply
it, we have to gain some structural information about G. This is achieved,
roughly speaking, by choosing each xi in the greedy algorithm with some
foresight.

Let us introduce some notation. By dA(x) = |A∩NG(x)| we denote the
number of neighbours of x lying in A, x∈V (G), A⊂V (G). Also let L={x∈
V (G) | d(x) ≥ n}, l= |L|−n and e(G) = n2 + cgn

3/2. Thus we assume that
cg≤0.577 and in fact, by adding edges to G, that cg =0.577+o(1).

Lemma 2. l≤cgn1/2 +O(1).

Proof. Apply a modified greedy algorithm. Set initially A = C = ∅ and
B=V (G). These three sets will always partition V (G).

Repeat the following as long as possible or until |A|=n+1. Take a vertex
x∈B (if it exists) with dB(x)≥n and move it to A; colour amber all edges
connecting x to B. Then for every such x do the n-check, that is, move to
C all vertices in B∩L whose B∪C-degree is now smaller than n, that is,
equals n−1. (Thus before we proceed with another x we ensure that a vertex
z∈L\A belongs to B if and only if dB∪C(z)≥n.)

When we stop we have a+ c≥ n+ 1, where a, b, c are the cardinalities
of the eventual sets A, B, C. Indeed, if a < n+ 1 then ∆(G[B]) < n so
∆(G[A∪C])≥n and the claim follows.

The number of amber edges is ea≥an. Call non-amber edges incident to
C cyan. Every vertex in C is incident to exactly n−1 cyan edges; hence we
have ec≥c(n−1)−

(c
2

)
cyan edges.

By applying Lemma 1 (the greedy algorithm) to B∪C we obtain that
there is a set Y = {y1, . . . ,yn+1−a}⊂B∪C such that each yi has at least n
neighbours in (B∪C)\{y1, . . . ,yi−1}. Clearly, Y must be disjoint from C, that
is, Y ⊂B. We have ey ≥(n+1−a)n edges between Y and C∪B; colour all these
edges yellow. (Some edges may be yellow and cyan simultaneously.) Finally,
each vertex in R=L∩(B\Y ) has degree in B∪C at least n (otherwise it would
have been moved to C earlier). Hence R is incident to er ≥r(n−|Y |−c)−

(r
2

)
edges lying within B \Y , where r= |R|; call them red edges.

We claim that c=o(n). Suppose not. As ea+ey>n2, the number of cyan-
only edges is o(n2). Then, on average, x ∈C is incident to o(n) cyan-only
edges and, consequently, to n+o(n) cyan-yellow edges; hence |Y |≥n+o(n).
Now |C|≥|Y | because a+c≥n+1=a+|Y |, so |C|≥n+o(n). But C∪Y ⊂L
and |L| ≤ 2n+ o(n) by the handshaking lemma. Therefore c = n+ o(n),
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a=o(n), r=o(n) and all but o(n2) edges lie between C and Y . But consider
partition V (G)=V1∪V2 obtained by placing in V1 all of A∪R, �n/3� vertices
from C, �n/3� vertices from Y and all (= o(n)) vertices from C (and resp.
from Y ) which have in G at least n/6 neighbours outside Y (resp. outside
C). As |V1|=2n/3+o(n) some x∈V2 satisfies dV2(x)≥n. But x necessarily
belongs to Y ∪C, say x∈C, and can have at most |Y ∩V2|+n/6≤5n/6+o(n)
V2-neighbours, which is a contradiction proving c=o(n).

Using the above lower bounds on ea,ec,ey and the inequality a≥n−c+1
we obtain

e(G) = n2 + cgn
3/2 ≥ ea + ec + ey − (n− a+ 1)c

≥ n2 + n− c2 + 3c
2

+ ac ≥ n2 + n+
−3c2 + c(2n − 1)

2
.

Solving this (quadratic in c) inequality we obtain that necessarily c<cgn1/2

for large n as c cannot be bigger than the larger root 2n/3+o(n).
Writing e(G)≥ea +ec+ey−(n−a+1)c+er and substituting a≥n−c+1

everywhere (as the total coefficent of a is positive) we obtain

cgn
3/2 ≥ −(r + c)2 + (r + c)(2n + 1)

2
− r|Y | +O(n)

≥ −(r + c)2

2
+ (r + c)n+O(n+ r

√
n).(3)

The larger root of this (quadratic in r+ c) inequality is 2n+ o(n), but r≤
n+o(n) since a=n+o(n) and a+r≤|L|. So we conclude that l−1=c+r≤
cgn

1/2 +O(1) as required.

Now let us try to derive a final contradiction.
Proof of (2). Let xmax be a vertex of maximal degree ∆(G) = cmn

3/2.
Lemma 1 (with A=V (G) and x1 =xmax) shows that e(G)≥n2+∆(G), that
is, cm≤cg. Let c′ =((4+c2g)1/2−cg)/2 and cf =1.732.

We apply a version of the greedy algorithm. Set initially A=C = ∅ and
B=V (G).

At Stage 1 move to A, one by one and as long as possible, a vertex x∈B
with dB\L(x)≥n− l and dB∪C(x)≥ n. After x was moved do the n-check,
that is, move to C all vertices y∈B∩L with dB∪C(y)<n. We may assume
that we were selecting x∈B so that dG(x) was non-increasing. Let A1 be
the set of vertices moved to A at Stage 1, F ={x∈A1 |dG(x)≥n+cfn1/2}
and af = |F |/n. By Lemma 2 we have l ≤ cgn

1/2 + o(1), so the number of
edges incident to F is at least∑

x∈F

d(x) −
∑
x∈F

d(x) − n+ l

2
≥ afn

2 + af
cf − cg

2
n3/2 + o(n3/2).
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At Stage 2 move to A, one by one and as long as possible, any vertex
x∈B having at least n+c′n1/2 neighbours in B∪C, and for every such x do
the n-check as in Stage 1.

At Stage 3 we repeat the following until B∩L= ∅. Take x∈B∩L. As
long as dB∪C(x) ≥ n move to A some x-neighbour y ∈ B ∩L (note that
dB∪C(y) ≥ n) and perform the n-check. Such y necessarily exists as x has
fewer than n− l neighbours in B \L while |C| ≤ l. (The latter inequality is
true because if |C|> l at some moment then continuing with the standard
greedy algorithm (Lemma 1) applied to B∪C we find at least n−|A|+ 1
vertices in (B ∩L) \C which contradicts |L| = n+ l.) Of course, the last
n-check moves x itself to C.

Let ain (resp. cin1/2) be the number of vertices moved to A (resp. to C) at
the ith stage. As eventually ∆(G[B∪C])<n we conclude that a1+a2+a3>1.
Also a3≤c′c3 as for every x moved to C at Stage 3 we moved at most c′n1/2

vertices to A.
Note that the first vertex moved at Stage 1 may be assumed to have

degree ∆(G) = cmn
3/2 unless ∆(G) =O(n). So our algorithm produces the

following lower bound on the size of G:

e(G) ≥ n2 +
(
cm + af

cf − cg
2

+ a2c
′ + c3(1 − a3) + o(1)

)
n3/2.(4)

The term c3n
3/2 comes from Stage 3 and counts n−1 edges incident to each

vertex moved to C; however, we have to exclude all edges incident to A (at
most c3n1/2 ·a3n edges) which might be included in the n2 term.

Now using the inequalities a3 ≤ c′c3 (twice) and 0 ≤ c3 ≤ cg + o(1) (by
Lemma 2 we have c3≤|C|n−1/2≤cg +o(1)) we obtain from (4) that

a2 + a3 ≤ cg − af (cf − cg)/2 − cm − c3 + c′c23
c′

+ c′c3 + o(1)

≤ cg − af (cf − cg)/2 − cm
c′

+ max
(
0, c2g + c′cg − cg/c

′
)

+ o(1).(5)

But our c′ satisfies c2g +c′cg =cg/c′ so the second term disappears.
Choose a set Y ⊂ L by placing each vertex of L into Y independently

with probability p = (cf + 2ε)n−1/2, where ε > 0 denotes a small constant.
The number of Y -neighbours of any x∈L has a binomial distribution with
expectation at most pcmn3/2 =(cf +2ε)cmn. Hence the probability that say
dY (x)> (cf cm + 3ε)n is exponentially small in n by Chernoff’s bounds [1].
Similarly the expected value of dY (x), x∈A1, is at least p(n−l)≈(cf+2ε)n1/2.
So, dY (x) < (cf + ε)n1/2 with probability at most exp(−cn1/2) for some
constant c>0.
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Hence, there exists Y (in fact, almost every choice would do) such that
dY (x)≤(cf cm+3ε)n for every x∈L and dY (y)≥(cf +ε)n1/2 for every y∈A1.

Now consider the partition V (G)=V1∪V2, where V1 =(L\Y )∪(A1 \F ).
Any x ∈ A1 \ F has at least (cf + ε)n1/2 > d(x) − n neighbours in Y , so
dV1(x)<n. But then dV2(x)≥n for some x∈L∩V2. Hence,

n ≤ |V2 \ Y | + dY (x) ≤ n+ l − |A1| + |F | + (cf cm + 3ε)n,

which implies that

a2 + a3 + af + cf cm ≥ 1 + error term,(6)

where the error term can be made arbitrarily small by choosing the constant
ε small.

Chopping off some terms in (4) we obtain that af lies between 0 and
2(cg −cm)/(cf −cg)+o(1). Hence, by (5),

a2 + a3 + af ≤ cg − af (cf − cg)/2 − cm
c′

+ af + o(1)

≤ max

(
cg − cm
c′

, 2
cg − cm
cf − cg

)
+ o(1).(7)

Using the values of cg and cf we obtain from (6) and (7) that necessarily

max(0.767 + 0.403 cm, 0.9992 + 0.0004 cm) ≥ 1 + o(1),

which cannot be satisfied for 0≤cm≤0.577+o(1).

Remark. The constant 0.577 can be improved, even with the present proof.
For example, the optimal choice

cf = min
(√

4 + c2g, cg +
√

2(cg − cm)/cm
)
,

should give (with extra algebraic work) cg ≥0.591.
Also, after Stage 2 we could apply the algorithm of Lemma 2: we have

identified at least (cm +a2(c′− cg) +af
cf−cg

2 )n3/2 ‘useless’ (from the point
of view of Lemma 2) edges, which should bring down the bound on l there.
We do not know how much gain this would have given (the calculations get
rather messy) but we believe that we have reached a good compromise in
the sense that the proof is not too long and the bound is not too bad.
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4. Stars versus general tripartite graphs

We demonstrate here, by modifying the construction of Section 2, that if we
allow (1+ε)n2 edges, then we can witness much stronger arrowing properties.

In the proof below we introduce constants c1, c2, and so on. It should not
be hard to check that we can always choose sufficiently small ci (depending
on c1, . . . , ci−1) satisfying all conditions set in the proof. We do not try to
optimize the constants.

Theorem 2. For any fixed ε > 0, there are a constant c = c(ε) > 0 and a
graph G with at most (1+ε)n2 edges such that if E(G) is coloured blue-red
without a blue K1,n, then the red subgraph contains cycles of all lengths
(even and odd) up to cn as well as a complete tripartite graph Ks,s,s with
s≥c logn.

Proof. Choose integers

m =
√
n/2 +O(1),

k = (
√

2 + c1)
√
n+O(1),

l = n+ c1n+O(1),
h = c1

√
n+O(1).

Choose k-sets K1, . . . ,Km, l-sets L1, . . . ,Lm, and an h-set H (all disjoint).
Let G consist of all edges intersecting H and of all edges intersecting Ki and
lying within Ki∪Li, i∈ [m], that is, G=Kh +mPk,l. If c1>0 is small, then
G has at most (1+ε)n2 edges.

Consider any blue-red colouring of E(G) without a blue K1,n. Let G′⊂G
be the red subgraph, let d′(x) be the red degree of x∈V (G), and so on.

Define the bipartite graph F with classes H and [m] as follows; x∈H is
connected to i∈ [m] if and only if x sends at least l+ c1

√
n/2 red edges to

Ki∪Li. Now, the inequality

(m− dF (x))(l + c1
√
n/2) + dF (x)(k + l) ≥ m(k + l) − n+ 1,

implies that each x∈H has Θ(
√
n) neighbours in F .

Claim 1. Suppose i∈ [m] is connected in F to x,y∈H. There is a constant
c2 > 0 such that, for any j ∈ [2, c2

√
n], there exists a red path of length j

which connects x to y and lies within Ki∪Li.
To prove the claim, consider X = (Γ ′(x) ∪ Γ ′(y)) ∩ (Ki ∪Li). The set

X ∩Ki has at least c1
√
n/2 elements, each being incident in G′ to at least

c1n+O(
√
n) elements of Γ ′(x)∩Γ ′(y). Clearly (cf. Erdős and Gallai [6]), we

can find, within X, a red path P =(z1, . . . ,zp) with p≥c2
√
n and z1∈Γ ′(x)∩
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Γ ′(y). Now, either (x,z1, . . . ,zj−1,y) or (y,z1, . . . ,zj−1,x) is the required red
path. The claim is proved.

The obvious modification of the above argument for the case x=y shows
that G′ contains cycles of all lengths between 3 and c2

√
n.

Let us show how to find cycles of larger length. It is not hard to see that
the bipartite graph F (which has positive density) contains a cycle of length
2t= Θ(

√
n) with 2t < c2

√
n for large n. Let the cycle go through vertices

x1, i1, . . . ,xt, it,xt+1 =x1, where xj ∈H for j∈ [t]. By Claim 1 we can connect
xj and xj+1 by a red path though Kij∪Lij of any length up to c2

√
n, j∈ [t].

Joining these t paths together we can produce a red cycle of any length
between 2t and 2tc2

√
n, which proves the first claim of the theorem.

Let us show thatG′⊃Ks,s,s. Let i∈ [m] be a vertex of degree at least c3
√
n

in F . Let t=�c4 logn�. As each F -neighbour of i sends at least c1
√
n/2 red

edges to Ki, there are at least c3
√
n
(c1√n/2

t

)
pairs (x,X) with x∈H sending

a red edge to every vertex of an t-set X ⊂Ki. We conclude that some X
appears in at least

c3
√
n

(
c1
√
n/2
t

)(
k

t

)−1

≈ c3
√
n

(
c1/2√
2 + c1

)t

> (1 + o(1))t

pairs. Hence, we can find a red Kt,t-subgraph K such that T ∩Ki =X and
every x∈T ∩H is connected to i in F , where T =V (K).

Let U={x∈Li |d′T (x)≥(1+c1/3)t}. Obviously, the number of red edges
connecting T to Li is at most 2t|U |+(l−|U |)(1+c1/3)t. On the other hand
this number is at least tn(1+2c1 +o(1)) because d′Li

(y)=(1+c1)n+O(
√
n)

for y∈T∩H and d′Li
(y)≥c1n+O(

√
n) for y∈T∩Ki. This implies (assuming

e.g. c1<1) that |U |=Θ(n).
Finally, let s = �c5 logn�; assume s ≤ c1t/3. Each x ∈ U covers at least

one Ks,s-subgraph of K. Therefore, some subgraph is covered by at least
|U |/

(t
s

)2 ≥ s vertices of U (note that
(t
s

)
≤ ts/s! ≤ (et/s)s by Stirling’s for-

mula), which gives a red copy of Ts,s,s, as required.

Remark. Our graph G has other arrowing properties. For example, F nec-
essarily contains a matching of size t = Θ(

√
n) and we can find t vertex-

disjoint cycles in G′ each of any prescribed length between 3 and c2
√
n.

Theorem 2 and formula (2) imply the following.

Corollary 1. Let Fn =C2m+1 with m= o(n) or let Fn be any graph with
χ(Fn)=3 and v(Fn)=o(logn). Then r̂(K1,n,Fn)=(1+o(1))n2.
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