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Introdu
tion

In this thesis we 
onsider di�erent extremal problems for set systems. The

extremal (hyper-)graph theory has long been regarded as an important subje
t


omprising a large number of various problems and methods.

Of 
ourse, we do not even try to present here all the features of the theory.

Instead, we 
onsider a few di�erent fa
ets su
h as saturated hypergraphs, weakly

saturated hypergraphs, minimum 
hain de
ompositions, enumeration results for

hypertrees, and size Ramsey numbers. We try to demonstrate di�erent proof

te
hniques in a
tion and, indeed, the methods that we use are diverse: they

in
lude, for example, exterior algebra and probabilisti
 arguments.

Let us indi
ate how this work is organized. It is split into separate parts,

ea
h being a self-
ontained unit dealing with a parti
ular feature. We tried

as far as possible to ensure that ea
h part 
an be read independently of the

others. Please note that ea
h part 
omes with its own introdu
tion whi
h 
an

be 
onsulted for further information.

Part I: Saturated Hypergraphs

Here we 
onsider the notion of saturation. Let F be a family of forbidden k-

graphs, that is, k-uniform set systems. A maximal k-graph G not 
ontaining any

F 2 F as a subgraph is 
alled F-saturated. We will be interested in sat(n;F), the

minimal number of edges that an F -saturated graph of order n 
an have. These

types of questions were 
onsidered as early as the late 40s by Zykov [Zyk49℄,

and by many other mathemati
ians hen
eforth.

However, there has been no good general upper bound on the sat-fun
tion.

Tuza [Tuz86℄ (also an unpublished 
onje
ture of Bollob�as) 
onje
tured that

sat(n; F ) = O(n

k�1

); for any �xed k-graph F . (1)

While the 
onje
ture was proved for k = 2 by Kaszonyi and Tuza [KT86℄, and

all parti
ular examples 
on�rmed its validity, it was not even known whether

generally sat(n; F ) = o(n

k

) for k � 3. In Se
tion 3 we verify this 
onje
ture by

showing that sat(n;F) = O(n

k�1

) for all �nite and 
ertain in�nite families F of

k-graphs.
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Di�erent variations of the prin
iple are presented in Se
tion 4: we de�ne the

notion of saturation for di�erent graph-like stru
tures and investigate whether a

form of (1) holds. While the te
hnique of Se
tion 3 extends to dire
ted 
y
le-free

graphs, ordered graphs, and layered graphs, we had to invent a new method in

order to prove (1) for the 
lass of k-row re
tangular matri
es.

In Subse
tion 4.4 we 
onsider problems of the following type. Given a for-

bidden family, we say that a graph G kills an edge E 2 E(G) if the addition of

E to G 
reates a forbidden subgraph. What is the maximal number of killed

edges if G has a given order and size? We settle these problems for 
omplete

2-graphs, whi
h extends a theorem of Erd}os, Hajnal and Moon [EHM64℄ who


omputed sat(n;K

2

m

).

The sat-fun
tion is hard to handle: it la
ks many natural regularity proper-

ties. For example, Kaszonyi and Tuza [KT86℄ showed that it is not monotone.

In Se
tion 5 we amplify their example: we 
onstru
t, for any 
onstant d, a 2-

graph F = F (d) su
h that sat(n; F ) < sat(n � 1; F ) � d for a periodi
 series

of values of n. Furthermore, we demonstrate a �nite family F of 2-graphs for

whi
h the ratio sat(n;F)=n does not tend to a limit, whi
h is rather unexpe
ted

and 
ounterintuitive.

Spe
i�
 instan
es of forbidden graphs are 
onsidered in Se
tion 6.

We asymptoti
ally 
ompute sat(n; S

k

m

), thus extending a result of Erd}os,

F�uredi and Tuza [EFT91℄ who did the task for S

k

k+1

. (The generalized star S

k

m

is the k-graph onm verti
es 
onsisting of all k-tuples 
ontaining a given vertex.)

The triangular family T

k


onsists of all k-graphs of size 3 in whi
h the sym-

metri
 di�eren
e of some two edges is 
ontained in the third one. We prove that

sat(n;T

k

) = n�O(logn), k � 3, and sat(n;T

3

) = n� 2.

We show that, for any K

m

-saturated graph G, the number of edges spanned

by the set fx 2 V (G) : d(x) � ag is at most a

2(m�2)a+o(ma)

, a fun
tion not

depending on n = v(G). We dedu
e that G has at least ln+O(

n log logn

log n

) edges,

if the minimal degree of G is l � m� 1. Another 
onsequen
e is a sharper form

of one result by Alon, Erd}os, Holzman and Krivelevi
h [AEHK96, Theorem 2℄.

The following problem is, in fa
t, an instan
e of a sat-type problem. Suppose

that we try to 
onstru
t designs by adding, one by one and as long as possible,

k-edges so that ea
h t-set is 
overed by at most � edges. What is the worst


ase, that is, how small the eventual system 
an be? We solve asymptoti
ally
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this problem for t = 2 and establish some 
onne
tions with Tur�an numbers for

general t.

Part II: Weakly Saturated Hypergraphs

A notion related to that of saturation is weak saturation whi
h we 
onsider in

Part II. A k-graph G is weakly F-saturated if we 
an add one by one all missing

edges to G so that every time at least one new forbidden subgraph appears; we

are interested in w-sat(n;F), the minimal size of a su
h graph G on n verti
es.

These questions were �rst 
onsidered by Bollob�as [Bol67
℄ who made a 
on-

je
ture on 
omplete graphs. The 
onje
ture was veri�ed by a number of people

who 
omputed w-sat(n;K

k

m

): Frankl [Fra82℄, Kalai [Kal84, Kal85℄; the result is

impli
it in Lov�asz [Lov77℄; 
f. also Alon [Alo85℄. They all applied some form

of dependen
e in order to derive the formula. This approa
h was most 
learly

formulated by Kalai [Kal85℄: if we have a matroid M on [n℄

(k)

su
h that any

F 2 F is a 
ir
uit, then w-sat(n;F) � R

M

([n℄

(k)

), the rank of M.

Usually, it is easy to 
onstru
t a right example of minimumG 2 w-SAT(n;F)

for a given F , but it is hard to prove that this G is indeed extremal. So, the

above approa
h is helpful but it is not 
lear at all how to sear
h for a suitable

matroid M.

Here we suggest two deterministi
 
andidates for M to 
onsider, provided

we have an example of G

n

2 w-SAT(n;F). For this purpose we utilize gross

and 
ount matroids whi
h are de�ned in Se
tion 8. The 
onstru
tion of a gross

matroid was exploited by Kalai [Kal90℄, but for other purposes. Our 
ount

matroids form a new family of matroids, 
onsiderably and naturally extending

the 
ount matroid of White and Whiteley [WW84℄.

If one of our approa
hes works, then G is indeed extremal and we say that we

have a G-proof or a C-proof respe
tively. Thus, we have two suÆ
ient 
riteria for

G 2 w-SAT(n;F) to be minimal. Unfortunately, these 
riteria are not generally

ne
essary, but using them (and the related g/g

0

-proof te
hnique) we 
an prove

the following results.

Given sequen
es of integers s = (s

1

; : : : ; s

t

) and k = (k

1

; : : : ; k

t

), the pyramid

P (s;k) is the k-graph, k = k

1

+ : : :+k

t

, with vertex set being the disjoint union

S

1

[ : : :[S

t

, jS

i

j = s

i

, and with the edge set 
onsisting of those k-subsets whi
h,
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for every i 2 [t℄, interse
t S

1

[ : : : [ S

i

in at least k

1

+ : : : + k

i

verti
es. This

is a rather general de�nition: as partial 
ases we obtain 
omplete graphs and

generalized stars.

In Subse
tion 10.1 we 
ompute w-sat(n; P (s;k)) for all feasible values of

parameters. A partial 
ase of this result proves the 
onje
ture by Tuza [Tuz88,

Conje
ture 7℄ that w-sat(n;H

k

(k + 1; l)) =

�

n�k+l�2

l�2

�

, n � k + 1 � l � 2. (The

uniform family H

k

(m; l) 
onsists of all k-graphs with m verti
es and l edges.)

In Subse
tion 10.2 we present some further results about weakly H

k

(m; l)-

saturated graphs: we make a general 
onje
ture and verify it for a number of

parameters. In 
ertain 
ases we 
hara
terize all extremal graphs, in parti
ular

answering a question by Erd}os, F�uredi and Tuza [EFT91℄ (who veri�ed Tuza's


onje
ture for l = 3).

The 
one 
n(F ) of a k-graph F is obtained by adding an extra vertex x plus

all

�

v(F )

k�1

�

edges 
ontaining x. Our more general results of Se
tion 11 imply that


ones `preserve' G/g/g

0

-proofs under 
ertain 
overing 
onditions. This means

that if we know the w-sat-fun
tion for 
ertain graphs by applying a G/g/g

0

-

proof, then we know it for the graphs obtained by the appli
ation of the 
one

operator. For example, for 2-graphs we 
an 
ompute w-sat(n;K

l

+ F ), where

for F we 
an take a star, an odd 
y
le, a path, a mat
hing, and many other

graphs.

In Se
tion 12 we de�ne join, another operation on graphs, and prove among

other things that joins always preserve G/g-proofs. As a spe
ial 
ase, we dedu
e

the result of Alon [Alo85℄ who 
omputed the w-sat-fun
tion for joins of 
omplete

hypergraphs.

Part III: Chain De
ompositions

A 
hain de
omposition of a poset P is a partition of P into disjoint 
hains

(that is, linearly ordered subsets). Minimum 
hain de
ompositions have many

appli
ations and are extensively studied.

In this part we 
onsider the minimal size of an edge de
omposition whi
h is a


olle
tion of skipless 
hains su
h that any pair xl y (x is 
overed by y) belongs

to exa
tly one 
hain. (A 
hain C is skipless if no element of PnC 
an be inserted

between some two elements of C.) It is easy to see that edge de
ompositions
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of P 
orrespond to skipless 
hain de
ompositions of the line poset L(P) whose

vertex set is f(x; y) : x; y 2 P; x l yg, and (x; y) < (x

0

; y

0

) in L(P) if y � x

0

in P.

In Se
tion 14 we present a few min-max theorems. Our more general theo-

rem implies that the minimal size of a skipless 
hain de
omposition of P equals

the maximal value of jAj � jBj taken over all pairs of disjoint sets A;B � P

su
h that any skipless 
hain 
ontaining two elements from A interse
ts B. Sur-

prisingly enough, this fundamental theorem turned out to be a new result. Our

proof utilizes the linear programming method of Dantzig and Ho�man [DH56℄.

It was 
onsiderably simpli�ed by Graham Brightwell who repla
ed the linear

programming argument by an easy appli
ation of Hall's theorem. We present

both these proofs.

The minimal size of an edge de
omposition of P 
an be dedu
ed as a 
orol-

lary, but we provide a short and dire
t proof.

Hen
e, our basi
 question is generally 
ompletely answered, but we 
an ask

whether there is an edge de
omposition with some extra properties. Of 
ourse,

one 
an 
onsider these problems for many di�erent posets and impose many

di�erent restri
tions. But as our theme is extremal set systems, we investigate

B

n

, the poset of subsets of an n-set ordered by in
lusion, and ask whether we


an require that all 
hains are symmetri
. (A skipless 
hain A

1

� : : : � A

k

of

B

n

is symmetri
 if jA

i

j + jA

k�i+1

j = n, 1 � i � k.) Note that any symmetri


edge de
omposition of B

n

has the minimal size.

In fa
t, the general results of Anderson [And67℄ and Griggs [Gri77℄ imply

the existen
e of a symmetri
 edge de
omposition of B

n

. However, their proofs

are non-
onstru
tive, so in Se
tion 15 we provide an expli
it 
onstru
tion.

Our de
omposition has some extra properties and interesting appli
ations,

see Se
tion 16. In brief, we give estimates of the number of anti
hains in L(B

n

),


onstru
t a pair of orthogonal skipless 
hain de
ompositions of L(B

n

), present

some appli
ations to storing and sear
hing re
ords in a database, and solve one

numeri
al problem.

In Se
tion 17 we 
hara
terize line posets in terms of forbidden 
on�gurations

and point out whi
h information determines and 
an be re
onstru
ted from the

line poset. (This resembles Beineke's [Bei68℄ 
hara
terization of line graphs.)
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Part IV: Enumeration Results for Trees

Here we 
onsider and enumerate di�erent tree-like stru
tures. Stri
tly speaking,

su
h problems belong to enumerative, rather than to extremal, graph theory,

but we in
lude these results be
ause we believe that the proofs are short and

ni
e.

The notion of a tree and its di�erent extensions to k-graphs, that is, k-

uniform set systems, play an important role in dis
rete mathemati
s and 
om-

puter s
ien
e. We will dwell upon the following, rather general, de�nition sug-

gested independently by Dewdney [Dew74℄ and Beineke and Pippert [BP77℄.

A k-graph is 
alled a (k;m)-tree if it 
an be obtained from a single edge by


onse
utively adding edges so that every new edge 
ontains k �m new verti
es

while its remaining m verti
es are 
overed by an already existing edge.

The problem of 
ounting (m+1;m)-trees whi
h are known in the literature

as m-trees, re
eived great attention and was 
ompletely settled by Beineke and

Pippert [BP69℄ and Moon [Moo69℄. Later, di�erent bije
tive proofs for m-trees

appeared as well, see [RR70, Foa71, GI75, ES88, Che93℄.

Here we enumerate vertex labelled (k;m)-trees. We present two di�erent

proofs. The proof of Se
tion 19 is indu
tive, that is, we write a re
urren
e

relation for the number of trees and prove our formula by indu
tion.

In Subse
tion 20.2 we exhibit an expli
it bije
tion between the set of rooted

vertex labelled trees of given size and a trivially simple set; it is based on the

ideas of Foata [Foa71℄. This method 
an be applied to enumerate other tree-like

stru
tures. For example, we enumerate vertex labelled k-gon trees. A k-gon

tree is obtain from a k-gon (that is, a k-
y
le) by 
onse
utively adding k-gons

along an existing edge, see e.g. [CL85, Whi88, Pen93, KT96℄. In order not to

repeat the same portions of proof twi
e, we present a more general result whi
h

in
ludes both (k;m)-trees and k-gon trees as partial 
ases.

In Subse
tion 20.3 we present a bije
tion for edge labelled (2; 1)-trees, an-

swering a question posed by Cameron [Cam95℄. Unfortunately, we do not know

any dire
t bije
tion enumerating edge labelled (k;m)-trees for general k;m.
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Part V: Large Degrees in Subgraphs

Erd}os [Erd81℄, see also [Chu97, Erd99℄, 
onje
tured that for n � 3 any graph

with fewer than

�

2n+1

2

�

�

�

n

2

�

=

3n(n+1)

2

edges is a union of a bipartite graph and

a graph with maximum degree less than n. All resear
h 
arried in this part is

motivated by this 
onje
ture whi
h is disproved here.

The 
onje
tured value arises from the 
onsideration of P

n+1;n

= K

n+1

+E

n

whi
h does not admit the above representation. In fa
t, this graph has a stronger

property, namely P

n+1;n

! (K

1;n

;K

3

): for any blue-red 
olouring of the edge

set of P

n+1;n

we ne
essarily have either a blue star K

1;n

or a red triangle. Thus,

if Erd}os' 
onje
ture were true, it would give the same value for the size Ramsey

number r̂(K

1;n

;K

3

) = minfe(G) : G ! (K

1;n

;K

3

)g. Apparently, the 
omputa-

tion of r̂(K

1;n

;K

3

) was the original motivation for the 
onje
ture.

In Se
tion 22 we show, however, that

r̂(K

1;n

;K

3

) < n

2

+

p

2n

3=2

+ n; n � 1;

by demonstrating an expli
it 
onstru
tion. This disproves Erd}os' 
onje
ture

whi
h, in fa
t, fails for all n � 5. On the other hand, we prove that any graph

with n

2

+ (0:577 + o(1))n

3=2

edges is a union of a bipartite graph and a graph

with maximum degree less than n, whi
h of 
ourse implies that this number is

a lower bound for r̂(K

1;n

;K

3

).

There were di�erent attempts to prove the 
onje
ture, by di�erent mathe-

mati
ians, whi
h resulted in new interesting dire
tions of resear
h.

For example, as reported in [Erd99℄, Erd}os and Faudree [EF99℄ 
onsider the

minimal size of a graph G su
h that if G is a union of two graphs, one having

maximal degree less than n, then the other 
ontains all odd 
y
les C

m

with

3 � m � n� 3. In Subse
tion 22.3 we demonstrate a graph G of size (1 + ")n

2

,

for any given 
onstant " > 0, su
h that, for any blue-red 
olouring of G without

a blue K

1;n

, we have red 
y
les of all lengths (odd and even) between 3 and 
n,

where 
 = 
(") > 0 does not depend on n.

The following problem, whi
h was introdu
ed by Erd}os, Reid, S
help and

Staton [ERSS96℄, is also motivated by Erd}os' 
onje
ture.

For positive integers n; k; j with k � j, let M(n; k; j) 
onsist of all graphs

G of order n + k su
h that every (n + j)-subset of V (G) spans a graph with
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maximum degree at least n. The question is to 
ompute

m(n; k; j) = minfe(G) : G 2M(n; k; j)g:

Erd}os et al [ERSS96, Conje
ture 1℄ 
onje
tured that, for n � k � j � 1 and

n � 3, we have

m(n; k; j) = (k � j + 1)n+

�

k � j + 1

2

�

: (2)

This value arises from the 
onsideration of P

k�j+1;n

tE

j�1

. Erd}os et al [ERSS96,

Theorem 3℄ proved that (2) is true if j = 1 or if j � 2 and

n � max

�

j(k � j);

�

k�j+2

2

�

�

: (3)

In Se
tion 23 we demonstrate a 
onstru
tive 
ounterexample to (2) for n �

(j � 2)(k � j). On the other hand, we show that (2) is true if

n � max

�

�

j +

1

2

�

(k � j) +

j+k

4j�2

; 14

�

;

whi
h improves (3) for j / k=3. This shows that j(k�j) is roughly the threshold

on n when the obvious 
onstru
tion leading to (2) fails to be extremal. Some

other 
onstru
tions are presented.

In Se
tion 24 we 
onsider the following related problem. Let B(n;m) 
onsist

of all graphs su
h that for any partition V (G) = A [ B either �(G[A℄) � n or

�(G[B℄) � m (or both). We are interested in the bisplit fun
tion

b(n;m) = minfe(G) : G 2 B(n;m)g:

Clearly, b(n; n) is pre
isely the fun
tion investigated in Erd}os' 
onje
ture, whi
h

was the original motivation for introdu
ing the `o�-diagonal' numbers b(n;m).

We 
ompute this fun
tion asymptoti
ally when m = min(n;m) is large:

b(n;m) = 2nm�m

2

+ o(m)n:

In the extreme 
ase, when m � 1 is �xed, we 
an prove only that the numbers

b(n;m), n 2 N, lie between two fun
tions linear in n with slopes 2m + 1 and

2m+

p

2m+

5

2

.

We prove that b(n; 1) = 4n � 2 for n � 8 (and 
hara
terize all extremal

graphs) and that b(n; 2) = 6n + O(1). As the reader will see, the proofs are

rather lengthy and require 
onsideration of many 
ases. This indi
ates that the


omputation of lim

n!1

b(n;m)=n for any �xed m (if the limit exists) is perhaps

a hard task.



Notation

Let us indi
ate some notation that we use. The relation A � B does not

ex
lude A = B; the stri
t in
lusion is denoted as A  B. Any unfamiliar term

(e.g. pyramid) should be identi�able via the index.

[m;n℄ = fm;m+ 1; : : : ; ng; [n℄ = f1; 2; : : : ; ng

A

(r)

= fB � A : jBj = rg

R=Q =Z=N the sets of reals/rationals/integers/positive integers

f = �(g) , 9


1

; 


2

> 0 9n

0

8n � n

0




1

g(n) � jf(n)j � 


2

g(n)

f = O(g) , 9
 > 0 9n

0

8n � n

0

jf(n)j � 
g(n)

f = o(g) , 8
 > 0 9n

0

8n � n

0

jf(n)j � 
g(n)

s

A

=

P

i2A

s

i

; given reals s

1

; : : : ; s

n

and A � [n℄

B

A

= [

i2A

B

i

; given sets B

1

; : : : ; B

n

and A � [n℄

V (G) the vertex set of G

v(G) = jV (G)j the order of G

E(G) the edge set of G

e(G) = jE(G)j the size of G

G the 
omplement of G

G[A℄ the subgraph indu
ed by A � V (G)

�(G) the independen
e number of G

d(x) = jfE 2 E(G) : E 3 xgj; x 2 V (G)

�(G)=Æ(G) the maximal/minimal degree of G

�

A

(x) = fy 2 A : fx; yg 2 E(G)g ; 2-graph G; �(x) = �

V (G)

(x)

d

A

(x) = j�

A

(x)j; x 2 V (G); A � V (G); 2-graph G

mG m disjoint 
opies of G

C

m

the m-
y
le

E

m

the empty graph of order m

K

k

(A) the 
omplete k-graph on a set A

K

k

m

the 
omplete k-graph of order m; K

m

= K

2

m

K

m;n

the 
omplete bipartite graph

P

m;n

= K

m

+E

n

P (s;k) the pyramid

S

k

m

the k-star of order m
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Part I

Saturated Hypergraphs

1 Introdu
tion

1.1 Dis
ussion

Many 
ombinatorial stru
tures (espe
ially graphs) have proved to be very use-

ful in other bran
hes of human knowledge where dis
rete models play more and

more important role with the advan
e of 
omputers. A fairly typi
al problem is,

given a 
lass C of allowed graphs (for example, those whose stru
ture is 
ompat-

ible with the requirements of the used dis
rete model), to minimize/maximize

a 
ertain parameter.

In many natural 
ases, C 
an be des
ribed by naming a family F of forbidden

subgraphs so that a graph belongs to C if and only if it is F-free, that is, if it

does not 
ontain any F 2 F as a subgraph. In this 
ase, C 
an be also spe
i�ed

by listing the family SAT(F) of all F-saturated graphs, that is, maximal F -free

graphs; 
learly,

C = fH : H � G for some G 2 SAT(F)g

and, instead of 
onsidering the whole of C, we 
an restri
t ourselves only to

SAT(F), espe
ially that many extremal parameters of C 
an be more qui
kly

determined from SAT(F).

Two related families are m-SAT(F) and w-SAT(F): G 2 m-SAT(n;F) if

the addition any new edge to G 
reates at least one new forbidden subgraph

(then we 
all G monotoni
ally F-saturated); G 2 w-SAT(n;F) if we 
an add

all missing edges, one by one in some order, so that every edge 
reates a new

forbidden subgraph (then we 
all G weakly F-saturated). Note that we do not

require here that G is F -free.

For example, the Tur�an-type problem studies the maximal size of an F -

free graph of a given order. This is 
learly equal to the maximal size of an

F -saturated graph of a given order.

In Parts I and II we 
onsider the sat-type problems whi
h ask about the

minimal size of a (weakly/monotoni
ally) F -saturated graph of a given order.
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The Tur�an-problem and the sat-problem happen to be rather di�erent in

nature. The former is perhaps more important in appli
ations although many

real life situations lead to sat-type questions.

For example, monotoni
ally K

3

-saturated graphs are pre
isely diameter-2

graphs. This problem has the following interpretation: there are n airports; we


an 
onne
t some pairs by a 
ight and we want to assure the possibility to 
y

from ea
h airport to any other one by 
hanging the plane at most on
e. Clearly,

the minimal number of 
onne
tions is n�1 and this is a
hieved if and only if one

airport is 
onne
ted to every other. (This may be not a perfe
t solution and we

may impose some extra 
onditions: e.g. some restri
tion on the maximal degree,

et
.) If we weaken the requirement by allowing any number of 
ight 
hanges,

then we obtain weakly K

3

-saturated (i.e. 
onne
ted) graphs and the minimal

size is again n� 1 but we have many extremal graphs.

In this part (and Part II) we try to present a uni�ed treatment of these,

sat-type, questions. The above de�nitions are applied to k-graphs (k-uniform

set systems) whi
h are the main obje
t of our 
onsideration. Also, we present

di�erent variations of the prin
iple and make a few ex
ursions into some related

areas (for example, the forbidden submatrix problem). Se
tion 2 brie
y surveys

known results on the topi
 in
luding those proved here. But before we pro
eed,

let us give all ne
essary de�nitions.

1.2 De�nitions

Let F be a family k-graphs (that is, k-uniform set systems) whi
h are usually

referred to as forbidden. A k-graph G is 
alled F-admissible (or F-free) if it

does not 
ontain any F 2 F as a subgraph.

We say that G is F-saturated, denoted G 2 SAT(n;F), if it is a maximal

F -free k-graph with n verti
es. We are mainly interested in

sat(n;F) = minfe(G) : G 2 SAT(n;F)g; (4)

the minimal number of edges in an F -saturated graph of order n.

The following auxiliary notion is helpful: G is 
alled monotoni
ally (or

strongly) F -saturated, denoted G 2 m-SAT(n;F), n = v(G), if the addition

of any new edge to G 
reates at least one extra F -subgraph, some F 2 F . Note

that we do not require that G is F -admissible.
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Clearly, SAT(n;F) = fG 2 m-SAT(n;F) : G is F -freeg, so sat(n;F) �

m-sat(n;F), where

m-sat(n;F) = minfe(G) : G 2 m-SAT(n;F)g:

For a graph F , we denote SAT(n; F ) = SAT(n; fFg), et
.

2 Survey

Here is a brief but 
omprehensive (to the best of the author's knowledge) survey

of known results related to (strong) saturation. Also, we indi
ate all interesting

results proved in this part.

2.1 General Families

Not mu
h is known about sat(n;F) for a general F . K�aszonyi and Tuza [KT86℄

showed that, for any family F of 2-graphs, in
luding all in�nite families, we

have sat(n;F) = O(n). Tuza [Tuz92℄ showed that, for any �xed k-graph F ,

m-sat(n; F ) = �(n

d(F )

): (5)

Here d(F ) 2 [0; k � 1℄ is what Tuza 
alls the lo
al density of F :

d(F ) = minfd(E) : E 2 E(F )g; (6)

where the density d(E) of an F -edge E is max fjE \E

0

j : E

0

2 E(F ) E

0

6= Eg.

Clearly, in terms of 
onstru
tive upper bounds, SAT is more restri
tive than

m-SAT. Thus, it is not surprising that, up to now, there were no good upper

bounds on sat(n; F ) for a general k-graph F . Tuza [Tuz86, Tuz88℄ (also an

unpublished 
onje
ture of Bollob�as) 
onje
tured that, for any �xed k-graph F ,

sat(n; F ) = O(n

k�1

).

In Se
tion 3 we show that

sat(n;F) = O(n

k�1

) (7)

for all �nite and 
ertain in�nite families F , whi
h, of 
ourse, proves this 
onje
-

ture. Our proof is 
onstru
tive.
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In Se
tion 4 we try to extend the notion of saturation to di�erent stru
tures


onne
ted to hypergraphs and every time we ask whether the analogue of esti-

mate (7) is valid. Although the estimate is not true for simple dire
ted graphs,

we show that (7) is valid for all �nite families of 
y
le-free dire
ted k-graphs

and for ordered k-graphs. Furthermore, the estimate sat(n;F) = O(n) is true

for any family F of 
y
le-free or ordered 2-graphs.

In Subse
tion 4.2 we 
onsider similar question for stru
tures that we 
all

layered graphs and show that a form of (7) holds here. Also, we show that,

for the 
lass of layered (1; 1)-graphs (that is, bipartite graphs), the size of any

minimum F -saturated graph is bounded by a linear fun
tion of its order for any

forbidden family F .

In Subse
tion 4.3 we 
onsider the sat-type problems for the 
lass of re
tan-

gular matri
es, for whi
h the dual (Tur�an-type) problems are well studied. We

show that for any family F of forbidden k-row matri
es sat(n;F) = O(n

k�1

).

Although the notion of saturation was 
onsidered as early as the late 40s

by Zykov [Zyk49℄, the theory does not seem to be well developed. This might

be the 
ase be
ause minimum saturated graphs are hard to handle. For example,

as demonstrated by K�aszonyi and Tuza [KT86℄, the sat-fun
tion la
ks many

natural regularity properties; in Se
tion 5 we provide further examples.

Answering a question by Tuza [Tuz92℄ we exhibit an example of 
onne
ted

2-graphs H � F of the same order su
h that sat(n;H) > sat(n; F ) for all large

n. (Of 
ourse, it is `natural' to expe
t the 
onverse inequality.)

Among other things, we demonstrate, for any �xed d > 0, a 2-graph F =

F (d) su
h that

sat(n; F ) < sat(n� 1; F ) � d;

for a periodi
 series of values of n.

Tuza [Tuz88℄ 
onje
tured that, for any 2-graph F , the limit lim sat(n; F )=n

exists. Of 
ourse, a number of similar questions arise for k-graphs as well.

Unfortunately, there is not mu
h progress in this dire
tion.

Trusz
zynski and Tuza [TT91℄, 
hara
terized those 2-graphs F for whi
h


 = limsat(n; F )=n exists and is smaller than 1; then, in fa
t, 
 = 1 � 1=p,

p 2 N.

In Se
tion 5 we demonstrate a �nite family F of 2-graphs for whi
h the limit
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lim sat(n;F)=n does not exist.

In the literature, there are many di�erent variations on the topi
; one possi-

bility is to 
onsider minimum saturated graphs (most frequently K

2

m

-saturated)

with some extra restri
tions, for example, on degrees (Hajnal [Haj65℄, Hanson

and Sey�arth [HS84℄, Du�us and Hanson [DH86℄, Erd}os and Holzman [EH94℄,

F�uredi and Seress [FS94℄, Alon et al [AEHK96℄), 
hromati
 number (Hanson

and Toft [HT91℄), et
. Hanson and Toft [HT87℄ 
onsider edge-
oloured satu-

rated graphs.

2.2 Parti
ular Cases

Erd}os, Hajnal and Moon [EHM64℄ via an indu
tive argument and 
ontra
tions


omputed the sat-fun
tion for all 
omplete 2-graphs. Bollob�as [Bol65℄ intro-

du
ed the powerful weight method and proved that

sat(n;K

k

m

) =

�

n

k

�

�

�

n�m+ k

k

�

; n � m > k: (8)

The 
ases of equality were 
hara
terized in both papers.

We show that, for any K

m

-saturated graph G, the number of edges spanned

by the set fx 2 V (G) : d(x) � ag is bounded by a

2(m�2)a+o(ma)

, a fun
tion of a

and m only. We dedu
e that G has at least ln+ O(

n log log n

log n

) edges, n = v(G),

if the minimal degree of G is l � m� 1. Another 
onsequen
e is a sharper form

of one result by Alon, Erd}os, Holzman and Krivelevi
h [AEHK96, Theorem 2℄.

Please refer to Subse
tion 6.4 for details.

The star S

k

m

has m verti
es and 
onsists of k-tuples 
ontaining a �xed ver-

tex. The uniform family H

k

(m; l) 
onsists of all k-graphs of order m and size l.

Erd}os, F�uredi and Tuza [EFT91℄ determined the exa
t sat-values for H

3

(6; 3)

and H

3

(4; 3) = S

3

4

and des
ribed the 
ases of equality. Also, they found asymp-

toti
 values for H

k

(k+1; k) = S

k

k+1

. In Subse
tion 6.1 we extend the last result

by 
omputing asymptoti
ally sat(n; S

r

m

) for all possible r and m.

In Subse
tion 6.2 we de�ne a t-(v; k; �)-sub-design G as a maximal k-graph

of order n su
h that no t-set is 
overed by more than � edges. (Sub-designs

naturally arise when we try to 
onstru
t designs by 
onse
utively adding edges

as long as possible.) If we let D = D(�; k; t) be the family of all k-graphs with

�+ 1 edges sharing at least t 
ommon verti
es then SAT(n;D) is the family of
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all sub-designs of order n. We 
ompute exa
tly sat(n;D(�; k; t)) for t = 1 and

any �; k; n (ex
ept for a few small values of n) and (asymptoti
ally) for t = 2

and any �xed �; k. In the general 
ase t � 3 we dedu
e some lower bounds and

establish 
onne
tions with the Tur�an problem for 
omplete hypergraphs.

In Subse
tion 6.3 we forbid 3 edges su
h that the symmetri
 di�eren
e of

some two edges is 
ontained in the third one and 
ompute asymptoti
ally the


orresponding sat-fun
tion. (For 3-graphs, we �nd the exa
t value.)

Erd}os and Gallai [EG61℄ showed that mK

2

3

is the (unique) minimum graph

in SAT(n;mK

2

2

) for n � 3m. (By mF we denote the union m disjoint 
opies of

F .) The 
ase of mK

k

k

, k � 3, is harder. Many authors present di�erent lower

and upper bounds on sat(n; 2K

k

k

) for spe
i�
 k. The best known general bounds

seem to be sat(n; 2K

k

k

) � k

5

, k � 1, by Blokhuis [Blo87℄, and sat(n; 2K

k

k

) � 3k,

k � 4, by Dow et al [DDFL85℄.

Wessel [Wes66, Wes67℄ and Bollob�as [Bol67b, Bol67a℄ 
omputed indepen-

dently the sat-fun
tion and 
hara
terized extremal graphs for all 
omplete bi-

partite graphs in the 
lass of bipartite, that is, (1; 1)-layered, graphs.

Con
erning 2-graphs, K�aszonyi and Tuza [KT86℄ found the 
omplete answer

for all paths and stars. The situation for 
y
les looks rather 
ompli
ated. Of


ourse, the 
ase C

3

= K

2

3

is known. Ollman [Oll72℄ proved that sat(n;C

4

) =

b(3n�5)=2
 and all extremal graphs were des
ribed by Tuza [Tuz89℄. A

ording

to a re
ent paper by Barefoot et al [BCE

+

96℄, for every k � 5, we know the

exa
t values of sat(n;C

k

) only for �nitely many values of n although some

general bounds are available.

A result of Bondy [Bon72b℄ implies that

sat(n;C

n

) � d3n=2e: (9)

There was a great amount of work invested in 
omputing this fun
tion exa
tly

(Isaa
s [Isa75℄, Clark et al [CE83, CCES86, CES92℄) until the 
omputation was


ompletely �nished by Xiaohui et al [XWCY97℄ (with �nal tou
hes made by


omputer sear
h). In fa
t, estimate (9) is sharp for all even n � 20 and all odd

n � 17.

F�uredi et al [FHPZ98℄ 
onsidered digraphs and showed that sat(n;

�!

C

3

) =

(1 + o(1))n log

2

n. (Here

�!

C

3

denotes the dire
ted 3-
y
le.)

In Subse
tion 4.4 we investigate the maximal number of edges whi
h 
annot
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be F -freely added to G, given v(G) and e(G). We settle this problem (with

a des
ription of all extremal graphs) for 
omplete 2-graphs, whi
h extends the

already mentioned result of Erd}os, Hajnal and Moon [EHM64℄ who 
omputed

sat(n;K

2

m

).

3 Constru
tion

Here we demonstrate some 
onstru
tive upper bounds on sat(n;F) for a gen-

eral family F whi
h, in parti
ular, imply the 
onje
ture of Tuza [Tuz86℄ (also


onje
tured by Bollob�as, unpublished) that, for any k-graph F ,

sat(n; F ) = O(n

k�1

): (10)

Note that we 
annot repla
e k � 1 by a smaller exponent in (10) if we want

the estimate to be valid for every k-graph F ; this follows, for example, from

formula (8).

K�aszonyi and Tuza [KT86℄ proved that sat(n;F) = O(n), for any family

F of forbidden 2-graphs, in
luding in�nite families; this veri�es (10) for k =

2. However, there has been no progress in proving (10) for k � 3 and the


onje
ture is mentioned in a few di�erent papers, e.g. in [Tuz88, EFT91, Tuz92,

Fra95℄. Also, the importan
e of estimate (10) might be indi
ated by the fa
t

that Bollob�as [Bol95℄, in his authoritative survey of the whole of extremal graph

theory, gives two di�erent proofs of sat(n;F) = O(n) for 2-graphs.

Let us present some general 
onstru
tion ofH 2 sat(n;F) whi
h implies (10);

this result appears in [Pik99d℄.

For a k-graph H, we say that A � V (H) is independent if it does not span

an edge in H, that is, A

(k)

\E(H) = ;.

Theorem 1 Let F be a family of k-graphs. Suppose that there is s 2 N su
h

that no F 2 F 
ontains an independent set A � V (F ) of order s+ 1 whi
h 
an

be 
overed by a union of F -edges sharing a 
ommon vertex outside A. Then, for

any n,

sat(n;F) <

�

s

0

� s+ 2

k�1

(s� 1)

�

�

n

k � 1

�

; (11)

where s

0

= minfv(F ) : F 2 Fg.
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Proof. It is enough to 
onstru
t a graph H 2 SAT(n;F) whose size does not

ex
eed the stated bound. Our 
onstru
tion will be by means of an algorithm.

Our algorithm works in the following way. Let us agree that the vertex set

is X = [n℄ with the usual ordering. Given x 2 X and B � X, we write B < x

if every vertex in B is smaller than x. By U

x

= fy 2 X : y > xg we denote the

upper shadow of x and in the obvious way we de�ne the lower shadow L

x

. If

jBj � k, say B 
onsists of elements b

1

< : : : < b

i

, i � k, then we de�ne its tail

T

B

= ffb

1

; : : : ; b

i

; x

i+1

; : : : ; x

k

g : b

i

< x

i+1

< : : : < x

k

g � X

(k)

: (12)

We 
onstru
t an F -saturated graph H by starting with the empty hyper-

graph H on X and adding to H one by one 
ertain families of edges until we

obtain H 2 SAT(n;F).

The algorithm is rather simple. We take, one by one in order, the verti
es

of X. For every vertex x, we 
onsider all of the i-subsets of L

x

, beginning with

i = 0 and in
reasing i until i = k� 1. For every su
h subset A < x, we 
onsider

T

B

, B = A [ fxg, whi
h is, by the de�nition, the family of k-subsets having B

as an initial segment. If at this moment T

B

6� E(H) and the addition of T

B

to the edge set of H does not 
reate any forbidden subgraph, we add T

B

to H.

This is a 
ru
ial feature of the algorithm: for every x and A we either add all

of T

B

or we add nothing.

Another important detail is the order of the steps. The outermost 
y
le has

x in
reasing from 1 to n. The next 
y
le runs for i in
reasing from 0 to k � 1.

In the innermost 
y
le we 
onsider all i-subsets of L

x

and here we are free to


hoose them in any order, but for uniformity let us agree that we use here the


olex order.

In the 
ourse of the algorithm we de�ne, on the vertex set X, auxiliary

hypergraphs H

1

; : : : ;H

n

and G

1

; : : : ; G

k

whi
h we need for an estimation of

e(H) = jE(H)j. The k-hypergraph H

x


ontains pre
isely those edges whi
h

were added whilst 
onsidering verti
es from 1 to x in
lusive. The i-hypergraph

G

i


ontains as edges those i-subsets B for whi
h the set T

B

was added to H.

We 
laim that the resulting graph H = H

n

is an F -saturated graph. Indeed,

H is F -admissible, as we were adding edges only if they did not produ
e any

forbidden subgraphs. On the other hand, take any k-subset E not in E(H). We

did not use the opportunity to add E to E(H) when x = maxE, i = k � 1 and
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A = E n fxg (when T

B

= fEg). The only reason for our not doing so is that

the addition of E would have 
reated a forbidden subgraph F . Then 
ertainly,

H +E 
ontains F , whi
h shows H 2 SAT(n;F).

We 
laim that e(G

1

) � s

0

� 1 and

e(G

i

) � (s� 1)

�

n

i� 1

�

; i = 2; : : : ; k: (13)

Assume that for some i 2 [2; k℄ the estimate (13) is not true. Then there is

some (i�1)-set V = fv

1

; : : : ; v

i�1

g, v

1

< : : : < v

i�1

, whi
h is the initial segment

of at least s edges of G

i

. Let E

1

; : : : ; E

s

2 E(G

i

) be s distin
t edges 
ontaining

V as an initial segment, say E

j

= V [ fz

j

g, j 2 [s℄, V < z

1

< : : : < z

s

.

Sin
e E

1

2 E(G

i

), all edges whose initial segment is E

1

were added to H at

the moment when x = z

1

and A = V . It follows that V 62 E(G

i�1

) for otherwise

these edges would have already been present in H. The only reason that we did

not add V to E(G

i�1

) earlier when x = v

i�1

and A = fv

1

; : : : ; v

i�2

g must have

been that the hypergraph H

0

= H

v

i�1

+ T

V


ontains some forbidden subgraph

F . Let

Y = fu 2 U

v

i�1

: u 2 E for some E 2 E(F ) \ T

V

g:

As U

v

i�1

is an independent set in H

0

and ea
h edge in T

V


ontains v

i�1

the

assumptions of the theorem imply that jY j � s.

By the way algorithm works, any permutation � ofX a�e
ting only the upper

shadow U

z

of a vertex z 2 X (that is, �(y) = y for all y � z) is an automorphism

of H

z

be
ause any T

B

� X

(k)

with z � maxB is �-invariant. Applying this

remark to z = v

i�1

we see that we may assume Y � Z = fz

1

; : : : ; z

s

g.

Let E 2 E(F ) nE(H) � T

V

whi
h exists as F 6� H. Clearly, E \ U

v

i�1

� Y

and E 2 T

E

j

, where z

j

= minE \ fz

1

; : : : ; z

s

g. Sin
e E

j

2 E(G

i

) we obtain the


ontradi
tion E 2 E(H), so (13) is proved for any i 2 [2; k℄.

The 
ase i = 1 does not fall into general s
heme of the proof. But it is

rather trivial, for if we have at least s

0

edges (one-element subsets) in G

1

, say

fv

1

g; : : : ; fv

s

0

g 2 E(G

1

), then these verti
es span a 
omplete k-graph in H,

be
ause if E 2 fv

1

; : : : ; v

s

0

g

(k)

then E 2 T

fminEg

� E(H). Therefore H 
ontains

every k-graph of order s

0

whi
h is 
ertainly a 
ontradi
tion.

Clearly, every edge of G

i


orresponds to less than

�

n�i+1

k�i

�

edges of H so
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by (13) we obtain

e(H) � (s

0

� s)

�

n

k � 1

�

< (s� 1)

k

X

i=1

�

n� i+ 1

k � i

��

n

i� 1

�

= 2

k�1

(s� 1)

�

n

k � 1

�

;

whi
h establishes the theorem.

Remark. Our 
onstru
tion is not generally best possible. For example, for

2K

2

2

, the sat-fun
tion equals 3 while our algorithm gives n� 1.

Corollary 2 For any �nite family F of k-graphs, sat(n;F) = O(n

k�1

).

An interesting question whi
h still remains open is the following.

Problem 3 Is the estimate sat(n;F) = O(n

k�1

) valid for any in�nite family

F of k-graphs, k � 3? (True for k = 2, see K�aszonyi and Tuza [KT86℄.)

Tuza [Tuz92℄ made the following (still open) 
onje
ture whi
h is stronger

than (10).

Conje
ture 4 (Tuza) For any k-graph F we have sat(n; F ) = �(n

d(F )

), where

d(F ) is de�ned by (6). Probably, the stronger assertion sat(n; F ) = 
n

d(F )

+

O(n

d(F )�1

), for some 
onstant 
, is also true.

4 Variations

Here we 
onsider sat-type questions for a variety of stru
tures. Note that the

notion of a saturated stru
ture 
an be de�ned in quite general settings, 
f.

Tuza [Tuz86℄.

Suppose that we have a 
lass C of obje
ts with a binary relation `�' whi
h

is a partial order and a rank fun
tion r : C ! N su
h that G � H implies

r(G) � r(H). Given a family F of elements of C, we say that H 2 C is F-

admissible if H does not 
ontain an F 2 F as a subobje
t. Now, let SAT(n;F)

be the family of all maximal F -admissible obje
ts of rank n. An obje
t H is


alled F-saturated if H 2 SAT(r(H);F).
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In some 
ases, C will be the 
lass of hypergraphs with some additional stru
-

ture: for G;H 2 C, r(H) = v(H) and G � H holds if G is a subgraph of H

in a stru
ture-
ompatible way. Thus, H is F -saturated if it does not 
ontain

any forbidden substru
ture and this fails to be true for any H

0

2 C stri
tly


ontaining H and having the same order.

Usually, we will ask whether the estimate

sat(n;F) = O(n

k�1

) (14)

is true for a general `k-graph' family F and for the appropriately de�ned sat-

fun
tion.

4.1 Graphs with Oriented Edges

Here we shall 
onsider, roughly speaking, k-hypergraphs with the additional

stru
ture of dire
ted edges.

4.1.1 Dire
ted Hypergraphs

To obtain a dire
ted hypergraph we take a usual hypergraph and on every one

of its edges introdu
e some orientation, that is, a linear order.

In fa
t, estimate (14) is not generally true in these settings. For example,

improving previous results of Katona and Szemer�edi [KS67℄, F�uredi, Horak,

Pareek and Zhu [FHPZ98℄ showed that sat(n;C

3

) � n log

2

n, where

�!

C

3

denotes

the dire
ted 3-
y
le: E(

�!

C

3

) = f(1; 2); (2; 3); (3; 1)g.

But the situation is di�erent if we 
onsider 
y
le-free (or a
y
li
) hyper-

graphs, that is, those not 
ontaining a 
y
le whi
h is, by de�nition, an alternat-

ing sequen
e of verti
es and edges

(x

1

; E

1

; x

2

; E

2

; : : : ; x

l

; E

l

; x

l+1

= x

1

)

su
h that x

i

pre
edes x

i+1

in E

i

. Equivalently, a graph H is 
y
le-free if we 
an

order its verti
es in a way 
ompatible with the ordering of its edges.

By de�nition, H is F-saturated if no F 2 F is a subgraph of H but the

addition of any new (ordered) edge to G 
reates either a forbidden subgraph or

an oriented 
y
le. We say that A � V (F ) is independent if no edge of F lies

within A.
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Theorem 5 In the 
lass of the 
y
le-free k-graphs, let F be a forbidden family

su
h that the size of any independent set A � F 2 F 
overed by a union of

F -edges sharing a vertex outside A, is bounded. Then sat(n;F) = O(n

k�1

).

Proof. We pro
eed essentially in the same way as in the proof of Theorem 1,

but there are new te
hni
alities.

Consider one by one x 2 X = [n℄, i = 0; : : : ; k�1, A 2 L

(i)

x

. Let B = A[fxg

and let T

B

be de�ned by (12). An orientation of the edges in T

B

is 
alled

symmetri
 if any order preserving inje
tions f; g : [k℄! [n℄ with f([k℄); g([k℄) 2

T

B

indu
e identi
al orientations of [k℄.

If T

B

6� E(H) (as unoriented k-tuples) and there exists a symmetri
 orien-

tation of T

B

su
h that H+T

B

does not 
ontain a forbidden subgraph or a 
y
le,

then we add T

B

(with this orientation) to the edge set of H.

That is the algorithm. The obtained hypergraph H does not 
ontain a

forbidden 
on�guration. As every k-subset E � X was tested (for B = E

we had T

B

= fEg and every orientation was symmetri
), we 
on
lude that

H 2 SAT(n;F).

As in Theorem 1 we de�ne the auxiliary hypergraphs H

x

(dire
ted) and G

i

(undire
ted). We have to show that e(G

i

) = O(n

i�1

).

First, suppose that E(G

1

) = ffx

1

g; : : : ; fx

l

gg, x

1

< : : : < x

l

. One 
an easily


he
k that, as H is 
y
le-free, there is no 
hoi
e for the orientation of the edges

of T

fx

i

g

, 2 � i � l and H 
ontains the 
omplete 
y
le-free k-graph on l verti
es,

whi
h implies l = O(1), as required.

Suppose that e(G

i

) 6= O(n

i�1

), for some 1 < i � k. Then, for some (i� 1)-

tuple V � X, we 
an �nd an arbitrarily large set Z = fz

1

; : : : ; z

s

g � U

x

, x =

max V , su
h that V [fz

i

g 2 E(G

i

), i 2 [s℄, and the orientation of [

i2[s℄

F

V [fz

i

g

�

E(H) extends to a symmetri
 orientation `�' of T

V

. As V 62 E(G

i�1

) we


on
lude that H

0

= H

x

+ (T

V

;�) 
ontains a forbidden subgraph F or a 
y
le.

If a 
opy of F is present we follow the proof of Theorem 1. Otherwise let

C = (y

1

; E

1

; : : : ; y

l

; E

l

; y

l+1

= y

1

) be a shortest 
y
le in H

0

.

We 
laim that C 
an be 
hosen so that jW j � 3k�5, whereW = ([

i2[l℄

E

i

)\

U

x

. Then for s � 3k � 5 we may assume that W � Z, and the argument of

Theorem 1 shows that C � H, whi
h is a 
ontradi
tion proving the theorem.

If Y = fy

1

; : : : ; y

l

g � U

x

then l � 2 and the 
laim is true. Indeed, there is
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an i 2 [l℄ su
h that y

i+1

is larger than y

i

and y

i+2

in [n℄ but it follows y

i

in E

i

and pre
edes y

i+2

in E

i+1

, whi
h by the symmetry of U

x

� H

0

implies that any

two y; y

0

2 U

x

form a 2-
y
le.

Next, jY \U

x

j � 1; otherwise pi
k y

h

; y

i

2 U

x

\Y , h < i, with y

i+1

2 Y nU

x

and obtain a stri
tly shorter 
y
le through (y

1

; : : : ; y

h

; y

i+1

; : : : ; y

l+1

= y

1

) as

U

x

� H

0

is `symmetri
'. The two edges 
ontaining the point (if it exists) in

Y \U

x


ontribute at most 2k�3 to jW j. By the symmetry of U

x

, we 
an assume

that for the remaining edges E

i

\U

x

lies within some �xed (k� 2)-subset of U

x

,

whi
h shows that jW j � 3k � 5.

For k = 2, we 
an prove a stronger result whi
h in
ludes all in�nite families.

We exploit the ideas of K�aszonyi and Tuza [KT86℄.

Theorem 6 In the 
lass of 
y
le-free 2-graphs, we have sat(n;F) = O(n) for

any family F .

Proof. It is enough to provide a 
onstru
tion. Repeat the following as long as

no forbidden subgraph appears: take the next vertex x of X = [n℄ and add all

of T

x

. Here, T

x

is the set of the (oriented) edges of the form xy, y 2 U

x

.

Suppose that we have repeated the iteration m = m(n) times. Let G

0

=

G

0

(n) be the graph re
eived after these m steps. As [m℄ � V (G

0

) spans the


omplete 
y
le-free digraph, the number of iterations is bounded by a 
onstant

not depending on n; namely, m < u, where u = minfv(F ) : F 2 Fg.

Obviously, m(n) is non-in
reasing as a fun
tion of n for n � u, so it is


onstant for n suÆ
iently large. Then, the reason for terminating the pro
edure

is that the addition of T

m+1

would 
reate a forbidden subgraph F and it will

be the 
ase for any subsequent n, that is, G

0

(n) + T

m+1


ontains the same

subgraph F .

Now we add edges to G

0

in any order as long as we 
reate neither a 
y
le

nor a forbidden subgraph. In the resulting graph G, no d = jV (F ) \ U

m+1

j

edges 
an start at the same vertex y 2 U

m

, as otherwise we have a subgraph

isomorphi
 to F . So, the number of edges in G is at most

m(n� 1)�

�

m

2

�

+ (n�m)(d� 1) = O(n):

A
tually, one 
an argue that, for suÆ
iently large n,

m = minfv(F ) � �

0

(F ) : F 2 Fg � 1;
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where �

0

(F ) is the maximum size of A � V (F ) su
h that no edge starts in A.

Equivalently, m is the minimum number of verti
es one needs to remove from

some F 2 F to obtain a dire
ted star (a digraph whose edges start at a 
ommon

vertex). We 
an take for d the size of any su
h star. This observation allows us

to write more expli
itly the bound of Theorem 6.

4.1.2 Ordered Hypergraphs

We 
an introdu
e yet another interesting 
lass: ordered k-graphs. Every ordered

k-graph is a usual (unoriented) k-graph with an extra stru
ture: we have a �xed

ordering on the vertex set and the verti
es of a subgraph inherit their order

from the original graph. To avoid a 
onfusion note that an ordered graph 
omes

equipped with a �xed vertex ordering while a 
y
le-free graph is one that admits

at least one 
ompatible vertex ordering.

Without any diÆ
ulties we 
an restate word by word the proof of Theorem 1

(ex
ept that now we have already been given an order on the vertex set and in

the 
onstru
tion we take the verti
es in this order).

Theorem 7 Let F be a family of ordered k-graphs. Suppose that there is s 2 N

su
h that the following holds for any x 2 F 2 F : if U

x

� V (F ) is an independent

set 
overed by a union of F -edges sharing some vertex y � x, then jU

x

j � s.

Then we have sat(n;F) = O(n

k�1

).

Using the ideas of Theorem 6 one 
an see that, for k = 2, our result 
an be

extended to all in�nite families.

Theorem 8 For any family F of ordered 2-graphs, sat(n;F) = O(n).

Trivial examples show that if we enlarge any of the above 
lasses by admitting

multiple and/or non-uniform edges, then the estimate (14) fails to be true.

4.2 Layered Hypergraphs

Let t 2 N be �xed. A layered set X of signature n = (n

1

; : : : ; n

t

) (or an n-

set) is a sequen
e of t disjoint sets, X = (X

1

; : : : ;X

t

) su
h that jX

i

j = n

i

,

i 2 [t℄. (Usually we typeset symbols in bold when we want to emphasize that

the obje
t has some layered stru
ture.) The 
omponents of X are 
alled layers.
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Given k = (k

1

; : : : ; k

t

), a layered k-graphG is a pair (V (G); E(G)), where V (G)

is a layered set and E(G) � (V (G))

(k)

, that is, E(G) is a family of k-subsets

of V (G). In other words, every k-graph G is a k-graph (usually, given k, we

denote k = k

[t℄

=

P

i2[t℄

k

i

, et
.) whi
h 
omes with a �xed partition of the

vertex set into t layers su
h that every edge interse
ts the ith layer in exa
tly

k

i

verti
es. The sequen
e k is 
alled the signature of G; the ith layer of G is

denoted by V

i

(G). For example, a bipartite graph is a layered graph of signature

(1; 1) and, for t = 1, we obtain the usual notion of a k-graph. All morphisms

between k-graphs preserve layers.

In the obvious way we de�ne the notion of a subgraph, a saturated graph,

et
. For example, SAT(n;F) 
onsists of all maximal F -admissible k-graphs on

a set of signature n.

It is not very hard to extend Theorem 1 to layered graphs. But, to make

this work self-
ontained, we present a 
omplete proof.

For a k-graph F on X = (X

1

; : : : ;X

t

), a set A � X

j

is 
alled independent if

for every E 2 E(F), E

j

6� A.

Theorem 9 If, for a given family F of k-graphs, there exists s su
h that

1. for every F 2 F , any independent A � V

1

(F) 
overed by a union of

F-edges sharing a vertex in V

1

(F) nA, has at most s elements;

2. for every j 2 [2; t℄ and F 2 F , no (s+1)-set A � V

j

(F) 
an be 
overed

by a set of F-edges 
oin
iding on the �rst j � 1 layers;

then there exists 
 = 
(F) su
h that, for any n,

sat(n;F) � 


n

k

1

1

� : : : n

k

t

t

min(n

1

; : : : ; n

t

)

:

Proof. As in Theorem 1, we provide a 
onstru
tion of H 2 SAT(n;F).

Order linearly the vertex set X = (X

1

; : : : ;X

t

) so that any vertex of X

i


omes before any vertex X

j

for i < j. As usual by U

x

= fy 2 X : y > xg we

denote the upper shadow of x.

We 
onstru
t an F -saturated graph H by starting with the empty k-graph

H on X and applying the following pro
edure.

Let j run from 1 to t. Take x 2 X

j

in order. For every su
h x let i vary from

0 to k

j

�1. Choose one by one C � X

j

nU

x

of size i and let B = C[fxg. Given
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B 
onsider in any order sets A su
h that A interse
ts every X

l

in k

l

verti
es,

l 2 [j� 1℄, A\X

j

= B and A\U

x

= ;. For every su
h A we 
onsider T

A

whi
h

is by the de�nition the family of k-subsets having A as an initial segment. If

T

A

6� E(H) and the addition of the elements of T

A

to the edge set of H does

not 
reate any forbidden subgraph, we add T

A

to H.

We argue that H exhibits the 
laimed upper bound in a similar way as in

Theorem 1. It is not hard to do, although there are a few new te
hni
alities to

over
ome.

We de�ne auxiliary k-graphs H

1

; : : : ;H

n

on X and auxiliary layered graphs

G

ji

of signature (k

1

; : : : ; k

j�1

; i) on the set X

1

[ : : : [X

j

, j 2 [t℄, i 2 [k

j

℄.

We need these graphs for estimates of e(H) = jE(H)j. H

x

is the k-graph 
on-

taining pre
isely those edges whi
h were added while 
onsidering verti
es from

1 to x in
lusive. The hypergraph G

ji


ontains as edges those A = (A

1

; : : : ; A

j

)

for whi
h jA

j

j = i and the set T

A

was added to H.

We 
laim that the resulting graph H is F -saturated. Indeed, H is F -admis-

sible, as we were adding edges only if it did not produ
e any forbidden subgraph.

On the other hand, take any edge E in the 
omplement of E(H). We did not

add E to E(H) when x = maxE, j = t, i = k

t

� 1, A

l

= E

l

for l 2 [t � 1℄ and

A

t

= E

t

n fxg (then T

A

= fEg). The only reason for this is that it would have


reated a forbidden subgraph F. Then H + E 
ontains F, whi
h shows that

H 2 SAT(n;F).

We want to show that

e(G

ji

) � (s� 1)

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

; j 2 [t℄; i 2 [k

j

℄: (15)

(In fa
t, e(G

11

) is bounded by some other 
onstant s

0

= s

0

(F) but nothing

prevents us from assuming s � s

0

.) This would establish the theorem as then

we would obtain the required

e(H) �

t

X

j=1

k

j

X

i=1

e(G

ji

)

�

n

j

k

j

� i

�

t

Y

l=j+1

�

n

l

k

l

�

�

t

X

j=1

k

j

X

i=1

 

(s� 1)

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

!

�

n

j

k

j

� i

�

t

Y

l=j+1

�

n

l

k

l

�

=

t

X

j=1

O

 

n

k

1

1

� : : :� n

k

t

t

n

j

!

:
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Assume that, for some j and i, estimate (15) is not true. Assume �rst that

i 6= 1.

For every edge E in G

ji


onsider the set V of its �rst k

1

+ : : :+ k

j�1

+ i� 1

verti
es. When E varies over all edges of G

ji

, by the pigeon-hole prin
iple some

set V appears at least

2

6

6

6

e(G

ji

)

 

�

n

j

i� 1

�

j�1

Y

l=1

�

n

l

k

l

�

!

�1

3

7

7

7

� s

times. Let V 
onsist of 
lasses V

1

; : : : ; V

j

of sizes k

1

; : : : ; k

j�1

; i� 1 respe
tively.

Let E

1

; : : : ;E

s

2 E(G

ji

) be s distin
t edges ofG

ji


ontaining V as an initial

segment, say E

l

= V [ fz

l

g, l = 1; : : : ; s, V < z

1

< : : : < z

s

. Let z = maxV.

Sin
e E

1

2 E(G

ji

), all edges whose initial segment is E

1

were added to H

at the moment when x = z

1

, A = V [ fz

1

g. It follows that V 62 E(G

j;i�1

),

for otherwise these edges would have already been present in H. The only

reason that we did not add V to E(G

ji

) earlier, when x = z, C = V

j

n fxg

and A = V, must have been that the k-graph H

0

= H

x

+ T

V


ontains some

forbidden subgraph F 2 F . Let

A = fu 2 X

j

\ U

z

: u 2 E for some E 2 T

V

\E(F)g: (16)

By Assumption 1 (for j = 1) or by Assumption 2 (for j � 2) of the theorem,

jAj � s. One 
an argue that any layer-preserving permutation � of X a�e
ting

only U

z

is an automorphism of H

z

, be
ause any T

B

with z � maxB is �-

invariant. Therefore, we may assume that A � Z = fz

1

; : : : ; z

s

g.

Now let E 2 E(F) n E(H) � T

V

. Clearly, E 2 T

E

l

� E(H), where z

l

=

min(E \ fz

1

; : : : ; z

s

g), sin
e E

l

2 E(G

ji

); the obtained 
ontradi
tion F � H

proves (15) for j 2 [t℄, i 2 [2; k

j

℄.

Suppose that (15) is not true for i = 1. Then as before we argue that there

are at least s edges inG

j1

, say V

1

; : : : ;V

s

2 E(G

j1

), su
h that their restri
tions

to X

1

[ : : : [ X

j�1

are the same whi
h we denote by V. Let V

l

\ X

j

= fv

l

g,

l 2 [s℄.

First, if j > 1 then as above we argue that V is not in G

j�1;k

j�1

be
ause

T

V

1

� T

V

was added later. The only reason for omitting V is that the addition

of T

V

would have 
reated a forbidden F. The set A de�ned by (16) has at most
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s elements by Assumption 2; we 
an assume that A � fv

1

; : : : ; v

s

g and dedu
e

a 
ontradi
tion.

Finally, if j = 1 then H 
ontains all k-edges E interse
ting fv

1

; : : : ; v

s

g and

s = O(1) follows.

A version for bipartite graphs (that is, (1; 1)-graphs) 
overs all (in
luding

in�nite) families and uses slightly di�erent ideas.

Theorem 10 For any family F of bipartite graphs, there is 
 = 
(F) su
h that,

for any n

1

; n

2

> 0,

sat(n

1

; n

2

;F) � 


n

1

n

2

min(n

1

; n

2

)

:

Proof. Suppose �rst that n

1

� n

2

. Choose a large s = s(F) (to be spe
i�ed

later). If n

2

< s then any (n

1

; n

2

)-bipartite graph 
ontains O(n

1

) verti
es and

we are home. Otherwise, as long as no forbidden subgraph appears, take one

by one verti
es in the �rst layer and for every su
h vertex x 2 X

1

= [n

1

℄ add

all edges 
onne
ting it to X

2

to obtain a graph H

0

. Suppose we do it m times.

Note that as n

2

!1 then m = m(n

2

) does not in
rease so we 
an assume that

m is 
onstant for every n

2

� s, some s = s(F). Then, the only thing preventing

us from adding the edges ffm + 1; yg : y 2 X

2

g is the 
reation of a forbidden

subgraph F . Let jV (F ) \ X

2

j = l. We see that if we draw through any point

x 2 X

1

n [m℄ any l edges, we would obtain a 
opy of F . Therefore, in whatever

way we 
omplete H

0

to H 2 SAT(n

1

; n

2

;F), we would have

e(H) � mn

2

+ ln

1

� (l +m)n

1

= O(n

1

):

We settle the 
ase n

1

� n

2

in the same manner.

4.3 Forbidden Matri
es

Here we investigate sat-type problems for 01-matri
es. We show that sat(n;F) =

O(n

k�1

) for any family F of k-row matri
es and indi
ate other results.

The expression `n�m-matrix' means a matrix with n rows (whi
h we view

as horizontal arrays) and m verti
al 
olumns. We restri
t entries to only two

values, 0 and 1. For an n �m-matrix M , its order v(M) = n is the number

of rows and its size e(M) = m is the number of 
olumns. Please distinguish
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expressions like `an n-row matrix' and `an n-row' standing respe
tively for a

matrix with n rows and for a row 
ontaining n elements.

A matrix F is a submatrix of a matrix A (denoted F � A) if deleting some

set of rows and 
olumns of A we 
an obtain a matrix whi
h is a row/
olumn

permutation of F . Given a family F of matri
es (referred to as forbidden), we

say that a matrix M is F-admissible (or F-free) if M 
ontains no F 2 F as a

submatrix. A simple matrix M (that is, a matrix without repeated 
olumns)

is 
alled F-saturated if M is F -admissible but the addition of any 
olumn not

present in M violates this property; this is denoted by M 2 SAT(n;F), n =

v(M). Please note that, although the de�nition requires that M is simple, we

allow multiple 
olumns in matri
es belonging to F .

A popular extremal problem is to 
onsider forb(n;F), the maximum size of

a simple F -admissible matrix with n rows or, equivalently, the maximal size

of M 2 SAT(n;F). For example, the fundamental formula (17) falls into this


lass. The interested reader may start with a re
ent paper by Anstee, Griggs

and Sali [AGS97℄ 
ontaining many referen
es.

On the other hand, the `dual' of the forb-type problem has re
eived little

attention so far. Namely, one 
an ask what is the value of sat(n;F), the minimal

size of an F -saturated matrix with n rows:

sat(n;F) = minfe(M) :M 2 SAT(n;F)g:

We will be mainly interested in this fun
tion. Obviously, sat(n;F) � forb(n;F).

If F = fFg 
onsists of a single forbidden matrix F then we write SAT(n; F ) =

SAT(n; fFg), et
.

For an n�m-matrixM and sets A � [n℄ and B � [m℄, M(A;B) denotes the


orresponding jAj�jBj-submatrix ofM . We use the following self-obvious short-

hands: M(A; ) = M(A; [m℄), M(A; i) = M(A; fig), et
. For example, the rows

and the 
olumns ofM are denoted byM(1; ); : : : ;M(n; ) andM(; 1); : : : ;M(;m)

respe
tively while individual entries|by M(i; j), i 2 [n℄, j 2 [m℄.

The n� (m

1

+m

2

)-matrix [M

1

;M

2

℄ is obtained by 
on
atenating an n�m

1

-

matrix M

1

and an n�m

2

-matrix M

2

. Let mM = [M; : : : ;M ℄ denote m 
opies

of M . We write N

�

=

M to say that N is a 
olumn/row permutation of M .

Thus, N �M if N

�

=

M(A;B) for some index sets A and B.

By T

l

k

we denote the simple k �

�

k

l

�

-matrix 
onsisting of all k-
olumns with
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exa
tly l ones and by K

k

|the k � 2

k

matrix of all possible 
olumns of size k.

Naturally, T

�l

k

denotes the k �

�

k

�l

�

-matrix 
onsisting of all distin
t 
olumns

with at most l ones, et
. (We use the short
ut

�

k

�l

�

=

�

k

0

�

+

�

k

1

�

+ : : :+

�

k

l

�

.)

We will need the following result proved independently by Vapnik and Cher-

vonenkis [VC71℄, Perles and Shelah (see [She72℄) and Sauer [Sau73℄.

forb(n;K

k

) =

�

n

� k � 1

�

=

k�1

X

i=0

�

n

i

�

: (17)

Suppose that F 
onsists of k-row matri
es. Is there any good general upper

bound on forb(n;F) or sat(n;F)? There were di�erent papers dealing with gen-

eral upper bounds on forb(n;F), e.g. by Anstee and F�uredi [AF86℄, by Frankl,

F�uredi and Pa
h [FFP87℄ and by Anstee [Ans95℄, until the 
onje
ture of Anstee

and F�uredi [AF86℄ that forb(m;F) = O(n

k

) for any �xed F was elegantly proved

by F�uredi (see [AGS97℄ for a proof).

On the other hand, we 
an show that sat(n;F) = O(n

k�1

) for any family

F of k-row matri
es (in
luding in�nite families). Note that we 
annot de
rease

the exponent of k� 1 with the estimate remaining true for any F ; for example,

sat(n; T

k

k

) =

�

n

�k�1

�

as T

<k

n

is the only matrix in SAT(n; T

k

k

).

Theorem 11 For any family F of k-row matri
es, sat(n;F) = O(n

k�1

).

Proof. We may assume that K

k

is F -admissible for otherwise we are home

by (17) as then sat(n;F) � forb(n;K

k

) = O(n

k�1

).

Let l 2 [0; k℄ be the smallest number su
h that there exists m for whi
h

[mT

�l

k

; T

>l

k

℄ is not F -admissible. Clearly, l is well-de�ned as, for l = k, we

obtain the matrix mK

k

whi
h, of 
ourse, is not F -admissible for large m.

Let d � 1 be the maximal integer su
h that [mT

<l

k

; dT

l

k

; T

>l

k

℄ is F -admissible

for any m. Observe that letting d equal 1 we obtain the matrix [mT

<l

k

; T

�l

k

℄

whi
h is F -admissible. Indeed, for l > 0 this is true by the 
hoi
e of l; for l = 0

we have K

k

whi
h is F -admissible by our assumption. By the 
hoi
e of l, d is

bounded, that is, d is well-de�ned.

Choose any m su
h that [mT

<l

k

; (d+ 1)T

l

k

; T

>l

k

℄ is not F -admissible.

Suppose �rst that l < k. Given n, let N � T

l+1

n

be the n-row matrix


orresponding to the following set system:

H =

[

j2[d℄

fY 2 [n℄

(l+1)

:

P

y2Y

y � j (mod n)g:
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Note that any A 2 [n℄

(l)

is 
overed by at most d edges of H as there are

at most d possibilities to 
hoose i 2 [n℄ n A so that A [ fig 2 H: i � j �

P

a2A

a (mod n), j 2 [d℄.

On the other hand, the set H

1

of all l-subsets of [n℄ 
overed by fewer than

d edges of H has size at most 2d

�

n

l�1

�

. Indeed, if A 2 H

1

then, for some j 2 [d℄

and x 2 A, 2x = j�

P

a2A�x

a (mod n) so, on
e Anfxg and j have been 
hosen,

there are at most 2 
hoi
es for x.

Call X 2 [n℄

(k)

bad if, for some A 2 X

(l)

,

jfY 2 H : Y � A; Y \ (X n A) = ;gj � d� 1: (18)

To obtain a bad k-set X, we either 
omplete some A 2 H

1

to any k-set or take

any l-set A and let X � A interse
t some H-edge 
overing A. Therefore, the

number of bad sets is at most

2d

�

n

l � 1

��

n

k � l

�

+

�

n

l

�

d

�

n

k � l � 1

�

= O(n

k�1

):

Assume that n is so large that N(X; ) � mT

<l

k

for any X 2 [n℄

(k)

. This is

possible as d � 1. Of 
ourse, e(N) = O(n

k�1

).

Clearly, N(X; ) � [d

�

n

l

�

T

<l

k

; dT

l

k

; T

l+1

k

℄, for any X 2 [n℄

(k)

. Hen
e, N 
annot


ontain a forbidden submatrix by the 
hoi
e of l and d. Now 
omplete it to an

arbitrary M = [N;N

1

℄ 2 SAT(n;F).

Suppose that e(N

1

) 6= O(n

k�1

). Then, by (17), K

k

�

=

N

1

(X;Y ) for some

X;Y . Now, remove the 
olumns 
orresponding to Y from N

1

and repeat the

pro
edure as long as possible to obtain more than O(n

k�1

) 
olumn-disjoint


opies ofK

k

inN

1

. If someX 2 [n℄

(k)

appears more than d times, thenM(X; ) �

[mT

<l

k

; (d+ 1)K

k

℄ is not F -admissible. Otherwise, K

k

� N

1

(X; ) for some good

(ie. not bad) X 2 [n℄

(k)

; but then N(X; ) � dT

l

k

and

M(X; ) � [mT

<l

k

; dT

l

k

;K

k

℄


ontains a forbidden matrix. This 
ontradi
tion proves the required bound for

l < k.

Let us 
onsider the 
ase when l = l(F) equals k; the above argument does

not work in this 
ase be
ause N has size �(n

k

), whi
h is too large.

Consider the family H obtained by inter
hanging zeros and ones in ea
h

F 2 F . Clearly, sat(n;H) = sat(n;F). If l(H) < k, then we are home by the

above argument applied to H. So, we assume that l(H) = k.
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Consider �rst the 
ase k = 1. Let F 2 F be a matrix of the smallest size f .

Let the only row of F 
onsist of f

0

zeros and f

1

ones; f

0

+ f

1

= f . Note that

f

1

� 2 and f

0

� 2, be
ause l(F) = l(H) = 1. Trivially, for any n there exists

a simple n � (f � 1)-matrix M su
h ea
h row of M 
ontains exa
tly f

0

zeros.

By the minimality of f , M is F -admissible. When we try to 
omplete M to

any F -saturated matrix, any added 
olumn 
annot 
ontain an entry equal to 1;

hen
e, all we 
an add is at most one all-zero 
olumn. Hen
e, sat(n;F) � f for

any n, whi
h implies the required.

So assume that k � 2. Now we repeat a part of the above proof with some

modi�
ations. Probably, it would be possible to write a general single argument


overing all the 
ases, but we are afraid that the proof would be very hard to

follow then.

Let l

0

2 [0; k� 1℄ be the smallest number su
h that there exists m for whi
h

[mT

�l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄ is not F -admissible. Observe that l

0

is well-de�ned as

this matrix 
ontains mK

k

as a submatrix if we let l

0

= k � 1.

De�ne d to be the maximal integer su
h that [mT

<l

0

k

; dT

l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄

is F -admissible for any m. Note that letting d = 1 we obtain the matrix

[mT

<l

0

k

; T

�l

0

k

; T

k�1

k

;mT

k

k

℄ whi
h does not 
ontain a forbidden submatrix. Indeed,

if l

0

> 0, this is true by the 
hoi
e of l

0

; if l

0

= 0, then our matrix [K

k

; T

k�1

k

;mT

k

k

℄

is ne
essarily F -admissible as l(H) = k > 1 by our assumption.

Choose any m su
h that [mT

<l

0

k

; (d+ 1)T

l

0

k

; T

>l

0

k

; T

k�1

k

;mT

k

k

℄ is not F -free.

Let N be the n-row matrix 
orresponding to the following set system:

H =

[

j2[d℄

fY 2 [n℄

(l

0

+1)

:

P

y2Y

y � j (mod n)g:

As above we observe that every A 2 [n℄

(l

0

)

is 
overed by at most d edges of

H and the number of bad sets (that is, su
h X 2 [n℄

(k)

that (18) holds for some

A 2 X

(l

0

)

) is O(n

k�1

). Assume that n is so large that N(X; ) � mT

<l

0

k

for any

X 2 [n℄

(k)

, whi
h is possible as d � 1.

Let M

1

= [N;T

�n�1

n

℄. Clearly,

M

1

(X; ) � [d

�

n

l

0

�

T

<l

0

k

; dT

l

0

k

; T

l

0

+1

k

; T

k�1

k

; nT

k

k

℄; for any X 2 [n℄

(k)

.

Hen
e, M

1


annot 
ontain a forbidden submatrix by the 
hoi
e of l

0

and d. Now


omplete it to an arbitrary M = [M

1

;M

2

℄ 2 SAT(n;F).
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Clearly, e(M

1

) = O(n

k�1

). Suppose that e(M

2

) 6= O(n

k�1

). Then, by (17),

K

k

�

=

M

2

(X;Y ) for some X;Y . Now, remove the 
olumns 
orresponding to

Y from M

2

and repeat the pro
edure as long as possible to obtain more than

O(n

k�1

) 
olumn-disjoint 
opies of K

k

in M

2

. If some X 2 [n℄

(k)

appears more

than d times then M(X; ) � [mT

<l

0

k

; (d+1)K

k

; T

k�1

k

;mT

k

k

℄ is not F -admissible.

(We assume n � m+ k.) Otherwise, K

k

�M

2

(X; ) for some good (ie. not bad)

X 2 [n℄

(k)

; but then N(X; ) � dT

l

0

k

and M(X; ) � [mT

<l

0

k

; dT

l

0

k

; T

k�1

k

;mT

k

k

;K

k

℄


ontains a forbidden matrix. This 
ontradi
tion proves the theorem.

Let us present some other results.

The following simple observation is useful in ta
kling sat-type problems.

Suppose that no forbidden matrix has two equal rows. LetM

0

be obtained from

M 2 SAT(n;F) by dupli
ating the nth row of M , that is, we let M

0

([n℄; ) =

M and M

0

(n + 1; ) = M(n; ). Complete M

0

, in an arbitrary way, to an F -

saturated matrix. Let C be any added (n + 1)-
olumn. As both M

0

([n℄; ) and

M

0

([n � 1℄ [ fn + 1g; ) are equal to M 2 SAT(n;F), we 
on
lude that both

C([n℄) and C([n � 1℄ [ fn + 1g) must be 
olumns of M . As C is not an M

0

-


olumn, C = (C

0

; b; 1� b) for some (n�1)-
olumn C

0

su
h that both (C

0

; 0) and

(C

0

; 1) are 
olumns of M . This implies that sat(n + 1;F) � e(M) + 2l, where

l is the number of pairs of equal 
olumns in M after we delete the nth row. In

parti
ular, the following theorem follows.

Theorem 12 Suppose that no matrix in F has two equal rows. Then either

sat(n;F) is 
onstant for large n or sat(n;F) � n+ 1 for every n.

Proof. If we have some M 2 SAT(n;F) with at most n 
olumns then a well-

known theorem of Bondy [Bon72a℄ (see e.g. [Bol86, Theorem 2.1℄) implies that

there is i 2 [n℄ su
h that the removal of the ith row does not produ
e multiple


olumns. Now the dupli
ation of the ith row gives an F -saturated matrix, whi
h

implies sat(n+ 1;F) � sat(n;F), and the theorem follows.

There are many open problems 
on
erning parti
ular forbidden matri
es; for

example, the 
omputation of sat(n; T

k

m

) or sat(n;K

k

). Of 
ourse, Theorem 12 is

appli
able here. While it is easy to see that sat(n; T

k

m

) � n+1 for any m 2 [0; k℄

and k � 2, we do not know for whi
h k we have sat(n;K

k

) = O(1). We 
ould

only show that sat(n;K

2

) = n+1, whi
h is an easy (and perhaps known) result,
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and (surprisingly) sat(n;K

3

) = 10 for n � 4. We do not provide any proofs

here, ex
ept we exhibit an example of an n-row K

3

-saturated matrix of size 10

for any n � 6. For n = 6 we 
an take

M =

2

6

6

6

6

6

6

6

6

6

6

4

0 0 0 0 1 1 0 1 1 1

0 0 1 1 0 0 0 1 1 1

0 1 0 1 0 0 1 0 1 1

1 0 0 0 0 1 1 0 1 1

1 0 1 0 0 0 1 1 0 1

0 1 0 0 1 0 1 1 0 1

3

7

7

7

7

7

7

7

7

7

7

5

:

It is possible (but rather boring) to 
he
k by hand thatM is indeedK

3

-saturated

as is, in fa
t, any n� 10-matrix M

0

obtained from M by dupli
ating any row,


f. Theorem 12. (The symmetries of M shorten the veri�
ation.)

The author would like to thank Ri
hard Anstee for drawing the author's

attention to the Tur�an-type problem for matri
es and Andrew Thomason for

his 
omputer programme used for 
omputing sat(n;F) for small n and F .

4.4 Edge Killers

Here we introdu
e 
ertain extremal problems whi
h are 
losely related to the

sat-type questions. We settle the problem for 
omplete 2-graphs, whi
h extends

a theorem of Erd}os, Hajnal and Moon [EHM64℄ who 
omputed sat(n;K

2

m

).

Given a forbidden family F , we say that a k-graph G F-kills (or simply kills

when F is understood) an edge E 2 E(G) if the addition of E to G 
reates a

new forbidden subgraph. For example, G 2 m-SAT(n;F) if and only if it kills

all edges in its 
omplement. The F-
losure Cl

�

F

(G) of G is the k-graph on V (G)


onsisting of all edges of G plus all F -killed edges. Let 
l

�

F

(G) = jCl

�

F

(G)j.

Let us de�ne k-m-sat(e;F ;n) to be the maximum size of Cl

�

F

(G) where

G is a k-graph of order n and size e, e � m-sat(n; F ). In the same way we

de�ne k-sat(e;F ;n) ex
ept we 
onsider only F -free graphs of order n and size e,

e � sat(n;F). We agree that k-sat = k-m-sat =

�

n

k

�

for other (larger) values of e.

Clearly, k-m-sat(e;F ;n) � k-sat(e;F ;n); both k-m-sat and k-sat are monotone

in
reasing in e.

Here we 
ompute k-m-sat and k-sat (and des
ribe all extremal graphs) for


omplete 2-graphs. This extends a result of Erd}os, Hajnal and Moon [EHM64℄
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who 
omputed sat(n;K

2

m

), as sat(n;F) = minfe : k-sat(e;F ;n) =

�

n

k

�

g.

Let us provide a 
onstru
tion. Given n � m � 3 and e,

�

m

2

�

� 1 � e �

�

n

2

�

�

�

n�m+ 2

2

�

= m-sat(n;K

2

m

) = sat(n;K

2

m

);

write e �

�

m�2

2

�

= l(m � 2) + r with r 2 [0;m � 3℄. Choose an (m � 2)-set A

and a disjoint l-set B. Let G be P

A;B

(whi
h 
onsists of all edges lying within

A [ B and interse
ting A) plus any r extra edges, none within B. (So B is an

independent set inG.) It is routine to 
he
k that G 
an be a

ommodated within

[n℄. Clearly, G kills all

�

l

2

�

edges of K

2

(B). We show that this is best possible

by applying the 
ontra
tion te
hnique of Erd}os, Hajnal and Moon [EHM64℄.

Theorem 13 In the above notation,

k-sat(e;K

2

m

;n) = k-m-sat(e;K

2

m

;n) =

�

l

2

�

+ e; (19)

and all extremal graphs are given by the 
onstru
tion pre
eding the theorem.

Proof. To prove the upper bound, we use indu
tion on l with the 
ase l = 2

being trivially true. Let l � 3. Given a graph G of order n and size e (not

ne
essarily K

2

m

-free), �x any killed edge fx

1

; x

2

g and let G

0

be obtained from G

by 
ontra
ting the verti
es x

1

and x

2

into one vertex x. Fix an (m � 2)-set Y

su
h that G[Y [ fx

1

; x

2

g℄ is the 
omplete graph but for fx

1

; x

2

g; 
olour these

�

m

2

�

� 1 edges red. Clearly, during the 
ontra
tion at least m � 2 red edges

disappear, so e(G

0

) � e(G)�m+ 2.

Obviously, an edge killed by G is also killed by G

0

(ex
ept fx

1

; x

2

g) but two

G-killed edges, say fa; x

1

g; fa; x

2

g 2 E(G), may produ
e only one edge in G

0

(whi
h is also killed). When this happens then, for i = 1; 2, 
hoose an arbitrary

(m � 2)-set X

i

with G[X

i

[ fa; x

i

g℄ = P

m�2;2

and 
olour all edges 
onne
ting

a to X

i

blue. Let D be a blue edge. Some a 2 D is in
ident neither to x

1

nor

to x

2

, so D is not 
oloured red. As the other endvertex of D sends at least one

edge to fx

1

; x

2

g, D 
annot be 
oloured blue more than twi
e.

We have e�

�

m

2

�

+ 1 non-red edges ea
h being 
oloured blue at most twi
e,

while ea
h time two killed edges 
ontra
t together exa
tly 2(m � 2) edges are


oloured blue. This yields


l

�

K

2

m

(G)� e(G) � 
l

�

K

2

m

(G

0

)� e(G

0

) +

$

e�

�

m

2

�

+ 1

m� 2

%

+ 1: (20)
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(the last term 1 
ounts the edge fx

1

; x

2

g) and the indu
tion assumption applied

to the graph G

0

of order n � 1 and size at most e �m + 2 proves the desired

upper bound.

Let us follow our argument to 
hara
terize the 
ases of equality. Clearly, for

l = 2, when e =

�

m

2

�

� 1+ r, we must have an indu
ed P

m�2;2

-subgraph present

while the remaining r edges 
an be pla
ed arbitrarily, whi
h is pre
isely what

our 
onstru
tion says.

Let l � 3 and let G be an extremal graph. Apply the above 
ontra
tion to

G, preserving the above notation. By indu
tion, G

0

= P

A;B

+ E

1

+ : : : + E

r

,

where B is an independent (l�1)-set disjoint from an (m�2)-set A. The vertex

x, whi
h has degree at least m� 2 in G

0

, must belong to A [B as r � m� 3.

Suppose that x 2 A. Then the (m�1)-set Y [fxg, whi
h spans the 
omplete

graph in G

0

, must equal A[fyg, for some y 2 B. Ea
h blue edge of G lies within

a P

m�2;2

-subgraph in G

0

and, as r � m� 3, none of E

1

; : : : ; E

r


an be blue (nor

red, of 
ourse). But then, for z 2 Bnfyg, E(G) 
ontains either fx

1

; zg or fx

2

; zg

(be
ause fx; zg 2 E(G

0

)) whi
h is also un
oloured. So, we have at least r + 1

un
oloured edges and we 
annot have equality in (20), whi
h is a 
ontradi
tion.

Hen
e, x 2 B; then Y must equal A, and G is given by our 
onstru
tion.

5 Irregularities

Here we demonstrate many irregularities of the sat-fun
tion in the 
omparison

to the Tur�an fun
tion ex(n;F) = maxfe(G) : G 2 SAT(n;F)g.

Clearly, ex(n; F

1

) � ex(n; F

2

) whenever F

1

is a subgraph of F

2

. K�aszonyi and

Tuza [KT86℄ demonstrated an example of F

1

� F

2

with sat(n; F

1

) > sat(n; F

2

)

for all large n. Tuza [Tuz92, p. 401℄ asks if there exists a 
onne
ted irregular pair

F

1

� F

2

; this is answered in the aÆrmative by the following simple example.

Example 14 There is a pair of 
onne
ted graphs F

1

� F

2

on the same vertex

set su
h that sat(n; F

1

) > sat(n; F

2

) for all n � v(F

1

).

Proof. Let m � 5 and F

1

= S

2

m

, that is, V (F

1

) = [m℄ and E(F

1

) = ff1; ig :

i 2 [2;m℄g and let F

2

be obtained from F

1

by adding the edge f2; 3g. Clearly,

sat(n; F

2

) � n� 1, n � m, as S

2

n

is an example of an F

2

-saturated graph.
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On the other hand, in any monotoni
ally F

1

-saturated graph G, any two

verti
es of degree at most m� 3 must be 
onne
ted. (Otherwise the addition of

this edge 
annot 
reate a forbidden subgraph.) If we have v 2 [0;m � 2℄ su
h

verti
es, then e(G) �

�

v

2

�

+(m�2)(n�v)=2, whi
h is easily seen to ex
eed n�1

for all n � m.

Remark. Curiously enough, the w-sat-fun
tion (studied later) exhibits the

analogous irregularity on the very same pair: it is not hard to 
he
k that

w-sat(n; F

2

) = e(F

2

)� 1 = m� 2 while w-sat(n; F

1

) =

�

m�1

2

�

, n � m.

Clearly, for every n � v(F ), we have ex(n; F ) � ex(n+ 1; F ). On the other

hand, K�aszonyi and Tuza [KT86℄ observe that, for any n = 2k� 1, sat(n; P

3

) =

k+1 > sat(n+1; P

3

) = k, where P

3

is the path with 3 edges. Our next example

ampli�es this irregularity.

Example 15 For every 
onstant d, there is a 2-graph F = F (d) su
h that

sat(n; F ) < sat(n� 1; F ) � d;

for a periodi
 series of values of n.

Proof. Let m = 2d+ 3 and let F = B

mm

be the dumb-bell

E(B

mm

) = [m℄

(2)

[ [m+ 1; 2m℄

(2)

[ ff1;m+ 1gg;

that is, B

mm

is the disjoint union of two 
opies of K

m

plus one edge 
onne
ting

them.

Let us show that the 
laim is true for any n = lm if l 2 N is large. Clearly,

sat(lm; F ) � lm(m � 1)=2 (in fa
t, this is sharp) as lK

2

m

2 SAT(lm; F ). On

the other hand, let n = lm � 1 and suppose that G 2 sat(n; F ) has at most

g = lm(m� 1)=2 + d edges.

Clearly, Æ(G), the minimal degree of G, is at least Æ(B

mm

) � 1 = m � 2.

Suppose that for some x 2 V (G) d(x) = m� 2. Then for every y non-in
ident

to x the edge E = fx; yg 2 E(G) 
annot be the bridge in a 
reated B

mm

-

subgraph as the degree of x is too small; that is, x and y fall in the same

K

2

m

-half. Therefore, y must be 
onne
ted to all m � 2 neighbours of x and

e(G) � (m� 2)n+O(1) whi
h is a 
ontradi
tion.
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Hen
e Æ(G) � m� 1. The inequality �(G) + (m � 1)(n� 1) � 2e(G) � 2g

implies that �(G) � 2(d +m � 1). If some x 2 V (G) does not belong to an

m-
lique then any missing edge fx; yg must 
reate a K

2

m

-subgraph and we arrive

at a 
ontradi
tion again, as d(x) � �(G) is bounded. Thus the whole of V (G)

is 
overed by m-
liques.

We want to �nd a set X � V (G) with the surplus s(X) = e(G[X℄)�

m�1

2

jXj

at least m� 1 as then the 
laim would follow:

e(G) � e(G[X℄) +

m� 1

2

(n� jXj) �

m� 1

2

n+m� 1 > g:

As m does not divide n, there are two distin
t 
liques A;B 2 V (G)

(m)

with

i = jA \Bj > 0. It is straightforward to verify that

s(A [B) = 2

�

m

2

�

�

�

i

2

�

�

m� 1

2

(2m� i) �

m� 1

2

:

No m-
lique C 6� A[B 
an interse
t some other 
lique or A[B. (Otherwise

we gain another suplus of (m � 1)=2.) By the divisibility argument, i = 1. As

a (2m � 1)-
lique has suplus at least m � 1, there exists some E 2 E(G) lying

within A[B. It is easy to see that G+E must 
ontain a K

2

m

-subgraph on some

m-set C 6� A [ B interse
ting A [ B, whi
h implies s(A [ B [ C) � m � 1 as

required.

Clearly, for n = ml + 1, sat(n;B

mm

) �

m�1

2

n > g, whi
h 
ompletes the

proof.

The elegant averaging argument of Katona, Nemetz and Simonovits [KNS64℄

shows that the limit ex(n;F)=n

k

exists for any family F of k-graphs. Con
erning

the sat-fun
tion, Tuza [Tuz88℄ made the following (still open) 
onje
ture.

Conje
ture 16 (Tuza) For any 2-graph F , the limit lim

n!1

sat(n; F )=n ex-

ists.

We 
an show that this assertion is not true for families of forbidden graphs.

Example 17 There exists a �nite family F of 2-graphs su
h that, for some


 > 0 and for in�nitely many n, sat(n;F) < sat(n� 1;F) � 
n. In parti
ular,

the ratio sat(n;F)=n does not ne
essarily tend to a limit for a �nite family F

of 2-graphs.
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Proof. Fix m � 4 and 
onsider the family F 
onsisting of the dumb-bell B

mm

and F

m1

; : : : ; F

m;m�1

, where

E(F

mi

) = [m℄

(2)

[ [m� i+ 1; 2m � i℄

(2)

; i 2 [m� 1℄;

that is, F

mi

is the union of two K

2

m

-graphs sharing i 
ommon verti
es.

Clearly, the disjoint union of K

2

m

-graphs is F -saturated as any missing edge


onne
ts two di�erent 
opies and thus 
reates a B

mm

-subgraph. Hen
e, if m

divides n then sat(n;F) �

n

m

�

m

2

�

.

On the other hand, suppose that m does not divide n and let G be any

F -saturated graph on [n℄. By the de�nition of F , no vertex 
an belong to two

di�erent K

2

m

-subgraphs of G; suppose that the sets A

i

= [m(i � 1) + 1;mi℄,

i 2 [s℄, are all m-sets spanning 
omplete subgraphs in G.

Note the following two properties ofG. Property A:G[A

[s℄

℄

�

=

sK

2

m

. (Be
ause

B

mm

is forbidden.) Property B: any missing edge E interse
ting B = [n℄ n A

[s℄


reates a K

2

m

-subgraph. (Be
ause it is impossible that B

mm

� G + E with E

being the bridge.)

We 
laim that these two properties and the fa
t that B 6= ; (as m is not a

divisor of n) imply that

e(G) �

n

m

��

m

2

�

+m� 2

�

�m

2

: (21)

We use indu
tion on n. If some E 2 B

(2)

is not a G-edge then it is easy to 
he
k

that the graph G

0

obtained from G by 
ontra
ting the edge E has the properties

in question. The endverti
es of E have at least m� 2 
ommon neighbours in G

(be
ause E 
reates a K

2

m

-subgraph) so e(G) � e(G

0

) +m � 2 and (21) follows

by indu
tion.

Suppose that B spans the 
omplete graph in G. If some E 2 E(G) interse
ts

both A

i

and B then a K

2

m

-subgraph 
reated by E lies within A

i

[B and so at

least m� 2 G-edges interse
t both A

i

and B. Therefore,

e(G) � f(b) = (n� b)

m� 1

2

+

�

b

2

�

+

n� b

m

(m� 2);

where b = jBj. (We 
orrespondingly 
ount the edges withinA

[s℄

, withinB and in

between.) The minimum of f is a
hieved for b =

m

2

+

m�2

m

and our estimate (21)

follows rather 
rudely.
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Hen
e, if we in
rease/de
rease n = ml by one, then sat(n;F) in
reases at

least by n

m�2

m

+O(1).

6 Spe
i�
 Classes

Our aim in this se
tion is to give pre
ise information about sat(n;F) for spe
ial


lasses F .

6.1 Stars

The star S

k

m

= P (1;m � 1; 1; k � 1), m > k � 2, has [m℄ as the vertex set and

fE 2 [m℄

(k)

: E 3 mg as the edge set. In other words, S

k

m

has m verti
es and its

�

m�1

k�1

�

edges are the k-tuples 
ontaining some �xed vertex, whi
h is 
alled the


entre.

The exa
t values of sat(n; S

k

m

) are known only for S

2

m

, any m, (see [KT86℄)

and for S

3

4

(see [EFT91℄).

The asymptoti
 behaviour of sat(n; S

k

k+1

) was found by Erd}os, F�uredi and

Tuza [EFT91, Theorem 2℄. Exploiting their ideas we extend their result to all

stars; this theorem appears in [Pik99b℄.

Theorem 18 Let m > k � 2 and S = S

k

m

. Then

m� k

2

�

n

k � 1

�

� sat(n; S) � m-sat(n; S) �

m� k

2

�

n

k � 1

�

�O(n

k�4=3

): (22)

Proof. Let us provide a 
onstru
tion of an S-saturated graphG = G

k

m;n

of order

n proving the upper bound. Partition the vertex set [n℄ into n

0

= dn=(m�k+1)e

blo
ks B

1

; : : : ; B

n

0

of size m� k+1 ea
h ex
ept possibly the last one. The edge

set is

E(G) =

n

F 2 [n℄

(k)

: jF \B

j

j � 2; j = minfi 2 [n

0

℄ : F \B

i

6= ;g

o

:

Thus every edge of G has at least two 
ommon points with some B

j

and inter-

se
ts no B

i

with i < j.

Let us show that S 6� G. Suppose not and we have an S-subgraph S

0

� G


entered at x. Let

j = minfi 2 [n

0

℄ : V (S

0

) \B

i

6= ;g: (23)
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Choose a k-set F 3 x so that it 
ontains one vertex from B

j

and some k � 1

verti
es in V (S

0

) n B

j

whi
h is possible sin
e jV (S

0

) n B

j

j � k � 1. We obtain

a 
ontradi
tion as on one hand F 
ontains the 
entre x and must belong to S

while on the other hand F 62 E(G) by de�nition.

If we add any extra edge F to G then the set Y = F [ B

j

spans a 
opy of

S 
entered at x where B

j

is the �rst blo
k interse
ting F and fxg = F \ B

j

.

Indeed, every F

0

2 Y

(k)


ontaining x either equals F or interse
ts B

j

in at least

two points and so belongs to E(G).

Therefore we 
on
lude that G is S-saturated. To prove the desired upper

bound jG

k

m;n

j �

m�k

2

�

n

k�1

�

we observe, for k = 2, that ea
h vertex of the 2-

graph G

2

m;n

has degree at most m � k while, for k � 3, we use indu
tion and

the equality jG

k

m;n+1

j = jG

k

m;n

j+ jG

k�1

m�1;n

j.

Of 
ourse, sat(n; S) � m-sat(n; S).

Finally, let G be a minimum monotoni
ally S-saturated graph on V = [n℄.

By the de�nition, the addition to G of any edge F 2 E(G) 
reates at least one

S-subgraph S

0

� G + F . Let S(F ) be the set of all su
h subgraphs S

0


reated

by F .

Let F(F ) denote the set of edges in G whi
h interse
t F 2 E(G) in k � 1

points and 
reate a 
opy of S 
ontaining F as an edge. Formally,

F(F ) =

�

F

0

2 E(G) : jF \ F

0

j = k � 1; 9S

0

2 S(F

0

) F 2 E(S

0

)

	

; F 2 E(G):

Also we de�ne

F(G

0

) =

S

F2E(G

0

)

F(F ); G

0

� G;

�F = F

(k�1)

; F 2 [n℄

(k)

;

�G

0

=

S

F2E(G

0

)

�F; a k-graph G

0

.

As G is monotoni
ally S-saturated we 
on
lude that

F(G) = V

(k)

nE(G): (24)

Choose an integer t = t(n), to be spe
i�ed later, su
h that t ! 1 and

t=n ! 0. On the vertex set V we de�ne two subgraphs G

0

; G

1

� G; G

0

is

a maximal subgraph of G with jF(G

0

)j � tjG

0

j and G

1


onsists of the edges

of G not in G

0

: E(G

1

) = E(G) n E(G

0

). By the maximality of G

0

for every

F 2 E(G

1

) we have

jF(F ) n F(G

0

)j > t: (25)
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From (24) and the proved upper bound in (22) we 
on
lude that jF(G)j =

�

n

k

�

�jGj =

�

n

k

�

�O(n

k�1

). Taking into the a

ount that F(G) = F(G

0

)[F(G

1

)

and jF(G

0

)j � tjG

0

j = O(tn

k�1

) we obtain

jXj =

�

n

k

�

�O(tn

k�1

); (26)

where X = F(G

1

) n F(G

0

).

Let Z = V

(k�1)

n �G

1

. We 
laim that

jZj = O(t

1=2

n

k�3=2

): (27)

Suppose not. Then the average value of z(D) = jfE 2 Z : E � Dgj over all

D 2 V

(k�2)

is greater than O(t

1=2

n

1=2

). For any E;E

0

2 Z with jE\E

0

j = k�2

we have F = E [ E

0

62 X, be
ause otherwise at least one of E;E

0

2 �F is


overed by an edge of S

0

2 S(F ) whi
h then is ne
essarily an edge of G

1

(as

it interse
ts F 2 F(G

1

) n F(G

0

) in k � 1 verti
es). Therefore, we have at

least

�

k

2

�

�1

P

D2V

(k�2)

�

z(D)

2

�

k-sets not in X, whi
h ex
eeds

�

n

k�2

�

O(tn) by the


onvexity of

�

x

2

�

. This 
ontradi
ts (26) and proves the 
laim.

Let

g

1

(E) = jfF 2 E(G

1

) : F � Egj; E 2 �G

1

:

Take any F 2 E(G

1

). Let �F = fE

1

; : : : ; E

k

g. We 
laim that all but at most

two of g

1

(E

i

)'s are larger than t=6. Suppose not, say g

1

(E

i

) � t=6, i = 1; 2; 3.

Take F

0

2 F(F ) n F(G

0

) and any S

0

2 S(F

0

) 
ontaining F as an edge. Let

F

0

= E

i

[ fxg, some i 2 [k℄, x 2 V n F . The star S

0


ontains k � 2 edges of the

form E

j

[ fxg, j 6= i. These edges 
annot be in G

0

and so 
ontribute at least 1

to g

1

(E

1

)+ g

1

(E

2

)+ g

1

(E

3

). In total, ea
h fxg[E

j

2 E(G

1

) is 
ounted at most

twi
e. (On
e it o

urs then at most 2 edges of the form fxg [E

i


an belong to

E(G).) But this 
ontradi
ts (25). The 
laim is proved.

De�ne

W = fE 2 �G

1

: g

1

(E) � m� k � 1g;

T = fF 2 E(G

1

) :W \ �F 6= ;g:

We 
laim that jW j = O(t

1=2

n

k�3=2

). Suppose not. Note that for E;E

0

2W

with jE \ E

0

j = k � 2 we ne
essarily have F = E [E

0

62 X for otherwise in an

S

0

2 S(F ) 
entered at x, say x 2 E, there arem�k edges (ne
essarily in E(G

1

))
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di�erent from F and 
overing E. Thus there are at least

�

k

2

�

�1

P

D2V

(k�2)

�

w(D)

2

�

edges not in X, where w(D) = jfE 2 W : E � Dgj, D 2 V

(k�2)

. Using

the 
onvexity of the

�

x

2

�

-fun
tion as before we 
an argue that there more than

O(tn

k�1

) edges not in X, 
ontradi
ting (26). The 
laim is established.

Every E 2 W is 
ontained in at most m � k � 1 edges of G

1

, so jT j =

O(t

1=2

n

k�3=2

). For every F 2 E(G

1

)nT we have

P

E2�F

1

g

1

(E)

�

2

m�k

+(k�2)

6

t

.

Note the following easy identity

j�G

1

j =

X

F2E(G

1

)nT

 

X

E2�F

1

g

1

(E)

!

+

X

F2T

 

X

E2�F

1

g

1

(E)

!

�

�

2

m� k

+O(1=t)

�

jG

1

j+ kjT j:

We know, see (27), that j�G

1

j =

�

n

k�1

�

�O(t

1=2

n

k�3=2

). Hen
e

m� k

2

�

n

k � 1

�

� jGj = O(t

1=2

n

k�3=2

+ jGj=t) = O(t

1=2

n

k�3=2

+ n

k�1

=t):

Taking t = bn

1=3


 we obtain the required result.

6.2 Sub-Designs

A t-(v; k; �)-design (or an S

�

(t; k; v)) is a k-graph G of order v in whi
h every

t-set is 
overed by exa
tly � edges. As the question whether a design exists for

a given set of parameters is generally notoriously hard, one dire
tion of resear
h

is to 
onsider what we 
all here sub-designs. A t-(v; k; �)-sub-design G is a

maximal k-graph of order v su
h that no t-set is 
overed by more than � edges.

Clearly, in the latter 
ase, G 
an 
ontain at most �

�

v

t

��

k

t

�

�1

edges so we take

e(G) as the measure of the `goodness' of G.

It is easy to 
onstru
t sub-designs. This 
an be done, for example, by starting

with the empty graph and 
onse
utively adding missing k-subsets as long as

possible. If we are lu
ky, we obtain an S

�

(t; k; v); in this 
ase e(G) is maximal

possible. On the other hand, one 
an ask how unlu
ky we 
an be, that is, how

small G 
an be. Let D = D(�; t; k) be the family of all k-graphs with � + 1

edges su
h that some t verti
es belong to every edge. Then SAT(n;D) is the

family of all sub-designs of order n. Thus we are interested in sat(n;D(�; t; k)),

the minimal size of a t-(n; k; �)-sub-design.



6 SPECIFIC CLASSES 34

Note that D(�; 1; 2) 
onsists of one graph, namely the star S

2

�+2

= K

1;�+1

.

K�aszonyi and Tuza [KT86℄ 
omputed sat(n; S

2

�+2

). In fa
t, their method extends

to any D(�; 1; k).

We need the following simple lemma, whose proof we in
lude for the sake of


ompleteness.

Lemma 19 Given integers n

0

, � and k with � �

�

n

0

�1

k�1

�

, there is a k-graph G

0

on [n

0

℄ su
h that every vertex has degree � ex
ept a set D of at most k�1 verti
es

of degree �� 1.

Proof. Pla
e the elements of [n

0

℄ 
lo
kwise on a 
ir
le to form a regular n

0

-gon.

De�ne the equivalen
e relation � on [n

0

℄

(k)

so that two k-sets are equivalent if

some rotation maps one onto the other. (Note that we do not allow mirror re-


e
tions.) Let H

1

; : : : ;H

p

� [n

0

℄

(k)

be the obtained equivalen
e 
lasses. Clearly,

ea
h H

i

is a regular 
overing of [n

0

℄ of degree whi
h is a divisor of k. Let H

p

be the equivalen
e 
lass of the set [k℄ whi
h 
onsists of k 
onse
utive verti
es.

Starting with the empty hypergraph G

0

on [n

0

℄, for i 2 [p � 1℄, add H

i

to G

0

if

the maximal degree does not ex
eed �. At the end, we will be left with some

d-regular k-graph. Clearly, �� d is at most k be
ause otherwise we had to add

every H

i

, i 2 [p�1℄, so adding H

p

we obtain the 
omplete k-graph on [n

0

℄, whi
h

implies the 
ontradi
tion

�

n

0

�1

k�1

�

< �.

Finally, we try to add some subset of H

p

to make G

0

nearly �-regular. Take

some edge E 2 H

p

whi
h has not been added to G

0

, say E = [i + 1; i + k℄. We

add, one by one, the following shifts of E:

[i+ 1; i + k℄; [i+ k + 1; i+ 2k℄; [i+ 2k + 1; i+ 3k℄; : : :

and so on in this order until either we 
ome a
ross E again or we 
annot add the


urrent edge (be
ause then the maximal degree of G be
omes larger than �). In

the former 
ase, we take any other unused edge and repeat the pro
edure. In

the latter 
ase, we have the required graph built be
ause every time the added

portion of H

p

is nearly regular, that is, the di�eren
e between the maximal and

minimal degrees is always at most 1.

The following theorem gives the exa
t answer in almost every 
ase, ex
ept

for some small n when we have only a lower bound.
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Theorem 20 Given � � 1 and k � 2, let D = D(�; 1; k) and de�ne v by

�=k 2 [

�

v�1

k�1

�

;

�

v

k�1

�

℄. Then m-sat(n;D) �

�

v

k

�

+ d

�(n�v)

k

e. If, furthermore,

� �

�

n�v�1

k�1

�

then

m-sat(n;D) = sat(n;D) =

�

v

k

�

+

�

�(n� v)

k

�

: (28)

Proof. Given G 2 m-SAT(n;D), let V � V (G) 
onsist of all verti
es whose

degree (that is, the number of 
ontaining it edges) is at most �� 1. Clearly, V

must span the 
omplete k-graph, for otherwise the addition of a missing edge E 2

V

(k)

to G 
annot 
reate any forbidden subgraph. Thus e(G) � min

v2[n℄

f(v),

where f(v) =

�

v

k

�

+

�(n�v)

k

, whi
h implies the lower bound on m-sat.

Conversely, let n

0

= n � v and let G be the nearly �-regular k-graph G

0

on [n

0

℄ built in Lemma 19, plus the 
omplete k-graph on V = [n

0

+ 1; n℄ and

(if D = fx 2 [n

0

℄ : d(x) < �g 6= ;) plus an edge E interse
ting [n

0

℄ in the set

D. (Note that v � k � jDj if D 6= ;: otherwise G

0

+ K

k

(V ) 2 m-SAT(n;D)


ontradi
ts our lower bound.)

All verti
es in [n

0

℄ have degree � and any missing edge (whi
h must interse
t

[n

0

℄) 
reates a forbidden subgraph. Also, G is D-free: if

�

v�1

k�1

�

� �, then we

obtain the 
ontradi
tion f(v) � �n=k > f(k� 1). The required G 2 SAT(n;D)

is built.

Next, let t = 2 and D = D(�; 2; k), that is, we forbid � + 1 edges having 2


ommon verti
es. The Tur�an number t(n; t; k) = ex(n;K

t

k

) is the maximum size

of a K

t

k

-free t-graph of order n. De�ne �(n; t; k) =

�

n

t

�

� t(n; t; k). We are able

to 
ompute asymptoti
ally sat(n;D).

Theorem 21 Given � � 2 and k � 3, let 
 = �=

�

k

2

�

. Then, for any n �

max(k + 
� 1; k


1=(k�2)

),

m-sat(n;D(�; 2; k)) � 
�(n; 2; k): (29)

On the other hand, for any �xed � and k,

sat(n;D(�; 2; k)) � 
�(n; 2; k) +O

 

n

2

(log n)

1=

((

k

2

)

�1

)

!

: (30)

Proof. Given a monotoni
ally D-saturated k-graph H, we build, on the same

vertex set, the 2-graph G so that fi; jg 2 E(G) i� there are at least � H-edges
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ontaining both i; j 2 V (H). Clearly, any k-set E independent in G must be

an edge of H, for otherwise the addition of E to H does not 
reate a forbidden

subgraph. This implies that

e(H) � L(G) = k

2

k

(G) + 
e(G); (31)

where k

2

k

(G) denotes the number of K

2

k

-subgraphs of G, the 
omplement of G.

We want to �nd, for whi
h 2-graphs G, the right-hand side of (31) is minimized.

By a theorem of Bollob�as [Bol76℄ (for some extensions see S
help and Thoma-

son [ST98℄), this happens if G is a 
omplete multipartite 2-graph (that is, if G is

a disjoint union of 
omplete graphs). If the parts are of sizes n

1

� n

2

� : : : � n

l

,

then we have to minimize

L(G) = k

2

k

(G) + 
e(G) =

X

A2[l℄

(k)

Y

i2A

n

i

+ 


l

X

i=1

�

n

i

2

�

; (32)

given the 
ondition

P

l

i=1

n

i

= n.

Suppose that l � k. Let G

0

be obtained from G by merging the smallest

two parts together. This adds n

l�1

n

l

extra edges to G, but this eliminates all

K

2

k

-subgraphs of G interse
ting both of the a�e
ted parts, that is,

k

2

k

(G)� k

2

k

(G

0

) = n

l�1

n

l

X

A2[l�2℄

(k�2)

Y

i2A

n

i

: (33)

We 
laim that

P

A2[l�2℄

(k�2)

Q

i2A

n

i

� 
. As n

l

and n

l�1

are two smallest

parts, it is enough to verify the inequality for n

2

= : : : = n

l�2

= n

l�1

= n

l

= x

in whi
h 
ase it redu
es to to

g(x) =

�

l � 3

k � 2

�

x

k�2

+

�

l � 3

k � 3

�

(n� (l � 1)x)x

k�3

� 
: (34)

Taking the derivative, one 
an see that the minimum of g over x 2 [1; n=l℄ is

a
hieved either for x = 1 or for x = n=l. For x = 1, the right-hand side of (34)

is h(l) =

�

l�3

k�2

�

+

�

l�3

k�3

�

(n� l+ 1) and, for any l 2 [k; n℄, the inequality h(l) � 


is true as h(k) � 
 and

h(l + 1)� h(l) =

�

l�3

k�3

�

+ (n� l + 1)

�

l�3

k�4

�

�

�

l�2

k�3

�

= (n� l)

�

l�3

k�4

�

� 0:

For x = n=l,

g(n=l) =

�

l � 2

k � 2

�

�

n

l

�

k�2

=

n

k�2

(k � 2)!

k�2

Y

i=1

�

1�

i+ 1

l

�
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whi
h is 
learly minimized for l = k. But g(n=k) � 
 by our assumptions.

Thus we may assume that l � k�1. But then k

2

k

(G) = 0 and e(G) is minimal

if we have exa
tly k� 1 parts of nearly equal sizes (i.e. if G is the Tur�an graph)

and (29) follows.

To demonstrate the upper bound we have to use as bri
ks almost optimal

sub-designs. R�odl [R�od85℄ was �rst to show that for �xed �; k; t there exists a

t-(v; k; �)-sub-design with �

�

v

t

�

=

�

k

t

�

+o(v

t

) edges, v !1, that is, asymptoti
ally

approa
hing the absolute upper bound. The error term was made more spe
i�


by Gordon, Kuperberg, Patashnik and Spen
er [GPKS96℄ who showed it to be

O(F (v)), where F (v) = v

t

=(log v)

1=D

and D =

�

k

t

�

� 1. Gordon, Kuperberg

and Patashnik [GKP95℄ present a few di�erent methods suitable for pra
ti
al


onstru
tion of nearly optimal sub-designs.

Let us 
onstru
t G 2 SAT(n;D) showing that (29) is asymptoti
ally 
orre
t.

Partition [n℄ = V

1

[ : : : [ V

k�1

into k � 1 nearly equal parts. On ea
h part V

i


onstru
t a maximum 2-(jV

i

j; k; �)-sub-design H

i

. The union of H

1

; : : : ;H

k�1

is obviously D-free and has the size within O(F (n)) of (29). Completing it in

an arbitrary way to G 2 SAT(n;D), we add O(F (v)) extra edges as ea
h extra

edge interse
t some part in at least 2 verti
es while ea
h H

i

has O(F (v)) 2-sets


overed by stri
tly less than � edges. The theorem is proved.

Finally, let us 
onsider the general 
ase t � 3. It seems that sat(n;D(�; t; k))

is generally related to �(n; t; k).

Theorem 22 For any �xed �, t and k,

m-sat(n;D(�; t; k)) � (1� o(1))��(n; t; k)

�

k

t

�

�1

; (35)

as n tends to in�nity.

Proof. Let H 2 m-SAT(n;D(�; t; k)). Let the t-graph G 
onsist of all t-sets


overed by at least � edges of H. Similarly to the above, we note that any

k-subset of [n℄ not spanning an edge in G, must belong to E(H) and therefore,

e(H) � �e(G)

�

k

t

�

�1

+ k

t

k

(G): (36)

If e(G) � (1 + o(1))t(n; t; k) then the �rst summand in the right-hand side

of (36) itself gives the desired lower bound. Otherwise, the result of Erd}os and
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Simonovits [ES83℄ implies that the se
ond summand is �(n

k

) whi
h is far more

than required.

We do not have many stru
tural results related to the Tur�an problem for


omplete hypergraphs. Sidorenko [Sid95℄ mentions the following 
onje
tures.

�(n; 3; k) =

�

2

k � 1

�

2

�

n

3

�

+ o(n

3

); (37)

�(n; 4; 5) =

5

16

�

n

4

�

+ o(n

4

): (38)

Re
all that �(n; t; k) =

�

n

t

�

� t(n; t; k) is the minimum size of an �(n; t; k)-graph,

that is, a t-graph on n verti
es in whi
h any k-set spans at least one edge.

Example 23 Let D = D(�; 3; k), where either k = 4 or k � 5 is odd. Then

there is a D-saturated k-graph H with �(

2

k�1

)

2

�

n

3

�

=

�

k

3

�

+ o(n

3

) edges. In parti
-

ular, if (37) is true, then H is asymptoti
ally extremal.

Proof. Let k = 4. Let m = bn=3
. De�ne A

i

= [(i � 1)m+ 1; im℄, i 2 [3℄. The

graphG on [3m℄ 
onsisting of all triples fx; y; zg with x; y 2 A

i

and z 2 A

i

[A

i+1

,

where A

4

= A

1

, is an �(3m; 3; 4)-graph with approximately

4

9

�

n

3

�

edges.

Consider the graph H

0


onsisting of edges E = fw; x; y; zg with fx; y; zg 2

A

(3)

i

and w 2 A

i+1

(then E

(3)

� E(G)), i 2 [3℄, su
h that u + x + y + z is


ongruent modulom to an element in [�℄. Let D 2 E(G). For example, suppose

that D 
onsists of x; y 2 A

1

and w 2 A

2

. To �nd z with fw; x; y; zg 2 E(H

0

)

we have to satisfy w + x + y + z � j (mod m) for some j 2 [�℄; there are �

solutions, but we may have to dis
ard possible degenerate 
ases when z = x or

z = y. A similar 
laim is true if D � A

i

. Hen
e, ea
h G-edge, ex
ept O(n

2

)

edges, is 
overed by exa
tly � edges of H

0

.

It is therefore 
lear that if we 
omplete the D-free graph H

0

to any D-

saturated graph H on [n℄, then we add only O(n

2

) edges; therefore, H has the

required size.

For k = 2l + 1, l � 2, an example of an �(n; 3; k)-graph G attaining (37) is

obtained by partitioning [n℄ = A

1

[ : : : [A

l

into nearly equal parts and letting

G = [

i2[l℄

K

3

(A

i

). The result of R�odl [R�od85℄ implies that we 
an �nd a D-free

k-graph on ea
h A

i

whi
h is a nearly optimal 3-(jA

i

j; k; �)-sub-design; let H

0

be

the union of these. Completing it arbitrarily to a D(�; 3; k)-saturated graph, we

add only o(n

3

)-extra edges, whi
h proves the 
laim.
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However, we do not know any mat
hing 
onstru
tion for t = 3 and even

k � 6. In this 
ase, a 
onje
tured extremal �(n; t; k)-graph G is the disjoint

union of 
omplete 3-graphs plus at least one �(m; 3; 4)-extremal graph. The

last graph 
auses us the problem: the 
onstru
tions by Kosto
hka [Kos82℄ do

not admit an almost perfe
t 
overing by k-edges, k � 6.

Here is a short explanation why. In all Kosto
hka's graphs we have three

equisized sets A

1

[ A

2

[ A

3

= [n℄ and let G = ([

3

i=1

K

3

(A

i

)) [ G

0

, where G

0


onsists of

1

3

�

n

3

�

+ o(n

3

) other edges. Also, any k-set E with E

(3)

� E(G)

has the property that jK \ A

i

j � k � 2 for some i, so it 
an 
over at most

l =

�

k

3

�

�

�

k�2

3

�

edges of G

0

. Hen
e, we need at least e(G

0

)=l 
overing edges,

whi
h ex
eeds (

2

k�1

)

2

�

n

3

�

=

�

k

3

�

+ o(n

3

) for k � 8. (For k = 6 we need a slightly

more re�ned argument.)

For similar reasons, there is no almost perfe
t 
overing of the 
onstru
tion by

de Caen, Kreher and Wiseman [dCKW88℄ whi
h gives the upper bound in (38).

Unfortunately, we do not know any other, essentially di�erent, 
onstru
tions

attaining (37) or (38) and we do not have any likely guess what sat(n;D) 
ould

be then.

6.3 Triangular Families

The notion of a triangle-free 2-graph 
an be extended to hypergraphs in the

following way: a k-graph is triangle-free if the symmetri
 di�eren
e of any two

distin
t edges is not 
ontained in a third edge. Clearly, this is the same as

forbidding the triangular family T

k

whi
h 
onsists of all k-graphs with three

edges E

1

; E

2

; E

3

su
h that E

1

4E

2

� E

3

.

Katona [Kat74℄ raised the problem of 
omputing ex(n;T

3

) whi
h was solved

by Bollob�as [Bol74℄ who showed that the 
omplete 3-partite 3-graph with parts

of nearly equal sizes is a maximum triangle-free 3-graph. Bollob�as [Bol74℄ stated

the general 
onje
ture that the analogous 
onstru
tion gives ex(n;T

k

) for any

k � 4; Sidorenko [Sid87℄ proved that this is the 
ase for k = 4.

Con
erning the sat-fun
tion, we have the following obvious example of a T

k

-

saturated graph: the pyramid P = P (k� 1; n� k+1; k� 1; 1) whi
h 
onsists of

all k-subsets of [n℄ 
ontaining the set [k � 1℄ 
alled basi
. Indeed, any missing

edge E interse
ts [k; n℄ in at least 2 points and 
reates a forbidden subgraph on
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the set E [ [k � 1℄. Thus

sat(n;T

k

) � n� k + 1; n � k + 1

and this might be sharp. It is remarkable that P 
an be viewed as the 
omplete

k-partite k-graph with k � 1 parts 
onsisting of only one vertex.

In the general 
ase we are able to prove only the following.

Theorem 24 Let k � 3 be �xed. Then

n�O(log n) � sat(n;T

k

) � n� k + 1:

Proof. We have to prove the lower bound. Let G be a minimum T

k

-saturated

graph on [n℄; e(G) � n�k+1. Conse
utively 
hoose G

1

; G

2

; : : : � G as follows:

let e

j+1

be the largest integer su
h that the k-graph H

j

, E(H

j

) = E(G) n

(E(G

1

)[ : : :[E(G

j

)), 
ontains a P (k� 1; e

j+1

; k� 1; 1)-subgraph and let G

j+1

be any su
h subgraph. We terminate the pro
edure when b

j

= n�e

[j℄

� j(k�1)

is less than max(j; k). (We denote e

[j℄

=

P

i2[j℄

e

i

, et
.)

Let j � 0 and suppose we have 
hosen G

1

; : : : ; G

j

. Let B

j


onsist of some

b

j

verti
es not 
overed by an edge of G

i

, i 2 [j℄; B

j

exists as v(G

i

) = e

i

+ k� 1.

(We let b

0

= n.) Label all (k� 1)-subsets of [n℄ by A

1

; : : : ; A

l

, l =

�

n

k�1

�

. Let d

i

be the number of edges of H

j


ontaining A

i

, i 2 [l℄. Clearly,

d

[l℄

= ke(H

j

) � k(n� k + 1� e

[j℄

) = k(b

j

+ (j � 1)(k � 1)) < k

2

b

j

: (39)

The number of ways to add an element of B

(k)

j


reating a forbidden subgraph

with any given E

1

; E

2

2 [n℄

(k)

is at most

�

b

j

�2

k�2

�

+O(1) if jE

1

\E

2

j = k � 1 and

it is O(b

k�4

j

) otherwise. As the addition of any E 2 B

(k)

j

nE(H

j

) to H

j


reates

a forbidden subgraph (be
ause E is disjoint from any edge of G

i

, i 2 [j℄), we


on
lude that

O(b

k�4

j

)

�

e(H

j

)

2

�

+

�

b

j

� 2

k � 2

�

X

i2[l℄

�

d

i

2

�

�

�

b

j

k

�

� e(H

j

); (40)

and, by (39),

X

i2[l℄

�

d

i

2

�

�

b

2

j

k(k � 1)

�O(b

j

): (41)
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We have e

j+1

= max

i2[l℄

d

i

. The 
onvexity of the

�

x

2

�

-fun
tion implies that

the left-hand side of (41) does not ex
eed

d

[l℄

e

j+1

�

e

j+1

2

�

<

1

2

k

2

b

j

e

j+1

. Therefore,

we obtain that

e

j+1

�

2b

j

k

3

(k � 1)

�O(1):

From this inequality (and from the fa
t that e

j+1

� 1 if b

j

� k) we dedu
e the

following inequality

b

j+1

� min

��

1�

2

k

3

(k�1)

�

b

j

+O(1); b

j

� k

�

: (42)

It is 
lear that, starting with b

0

= n, we stop after j = O(log n) steps. Now,

e(G) � e

[j℄

= n� b

j

� j(k � 1) = n�O(log n):

The theorem is proved.

Let us 
onsider the 
ase k = 3; note that T

3


ontains only 2 non-isomorphi


graphs, S

3

4

and T

3

:

E(S

3

4

) = f f1; 2; 3g; f1; 2; 4g; f1; 3; 4g g;

E(T

3

) = f f1; 2; 3g; f1; 2; 4g; f3; 4; 5g g:

Theorem 25 For any n � 4, sat(n;T

3

) = n� 2.

Proof. Let G be any T

3

-saturated graph on [n℄. Make a list of all edges of G

and, 
onse
utively and as long as possible, merge together any two sets in the

list sharing at least 2 verti
es (that is, repla
e then by their union.) Call the

resulting sets C

1

; : : : ; C

l

� [n℄ 
omponents. Let v

i

= jC

i

j. De�ne the 2-graph H

on [n℄ by

E(H) = ffx; yg 2 [n℄

(2)

: fx; yg = E

1

4E

2

for some E

1

; E

2

2 E(G)g:

Consider any 
omponent C. It is easy to see by indu
tion on jCj that C is


omposed of at least jCj � 2 edges of G.

Note that if E 2 E(H[C℄) then any E

1

; E

2

2 E(G) with E

1

4E

2

= E share 2

verti
es and so belong to the same 
omponent C

0

; but E � C

0

\C so ne
essarily

C

0

= C.

Claim 1 For every 
omponent C, �(H[C℄) � e(G[C℄) � 1.
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Let x 2 C be arbitrary. For ea
h fx; yg 2 E(H[C℄), 
hoose D

y

; E

y

2 E(G)

with D

y

4E

y

= fx; yg and E

y

3 y. If fx; zg is another edge of H[C℄ then

E

y

6= E

z

: indeed, otherwise D

z

4E

z

= fx; zg � D

y

and G 
ontains a forbidden

subgraph. Hen
e, d(x) � e(G[C℄) � 1 (we must have at one G-edge in
ident to

x) and the 
laim is proved.

Claim 2 If e(G[C℄) � jCj � 1 then for any x 2 [n℄ n C there is a 
omponent

C

0

3 x interse
ting C.

By Claim 1, there exists fa; bg 2 E(H [C℄). As x 62 C, E = fa; b; xg 62 E(G).

Consider a forbidden subgraph F 
reated by E. We are home if fa; xg or fb; xg is


overed by E

1

or E

2

, where E(F ) = fE;E

1

; E

2

g. If fa; b; yg 2 E(F ) then y 2 C

and the remaining edge of F 
ontains both x and y. Finally, if E

1

4E

2

� E

then, as fa; bg 62 E(H), x belongs to the 
omponent 
ontaining E

1

and E

2

whi
h

is the required one.

The 
laim is proved. In parti
ular, C

[l℄

= V (G).

Now, if every 
omponent C spans at least jCj � 1 edges then we are home:

by Claim 2 relabel 
omponents C

1

; : : : ; C

l

so that C

i

\C

[i�1℄

6= ;, i 2 [2; l℄, and

it is easy to show by indu
tion on i that C

[i℄

is made of at least jC

[i℄

j � 1 edges,

whi
h gives e(G) � n� 1.

So, suppose that, for example, e(G[C

1

℄) = jC

1

j�2. If for every x 2 V (G)nC

1

,

there are two distin
t 
omponents 
ontaining x and interse
ting C

1

then are

home:

e(G) �

X

i2[l℄

(v

i

� 2) = v

1

� l � 1 +

X

i2[2;l℄

(v

i

� 1)

� v

1

� l � 1 +max(2l � 2; 2(n� v

1

)) � n� 2: (43)

So let C

2

be the only 
omponent 
ontaining some vertex x 62 C

1

and inter-

se
ting C

1

. Let fyg = C

1

\ C

2

. Let z 2 V (G) n C

[2℄

be arbitrary. (The below

argument works without any 
hanges if C

1

[ C

2

= V (G).)

If fx; zg � C

i

, for some i 2 [3; l℄, then, by the 
hoi
e of x, C

i

\ C

1

= ; and,

by Claim 2, there exists another 
omponent through z interse
ting C

1

.

If no 
omponent 
ontains both x and z then, for every y

0

2 C

1

n fyg,

E = fx; y

0

; zg 62 E(G) and 
onsidering a forbidden subgraph 
reated by E

we 
on
lude that, for some i 2 [3; l℄, fy

0

; zg � C

i

(as fx; y

0

g 
annot lie within
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a 
omponent by the de�nition of x). As jC

1

j � 3, we have at least 2 distin
t


omponents 
ontaining z and interse
ting C

1

.

Now the argument similar to (43) shows that C

[3;l℄

is made of at least n �

jC

1

[ C

2

j edges, whi
h gives e(G) � n� 3.

Can we have e(G) = n� 3? If we have the equality then every C

i

, i 2 [3; l℄,

must interse
t C

1

[ C

2

in exa
tly one vertex and e(G[C

j

℄) = jC

j

j � 2, j 2 [l℄.

By Claim 1, there exists y

i

2 C

i

su
h that fy; y

i

g 62 E(H), i = 1; 2. But

then fy; y

1

; y

2

g 62 E(G) (e.g. be
ause it interse
ts C

1

in two verti
es) and the


onsideration of a 
reated forbidden graph yields a 
omponent 
ontaining both

y

1

and y

2

. Hen
e, e(G) > n� 3 as required.

Remark. Our further analysis has not yet yielded any 
hara
terization of the


ases of equality: we have got stu
k 
onsidering di�erent 
ases and, even if we

had su

eeded, the proof would have been rather long. Therefore, we present

only some other 
onstru
tions whi
h we have dis
overed in our sear
h. First,

there is another minimum T

3

-saturated graph of order 7: let V (G) = [7℄ and

E(G) = f f1; 2; 5g; f1; 3; 6g; f1; 4; 7g; f2; 3; 4g; f5; 6; 7g g:

Also, 
on
erning the m-sat-fun
tion, we have yet another 
onstru
tion with n�2

edges for any n � 6: add, to the pyramid P (2; n � 4; 2; 1) with basi
 verti
es

a; b, new verti
es x; y and new edges fx; y; ag and fx; y; bg.

6.4 K

m

-Saturated Graphs

Du�us and Hanson [DH86℄ 
onsider sat(n;K

m

; l) whi
h is the minimum size of

G 2 SAT(n;K

m

; l) = fG 2 SAT(n;K

m

) : Æ(G) � lg:

Of 
ourse, any K

m

-saturated graph G has minimal degree at least m� 2, so we

assume l � m� 1.

Du�us and Hanson [DH86℄ proved that, for n � 5, sat(n;K

3

; 2) = 2n�5 and,

for n � 10, sat(n;K

3

; 3) = 3n� 15. However, their general lower bound [DH86,

Theorem 2℄, whi
h states that sat(n;K

m

; l) �

l+m�2

2

n + O(1), is far from the

a
tual value. Trying to improve this bound, we showed that sat(n;K

m

; l) = ln+

O(

n log log n

log n

) for any �xed l � m�1. Later, we learned that Alon, Erd}os, Holzman

and Krivelevi
h [AEHK96, Theorem 2℄ showed that any G 2 SAT(n;K

m

) with
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O(n) edges has an independent set of size n � O(

n

log log n

), whi
h implies that

sat(n;K

m

; l) = ln + O(

n

log log n

). However, we de
ided to present our proof

be
ause it improves all these bounds and we think that our general Theorem 26

is of independent interest.

However, the question of Bollob�as [Bol95, p. 1271℄ whether sat(n;K

3

; l) =

ln+O(1) for any �xed l � 4, remains open.

Let us give a 
onstru
tion of G 2 SAT(n;K

m

; l) with ln+O(1) edges: take

G = K

m�3

+ K

l�m+3;n�l

whi
h has minimal degree l for n � 2l � m + 3.

The 
omplete bipartite graph K

l�m+3;n�l

does not 
ontain a triangle but the

addition of any new edge violates this; hen
e, G is K

m

-saturated.

To prove our lower bound we need some preliminaries. Given any d, de�ne

a

d�m+2

= 2 and, 
onse
utively for j = d�m+ 1; d �m; : : : ; 1; 0,




j+1

= (m� 2)(a

j+1

� 1) + 1

b

j+1

= (m� 2)(


j+1

� 1) + 1

b

0

j+1

=

�

d�j�1

m�2

�

(b

j+1

� 1) + 1;

a

j

=

�

d�j�1

m�2

�

(b

0

j+1

� 1) + 2:

Finally, let a = (1 + 2(d� 1) + 2(d� 1)

2

)a

0

.

Given a K

m

-saturated graph G, let A denote the set of G-edges 
onne
ting

two verti
es of degree at most d in G:

A = ffx; yg 2 E(G) : d(x) � d; d(y) � dg:

The following theorem states that the size of A is bounded by a = a(d;m)

whi
h does not depend on n. Note that we do not impose any restri
tion on the

minimal degree of G.

Theorem 26 For any G 2 SAT(n;K

m

), m � 3, we have jAj < a.

Proof. Suppose, on the 
ontrary, that jAj � a.

We prove, by indu
tion on j = 0; 1; : : : ; d � m + 2, that we 
an �nd the

following 
on�guration inG: a

j

-sets X

j

and Y

j

and j-sets U

j

and V

j

(all disjoint)

su
h that (i)X

j

[Y

j

indu
es inG exa
tly a

j

edges whi
h form a perfe
t mat
hing

between X and Y and belong to A; (ii) �

U

j

[V

j

(x) = U

j

for any x 2 X

j

and

�

U

j

[V

j

(y) = V

j

for any y 2 Y

j

.
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For j = 0 (when U

0

and V

0

are empty), we take, one by one, edges from

A. On
e we have sele
ted an edge E 2 A, 
ross out all in
ident to E edges (at

most 2(d � 1) edges) and their neighbouring edges (of whi
h at most 2(d � 1)

2


an belong to A). Hen
e, we 
an build an indu
ed mat
hing of size at least

jAj=(1 + 2(d � 1) + 2(d � 1)

2

) � a

0

as required.

Suppose that j 2 [0; d �m+ 1℄ and we have X

j

, et
., 
onstru
ted. Choose

x 2 X

j

; it has already got j+1 neighbours in G: the neighbour y 2 Y

j

plus all j

verti
es of U

j

. LetN

x

denote the remaining neighbours of x; thus jN

x

j � d�j�1.

For any z 2 Y

j

distin
t from y, the addition of the edge fx; zg must 
reate a


opy of K

m

, say on a set D

z

[ fx; zg. Now, D

z

� �(x) \ �(z) � N

x

.

Thus some set D

z

, z 2 Y

j

n fyg, appears at least b

0

j+1

= d(a

j

� 1)=

�

d�j�1

m�2

�

e

times; suppose it is D 2 N

(m�2)

x

whi
h equals D

z

for z 2 B

0

� Y

j

n fyg, jB

0

j =

b

0

j+1

. In a similar manner, we try to 
onne
t y to the X

j

-mat
hes of B

0

-verti
es

and �nd a set E 2 N

(m�2)

y

spanning the 
omplete graph and 
onne
ted to every

z from a set B � X

j

mat
hed into B

0

of 
ardinality b

j+1

= db

0

j+1

=

�

d�j�1

m�2

�

e.

Clearly, no z 2 B 
an be 
onne
ted to every vertex of D; otherwise D, z

and the mat
h of z in B

0

span K

m

. Therefore, some v 2 D is not 
onne
ted

to at least 


j+1

= d

b

j+1

m�2

e verti
es of B; let C � B 
onsist of all su
h verti
es.

Similarly, we 
an �nd u 2 E, not 
onne
ted to an a

j+1

-set Y

j+1

mat
hed into C.

Of 
ourse, u 6= v. Now, let U

j+1

= U

j

[fug, V

j+1

= V

j

[fvg, and let X

j+1

� X

j


onsist of the mat
hes of Y

j+1

, whi
h 
ompletes our indu
tion.

At the end, we try to apply our argument again, for j = d � m + 2. We

obtain that x 2 X

j

has at least 1+j+(m�2) > d neighbours, whi
h 
ontradi
ts

the fa
t that fx; yg 2 A, where y is the Y

j

-mat
h of x.

Now we are ready to improve the result of Alon et al [AEHK96, Theorem 2℄

mentioned above. Let �(G) denote the maximal size of independent Y � V (G).

Lemma 27 For any G 2 SAT(n;K

m

) with O(n) edges, we have

�(G) = n�O

�

n log logn

logn

�

:

Proof. Suppose e(G) � Cn. Let d =

" log n

log log n

for some �xed " > 0 and let

X = fx 2 V (G) : d(x) > dg. Now, djXj=2 � e(G) � Cn implies that

jXj �

2Cn log logn

" log n

:
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By Theorem 26, Y = V (G)nX spans at most a � n

2"(m�2)+o(1)

edges. Removing

at most a verti
es we 
an make Y independent; it has the required size if " <

1

2(m�2)

.

Clearly, e(G) � �(G)Æ(G). Therefore, Lemma 27 implies the following re-

sult.

Theorem 28 For any �xed l � m� 1, sat(n;K

m

; l) = ln+O(

n log log n

log n

).



Part II

Weakly Saturated Hypergraphs

7 Introdu
tion

In this part we move to studying weakly-saturated graphs. They are brie
y

mentioned in Se
tion 1 whi
h also 
ontains an example how su
h a notion 
an

naturally appear in real-life problems.

Let us give some basi
 de�nitions, des
ribe what is known about the w-sat-

fun
tion, and indi
ate whi
h new results are obtained in this part.

7.1 De�nitions

Let F be a family of forbidden r-graphs. An r-graph G of order n is 
alled

weakly F-saturated, denoted G 2 w-SAT(n;F), if we 
an 
onse
utively add all

missing edges to G so that ea
h time we add an edge at least one new forbidden

subgraph appears. Su
h an ordering of E(G) is 
alled F-proper. Equivalently,

G 2 w-SAT(n;F) if the weak 
losure Cl

F

(G) is the 
omplete r-graph on V (G).

(The weak 
losure is obtained by taking the iterated (strong) F -
losure (de�ned

in Subse
tion 4.4) until it stabilizes: Cl

F

(G) = Cl

�

F

(:::(Cl

�

F

(G)):::).) We are

generally interested in

w-sat(n;F) = minfe(G) : G 2 w-SAT(n;F)g:

Note that we do not require that G is F -admissible as this does not a�e
t

w-sat(n;F): ifG 2 w-SAT(n;F) 
ontains a forbidden subgraph F � G, then the

graph obtained from G by the removal of any F -edge is still weakly F -saturated,

so G 
annot be minimal. Clearly, w-sat(n;F) � m-sat(n;F) � sat(n;F).

If the forbidden family 
onsists of only one member, F = fFg, then we use

the short
uts w-SAT(n; F ) = w-SAT(n;F), et
.

7.2 Survey

Let us give a short survey of w-sat-type results. Unfortunately, not mu
h is

known about the w-sat-fun
tion.
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Tuza [Tuz92℄ showed that, for any �xed r-graph F ,

w-sat(n; F ) = �(n

s(F )

): (44)

Here s(F ) 2 [0; r � 1℄ is what he 
alls the lo
al sparseness of F :

s(F ) = minfs(E) : E 2 E(F )g; (45)

where the sparseness of an edge E 2 E(F ) is the smallest natural number s for

whi
h there is an A � E with jAj = s + 1 su
h that A � E

0

2 E(F ) implies

E

0

= E.

Alon [Alo85℄ proved that, for any �xed 2-graph F , the ratio w-sat(n; F )=n

tends to a limit as n!1.

Apparently, w-sat-type problems were �rst 
onsidered by Bollob�as [Bol67
℄

who made a 
onje
ture about the value of w-sat(n;K

2

m

). This 
onje
ture was

proved by Frankl [Fra82℄ and by Kalai [Kal84, Kal85℄; the result is impli
it in

Lov�asz [Lov77℄; see also Alon [Alo85℄. They proved that

w-sat(n;K

r

m

) =

�

n

r

�

�

�

n�m+ k

r

�

; n � m > k: (46)

In fa
t, Alon [Alo85℄ proved a more general result: he 
omputed the w-sat-

fun
tion for K

r

1

m

1


 : : : 
 K

r

t

m

t

, where 
 denotes the join operator de�ned in

Se
tion 12. (A di�erent proof of Alon's result is presented by Yu [Yu93℄.)

Kalai [Kal85℄ showed that, for the 
omplete bipartite graph K

st

,

w-sat(n;K

st

) � (s� 1)n�

�

s� 1

2

�

; 2 � s � t; (47)

whi
h is sharp for s = t and n � 3s� 2.

Kalai [Kal85℄ also proved that, for the wheel W

m

= v + C

m

, we have

w-sat(n;W

m

) � 2n� 3; (48)

while it is easy to show that sat(n;W

m

) � 2n�3+", where " = 0 if m � n�2 is

odd and " = 1 if m is even or if m = n� 1, 
f. Theorems 49{51 and Lemma 59.

Tuza [Tuz88, Conje
ture 7℄ 
onje
tured that

w-sat (n;H

r

(r + 1; l)) =

�

n� r + l � 2

l � 2

�

n � r + 1 � l � 3; (49)
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where the uniform family H

r

(m; l) 
onsists of all r-graphs of order m and size

l. Clearly, H

r

(r + 1; r + 1) = fK

r

r+1

g, so (46) implies (49) for l = r + 1. The


ase l = 3 of Tuza's 
onje
ture was settled by Erd}os, F�uredi and Tuza [EFT91℄.

These were perhaps all known results on w-sat(n;F) for non-trivial spe
i�


instan
es of F .

7.3 Our Approa
h

The 
hara
teristi
 feature of w-sat-type problems is that, given a parti
ular

forbidden family F , it is usually fairly easy to 
ome up with a 
orre
t example

of G

n

2 w-SAT(n;F), whi
h gives us an upper bound on w-sat(n;F). (And,

as a rule, we have many di�erent extremal graphs.) However, it is usually very

hard to prove the mat
hing lower bound. So, te
hniques for establishing lower

bounds are of importan
e.

The notion of dependen
e turned out to be useful; for example, all proofs

of (46) exploit some form of it. This approa
h was most 
learly formulated by

Kalai [Kal85℄: if we have a matroid M on [n℄

(r)

su
h that any F 2 F is an

M-
hain, then

w-sat(n;F) � R

M

([n℄

(r)

); (50)

the rank ofM. (An r-graph F is anM-
hain if, for any embedding V (F ) � [n℄,

any edge E 2 E(F ) lies in the M-span of E(F ) n fEg.) See Lemma 33 for a

proof of (50).

We base our approa
h (whi
h is des
ribed in detail in Se
tion 9) on this idea;

we exploit what we 
all gross and 
ount matroids.

Gross matroids are 
onstru
ted by means of exterior algebra. They were


onsidered by Kalai [Kal90℄ (but for other purposes); we de�ne them in Sub-

se
tion 8.1. In brief, the gross matroid G

G

of an r-graph G is a matroid on

r-uniform set systems with G being a base; thus its rank is e(G). Now, if every

F 2 F is a G

G

-
hain, then

w-sat(n;F) � R

G

G

([n℄

(r)

): (51)

The lower bound (51) is said to be g-proved. If this method gives the a
tual

value of w-sat(n;F), then we say that F admits a g-proof for n. A related

method (g

0

-proof) is also introdu
ed.
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The prin
ipal diÆ
ulty of the matroid approa
h (50) is that it is not 
lear

at all how to sear
h for a suitable matroid M. However, if we have G 2

w-SAT(n;F) 
onje
tured to be minimal, then G

G

is a good 
andidate forM. If

ea
h forbidden graph is a G

G

-
hain, then, by (51), we know w-sat(n;F) exa
tly.

In this 
ase we say that the pair (F ; G) admits a G-proof.

Our 
ount matroid is a general and natural extension of the 
onstru
tion

by White and Whiteley [WW84℄, see Subse
tion 8.2. For example, our 
ount

matroids admit many polynomials in n as the rank fun
tion while the original

de�nition yielded linear fun
tions only. If M in (50) is a 
ount matroid, then

the lower bound (50) is said to be 
-proved. If the bound is sharp, then F admits

a 
-proof for n. Here as well, if we have a 
onje
ture on w-sat(n;F), then there

is one parti
ular 
ount matroid whi
h is worth looking at; if this method works,

then we have a C-proof.

Unfortunately, our approa
hes do not always su

eed: we 
an indi
ate many


on
rete pairs (F ; G) not admitting a C/G-proof with G 2 w-SAT(n;F) being

minimal. However, using these te
hniques we have managed to prove many new

results whi
h we are going to des
ribe now.

Given sequen
es of integers s = (s

1

; : : : ; s

t

) and r = (r

1

; : : : ; r

t

), the pyramid

P (s; r) is the r-graph, r = r

1

+ : : :+ r

t

, with vertex set being the disjoint union

S

1

[ : : :[S

t

, jS

i

j = s

i

, and with the edge set 
onsisting of those r-subsets whi
h,

for every i 2 [t℄, interse
t S

1

[ : : : [ S

i

in at least r

1

+ : : : + r

i

verti
es. The

notion of a pyramid is rather general: we obtain, as partial 
ases,

K

r

m

= P (m; r);

S

r

m

= P (1;m� 1; 1; r);

K

l

+E

m

= P (l;m; 1; 1);

H

r

(r + 1; l) = P (r � l + 1; l; r � l + 1; l � 1);

and more. Instan
es of pyramids appear expli
itly quite often in the literature.

Applying gross matroids, we 
ompute w-sat(n; P (s; r)) for all feasible sets of

parameters n, s and r, see Subse
tion 10.1. Among other things, this implies (46)

and 
omputes w-sat(n;H

r

(r+1; l)), 
on�rming the formula (49) 
onje
tured by

Tuza [Tuz88, Conje
ture 7℄.

Erd}os, F�uredi and Tuza [EFT91℄ asked for a des
ription of all minimum

weakly H

r

(r+ 1; 3)-saturated graphs. In general, G/g/g

0

-proofs do not provide
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any good 
hara
terization of the 
ases of equality, but our Theorem 44 does

this for H

r

(r + 1; 3) by providing a di�erent (
ombinatorial) proof whi
h em-

ploys some ideas from [EFT91℄. (In fa
t, H

r

(r + 1; 3) admits a C-proof.) In

Se
tion 10.2 we provide a 
onstru
tion of G 2 w-SAT(n;H

r

(m; l)), for all n,

k, l and m, whi
h we 
onje
ture to be minimal. Applying 
ount matroids, we

determine more values of w-sat(n;H

r

(m; l)). Applying the g

0

-proof te
hnique,

we 
ompute exa
tly w-sat(n;H

2

(m; l)) for all possible n, m and l and obtain

some asymptoti
 results. Also, we observe that we have in
identally 
omputed

(with a g

0

-proof) the w-sat-fun
tion for any initial segment of [n℄

(2)

in the 
olex

order.

Our more general results of Se
tion 11 imply in parti
ular that if (F;G)

admits a G/g/g

0

-proof and every r � 1 verti
es of F are 
overed by an edge,

then the pair (
n(F ); 
n(G)) admits a G/g/g

0

-proof. (The 
one 
n(F ) of an k-

graph F is obtained by adding to F a new vertex v and all r-edges 
ontaining v.)

In the 
lass of 2-graphs, for example, we have 
n

l

(F ) = K

l

+F . The following

2-graphs are shown to admit a G/g/g

0

-proof: 
omplete graphs, stars, odd 
y
les,

initial 
olex-segments of [n℄

(2)

, disjoint edges, paths (more generally, almost

every forest or tree), and some others; please refer to Subse
tion 10.3 for details.

Therefore, we are able to 
ompute the w-sat-fun
tion for K

l

+ F , where F is

any of these graphs.

Note that 
n(K

r

m

) = K

r

m+1

and K

r

r

, the single edge, trivially admits a G-

proof as w-sat(n;K

r

r

) = 0. This shows that 
omplete graphs admit a G-proof

and gives another proof of (46).

In Se
tion 12 we de�ne the 
-operator, whi
h we 
all join, and prove among

other things that if every pair (F

i

; G

i

), i 2 [t℄, admits a G/g-proof, then so does

the pair (F

1


 : : :
F

t

;G), where G = G

1


 : : :
G

t

. As 
omplete graphs admit

a G-proof, the 
omputation of the w-sat-fun
tion for joins of 
omplete graphs

by Alon [Alo85℄ (another proof is presented by Yu [Yu93℄) is a spe
ial instan
e

of our result. By applying the join operator, we 
an indi
ate many new graphs

for whi
h we 
an 
ompute the w-sat-fun
tion exa
tly.
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8 Matroids

Here we de�ne gross and 
ount matroids and establish their basi
 properties.

(For an introdu
tion to matroid theory, we refer the reader to the texts by

Welsh [Wel76℄ or Oxley [Oxl92℄.) Our approa
h to w-sat-type problems, whi
h

exploits these notions, is des
ribed in Se
tion 9.

8.1 Gross Matroids

Here we de�ne the notion of a gross matroid by means of exterior algebra. Some

ba
kground in multilinear algebra is in
luded; for a more 
omprehensive treat-

ment of the topi
, the reader may 
onsult Bourbaki [Bou74℄ or Mar
us [Mar75℄.

8.1.1 Exterior Algebra

Let V be an n-dimensional real ve
tor spa
e with a basis e = fe

1

; : : : ; e

n

g. Its

exterior algebra

V

V is the 2

n

-dimensional ve
tor spa
e with the formal basis

(e

A

)

A�[n℄

. (We identify e

i

with e

fig

and e

;

with the s
alar 1 2 R.) It 
omes

equipped with an asso
iative bilinear ^-produ
t whi
h is 
ompletely determined

by

e

i

^ e

j

= �e

j

^ e

i

; i; j 2 [n℄;

e

v

1

^ : : : ^ e

v

k

= e

fv

1

;:::;v

k

g

; 1 � v

1

< : : : < v

k

� n:

Let (e

�

A

)

A�[n℄

be the dual basis of (e

A

)

A�[n℄

. We naturally identify

V

(V

�

) and

(

V

V )

�

so that e

�

v

1

^ : : : ^ e

�

v

k


orresponds to e

�

fv

1

;:::;v

k

g

, 1 � v

1

< : : : < v

k

� n.

Let f = (f

1

; : : : ; f

n

) be another basis of V ; in the obvious way we de�ne f

A

,

f

�

A

for A � [n℄, et
. By M = (�

ij

)

i;j2[n℄

we denote the n� n-matrix satisfying

f

�

=Me

�

, that is,

f

�

i

= �

i1

e

�

1

+ : : :+ �

in

e

�

n

; i 2 [n℄:

Assume that f is in the generi
 position with respe
t to e, that is, the entries

of M are n

2

trans
endentals algebrai
ally independent over the rationals. An

alternative de�nition is to assume that the entries are n

2

independent variables;

any equation we will 
onsider 
an be redu
ed to the form P = 0 for some

polynomial P in the �'s with integer 
oeÆ
ients and we agree that the statement

is true if and only if P is the zero polynomial.



8 MATROIDS 53

Let

V

i

V be the subspa
e of

V

V spanned by (e

A

)

A2[n℄

(i)

. We denote

hg

�

; hi = g

�

(h); g

�

2

V

V

�

; h 2

V

V:

For g

�

2

V

V

�

, h 2

V

V , the left interior produ
t g

�

xh 2

V

V is de�ned by

hu

�

; g

�

xhi = hu

�

^ g

�

; hi; for all u

�

2

V

V

�

.

Thus, if g

�

2

V

d

V

�

and h 2

V

d+l

V then g

�

xh 2

V

l

V , d; l � 0. One 
an easily


he
k that x is a bilinear fun
tion, su
h that u

�

x (g

�

xh) = (u

�

^ g

�

)xh and,

for the basis ve
tors, we have:

e

�

A

x e

B

=

(

�e

BnA

; if A � B,

0; if A 6� B.

(The a
tual signs of �1-
oeÆ
ients do not interest us at all.) Note that by the

generality of f we have hf

�

F

; e

E

i 6= 0 for any E;F 2 [n℄

(r)

. Moreover, for any

jEj = r, f 2

V

i

V and g 2

V

r�i

V , we have

he

�

E

; f ^ gi =

X

A2E

(i)

�

A;E

he

�

A

; fi � he

�

E�A

; gi; (52)

where �

A;E

= �1 depending on A and E.

For h 2

V

V , its support is de�ned by

supp(h) = fA � [n℄ : e

�

A

(h) 6= 0g: (53)

That is, to �nd supp(h), write h =

P

A�[n℄




A

e

A

and take those A � [n℄ for

whi
h the 
orresponding 
oeÆ
ient is non-zero. If we take the support in the

basis f we emphasize this by adding a subs
ript:

supp

f

(h) = fA � [n℄ : f

�

A

(h) 6= 0g;

while the supp alone always means the support relative to e as de�ned by (53).

Note that the 
an
ellation (g

�

^e

�

A

)x (h^e

A

) = g

�

xh (whi
h is not generally


orre
t) 
an be applied if, for example, ea
h B 2 supp(h) is disjoint from A.

We will use identities like this a few times without detailed explanations. (The

best way to verify them is to 
he
k them for the basis ve
tors.)
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8.1.2 De�nitions

Let us des
ribe how to 
onstru
t the gross matroid G

G

of an r-graphG of order n.

Identify the verti
es of G with the basis e = fe

1

; : : : ; e

n

g of V . Let Z �

V

r

V

be de�ned by the following linear relations:

Z = fh 2

V

r

V : f

�

E

xh = 0 for all E 2 E(G)g: (54)

As (f

�

E

)

E2[n℄

(r)

forms a basis for

V

r

V

�

, we 
on
lude that the e(G) relations

de�ning Z are linearly independent so dimZ =

�

n

r

�

� e(G) and, in fa
t, Z is

spanned by ff

E

: E 2 E(G)g.

We de�ne the gross matroid G

G

on [n℄

(r)

so that an r-graph F on [n℄ is

dependent if, for some 
oeÆ
ients 


E

(not all zero), we have

P

E2E(F )




E

e

E

2 Z.

To verify this 
ondition we have to �nd a non-zero solution (


E

)

E2E(F )

of the

following system of e(G) linear equations:

X

E2E(F )




E

f

�

D

x e

E

= 0; D 2 E(G): (55)

By M(G;F ) we denote the e(G) � e(F )-matrix 
orresponding to (55). The


olumns of M(G; [n℄

(r)

) provide a representation of G

G

. Note that the matroid

G

G

does not depend on the 
hoi
e of generi
 f . Also, G

G

is a symmetri
 matroid,

that is, for any permutation � : [n℄ ! [n℄, A � [n℄

(r)

is G

G

-independent if and

only if �

0

(A) is, where �

0

is the indu
ed a
tion on [n℄

(r)

. Therefore, we 
an

apply the notion of G

G

-dependen
e to an r-graph F with any vertex set. (If

v(F ) > v(G), we add isolated verti
es to G.)

This 
onstru
tion is not new; Kalai [Kal90℄ used it to 
onstru
t symmetri


matroids with a given growth polynomial. Also, in the partial 
ase G = P

k;n�k

,

the matroid G

G

is exa
tly Kalai's [Kal85℄ k-hyper
onne
tivity matroid on [n℄

(2)

whi
h was used to 
ompute the w-sat-fun
tion for 
omplete graphs. These two

papers by Kalai were the starting points of our resear
h on gross matroids.

Clearly, the rank of G

G

is 
odim(Z) = e(G). It is easy to show that G is a

base of G

G

. Indeed, the determinant ofM(G;G) is a polynomial in the �'s whi
h

assumes value 1 whenM (and thenM(G;G)) is the identity matrix. Therefore,

the determinant is non-zero for a generi
 M and the 
olumns of M(G;G) are

independent, whi
h proves the 
laim.
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An r-graph F is a G

G

-
hain if every E 2 E(F ) is dependent on E(F ) n fEg

in G

G

, that is, for some h 2 Z and real 
's, we have

e

E

= h+

X

D2E(F )nfEg




D

e

D

: (56)

This is easily seen to be equivalent to the existen
e of h 2 Z with supp(h) =

E(F ). To verify the last 
ondition we have to �nd a solution (


E

)

E2E(F )

with

all entries non-zero of the system (55).

8.2 Count Matroids

Here we present the de�nition of a 
ount matroid and establish some its prop-

erties. We generalize naturally the original de�nition of White and White-

ley [WW84℄ to obtain a 
onsiderably wider family of matroids for whi
h we

preserve the same name. For example, our 
ount matroids admit many poly-

nomials in n as the rank fun
tion while the original de�nition is 
on�ned to

linear fun
tions only. An advantage of 
ount matroids is that they are de�ned

in purely 
ombinatorial terms and it is usually easy to identify their independent

sets and 
ir
uits.

Count matroids are helpful in 
omputing the w-sat-fun
tion, as is des
ribed

in Se
tion 9. We hope that they will have many other interesting appli
ations;

one is presented by Whiteley [Whi89℄.

8.2.1 De�nitions

A fun
tion � : X

(<1)

! R (from �nite subsets of X to the reals) is 
alled

integral if it is integer-valued, in
reasing if �(A) � �(B) whenever A � B and

submodular if

�(A [B) + �(A \B) � �(A) + �(B); A;B 2 X

(<1)

: (57)

Given � : X

(<1)

! R, we say that non-empty A � X is �-balan
ed (or just

balan
ed if � is understood) if jAj � �(A) + 1 but, for every proper B � A (that

is B 6= ; and B 6= A), we have jBj � �(B).

Edmonds and Rota [ER66℄ observed the following result. (The proof is easy

and 
an be found, for example, in Oxley [Oxl92, Proposition 12.1.1℄.)
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Lemma 29 For any integral in
reasing submodular fun
tion � : X

(<1)

! R,

the family of �-balan
ed sets satis�es the 
ir
uit axioms and therefore de�nes a

matroid on X.

We are interested in de�ning a matroid on X = [n℄

(r)

. (Then 2

X

is identi�ed

with the set of r-graphs on [n℄.) White and Whiteley [WW84℄, see also [Whi96℄,

introdu
ed a family of 
ount matroids on [n℄

(r)

by de�ning

�(H) = a

1

j [

E2H

Ej+ a

0

; H � [n℄

(r)

;

for some �xed a

1

and a

0

.

We have found it possible to generalize this 
onstru
tion in the following

way. For H � [n℄

(r)

, we denote p

i

(H) = j�

i

Hj, where

�

i

H = fD 2 [n℄

(i)

: D � E for some E 2 Hg; i 2 [0; r℄:

For example, p

r

(H) = e(H) and p

1

(H) = j [

E2H

Ej.

We 
onsider linear fun
tions, that is, fun
tions de�ned by

L(H) = a

0

+

r�1

X

i=1

a

i

p

i

(H); H � [n℄

(r)

; (58)

for some 
onstants a

i

2 R, i 2 [0; r � 1℄.

Let us see when the fun
tion L satis�es the above properties for X = N

(r)

.

It is easy to see that L is integral if and only if all 
oeÆ
ients are integers.

Submodular and in
reasing linear fun
tions are 
hara
terized by the following

two lemmas whi
h are of independent interest.

Lemma 30 A linear fun
tion L : X

(<1)

! R is in
reasing if and only if

r�1

X

j=i

a

j

�

r

j

�

� 0; i 2 [r � 1℄: (59)

Proof. Suppose that L is in
reasing. Given i 2 [r � 1℄, 
onsider the r-graph

H = fE 2 [n℄

(r)

: jE \ [r℄j < ig, n � 2r � i+ 1. We must have

L(H [ f[r℄g) � L(H) =

r�1

X

j=i

a

j

�

r

j

�

� 0;

whi
h is exa
tly inequality (59).
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On the other hand, suppose that L satis�es (59). Clearly, it is enough to

show that, for any �nite H � X and E 2 X nH, we have L(H) � L(H [ fEg).

Let C

i

= �

i

(H) \ E

(i)

, 


i

= jC

i

j=

�

r

i

�

, D

i

= E

(i)

n �

i

(H) and d

i

= jD

i

j=

�

r

i

�

,

i 2 [r� 1℄. Clearly, for any i and j, 1 � i < j � r� 1, the set system D

i

[C

j

is

an anti
hain in 2

E

. By the LYM inequality, d

i

� 1� 


j

= d

j

, that is,

0 � d

1

� : : : � d

r�1

� 1: (60)

It is easy to 
he
k that

L(H [ fEg) � L(H) =

r�1

X

i=1

a

i

d

i

�

r

i

�

: (61)

Consider the problem of minimizing (61) given only the 
onstraints (60). A

moment's thought reveals that there exists i 2 [0; r�1℄ su
h that the extremum

is a
hieved when d

1

= : : : = d

i

= 0 and d

i+1

= : : : = d

r�1

= 1. But then (61) is

non-negative by (59), so L is in
reasing.

Lemma 31 A linear fun
tion L : X

(<1)

! R is submodular if and only if

a

i

� 0, i 2 [r � 1℄.

Proof. The trivial 
onsideration shows that, for any i 2 [r℄ and H;G � [n℄

(r)

,

we have p

i

(H) + p

i

(G) � p

i

(H [ G) + p

i

(H \ G). This implies (57) if every


oeÆ
ient of L (ex
ept perhaps a

0

) is non-negative.

On the other hand, suppose that L is submodular. Given any i 2 [r � 1℄


onsider the following set systems. Choose a `large' m-set Z � N and (r�i)-sets

D

Y

and E

Y

, indexed by Y 2 Z

(i)

, so that all 2

�

m

i

�

+1 sele
ted sets are disjoint.

Let

H = fD

Y

[ Y : Y 2 Z

(i)

g

G = fE

Y

[ Y : Y 2 Z

(i)

g:

Clearly, we have p

j

(H \G) = 0, j 2 [r � 1℄, as H \G = ;, and

p

j

(H) = p

j

(G) =

8

<

:

�

m

i

��

r

j

�

; i < j � r � 1;

�

m

i

�

�

�

r

j

�

�

�

i

j

�

�

+

�

m

j

�

; 1 � j � i;

p

j

(H [G) =

8

<

:

2

�

m

i

��

r

j

�

; i < j � r � 1;

2

�

m

i

�

�

�

r

j

�

�

�

i

j

�

�

+

�

m

j

�

; 1 � j � i:
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Routine 
al
ulations show that

L(H) + L(G)� L(H [G)� L(H \G) = a

i

�

m

i

�

+O(m

i�1

);

whi
h, by the submodularity of L, implies a

i

� 0.

Thus we restri
t our attention to integer 
oeÆ
ients satisfying

a

i

� 0; i 2 [r � 1℄; and

r�1

X

j=0

a

j

�

r

j

�

� 1; (62)

in whi
h 
ase, by Lemma 29, L de�nes a matroid N

n

L

on [n℄

(r)

, n � r, whi
h we

still 
all a 
ount matroid. The se
ond 
ondition in (62) ex
ludes the degenerate


ase when already a single edge is dependent. Obviously, N

n

L

is a symmetri


matroid, that is, for any permutation � of the vertex set [n℄, H � [n℄

(r)

is

independent if and only if �

0

(H) is, where �

0

denotes the indu
ed a
tion on

[n℄

(r)

. Clearly, the nested sequen
e (N

n

L

)

n�r

is 
ompatible so we do not usually

spe
ify n.

A
tually, N

L

admits an alternative de�nition if a

0

� 0. Let X = [n℄

(r)

and

let Y be the disjoint union of a

i


opies of [n℄

(i)

, i 2 [0; r�1℄. De�ne the bipartite

graph G on X [ Y by 
onne
ting E 2 X to all elements of Y 
orresponding to

subsets of E 2 [n℄

(r)

. (For example, every vertex inX has degree

P

r�1

i=0

a

i

�

r

i

�

.) It

is easy to see that the transversal matroid of G, in whi
h H � X is independent

if and only if H 
an be mat
hed into Y , equals N

n

L

.

Any transversal matroid is representable over �elds of every 
hara
teristi
s,

see Pi� and Welsh [PW70℄; this applies to all 
ount matroids with a

0

� 0. We

do not know if N

L

is representable for a

0

< 0.

8.2.2 Rank

Let us determine the rank of N

n

L

.

Theorem 32 Let L satisfy (62). Then R(N

n

L

) = min

��

n

r

�

; L([n℄

(r)

)

�

.

Proof. We may assume thatN = N

n

L


ontains a non-trivial 
ir
uit for otherwise

R(N ) =

�

n

r

�

� L([n℄

(r)

) and our 
laim is true.

Let an r-graph G form a base for N .
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Claim 1 There exists an ordering of G = fE

1

; : : : ; E

s

g su
h that

F

[j�1℄

\ F

j

6= ;; j 2 [2; s℄; (63)

where F

i

denotes the (unique and, by (62), non-empty) subgraph of G su
h that

F

i

+E

i

is a 
ir
uit. (Also we denote F

I

= [

i2I

F

i

, F +E = F [ fEg, et
.)

To show the 
laim 
hoose arbitrary E

1

2 G and, indu
tively, take for E

j

any

available edge satisfying (63). Suppose, on the 
ontrary, that we are stu
k after

having 
hosen E

1

; : : : ; E

j�1

, some j 2 [2; s℄. Let G

1

= F

[j�1℄

and G

2

= G nG

1

.

Both G

1

and G

2

are non-empty. Clearly, for any E 2 G we must have either

F � G

1

or F � G

2

where F + E is the 
ir
uit with F � G. Thus, if H

i

is the


losure of G

i

, i = 1; 2, then H

1

= G

1

+E

[j�1℄

and H

2

= [n℄

(r)

nH

1

.

Let C be any N -
ir
uit. We 
laim that C 
annot interse
t both H

1

and H

2

.

Suppose not. Let E 2 C \ H

1

. As G

2

spans H

2

, the rank of (C \ H

1

) [ G

2

wo not de
rease if we remove E. Therefore, there is a 
ir
uit C

0

3 E su
h that

C

0

\ H

1

� C and C

0

\ H

2

� G

2

. Likewise, �xing some D 2 C

0

\ G

2

6= ;, we

obtain a 
ir
uit C

00

� G whi
h 
ontradi
ts the independen
e of G.

Note that if we repla
e C by the r-graph C

0


omposed of the �rst e(C)

elements of [n℄

(r)

in the 
olex order, then p

i

(C) will not in
rease by the Kruskal-

Katona Theorem [Kru63, Kat66℄, so e(C

0

) > L(C

0

). If C

0

is not a 
ir
uit, take

any proper sub
ir
uit and repeat. The �rst two edges, [r℄ and [2; r + 1℄, of the

eventual 
ir
uit C

0

(whi
h by (62) has size at least 2) share r�1 verti
es and fall

into the same half of [n℄

(r)

= H

1

[H

2

. But every two edges 
an be 
onne
ted

by a sequen
e of edges su
h that any two neighbours share r � 1 verti
es. By

the symmetry of N , one of the halves must be empty, whi
h is a 
ontradi
tion

proving Claim 1.

Choose an ordering guaranteed by Claim 1. Let us prove, by indu
tion on

j, the following.

Claim 2 L(F

[j℄

+E

[j℄

) = L(F

[j℄

) = e(F

[j℄

), j 2 [s℄.

First we note that, for every i 2 [s℄,

e(F

i

) � L(F

i

) � L(F

i

+E

i

) � e(F

i

+E

i

)� 1 = e(F

i

);

whi
h implies L(F

i

+ E

i

) = L(F

i

) = e(F

i

); in parti
ular, our 
laim is true for

j = 1. Now we argue as follows:

L(F

[j℄

+E

[j℄

) � L(F

[j�1℄

+E

[j�1℄

) + L(F

j

+E

j

)� L(F

[j�1℄

\ F

j

)
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� e(F

[j�1℄

) + e(F

j

)� e(F

[j�1℄

\ F

j

) = e(F

[j℄

):

In the above transformations, we use the submodularity of L, indu
tion and the

inequality L(F

[j�1℄

\ F

j

) � e(F

[j�1℄

\ F

j

); the last inequality is valid be
ause

F

[j�1℄

\ F

j

is independent and non-empty. (A
tually, Claim 1 
ould be skipped

if a

0

� 0.) Now, Claim 2 follows.

Clearly, F

[s℄

= G. Therefore, L([n℄

(r)

) = L(G) = e(G) = R(N

n

L

).

Remark. Kalai [Kal90℄ showed that, for any symmetri
 matroid M on N

(r)

,

R

M

([n℄

(r)

) is a polynomial in n for all suÆ
iently large n and 
hara
terized all

possible polynomials. Unfortunately, these are not 
on�ned to L([n℄

(r)

) with

some L satisfying (62). For example, the k-hyper
onne
tivity matroid on N

(2)

introdu
ed by Kalai [Kal85℄ gives the polynomial kn �

�

k+1

2

�

. It would be of

interest to have a purely 
ombinatorial 
onstru
tion (like that of a 
ount ma-

troid) produ
ing every possible growth polynomial. (Matroids in [Kal90℄ are


onstru
ted by means of multilinear algebra.)

9 Proof Te
hniques

Here we present a few di�erent methods for proving lower bounds on w-sat(n;F).

Of these, C-proofs and G-proofs 
an be viewed as suÆ
ient 
riteria for G

n

2

w-SAT(n; F ) to be of the minimal size. Our approa
h is based on gross and


ount matroids whi
h are de�ned in Se
tion 8.

The links with matroid theory are not surprising insofar as the de�nition

of weak saturation suggests some kind of dependen
e; loosely speaking, an F -

proper addition of edges 
orresponds to 
losure and the notion of a minimum

weakly saturated graph resembles that of a base.

The following observation, due to Kalai [Kal85℄, is 
ru
ial to our work. Sup-

pose that we have a matroidM on [n℄

(r)

and an r-graph F whi
h is anM-
hain,

that is, for every embedding V (F ) � [n℄, every edge E 2 E(F ) � [n℄

(r)

is de-

pendent on E(F )nfEg. Then we 
laim that the size of any weakly F -saturated

graph G on [n℄ is at least R

M

([n℄

(r)

), the rank of M. Indeed, let E

1

; : : : ; E

k

be an F -proper ordering of E(G). By the de�nition, for every i 2 [k℄, there

is an F -subgraph of G

i

= G + E

1

: : : + E

i


ontaining E

i

. Thus, E

i

lies in the
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M-
losure of G

i�1

, whi
h indu
tively implies that G spans [n℄

(r)

inM, and the


laim follows.

Clearly, the above argument 
an be applied to a family F of forbidden r-

graphs.

Lemma 33 (Kalai) We have

w-sat(n;F) � l; (64)

if we 
an �nd a matroid M on [n℄

(r)

su
h that every F 2 F is an M-
hain and

R

M

([n℄

(r)

) � l.

In this 
ase we say that we 
an m-prove the inequality (64). If, furthermore,

M is a 
ount matroid, a gross matroid, or a representable matroid, then (64)

is said to be 
-proved, g-proved, or r-proved 
orrespondingly. Of 
ourse, if there

exists G 2 w-SAT(n;F) with e(G) = l, then G is extremal. In this 
ase we

say that F admits an m-proof for n. In the obvious way we de�ne a 
-proof, a

g-proof, and an r-proof.

Given a matroid M on [n℄

(r)

and an r-graph F , let

D

M

(F ) = min

F�[n℄

(e(F )�R

M

(E(F ))) ;

that is, for every embedding F � [n℄, we 
ompute how many F -edges 
an be

removed without de
reasing the M-rank of E(F ) and take the minimum over

all embeddings F � [n℄. For a family F of r-graphs, we de�ne

D

M

(F) = minfD

M

(F ) : F 2 Fg: (65)

The following re�nement of Lemma 33 is also useful.

Lemma 34 Suppose that, for some family F of r-graphs and a matroid M on

[n℄

(r)

, every F 2 F is an M-
hain. Then,

w-sat(n;F) � R

M

([n℄

(r)

) +D

M

(F)� 1: (66)

Proof. As in Lemma 33, we 
on
lude that E(G) spans [n℄

(r)

in M for any

weakly F -saturated graph G on [n℄. Consider the �rst edge E added to G. It


reates some forbidden F � [n℄; 
learly, E(F ) n fEg � E(G). Therefore, there
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are D

M

(F )�1 edges in G whi
h are dependent on the remaining edges and the

lemma follows.

We say that (66) is m

0

-proved. If M is a 
ount, gross, or representable

matroid, then we respe
tively 


0

-prove, g

0

-prove, or r

0

-prove (66). If the lower

bound in (66) is sharp, then we obtain an m

0

-proof. In the obvious way we

de�ne a 


0

-proof, a g

0

-proof, and an r

0

-proof.

The 
hara
teristi
 feature of w-sat-type problems is that, given F , it is usu-

ally fairly easy to 
ome up with a 
orre
t example of a weakly F -saturated graph

G (as a rule, there are many di�erent extremal graphs) and the harder part is

to prove that G is minimal. So, a typi
al problem is, given G 2 w-SAT(n;F),

to verify whether e(G) = w-sat(n;F), that is, we want to have some suÆ
ient

and/or ne
essary 
onditions that a weakly F -saturated graph G has the mini-

mal number of edges. Even if there exists an m-proof, it is not obvious at all

how to sear
h for a suitable matroid.

However, the gross matroid of G seems a good 
andidate for M. If ea
h

element of F is a G

G

-
hain, then we immediately 
on
lude that G is extremal.

In this 
ase say that the pair (F ; G) admits a G-proof. Hen
e, the G-proof 
an

be viewed as a suÆ
ient 
riterion for G 2 w-SAT(n; F ) to be of the minimal

size.

As gross matroids are representable, we have the following `hierar
hy' of

proofs (and other impli
ations):

G-proof ) g-proof ) r-proof ) m-proof:

Unfortunately, gross matroids are not, in general, very easy to handle; it

takes some e�orts to identify their 
hains. Also, there are many examples of

eligible pairs whi
h do not a

ept a G-proof. For example, minimum weakly

K

2

3

-saturated graphs are trees, of whi
h only stars produ
e a G-proof. Besides,

G/g/g

0

-proofs do not provide an immediate 
hara
terization of minimum weakly

saturated graphs, as usually there seems to be no easy 
ombinatorial des
ription

of the set of bases of a gross matroid.

However, many new results are proved here using gross matroids. Let us

prove one trivial lemma whi
h, when 
ombined with the results of Se
tions 11

and 12, has non-trivial 
onsequen
es.
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Lemma 35 Let K = lK

r

r

be the union of l disjoint r-edges. Then G

K

is the

uniform matroid of rank l, that is, an r-graph F is independent in G

K

if and

only if e(F ) � l.

In parti
ular, for any family F of r-graphs and for any n with

�

n

r

�

� l, we


an g-prove that w-sat(n;F) � l, where l = minfe(F ) : F 2 Fg � 1.

Proof. Let us show, by indu
tion on l, that any r-graph H of size l is G

K

-

independent. We may assume that E = [r℄ is an edge in both these graphs.

One 
an see that

det(M(K;H)) = ��

11

: : : �

rr

det(M(K

0

;H

0

)) + (other terms);

where H

0

and K

0

are obtained respe
tively from H and K by removing E and

none of the `other terms' 
ontains �

11

: : : �

rr

as a fa
tor. By indu
tion, we


on
lude that det(M(K;H)) 6= 0, and the 
laim follows as the rank of G

K

is

e(K) = l.

Count matroids 
an be applied to w-sat-type problems in the following,

slightly di�erent, way. Suppose that, for a range of values of n, we have G

n

2

w-SAT(n;F) (
onje
tured to be extremal) su
h that e(G

n

) is a polynomial in

n. Then we try to write expli
itly the (unique, if it exists) 
ount matroid N

su
h that R

N

([n℄

(r)

) = e(G

n

) and 
he
k whether ea
h F 2 F is an N -
hain. If

we su

eed, then G

n

is indeed extremal and we have a C-proof.

This approa
h is usually less su

essful than the one via gross matroids. Its

weaknesses are that we must have a guess for a number of values of n and that

not many polynomials are the growth polynomials of a 
ount matroid. But still

there are a few natural problems for whi
h, of the above approa
hes, only 
ount

matroids produ
e results, e.g. for some uniform families, see Subse
tion 10.2.

10 Spe
i�
 Classes

Here we obtain various results for 
ertain parti
ular forbidden families.

10.1 Pyramids

Here we 
ompute the w-sat-fun
tion for pyramids, whi
h in
ludes a few inter-

esting results as partial 
ases: for example, this proves formula (49) 
onje
tured
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by Tuza [Tuz88, Conje
ture 7℄.

Let t be �xed. Suppose we are given a sequen
e r = (r

1

; : : : ; r

t

) of non-

negative integers and a sequen
e of disjoint sets S

1

; : : : ; S

t

of sizes s = (s

1

; : : : ; s

t

)

su
h that r

[i℄

� s

[i℄

, i 2 [t℄. (Dealing with sequen
es, we use su
h short
uts as

r

I

=

P

i2I

r

i

and S

I

= [

i2I

S

i

, I � [t℄; we also assume r

0

= 0, S

0

= ;.)

The pyramid P = P (s; r) is the r-graph, r = r

[t℄

, on S = S

[t℄

su
h that

E 2 S

(r)

is an edge of P if and only if, for every i 2 [t℄, we have jE \ S

[i℄

j � r

[i℄

.

Of 
ourse, this 
ondition is va
uously true for i = t.

For example, for t = 1 we have 
omplete graphs; P (s

1

; s

2

; r

1

; r

2

) 
onsists of

those (r

1

+ r

2

)-subsets of S

1

[ S

2

whi
h interse
t S

1

in at least r

1

verti
es. As

a warning, we emphasize that pyramids are usual (not layered) r-graphs.

Without loss of generality we may assume that s

i

� r

i

, i 2 [t℄. If some r

i

ex
eeds s

i

then, letting r

0

= r ex
ept r

0

i

= s

i

and r

0

i�1

= r

i�1

+ r

i

� s

i

(note that

i � 2 as r

1

� s

1

), we obtain the same pyramid P

0

= P . Indeed, r

[j℄

's do not


hange ex
ept r

0

[i�1℄

= r

[i�1℄

+ r

i

� s

i

, so, trivially, P

0

� P . On the other hand,

E 2 E(P ) implies that

jE \ S

[i�1℄

j � jE \ S

[i℄

j � s

i

� r

[i℄

� s

i

= r

0

[i�1℄

;

and E 2 E(P

0

). Iterating the step as long as possible, we prove the 
laim.

Likewise we 
an get rid of r

i

= 0 by merging S

i

and S

i+1

together (or

removing S

t

if i = t).

Here we 
al
ulate w-sat(n; P ) by showing that pyramids admit a G-proof.

Note that we obtain the exa
t answer for all feasible values of the parameters

n, r and s. This result appears in [Pik99a℄.

Let us, for any n � s = s

[t℄

, provide a 
onstru
tion of G 2 w-SAT(n; P ).

Partition [n℄ = A

1

[ : : : [A

t+1

so that a

i

= jA

i

j = s

i

+ r

i�1

� r

i

, i 2 [t℄; thus

a

t+1

= jA

t+1

j = n�

t

X

i=1

(s

i

+ r

i�1

� r

i

) = n� s+ r

t

:

We also assume that our partition is 
onse
utive, that is, in [n℄, any element of

A

i


omes before any element of A

j

whenever i < j.

Let E 2 [n℄

(r)

be an edge of G if and only if, for some i 2 [t℄, we have

jE \A

[i℄

j > r

[i�1℄

. Equivalently, the 
omplement of G is isomorphi
 to

P (a

t+1

; : : : ; a

1

; r

t

; : : : ; r

1

; 0);
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so, for example, any r-tuple interse
ting A

1

is in E(G).

Lemma 36 G 2 w-SAT(n; P ).

Proof. Order the missing edges in any way so that the sequen
es

�

jA

[1℄

\Ej; : : : ; jA

[t+1℄

\Ej

�

; E 2 E(G);

are non-in
reasing in the lexi
ographi
 order. (Thus, we start with (0; r

1

; : : : ; r

t

)

and end with (0; : : : ; 0; r).) Let us show that this ordering is P -proper. Consider

the moment when we add some edge E 2 E(G). Let E

i

= E \ A

i+1

, i 2 [t℄.

Also, let E = R

1

[ : : : [ R

t

and [n℄ n E = T

1

[ : : : [ T

t+1

be the 
onse
utive

partitions with jR

i

j = r

i

and jT

i

j = s

i

� r

i

, i 2 [t℄.

Let us show that E

[i℄

� R

[i℄

and T

[i℄

� A

[i℄

n E

[i�1℄

, i 2 [t℄. As all partitions

in question are 
onse
utive, it is enough to verify the sizes. By the de�nition of

G, we have jE

[i℄

j = jE \A

[i+1℄

j � r

[i℄

. Also,

jA

[i℄

n E

[i�1℄

j � jA

[i℄

j � r

[i�1℄

=

i

X

j=1

(s

j

+ r

j�1

� r

j

)� r

[i�1℄

= jT

[i℄

j;

and the 
laim follows.

Let S

i

= T

i

[ R

i

, i 2 [t℄. We 
laim that E 
reates a forbidden subgraph P

on the set S = S

[t℄

. For every i 2 [t℄, we have jE \S

i

j = jR

i

j = r

i

, so E 2 E(P ).

Suppose, on the 
ontrary, that there exists D 2 E(P ) 
oming after E. Let

us show by indu
tion on i that, for every i 2 [0; t℄, we have

D \ S

[i℄

= E \ S

[i℄

and D \A

[i+1℄

= E \A

[i+1℄

; (67)

whi
h would be a 
ontradi
tion to the assumption D 6= E. As D;E 2 E(G)

are disjoint from A

1

, the 
laim is true for i = 0. Let i 2 [t℄. As T

[i℄

� A

[i℄

,

we 
on
lude, by the indu
tive assumption, that D \ T

[i℄

= E \ T

[i℄

= ;. As

S

[i℄

= T

[i℄

[ R

[i℄

, we have D \ S

[i℄

� R

[i℄

. On the other hand, D 2 E(P ) so

jD \ S

[i℄

j � r

[i℄

, whi
h implies

D \ S

[i℄

= R

[i℄

= E \ S

[i℄

;

and the �rst part of (67) is proved. Now,

D \A

[i+1℄

� R

[i℄

\A

[i+1℄

� E

[i℄

\A

[i+1℄

:
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By indu
tion, D \ A

[i℄

= E \ A

[i℄

and, as D was added later than E, we must

have jD \A

[i+1℄

j � jE \A

[i+1℄

j, whi
h proves (67) 
ompletely.

Theorem 37 The pair (P;G) admits a G-proof.

Proof. We have to show that P is a G

G

-
hain. Let us 
onsider

h = h

1

^ : : : ^ h

t

; where h

i

= f

�

A

[i℄

x e

S

[i℄

2

V

r

i

V; i 2 [t℄;

where, as usual, f

�

is a generi
 V

�

-basis relative a V -basis e. Ea
h E 2 supp(h)

is of the form E

1

[ : : : [ E

t

, for some E

i

2 supp(h

i

), i 2 [t℄. Clearly, jE

i

j = r

i

and E

i

� S

[i℄

. Therefore, jE \ S

[i℄

j � jE

[i℄

j = r

[i℄

, so supp(h) � E(P ). Similarly,

supp

f

(h

i

) lives within A

[i+1;t+1℄

, i 2 [t℄, whi
h implies that supp

f

(h) � E(G).

So, to prove the theorem, it is enough to show that for any E 2 E(P ) we

have P

E

= he

�

E

; hi 6= 0. To do so, we 
an assume that S is an initial segment

in [n℄ and every element of S

i


omes before every element of S

j

whenever i < j.

Furthermore, we may assume that E

i

= E \ S

i

is a �nal segment of S

i

. Note

that A

[i℄

� S

[i℄

� A

[i+1℄

and R

i

= S

[i℄

n A

[i℄


onsists of the last r

i

elements of

S

i

, i 2 [t℄. Clearly, jEj = jRj, where R = R

[t℄

, so let g : E n R ! R n E be the

order-preserving bije
tion.

As P

E

is a polynomial in the �'s, to show that P

E

6= 0, it is enough to

demonstrate a parti
ular example of the �'s (or f

�

) su
h that P

E

6= 0. De�ne

f

�

x

=

(

e

�

x

+ e

�

g(x)

; x 2 E n R;

e

�

x

; otherwise.

(68)

Let i 2 [t℄. To 
ompute h

i

, we expand f

�

A

[i℄

in the e

�

-basis by (68). Denote

W

i

= A

[i℄

n (E nR) and

X

i

= fx 2 A

[i℄

nW

i

: g(x) 2 A

[i℄

g;

Y

i

= fx 2 A

[i℄

nW

i

: g(x) 62 S

[i℄

g;

Z

i

= fx 2 A

[i℄

nW

i

: g(x) 2 S

[i℄

n A

[i℄

g:

As A

[i℄

� S

[i℄

we have a partition A

[i℄

=W

i

[X

i

[Y

i

[Z

i

. As f

�

x

= e

�

x

for x 2W

i

,

f

�

A

[i℄

= �f

�

W

i

^ f

�

X

i

^ f

�

Y

i

^ f

�

Z

i

= �e

�

W

i

^ f

�

X

i

^ f

�

Y

i

^ f

�

Z

i

:
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Take some x 2 X

i

; then g(x) 2 W

i

. Now, for some u

�

2

V

V

�

, we have the

following representation

f

�

A

[i℄

= f

�

x

^ f

�

g(x)

^ u

�

= (e

�

x

+ e

�

g(x)

) ^ e

�

g(x)

^ u

�

= e

�

x

^ e

�

g(x)

^ u

�

;

whi
h implies that f

�

A

[i℄

= �e

�

W

i

^ e

�

X

i

^ f

�

Y

i

^ f

�

Z

i

.

Next, 
onsider some x 2 Y

i

; then g(x) 62 S

[i℄

. For some u

�

2

V

V

�

, we have

f

�

A

[i℄

x e

S

[i℄

= (u

�

^ f

�

x

)x e

S

[i℄

=

�

u

�

^ (e

�

x

+ e

�

g(x)

)

�

x e

S

[i℄

= (u

�

^ e

�

x

)x e

S

[i℄

;

that is, we 
an repla
e f

�

x

by e

�

x

without a�e
ting h

i

. Also g(Z

i

) \A

[i℄

= ; and

S

[i℄

nA

[i℄

= R

i

, so

h

i

= �(e

�

W

i

^ e

�

X

i

^ e

�

Y

i

^ f

�

Z

i

)x e

S

[i℄

= �f

�

Z

i

x e

Z

i

[R

i

:

For i 2 [t℄, we have jE

[i�1℄

j � jR

[i�1℄

j and one of E

i

and R

i

is a subset of the

other, so, for ea
h x 2 E

i

n R, g(x) lies in R

j

= S

[j℄

n A

[j℄

and x 2 Z

j

, for some

j 2 [i+ 1; t℄. Therefore, Z

[t℄

= E n R.

When we 
ompute P

E

= �he

�

E

;^

i2[t℄

(f

�

Z

i

x e

Z

i

[R

i

)i by expanding further

ea
h h

i

in the e-basis, we obtain h as a sum of terms ea
h of the form e

D

, for

some D 2 [n℄

(r)

. By de�nition, he

�

E

; e

D

i = 0 unless E = D. Consider some

x 2 Z

i

� E. As x 62 R and Z

1

; : : : ; Z

t

are disjoint, no element of supp(h

j

) 
an


ontain x unless j = i. Computing h

i

, we have for some u

�

h

i

= (u

�

^ f

�

x

)x e

Z

i

[R

i

= (u

�

^ e

�

g(x)

)x e

Z

i

[R

i

+ (u

�

^ e

�

x

)x e

Z

i

[R

i

;

and no element in the e-support of the se
ond summand 
an 
ontain x. Thus

we 
an harmlessly repla
e f

�

x

by e

�

g(x)

. (Clearly, this does not a�e
t h

j

for j 6= i.)

Now, sin
e g(Z

i

) � S

[i℄

n A

[i℄

= R

i

,

P

E

= �he

�

E

;^

i2[t℄

(e

�

g(Z

i

)

x e

Z

i

[R

i

)i

= �he

�

E

; e

Z

[t℄

[R

[t℄

ng(Z

[t℄

)

i = �he

�

E

; e

E

i = �1:

Thus P

E

is non-zero and the theorem follows.

Corollary 38 Suppose that we are given two sequen
es s = (s

1

; : : : ; s

t

) and

r = (r

1

; : : : ; r

t

) of integers su
h that s

i

� r

i

� 1, i 2 [t℄. Then, for n � s

[t℄

,

w-sat(n; P (s; r)) =

�

n

r

[t℄

�

�

X

r

0

�

n� s

[t℄

+ r

t

r

0

t

�

Y

i2[t�1℄

�

s

i+1

+ r

i

� r

i+1

r

0

i

�

;
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where the summation is taken over all sequen
es of non-negative integers r

0

=

(r

0

1

; : : : ; r

0

t

) su
h that r

0

[t℄

= r

[t℄

and, for any i 2 [t� 1℄, r

0

[i℄

� r

[i℄

.

Remark. To a
hieve equality in Corollary 38, the edges of a weakly P -saturated

graph H must form a base in G

G

. As it is the 
ase with G/g-proofs, there is no

easy 
ombinatorial interpretation of this 
ondition.

Pyramids 
over many interesting graphs as partial 
ases and Corollary 38

implies new results even for r = 2: we are able to 
ompute the w-sat-fun
tion

for P

s;t

= P (s; t; 1; 1), the disjoint union of K

2

s

and E

2

t

plus all edges between

them. Namely, for n � s+ t, s � 1, t � 1, we have

w-sat(n; P

s;t

) = (s� 1)n�

�

s

2

�

+

�

t

2

�

:

As P (m; r) = K

r

m

, we 
an 
ompute w-sat(n;K

r

m

), formula (46) here.

Observe that P (r� l+1; l; r� l+1; l�1) is the only member of H

r

(r+1; l),

whi
h proves the formula (49) 
onje
tured by Tuza [Tuz88, Conje
ture 7℄.

Also, S

r

m

= P (1;m � 1; 1; r � 1). Therefore, Corollary 38 dire
tly implies

that

w-sat(n; S

r

m

) =

�

n

r

�

�

�

n� k

r

�

� k

�

n� k

r � 1

�

; n �m > r � 2;

where k = m�r+1. A 
omplete des
ription of all minimumweakly S

r

m

-saturated

graphs is available only for S

2

m

when we 
an �nd a simple 
ombinatorial proof

whi
h, fortunately, works for the following, wider, 
lass of graphs.

A delta system D

r

ml


ontains l r-tuples so that the interse
tion of every two

is equal to a �xed m-set 
alled the 
entre. Thus, v(D

r

ml

) = m+ l(r �m).

Theorem 39 For any r > m � 1 and n > m+ l(r �m), w-sat(n;D

r

ml

) =

�

l

2

�

.

Proof. To 
onstru
t G 2 w-SAT(n;D

r

ml

), 
hoose A 2 [n℄

(m�1)

and distin
t

verti
es y

1

; : : : ; y

l�1

2 [n℄nA. For ea
h i 2 [l�1℄, pla
e into E(G) any l�i edges

forming a D

r

m;l�i

-graph 
entred at A [ fy

i

g and disjoint from fy

1

; : : : ; y

i�1

g.

Let us show that G 2 w-SAT(n;D

r

ml

). Repeat the following step for i =

1; : : : ; l � 1. Suppose, we have already added to G all edges 
ontaining A and

interse
ting fy

1

; : : : ; y

i�1

g. Observe that by now we have a D

r

m;l�1

-subgraph


entred at A [ fy

i

g. It is not hard to 
he
k that we 
an properly add to G all

edges 
ontaining A [ fy

i

g, 
f. Theorem 52.
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Finally, add, in any order, the remaining edges so that jE \ Aj is non-

in
reasing. Easy details are omitted.

Conversely, given G 2 w-SAT(n;D

r

ml

), de�ne indu
tively A

1

; : : : ; A

l�1

�

V (G) as follows. For i = 1; : : : ; l�1, 
onsider the �rst edge added to G 
ontaining

none of A

1

; : : : ; A

i�1

as a subset. Let A

i

be the 
entre of a 
reated D

r

ml

-subgraph

F . For any j 2 [i � 1℄, at most one edge of F 
an 
ontain A

j

be
ause any two

su
h edges overlap in A

i

[A

j

whi
h has size at least m+ 1. Therefore, at least

l � i edges of F belonged to the initial G. These edges 
ontain A

i

but none of

A

1

; : : : ; A

i�1

. So, e(G) � (l � 1) + (l � 2) + : : :+ 1 =

�

l

2

�

.

Remark. It is easy to read o� the proof the 
hara
terization of all extremal

graphs for S

2

m

= D

2

1;m�1

(and for some other 
ases): all minimum weakly S

2

m

-

saturated graphs 
an be obtained in the following way. Choose fx

1

; : : : ; x

m�2

g 2

[n℄

(m�2)

. For every i 2 [m� 2℄, add any m� i� 1 edges through the vertex x

i

not in
ident to x

1

; : : : ; x

i�1

.

10.2 Uniform Families

Fix l;m; r 2 N with 1 � l �

�

m

r

�

. The uniform family H = H

r

(m; l) is the

family of all r-graphs of order m and size l. By de�nition, G 2 w-SAT(n;H),

n � m, if we 
an 
onse
utively add the missing edges so that ea
h 
reates a new

subgraph with at most m verti
es and at least l edges.

There are quite a few papers dealing with the Tur�an ex-fun
tion for uniform

families; we refer the reader to Griggs, Simonovits and Thomas [GST98℄ for

referen
es and for new re
ent results.

The sat-type problems for uniform families were 
onsidered by Tuza [Tuz88℄,

who made a 
onje
ture about the value of w-sat(n;H

r

(r + 1; l)) (formula (49)

here), and by Erd}os, F�uredi and Tuza [EFT91℄ who settled the 
ase l = 3 of

Tuza's 
onje
ture. Observe that we have essentially only one graph inH

r

(r+1; l)

whi
h 
onsists of all edges 
ontaining some �xed (r�l+1)-set. In our notation it

is denoted by P (r� l+1; l; r� l+1; l�1), and Corollary 38 implies formula (49).

However, the general 
ase is still open.

Here we present, for all sets of parameters, a 
onstru
tion of a weakly

H

r

(m; l)-saturated graph whi
h we 
onje
ture to be extremal. Our 
onje
ture

is in perfe
t a

ordan
e with the above results.
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Clearly, our 
onstru
tion gives an upper bound. To establish some lower

bounds, we use use gross and 
ount matroids. This way we verify our 
on-

je
ture for more sets of parameters. In 
ertain 
ases, we 
hara
terize the sets

of minimum weakly H-saturated graphs. In parti
ular, we answer a question

by Erd}os, F�uredi and Tuza [EFT91℄ who asked for a 
hara
terization of the

extremal graphs for H

r

(r + 1; 3). These results appear in [Pik98℄.

10.2.1 Constru
tion

Let n � m, 1 � l �

�

m

r

�

and H = H

r

(m; l). We build, indu
tively on n, an

example of a weakly H-saturated graph G

n

= G(n; r;m; l) on [n℄. If n = m,

then we 
an take for G

n

any member of H

r

(m; l � 1). If n > m, then 
hoose

indu
tively any G

n�1

= G(n � 1; r;m; l) and G

0

= G(n � 1; r � 1;m � 1; l

0

),

where l

0

= l �

�

m�1

r

�

. (If l �

�

m�1

r

�

+ 1 then we take the empty graph for G

0

.)

Let G

n

be the r-graph on [n℄ de�ned by

E(G

n

) = E(G

n�1

) [ fE [ fng : E 2 G

0

g:

Let us show that G

n

is indeed weakly H-saturated. By the de�nition of

G

n�1

, we 
an add edges so that [n� 1℄ spans the 
omplete r-graph. Then add

edges E

1

[ fng; : : : ; E

s

[ fng, where (E

1

; : : : ; E

s

) is any H

r�1

(m� 1; l

0

)-proper

ordering of the 
omplement of G

0

. As ea
h E

i


reates a subgraph of size l

0

on

some (m� 1)-set M � E

i

, M [ fng � V (G) spans at least l

0

+

�

m�1

r

�

= l edges

after E

i

[ fng has been added, whi
h shows that G

n

2 w-SAT(n;H).

Conje
ture 40 For any n; r;m; l 2 N satisfying m � n and 1 � l �

�

m

r

�

,

G(n; r;m; l) is a minimum weakly H

r

(m; l)-saturated graph.

Remark. Generally, not all extremal graphs are given by our 
onstru
tion, 
f.

Theorem 44.

Let us 
ompute the size of G

n

. Given l � 2, de�ne (uniquely) 
 and d so

that

l = 
+ 1 +

d�1

X

j=0

�

m� j � 1

r � j

�

; 
 2 [

�

m�d�1

r�d

�

℄; d 2 [0; r � 1℄:
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The de�nition of G

n

implies, after some thought, the following formula for e(G

n

)

whi
h, alternatively, 
an be routinely 
he
ked by indu
tion on n.

e(G

n

) =

d

X

i=0

0

�


+

d�1

X

j=i

�

m� j � 1

r � j

�

1

A

�

n�m+ i� 1

i

�

; n � m:

(We agree that

�

i

0

�

= 1, for any i.) For our purposes, we have to �nd a rep-

resentation of the form e(G

n

) =

P

d

k=0

a

k

�

n

k

�

. The substitution

�

n�m+i�1

i

�

=

P

i

k=0

(�1)

i�k

�

n

k

��

m�k

i�k

�

whi
h is an instan
e of Vandermonde's 
onvolution (see

e.g. [GKP89, p. 174℄), implies

a

k

=

d

X

i=k

(�1)

i�k

�

m� k

i� k

�

0

�


+

d�1

X

j=i

�

m� j � 1

r � j

�

1

A

:

Now, o

asionally applying the identity

P

t

i=0

(�1)

i

�

j

i

�

= (�1)

t

�

j�1

t

�

, t � 0, we


an �nd that a

k

= (�1)

d�k




�

m�k�1

d�k

�

+ (�1)

k

s

k

, where

s

k

=

d�1

X

j=k

�

m� j � 1

r � j

�

j

X

i=k

(�1)

i

�

m� k

i� k

�

= (�1)

d�1

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

�

:

Therefore, in summary,

e(G

n

) =

d

X

k=0

(�1)

d�k

�




�

m� k � 1

d� k

�

�

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

���

n

k

�

:

One 
an 
he
k that Conje
ture 40 is 
ompatible with (44), whi
h is one more

point supporting Conje
ture 40.

10.2.2 Appli
ations of Count Matroids

Re
all that the size of G

n

= G(n; r;m; l) is

P

d

k=0

a

k

�

n

k

�

, where

a

k

= (�1)

d�k

�




�

m� k � 1

d� k

�

�

�

m� k � 1

r � k

��

r � k � 1

d� k � 1

��

: (69)

We de�ne L =

P

d

i=0

a

k

p

k

, so that L([n℄

(r)

) = e(G

n

), the 
onje
tured value.

If L de�nes a matroid and every F 2 H

r

(m; l) is an N

L

-
ir
uit then we 
an


on
lude that w-sat(n;H

r

(m; l)) = e(G

n

), whi
h establishes the validity of our


onje
ture in this 
ase.
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The 
ondition a

k

� 0, k 2 [d℄, 
an be rewritten as

(�1)

d�k


 � (�1)

d�k

�

m�k�1

r�k

��

r�k�1

d�k�1

�

�

m�k�1

d�k

�

= (�1)

d�k

d� k

r � k

�

m� d� 1

r � d

�

:

The modulus of the latter expression is stri
tly de
reasing with k, so, unfortu-

nately, no suitable 
 would satisfy the 
onditions unless d � 2 and we have to


on�ne ourselves to the three 
ases below.

Case 1: d = 0. In this 
ase the problem is trivial: it is easy to prove dire
tly

the following result (also observed by Erd}os, F�uredi and Tuza [EFT91℄).

Lemma 41 For n � m � r � 1 and 1 � l �

�

m�1

r

�

+ 1,

w-sat(n;H

r

(m; l)) = l � 1:

All extremal graphs are 
an be obtained by adding n�m isolated verti
es to an

F 2 H

r

(m; l � 1). (Whi
h is exa
tly what our 
onstru
tion says.)

Case 2: d = 1. Let l =

�

m�1

r

�

+ 1 + 
, 1 � 
 �

�

m�2

r�1

�

. By (69), we let a

1

= 


and a

0

=

�

m�1

r

�

� 
(m� 1), that is,

L(H) = 
p

1

(H) +

�

m� 1

r

�

� 
(m� 1); H � [n℄

(r)

:

The 
ondition 1 � a

1

r+ a

0

implies that either m = r+1 (then 
 �

�

m�2

r�1

�

must

equal 1) or m � r + 2 and


 � min

 

�

m�1

r

�

� 1

m� r � 1

;

�

m� 2

r � 1

�

!

=

�

m�1

r

�

� 1

m� r � 1

;

whi
h we assume.

Let us show that every F 2 H

r

(m; l) is a 
ir
uit in N

L

. Obviously, p

1

(F ) =

m, so e(F ) = L(F ) + 1 and F is not independent. Take any proper F

0

� F .

If p

1

(F

0

) = m then L(F

0

) = L(F ) � e(F

0

). If p

1

(F

0

) � m � 1 then F

0

is

independent by Theorem 32 as L([m� 1℄

(r)

) =

�

m�1

r

�

. Hen
e F is a 
ir
uit and

our 
onje
ture is true.

Lemma 42 Given r, m, l and n with n � m > r � 2, let 
 = l�

�

m�1

r

�

� 1. If

m > r + 1 and 1 � 
 <

1

m�r�1

�

m�1

r

�

or if m = r + 1 and 
 = 1 (when l = 3),

then w-sat(n;H

r

(m; l)) = (l � 1) + 
(n�m).
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In some 
ases, we 
an 
hara
terize extremal graphs by providing a 
ombina-

torial proof.

Lemma 43 In addition to the assumptions of Lemma 42, assume that m > r+1

and 
 <

1

m�1

�

m�1

r

�

. Then any minimum G 2 w-SAT(n;H

r

(m; l)) is given by

our 
onstru
tion.

Proof. Let G = fE

1

; : : : ; E

s

g be a proper ordering; suppose that ea
h E

i


reates

a forbidden subgraph on an m-set M

i

� [n℄ and let L = a

1

p

1

+ a

0

be as above.

We know that any A � [n℄ spans at most a

1

jAj + a

0

edges in G. (In fa
t, this

is easy to see dire
tly for otherwise we 
ould repla
e these edges by a 
opy of

G(jAj; r;m; l), whi
h would produ
e a smaller weakly saturated graph.)

We prove by indu
tion on i that, for any i 2 [s℄, H

i

� G, the subgraph

spanned by M

[i℄

� [n℄, is given by our 
onstru
tion.

Clearly, this is the 
ase for i = 1.

Let i > 1. We have to 
onsider only the 
ase when k = jM

i

nM

[i�1℄

j � 1.

Of l edges of a forbidden subgraph F 
reated by E

i

, at most

�

m�k

r

�


an belong

to H

i�1

, whi
h shows that

e(H

i

)� e(H

i�1

) � l �

�

m�k

r

�

� 1 = 
+

�

m�1

r

�

�

�

m�k

r

�

:

It is routine to 
he
k that the last expression is stri
tly greater than 
k for

k 2 [2;m℄. To prevent the 
ontradi
tion jH

i

j > a

1

jM

[i℄

j + a

0

, we must have

k = 1 and E

i

nM

[i�1℄

= fxg for some vertex x 
ontained in exa
tly 
 edges of

F \G. These edges (minus x) must lie within the (m�1)-setM

[i�1℄

\M

i

, whi
h

is exa
tly what our 
onstru
tion says.

As we mentioned, the value of w-sat(n;H

r

(r+1; 3)) was 
omputed by Erd}os,

F�uredi and Tuza [EFT91℄. They asked if there is a 
hara
terization of the

extremal graphs. Our Lemma 43 does not 
over this 
ase but we 
an provide a

di�erent proof of the lower bound whi
h gives us the desired 
hara
terization.

Some ideas from [EFT91℄ are used here but, of 
ourse, we have to be more

deli
ate if we want to extra
t the 
ases of equality.

Theorem 44 For H = H

r

(r + 1; 3) we have

w-sat(n;H) = n� r + 1; n � r: (70)
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Every extremal graph G 
an be obtained in the following way. Start with the set

system G 
ontaining only one edge [n℄. As long as possible, remove from G any

edge E of size at least r + 1, 
hoose A 2 E

(r�1)

, partition E n A = X

1

[ X

2

,

X

1

;X

2

6= ;, and add to G the edges A [X

1

and A [X

2

.

Proof. Although we have already established (70), we have to provide a 
om-

binatorial proof of the lower bound. Let G 2 w-SAT(n;H). Note that every

vertex in G is 
overed by at least one edge be
ause otherwise the �rst edge

added to G and 
ontaining this vertex 
annot 
reate a forbidden subgraph.

Let E

1

; : : : ; E

j

be the edges of G. With this sequen
e we do, step by step

and as long as possible, the following operation. If some 2 sets have at least

r � 1 
ommon points we merge them together, that is, repla
e them by their

union (so the resulting system is no longer r-uniform).

We 
laim that we end up with a sequen
e 
ontaining a single member (whi
h

then must be equal to V (G)). Suppose not. Let Y

1

; : : : ; Y

t

, t � 2, be the eventual

family. Every two di�erent resulting sets 
an have at most r�2 
ommon points.

Obviously, every edge of G lies within some Y

i

. Let E 2 G be the �rst edge

added to G whi
h does not lie entirely within some Y

i

. (If for every E 2 [n℄

(r)

there is Y

i

� E, then, 
onsidering 
hains of r-sets with overlaps of size r� 1, we


on
lude that Y

i

= [n℄, some i.) The addition of E must have 
reated F 2 H.

The two other edges E

1

; E

2

2 E(F ) either belong to G or were added before E

and share r � 1 verti
es, so they lie ea
h within some set Y

i

. But then Y

i

must


ontain E � E

1

[E

2

whi
h is a 
ontradi
tion. The 
laim is proved.

Now it is easy to prove by indu
tion that in the above pro
ess every set of

size m was a merger of at least m� r + 1 edges of G. Trivially, it was the 
ase

for all initial sets whi
h were pre
isely the edges of G. If we merge together

2 sets of sizes m

1

and m

2

made of e

1

� m

1

� r + 1 and e

2

� m

2

� r + 1 G-

edges respe
tively, the resulting set has at most m

1

+m

2

� r + 1 verti
es and

e

1

+ e

2

� m

1

+m

2

� 2r+2 edges produ
ed it, so the 
laim follows by indu
tion.

If we have equality in (70), then, in ea
h step of the merging pro
edure,

every two sets merged together have exa
tly r � 1 
ommon verti
es, so every

extremal graph 
an be obtained by reversing the merging pro
ess des
ribed in

the statement of the theorem (of 
ourse in many di�erent ways, generally).

We have to show that any anti-merging produ
es an extremal graph. Clear-
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ly, at the end we are left with r-subsets and we have exa
tly n� r+ 1 of these.

To 
omplete the theorem, it is enough to show that a union of two 
omplete r-

graphs H

1

and H

2

of order at least r ea
h with interse
tion A = V (H

1

)\V (H

2

)

of size r � 1, is weakly S-saturated. But this is easy: for i = r � 2; r � 1; : : :,

add the missing edges whi
h interse
t A in exa
tly i points.

Remark. The 
onstru
tion of G(n; r; r + 1; 3) before Conje
ture 40 does not


over all 
ases as is demonstrated, for example, by r = 3, n = 6 and

G = ff1; 2; 3g; f2; 3; 4g; f4; 5; 6g; f5; 6; 1gg:

Case 3: d = 2. Assume r � 3 and l =

�

m�1

r

�

+

�

m�2

r�1

�

+
+1 with 
 2 [

�

m�3

r�2

�

℄.

By (69), we let a

2

= 
, a

1

= �
(m�2)+

�

m�2

r�1

�

and a

0

= 


�

m�1

2

�

� (r�1)

�

m�1

r

�

.

Let us 
he
k when L satis�es (62). Of 
ourse, a

2

� 1. Next, the 
ondition

a

1

� 0 is, in our 
ase, 
 �

�

m�2

r�1

�

(m� 2)

�1

. It is false for m = r + 1, so assume

m � r + 2. The inequality 0 < a

2

�

r

2

�

+ a

1

r + a

0

redu
es to

0 < 


�

m� r � 1

2

�

+

�

r �

(m� 1)(r � 1)

r

��

m� 2

r � 1

�

: (71)

Note that (71) is automati
ally true if m = r + 2 (when the 
oeÆ
ient at 
 is

zero), but then the 
ondition a

1

� 0 implies 
 = 1. So, we 
on
lude that L

satis�es (62) if and only if either m = r + 2 and 
 = 1 or m � r + 3 and

((m� 1)(r � 1)� r

2

)

�

m�2

r�1

�

r

�

m�r�1

2

�
< 
 � min

 

�

m�2

r�1

�

m� 2

;

�

m� 3

r � 2

�

!

=

�

m�2

r�1

�

m� 2

: (72)

Let us 
he
k that any F 2 H

r

(m; l) is a 
ir
uit in N

L

. Clearly, every two

verti
es in F are 
overed by an edge for otherwise we would have at most

�

m

r

�

�

�

m�2

r�2

�

< l edges in F . Therefore, L(F ) = L([m℄

(2)

) = l � 1 = e(F ) � 1

and we 
on
lude that F is not N

L

-independent. On the 
ontrary suppose that

L(H) < e(H) for some r-graph H on [m℄ with at most l � 1 edges. Clearly, we

may assume that H is an initial segment of [m℄

(r)

in the 
olex order.

Note that L([m� 1℄

(r)

) =

�

m�1

r

�

and, by Theorem 32, [m� 1℄

(r)

is indepen-

dent. Therefore, H must have m verti
es. Also the 2-set fm � 1;mg 
annot

be 
overed by an H-edge, as then e(H) � L([m℄

(r)

) + 1 � l. Let H

0

be the

(r � 1)-graph on [m� 2℄ satisfying

E(H) = [m� 1℄

(r)

[ fD [ fmg : D 2 E(H

0

)g:
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If we let L

0

= a

2

p

1

+ a

1

then L

0

([m � 2℄

(r�1)

) =

�

m�2

r�1

�

and, by Theorem 32,

H

0

� [m� 2℄

(r�1)

is independent in N

L

0

and L

0

(H

0

) � e(H

0

).

Obviously, p

2

(H) = p

1

(H

0

) +

�

m�1

2

�

. Therefore,

L(H) = L([m� 1℄

(r)

) + L

0

(H

0

) �

�

m� 1

r

�

+ e(H

0

) = e(H);

whi
h is the desired 
ontradi
tion.

Theorem 45 Assume that r � 3 and l =

�

m�1

r

�

+

�

m�2

r�1

�

+ 
+ 1 are su
h that

either m = r+2 and 
 = 1 or m � r+3 and 
 satis�es (72). Then Conje
ture 40

is true.

Remark. Unfortunately, we do not have any 
hara
terization of the extremal

graphs in this 
ase.

10.2.3 Appli
ations of Gross Matroids

We establish some further results by applying gross matroids. Namely, we prove

that our 
onje
ture is asymptoti
ally true for d = r� 1. Moreover, by applying

the g

0

-method we settle 
ompletely the 
ase r = 2.

First, we need one simple preliminary result.

Lemma 46 Let G be an r-graph of order n and size at least

�

n

r

�

�n+m, where

n > m > r � 2. Then any E 2 E(G) is 
ontained in a 
omplete subgraph of

order m.

Proof. Given E 2 E(G), remove from ea
h missing edge one (arbitrary) vertex

not belonging to E. We are left with at least m verti
es spanning a 
omplete

subgraph whi
h 
ontains E.

Remark. The above bound on e(G) is sharp: if the 
omplement of G 
onsists

of n�m+ 1 edges 
ontaining some �xed (r � 1)-set A then this set is 
overed

only by m� r G-edges of whi
h none lies within K

r

m

.

Theorem 47 Let l =

�

m

r

�

� k and H = H

r

(m; l). If m > k + r, then

w-sat(n;H) = (m� k � r)

�

n

r � 1

�

+O(n

r�2

): (73)
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Furthermore, if r = 2, then we have a g

0

-proof that

w-sat(n;H

2

(m; l)) = (m� k � 2)(n�m) + l � 1; n � m: (74)

Proof. Implementing our 
onstru
tion, from the identity

P

r

i=0

�

m�i�1

r�i

�

=

�

m

r

�

,

we obtain that d = r � 1 and 
 = m � r � k, whi
h implies the upper bounds

in (73) and (74).

On the other hand, in any F 2 H, any edge lies within a K

r

m�k

-subgraph

by Lemma 46. But by Theorem 37, K

r

m�k

is a 
hain in G

P

, the gross matroid

of P = P (
; n � 
; 1; r � 1), so ea
h F 2 H is a G

P

-
hain. By Lemma 33,

w-sat(n;H) � R

G

P

([n℄

(r)

) = e(P ), whi
h g-proves the required lower bound

in (73).

Finally, let us g

0

-prove the lower bound in (74) for r = 2. Let F 2 H. As F

has m verti
es,

R

G

P

(F ) � R

G

P

(K

m

) � e(P (
;m � 
; 1; 1)) = 
m�

�


+1

2

�

:

(The se
ond inequality is true be
ause P (
;m� 
; 1; 1) 2 w-SAT(m;K

2

m�k

) and

K

2

m�k

is a G

P

-
hain.) Therefore some set of at least p = l�
m+

�


+1

2

�

edges of F

lies in the G

P

-span of the remaining edges, that is, D

G

P

(F ) � p. By Lemma 34,

w-sat(n;H) � R

G

P

(K

n

) +D

G

P

(F) � 1

� 
n�

�


+ 1

2

�

+ p� 1 = 
(n�m) + l � 1:

The theorem is proved.

Note that for r = 2 we know w-sat(n;H

2

(m; l)) for any any feasible m and l:

for l �

�

m�1

2

�

we have a g-proof that it is l � 1 (
onstant) by Lemma 35, while

all other 
ases are 
overed by the g

0

-proof of Theorem 47.

Also note that, under the assumptions of Theorem 47 on l, the graph

G(n; r;m; l) 
onstru
ted before Conje
ture 40 is weakly F -saturated, where

E(F ) 
onsists of the �rst l elements of [m℄

(r)

in the 
olex order. So, Theo-

rem 47 remains valid if F is the only member of H; this 
overs all possible 
ases

for r = 2 ex
ept the trivial 
ase l =

�

m�1

2

�

+ 1.

10.3 Mis
ellaneous Graphs

Here we indi
ate a few easy results for some simple forbidden graphs su
h as


y
les, disjoint edges, trees, et
. The proofs are easy but they often require a
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lengthy and boring veri�
ation that the spe
i�ed graph is weakly saturated. We

in
lude them for the sake of 
ompleteness.

Cy
les

Let C

l

denote the 
y
le of length l. We know (see Se
tion 2) that the determi-

nation of the exa
t value of sat(n;C

l

) is a hard task. For the w-sat-fun
tion, on

the 
ontrary, the 
omplete answer is available in all 
ases.

The following trivial observation will be used a few times, so we state it as

a lemma.

Lemma 48 Let l � 4 be even. Then any weakly C

l

-saturated graph G 
ontains

an odd 
y
le.

Proof. Indeed, otherwise G is a bipartite graph. Let E be the �rst added edge

lying within one part. By the parity argument, any l-
y
le through E must


ontain another edge lying within a part, whi
h is a 
ontradi
tion to the 
hoi
e

of E.

Let us �rst 
onsider the 
ase when the forbidden 
y
le is Hamiltonian.

Theorem 49 For any n � 4, w-sat(n;C

n

) = n and all extremal graphs are

obtained from a Hamiltonian 
y
le by adding an edge whi
h 
reates an odd 
y
le

and then removing some other edge.

Proof. Let G be a Hamiltonian 
y
le visiting the verti
es 1; 2; : : : ; n 2 [n℄ in this

order, minus the edge f1; ng but plus the edge fi; ng, for some even i. To prove

that G 2 w-SAT(n;C

n

) we have to show how to properly add the missing edges

to G. First we add f1; ng thus 
reating a Hamiltonian 
y
le through 1; 2; : : : ; n.

We �x this 
y
le and de�ne a t-
hord as an edge 
onne
ting 2 verti
es at

a distan
e t if we go along the 
y
le. Thus, after the �rst step, G is made of

all 1-
hords and one i-
hord. Next, we add all i-
hords in the following order

fm; i +mg, m = 1; 2; : : : ; n � 1. (Of 
ourse, we do all arithmeti
 modulo n.)

Every time we re
eive an extra 
y
le: for example, the 
hord f1; i + 1g 
reates

the 
y
le via

n; i; i� 1; i� 2; : : : ; 2; 1; i + 1; i+ 2; : : : ; n� 2; n� 1:
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Having all 
hords of length 1 and i � 4, it is possible to add any (i�2)-
hord.

For example, the 
hord f2; ig 
reates the following Hamiltonian 
y
le

1; i+ 1; i+ 2; 2; i; i � 1; : : : ; 4; 3; i + 3; i+ 4; : : : ; n� 1; n:

Therefore, we 
an eventually have all 2-
hords.

Finally, 
onsequently for m = 3; 4; 5; : : :, we add all missing m-
hords in any

order. This is legitimate; when we add, for example, the 
hord f1;m + 1g we

have a Hamiltonian 
y
le via

1; 2; : : : ;m� 1; n; n� 1; : : : ;m+ 2;m;m + 1

whi
h uses only already present 
hords (of length 1, 2 and m � 1). Therefore,

G 2 w-sat(n;C

n

).

On the other hand, suppose that G 2 w-SAT(n;C

n

). The �rst edge added

to G 
reates a C

n

-subgraph F (that is, a Hamiltonian 
y
le), so there is a

Hamiltonian path P

n�1

in G. It is easy to see that P

n�1

62 w-SAT(n;C

n

) so

there is at least one more edge E and w-sat(n;C

n

) � n. Moreover, F + E

must 
ontain at least one odd 
y
le by Lemma 48, whi
h is pre
isely what our


onstru
tion says.

Let us 
onsider odd and even 
y
les separately.

Theorem 50 Let l � 3 be odd and let n > l. Then w-sat(n;C

l

) = n � 1, all

extremal graphs are trees of order n and diameter at least l � 1, and C

l

admits

a g-proof for n.

Proof. Let G be any su
h tree. First we add any edge 
onne
ting two verti
es

at distan
e l�1; suppose the 
reated l-
y
le goes through the verti
es 1; : : : ; l 2

V (G) in this order. As v(G) > l and G is 
onne
ted, we may assume that

the vertex l + 1 2 V (G) is 
onne
ted to l. Obviously, we 
an add the edge

f2; l + 1g whi
h 
reates the l-
y
le through 2; 3; : : : ; l; l + 1. Next, we 
an add

the edge f1; 4g whi
h 
reates the l-
y
le through 4; 5; : : : ; l; l + 1; 2; 1. Now the

set [l℄ � V (G) spans an l-
y
le plus the edge f1; 4g 
reating an odd (l � 2)-


y
le|the situation in whi
h we 
an apply Theorem 49 to add all edges within

[l℄.

But it is trivial to show that a 
onne
ted graph with an l-
lique is weakly

C

l

-saturated, whi
h implies G 2 w-SAT(n;C

l

).
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Now it is easy to dedu
e that w-SAT(n;C

l

) 
onsists exa
tly of all 
onne
ted

graphs 
ontaining a path of length l � 1 as a subgraph and the desired 
hara
-

terization of the minimum ones follows.

Let us show that C

l

admit a g-proof for n > l. Indeed, 
onsider G = G

S

2

n

.

Any edge of C

l

is G-dependent on the remaining ones be
ause the path with l

edges is weakly K

2

3

-saturated and K

2

3

is a G-
ir
uit. Clearly, R

G

([n℄

(2)

) = n� 1.

(In fa
t, if restri
ted to [n℄

(2)

, G is the usual 
y
le matroid.) The 
laim 
learly

follows.

Theorem 51 Let l � 4 be even and let n � l. Then w-sat(n;C

l

) = n, all

extremal graphs are trees of order n and diameter at least l � 1 plus an extra

edge 
reating an odd 
y
le, and C

l

admits an r-proof for n.

Proof. Similarly to the proof of Theorem 50, to show that any indi
ated graph

G is weakly C

l

-saturated, we �rst argue that adding a few edges we 
an obtain

an l-
y
le 
ontaining a 3-
hord. Unfortunately, this 
on�guration is not weakly

C

l

-saturated but, like in Theorem 49, we 
an add all 3-
hords, 5-
hords, and so

on to obtain the 
omplete bipartite graph K

l=2;l=2

.

Observe that having an edge fx; yg with y belonging be K

s;t

-subgraph with

s; t � l=2, we 
an 
onne
t x to any vertex lying in the same part as y. Hen
e,

we 
an add edges so that G 
ontains a K

s;n�s

-subgraph with s; n � s � l=2;

moreover, as we have an odd 
y
le present in the original G, one part spans an

edge and G 2 w-SAT(n;C

l

).

The required 
hara
terization of extremal graphs easily follows.

Finally, let M be Doob's [Doo73℄ even-
y
le matroid on [n℄

(2)

whi
h 
an

be represented by f : [n℄

(2)

! V whi
h maps fi; jg to e

i

+ e

j

for some basis

fe

1

; : : : ; e

n

g of a real ve
tor spa
e V . The 
y
le C

l

is anM-
hain: if C

l

goes via

the verti
es 1; 2; : : : ; l; 1, then we have the linear relation

(e

1

+ e

2

)� (e

2

+ e

3

) + : : :� (e

l

+ e

1

) = 0

with all 
oeÆ
ients non-zero.

For n � 3, the rank of M is n as any basis ve
tor e

i

admits a representation

e

i

=

1

2

((e

i

+ e

j

) + (e

i

+ e

k

)� (e

j

+ e

k

)), whi
h implies our 
laim.

Remark. Probably, even 
y
les do not admit a g-proof. But if we 
onsider

(1; 1)-layered (i.e. bipartite) graphs, then C

4

as the 
omplete (1; 1)-graph admits
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a G-proof by the results of Se
tion 12. A little more work shows that any even


y
le admits a g-proof in the 
lass of bipartite graphs, be
ause any 
onne
ted

(1; 1)-graph is weakly C

4

-saturated.

Disjoint Edges

Suppose that we forbid lK

r

r

, l > 1, that is, l disjoint r-edges.

Theorem 52 Let F = lK

r

r

, let n > lr, and let G 
onsist of l � 1 disjoint r-

edges plus n� r(l� 1) isolated verti
es. Then w-sat(n; F ) = l� 1, G is the only

extremal graph, and the pair (F;G) admits a G-proof.

Proof. Let us show that G is weakly F -saturated. As v(G) > kl, we 
an add

an edge disjoint from the edges of G whi
h 
reates a 
opy of F and leaves at

least one vertex of G isolated.

Fix any D 2 [n℄

(r)

. We have to show that D 2 Cl

F

(G). We prove that the

existen
e of E 2 Cl

F

(G) with jE\Dj = k < r implies that there is E

0

2 Cl

F

(G)

with jE

0

\Dj = k + 1. Given E, there are E

2

; : : : ; E

l

2 Cl

F

(G) whi
h together

with E form an F -subgraph. If there is x 2 D n V , V = E [ E

[2;l℄

, then we


an take E

0

= E + x � y 2 Cl

F

(G), for some y 2 E n D. Otherwise take any

x 2 DnE, say x 2 E

2

, repla
e E

2

by E

0

2

= E

2

�x+y 2 Cl

F

(G), where y 62 V , and


onsider E

0

= E� z+x, z 2 E nD whi
h (together with E

0

2

; E

3

; : : : ; E

l

) 
reates

a forbidden subgraph. The required E

0

is found. Hen
e, w-sat(n; F ) � l � 1.

Any weakly F -saturated graph 
ontains l � 1 disjoint edges; hen
e G is the

only extremal graph.

The pair (F;G) admits a G-proof by Lemma 35.

However, if the forbidden graph is a perfe
t mat
hing, then the exa
t answer

is known generally for r = 2 only.

Theorem 53 For n = 2l � 4, w-sat(n; lK

2

2

) = n � 1 and all extremal graphs


an be obtained in the following way: 
omplete lK

2

2

to a tree T , add an edge

E 
reating an odd 
y
le and remove any edge E

0


ontained in some perfe
t

mat
hing of T +E.

Proof. Let us show that any above 
onstru
ted graph G is weakly F -saturated,

F = lK

2

2

. First we add the edge E

0

. Let C be the odd 
y
le (at this stage
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it is unique) of the obtained graph T

0

= G + E

0

= T + E and let M be some

mat
hing of T

0

. Let fx

1

; y

1

g; : : : ; fx

2k+1

; y

2k+1

g be all edges of M with x

i

2 C

and y

i

62 C.

Claim 1 A disjoint union of an odd 
y
le C

2p�1

an a even path P

2q

is weakly

(p+ q)K

2

2

-saturated, p � 2, q � 0.

We prove the 
laim by indu
tion on q. If q = 0 then we 
an �rst 
onne
t

the isolated vertex to any other vertex of the 
y
le to obtain a wheel and then

we 
an add the remaining edges in any order. If q > 0 then we 
an 
onne
t the

endpoints of the path to all verti
es on a 
y
le and the obtained graph is easily

seen to 
ontain C

2p+1

t P

2q�2

and the 
laim follows.

A moment's thought reveals that, by Claim 1, T

0

2 w-SAT(n; F ) if k = 0.

So, to prove that G 2 w-SAT(n; F ), we show that, for k > 0, we 
an F -properly

add some extra edges to T

0

and �nd other, stri
tly larger, odd 
y
le C.

Assume that x

1

; : : : ; x

2k+1

lie on the 
y
le C in this order 
lo
kwise. Note

that we 
an add to T

0

all edges of the form fy

i

; y

i+1

g, i 2 [2k+1℄, whi
h 
reates

the mat
hingM

0

=M4C

i

, where C

i

the 
y
le via y

i+1

; y

i

; x

i

Cx

i+1

; y

i+1


reated

just now. (By aCb we denote the part of the 
y
le C going 
lo
kwise from a to b

in
lusive.) If there are no verti
es (along C) between some x

i

and x

i+1

then we

have a stri
tly longer 
y
le C4C

i

as desired. Otherwise, we may assume that a

part of the 
y
le C looks like x

1

; : : : ; a; x

2

; b; : : : ; 
; x

3

; : : :. It is routine to 
he
k

that the addition of the edge fa; 
g 
reates a mat
hing whi
h uses edges fx

2

; bg,

fy

1

; y

2

g, fx

i

; y

i

g, i 2 [3; 2k + 1℄, et
. But then we 
an �nd a stri
tly longer odd


y
le: x

3

Ca; 
C

�1

x

2

; y

2

; y

3

; x

3

, whi
h proves that G 2 w-SAT(n; F ) as 
laimed.

On the other hand, 
onsider any weakly F -saturated graph G and let G

0

=

G + E be a graph with a perfe
t mat
hing. If G

0

is not 
onne
ted, then all

its 
omponents have even order, but then the �rst F -properly added edge not

lying within a 
omponent 
annot 
reate a mat
hing (by the parity argument),

whi
h is a 
ontradi
tion. If G

0

is a bipartite graph, then its parts must be of the

same size, but then the �rst F -properly added edge lying within a part 
reates

no perfe
t mat
hing, whi
h a 
ontradi
tion. Hen
e, G

0

is a tree plus an edge


reating an odd 
y
le and all 
laims of the theorem easily follow.
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Dumb-Bells

Re
all that the 2-graph B

kk

, 
alled a dumb-bell, 
onsists of two disjoint 
opies

of K

2

k

plus one edge 
onne
ting them, k � 3.

Theorem 54 Let k � 3, n = lk + q, q 2 [0; k � 1℄, l � 2; let "

q

= 1 ex
ept

"

0

= 0. Then w-sat(n;B

kk

) = (l + 1)

�

k

2

�

�

�

k�q

2

�

� "

q

.

Proof. To prove the upper bound 
onsider the 2-graph G on [n℄ de�ned (for

any q) by

E(G) =

�

[

i2[l℄

A

(2)

i

�

[

�

[n� k + 1; n℄

(2)

n fn� 1; ng

�

;

where A

i

= [ki � k + 1; ki℄, i 2 [l℄. As G[kl℄

�

=

lK

2

k

, we 
an add all missing

edges within [kl℄ ea
h 
onne
ting some two of the A's. If q = 0, then we are

done; otherwise we add the edge fn; n�1g making G[n�k+1; n℄ 
omplete and

then add the remaining edges in any order. Hen
e, G 2 w-SAT(n;B

kk

) and the

upper bound follows.

On the other hand, let G 2 w-SAT(n;B

kk

) be arbitrary. Similarly to

Lemma 43, we take a B

kk

-proper ordering G = fE

1

; : : : ; E

e

g; assume that E

i


reates a B

kk

-subgraph F

i

on a 2k-set M

i

� [n℄. De�ne the surplus s(X) =

e(G[X℄) �

k�1

2

jXj, X � [n℄, and s

i

= s(M

[i℄

).

Let q

i

2 [0; k � 1℄ be equal to jM

i

nM

[i�1℄

j (mod k). Given q

i

, it is routine

to see that if q

i

= 0 then s

i

� s

i�1

and if q

i

> 0 then

s

i

� s

i�1

� f(q

i

) =

�

k

2

�

�

�

k�q

i

2

�

�

k�1

2

q

i

� 1 � 0:

Furthermore, for p; q � 1, f(p + q) � f(p) + f(q). Hen
e, s(M

[e℄

) � f(q) for

q > 0 and s(M

[e℄

) � 0 for q = 0. Now, the identity e(G) =

k�1

2

n + s(V (G))

implies the required lower bound.

Remark. In fa
t, we 
-prove that w-sat(n;B

kk

) �

k�1

2

n for odd k, whi
h is

sharp for n = kl. (For even k, the fun
tion L =

k�1

2

p

1

is not integral.)

Forests

Let us 
onsider 2-graphs. Let T be a forest of order m. Clearly, K

2

m�1

plus

n�m+1 isolated verti
es is weakly T -saturated, so w-sat(n; T ) �

�

m�1

2

�

. This
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is sharp for T = S

2

m

by Corollary 38. The opposite extreme inequality is

w-sat(n; T ) � e(T )� 1; n � m: (75)

By Lemma 35, if we have equality in (75), then T admits a g-proof for n. In

fa
t, we 
an show that we have a G-proof.

Lemma 55 Let F and H be any forests with e(F ) � e(H). Then F independent

in G

H

.

Proof. We use indu
tion on l = e(H). It is enough to prove the 
laim for

e(F ) = e(H). Assume that 1 is an endvertex in
ident to the edge E = f1; 2g in

both F and H. Clearly,

det(M(H;F )) = ��

1;1

�

2;2

det(M(H �E;F �E)) + (�

1;1

-free polynomial):

By indu
tion we 
on
lude that det(M(H;F )) 6= 0, whi
h proves the lemma.

Corollary 56 If G 2 w-SAT(n; T ), for some forest T , and e(G) = e(T ) � 1

then the pair (T;G) admits a G-proof.

Proof. Indeed, G is a forest. Also, T is dependent in G

G

but, by Lemma 55,

any proper subgraph of T is not; hen
e T is a G

G

-
ir
uit.

If T 
ontains, for example, verti
es a; b; 
 of degrees 1; 1; 2 respe
tively su
h

that fa; 
g; f
; dg; fb; dg 2 E(T ), for some vertex d, then adding the edges fd; xg

and fx; yg to T , any x; y 62 V (G), we 
reate ea
h time a new graph isomorphi


to T ; this implies equality in (75) with possible ex
eptions for some n � 2m.

Generating a random tree by, for example, taking allm

m�2

vertex-labelled trees

equiprobable, one 
an show that almost every tree 
ontains the above `ab
-


on�guration' and therefore admits a G-proof.

The above results 
an be extended to hypertrees, for the de�nitions see

Part IV, but we do not want to 
lutter the text with details.

11 Cones

In this se
tion we prove that 
ones `preserve' G/g/g

0

-proofs. These results ap-

pear in [Pik99a℄.
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To de�ne the 
one 
n(G) of an r-graph G, add to G a new vertex and

all edges 
ontaining this vertex. In other words, pi
k v 62 V (G) and de�ne

V (
n(G)) = V (G) [ fvg and

E(
n(G)) = E(G) [

n

fvg [E : E 2 V (G)

(r�1)

o

:

For a family F of r-graphs, de�ne 
n(F) = f
n(F ) : F 2 Fg.

For 2-graphs, 
n

l

(F ) = K

l

+ F ; so, for example, the 
ones of empty graphs,


y
les, 
omplete graphs are stars, wheels and 
omplete graphs respe
tively.

Lemma 57 Suppose that every r � 1 verti
es of an r-graph F are 
overed by

at least one edge. If F is a G

G

-
hain, for some r-graph G, then 
n(F ) is a

G


n(G)

-
hain.

Proof. Suppose �rst that v(G) � v(F ). Let G

0

= 
n(G), V (G) = [n � 1℄ and

V (G

0

) = [n℄. Identify the verti
es of G

0

with the basis fe

1

; : : : ; e

n

g of a ve
tor

spa
e V

0

. Let Z

0

be the subspa
e of

V

r

V

0

and let G

G

0

be the gross matroid on

[n℄

(r)


orresponding to G

0

.

We may assume that F

0

= 
n(F ) is embedded into [n℄ so that V (F

0

)nV (F ) =

fng. We have to show that E(F

0

) is a 
hain in G

G

0

, that is, we have to �nd

h

0

2 Z

0

su
h that supp(h

0

) = E(F

0

). De�ne g

�

n

= f

�

n

and

g

�

i

= f

�

i

�

�

in

�

nn

f

�

n

; i = 1; : : : ; n� 1: (76)

Re
all that f

�

is a generi
 basis of (V

0

)

�

and �

ij

= f

�

i

(e

j

), so g

�

i

(e

n

) = 0,

i 2 [n� 1℄, and this is the main point of our de�nition.

The matrix N = (g

�

i

(e

j

))

i;j2[n�1℄

is a generi
 matrix for a generi
 
hoi
e

of the �'s. Indeed, if its entries, 


ij

= �

ij

� �

in

�

nj

=�

nn

, i; j 2 [n � 1℄, are

algebrai
ally dependent, then 
learly the �'s are.

As F is a G

G

-
hain, the system of linear equations

g

�

D

x

0

�

X

E2E(F )




E

e

E

1

A

= 0; D 2 E(G); (77)

with respe
t to the undeterminants (


E

)

E2E(F )

, has a solution with all 
's being

non-zero for generi
 g (whi
h is the 
ase for generi
 f). Apply elementary matrix

transforms to write the system (77) in a diagonal form. For the free variables
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hoose �

1

; : : : ; �

k

whi
h (together with the �'s) are algebrai
ally independent

over the rationals and 
ompute the other variables ea
h being a rational fun
tion

of the �'s and �'s.

Let h =

P

E2E(F )




E

e

E

and h

0

= f

�

n

x (h ^ e

n

). To 
omplete the theorem it

is enough to show that h

0

2 Z

0

and supp(h

0

) = E(F

0

).

Let D 2 E(G

0

). We want to show that f

�

D

xh

0

= 0. If D 3 n, then

hf

�

D

; h

0

i = hf

�

Dnfng

^ f

�

n

; f

�

n

x (h ^ e

n

)i = 0:

If n 62 D, that is, D = fd

1

; : : : ; d

r

g 2 E(G), then, by (76),

f

�

D

=

V

r

i=1

f

�

d

i

=

V

r

i=1

�

g

�

d

i

+

�

d

i

n

�

nn

f

�

n

�

= g

�

D

+ f

�

n

^ x

�

;

some x

�

2

V

r�1

V

�

. Now,

hf

�

D

; h

0

i = hg

�

D

+ f

�

n

^ x

�

; f

�

n

x (h ^ e

n

)i = hg

�

D

^ f

�

n

; h ^ e

n

i:

But for every i 2 [n� 1℄ we have g

�

i

(e

n

) = 0, so the above expression is equal to

f

�

n

(e

n

)hg

�

D

; hi whi
h is zero by the de�nition of h. Therefore h

0

2 Z

0

.

Let us show that supp(h

0

) = E(F

0

). Clearly, every E 2 supp(h

0

) either


ontains n or belongs to E(F ) whi
h shows that supp(h

0

) � E(F

0

). On the

other hand, take any E 2 E(F

0

). If E 2 E(F ), then

he

�

E

; h

0

i = he

�

E

^ f

�

n

; h ^ e

n

i = he

�

E

; hi � hf

�

n

; e

n

i = 


E

f

�

n

(e

n

) 6= 0;

be
ause n 62 E. If E 3 n, then let D

1

; : : : ;D

l

be the edges of F 
ontaining

E

0

= E n fng. By our assumption, l > 0. Let D

i

nE = fd

i

g. Then

P

E

= he

�

E

; h

0

i = he

�

E

0

^ e

�

n

^ f

�

n

; h ^ e

n

i = �he

�

E

0

^ f

�

n

; hi

= �

D

e

�

E

0

^ f

�

n

;

X

E2E(F )




E

e

E

E

=

l

X

i=1

�


D

i

hf

�

n

; e

d

i

i =

l

X

i=1

�


D

i

�

n;d

i

:

(The third equality is true as supp(h) = E(F ) � [n� 1℄

(r)

.)

As every 


D

i

is a rational fun
tion in the �'s and �'s, so is P

E

. To show

that P

E

6= 0 for a generi
 f , it is enough to demonstrate an example of f when

P

E

6= 0. Let �

in

= 0, i 2 [n� 1℄. Then system (77) redu
es to

f

�

D

x

0

�

X

E2E(F )




E

e

E

1

A

= 0; D 2 E(G): (78)
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By the algebrai
 independen
e of (f

�

i

(e

j

))

i;j2[n�1℄

, if we perform the diagonal-

isation for (78) in the same order as for (77), we will obtain the same set of

free variables. Therefore, (


E

)

E2E(F )

provides every solution for (78) when the

�'s range over the reals. Thus ea
h 


E

is non-zero (as F is a G

G

-
hain) and it


an depend only on f

�

i

(e

j

) = �

ij

, i; j 2 [n� 1℄, and the �'s. Now it is obvious

that P

E

=

P

l

i=1




D

i

�

n;d

i


annot be identi
ally zero. This proves the lemma if

v(G) � v(F ).

Otherwise, we 
an add v(F ) � v(G) isolated verti
es to G to obtain H. By

above, 
n(F ) is a 
hain in G


n(H)

, that is, ea
h edge of 
n(F ) is dependent on

the other edges. The latter 
laim is 
ertainly true in G


n(G)

whi
h has more

dependen
es than G


n(H)

as 
n(G) � 
n(H).

Lemma 58 If an r-graph F is independent in G

G

and v(F ) � v(G), then 
n(F )

is independent in G


n(G)

.

Proof. We assume the same 
onventions as those appearing in the proof of

Lemma 57 before (77).

It is enough to prove our 
laim in the 
ase e(G) = e(F ): if e(G) > e(F ) we


an remove a G-edge with F being still G

G

-independent.

Let us show that the rank ofM

0

(G

0

; F

0

) is e(F

0

), whereM

0

(D;E) = hg

�

D

; e

E

i,

D 2 E(G

0

), E 2 E(F

0

), whi
h would imply the lemma.

By our assumption, the square submatrix M

0

(G;F ) � M

0

(G

0

; F

0

) is non-

singular be
ause the matrix N is generi
. As g

�

i

(e

n

) = 0 for i 2 [n � 1℄, we


on
lude that all entries of the submatrix M

0

(G;F

00

) are zeros, where E(F

00

) =

E(F

0

)nE(F ). Therefore, to prove the 
laim we have to show that the submatrix

M

0

(G

00

; F

00

) has the maximal possible rank

�

v(F )

r�1

�

, where E(G

00

) = E(G

0

)nE(G).

For any D

0

= D [ fng 2 E(G

00

), E

0

= E [ fng 2 E(F

00

), we have

hg

�

D

0

; e

E

0

i = g

�

n

(e

n

) � hg

�

D

; e

E

i;

be
ause g

�

i

(e

n

) = 0, i 2 [n� 1℄. (As n is the last element in D

0

and E

0

, we do

not have �1 in the formula.) Now,

M

0

(G

00

; F

00

) = g

�

n

(e

n

) �M

0

�

K

r�1

([n� 1℄);K

r�1

(V (F ))

�

has rank

�

v(F )

r�1

�

be
ause N is generi
.
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Remark. Is is not hard to show that if F is not independent in G

G

, then 
n(F )

is not independent in G


n(G)

, for any r-graphs F and G. But we do not need

this result.

Lemma 59 If G 2 w-SAT(n � 1;F), then 
n(G) 2 w-SAT(n; 
n(F)). In par-

ti
ular,

w-sat(n; 
n(F)) � w-sat(n� 1;F) +

�

n� 1

r � 1

�

:

Proof. Let E

1

; : : : ; E

m

be an F -proper ordering of E(G). To show that G

0

=


n(G) is weakly 
n(F)-saturated, add these edges in the same order to G

0

.

(Note that E(G

0

) = E(G).) Every E

i


reates an F -subgraph in G, F 2 F ,

whi
h, together with the extra vertex, 
reates a 
opy of 
n(F ) in G

0

, so G

0

2

w-SAT(n; 
n(F)).

Theorem 60 Let F be a family of r-graphs su
h that in ea
h F 2 F every r�1

verti
es are 
overed by at least one edge.

If a pair (F ; G) admits a G-proof, then the pair (
n(F); 
n(G)) admits a

G-proof.

If we 
an g-prove w-sat(n� 1;F) � l, then we 
an g-prove

w-sat(n; 
n(F)) � l +

�

n� 1

r � 1

�

: (79)

In parti
ular, if F admits a g-proof for n� 1, then 
n(F) admits a g-proof for

n. The analogous 
laim is true for the g

0

-te
hnique.

Proof. Let us 
onsider G-proofs �rst. By Lemma 59, 
n(G) is weakly 
n(F)-

saturated. By Lemma 57, 
n(F ) is a G


n(G)

-
hain for every F 2 F . Hen
e, the

pair (
n(F); 
n(G)) admits a G-proof.

Next, 
onsider the g-te
hnique. Take any G su
h that ea
h F 2 F is a

G

G

-
hain and R

G

G

(K

r

n�1

) � l. Adding extra verti
es to G, we may assume

v(G) � n� 1. By Lemma 57, ea
h graph in 
n(F) is a 
hain in G


n(G)

.

By de�nition, R

G

G

(K

r

n�1

) � l, so 
hoose a G

G

-independent subgraph H �

K

r

n�1

of rank l. Assume v(H) = n� 1. By Lemma 58, 
n(H) is independent in

G


n(G)

. Hen
e, the rank of K

r

n

in G


n(G)

is at least e(
n(H)) = l +

�

n�1

r�1

�

, that

is, we 
an g-prove (79), as required.
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In the g

0

-
ase, 
hoose G su
h that ea
h F 2 F is a G

G

-
hain and

R

G

G

(K

r

n�1

) +D

G

G

(F)� 1 � l:

Now we pro
eed in the same way as in the g-
ase, ex
ept we have to show

additionally that, for any F 2 F , we have D

G

G

(F ) � D

G


n(G)

(
n(F )).

Note that if we have F -edges E

1

; : : : ; E

d

whose removal does not de
rease

the G

G

-rank of E(F ), then the system of equations (77) has a solution in whi
h




E

1

; : : : ; 


E

d


an be 
hosen to be the free variables �

1

; : : : ; �

d

. Following the

proof of Lemma 57 (note that F is a G

G

-
hain), one 
an let (


E

) be su
h a

solution of (77) and observe that

he

�

E

i

; h

0

i = he

�

E

i

^ f

�

n

; h ^ e

n

i = he

�

E

i

; hi � hf

�

n

; e

n

i = �

i

�

nn

; i 2 [d℄;

sin
e E

i

� [n� 1℄. This means that, 
hoosing generi
 �'s, we 
an obtain h

0

2 Z

0

whose support is E(
n(F )) with e

�

E

i

(h

0

) being generi
, whi
h is pre
isely to

say that E

1

; : : : ; E

d

are G


n(G)

-dependent on the other edges of 
n(F ). Hen
e,

D

G


n(G)

(
n(F )) � d and the 
laim follows.

Remark. We 
annot generally dis
ard the 
overing 
ondition in Lemma 57

or Theorem 60. (But note that we do not have any 
overing 
ondition on G.)

Consider, for example, r = 2 when the 
ondition rules out isolated verti
es.

Let F be a triangle plus an isolated vertex and let G be a star K

1;n�2

, n � 5.

Then (F;G) admits a G-proof (see Subse
tion 10.1). But it is easy to see that

w-sat(n; 
n(F )) = 6 < e(
n(G)) = 2n � 3, and so 
n(F ) 
annot be a G


n(G)

-


hain.

We noted already in Se
tion 7 that many new results 
an be proved by

applying Theorem 60, so we do not repeat these examples here.

12 Joins

Here we indi
ate how to extend the idea of G/g/et
.-proof to layered graphs

(whi
h were de�ned in Subse
tion 4.2) and prove that joins `preserve' G/g/r-

proofs. These results appear in [Pik99a℄.

The notion of weak saturation extends to layered graphs in the obvious way.

For example, given an r-graph F, w-SAT(n;F) 
onsists of all r-graphs G on an
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n-set su
h that we 
an 
onse
utively add all missing r-edges to G 
reating every

time an F-subgraph.

It is 
lear how to extend the notion of an m/r-proof to layered graphs. It is

possible also to introdu
e the gross matroid of an r-graph G de�ned on an n-set

X. Indeed, identify ea
h X

i

with a basis e

i

= (e

i;j

)

j2[n

i

℄

of an n

i

-dimensional

ve
tor spa
e V

i

and 
onsider

V

V whi
h, by the de�nition, is the tensor produ
t

of the exterior algebras over V

i

, i 2 [t℄:

V

V =

N

i2[t℄

V

V

i

:

Let

V

r

V be the linear subspa
e of

V

V spanned by the elements

h = h

1


 : : :
 h

t

; h

i

2

V

r

i

V

i

; i 2 [t℄:

Let f

i

= (f

i;j

)

j2[n

i

℄

be another basis of V

i

lying in generi
 position with respe
t

to e

i

, i 2 [t℄.

In the obvious way we de�ne supports, et
. For any r-subset E � X, let

f

E

=

N

i2[t℄

f

i;E

i

and e

E

=

N

i2[t℄

e

i;E

i

;

or, in other words, in every

V

V

i

, we take the element 
orresponding to E

i

in the

basis f

i

or e

i

and then 
ompute the tensor produ
t. Let the linear subspa
e Z �

V

r

V 
orresponding toG be spanned by the elements ff

E

: E 2 E(G)g and let r-

sets E

1

; : : : ;E

k

be independent if no linear 
ombination of e

E

1

; : : : ; e

E

k

(ex
ept

0) belongs to Z. The required matroid G

G

of rank 
odim(Z) = e(G) is built.

Clearly, it is symmetri
, that is, invariant under layer-preserving permutations.

Given t (usual) r

i

-graphs F

i

, i 2 [t℄, with disjoint vertex sets, their join

(or tensor produ
t) F = F

1


 : : : 
 F

t

is the layered r-graph on the layered set

V (F) = (V (F

1

); : : : ; V (F

t

)) su
h that an r-subset E = (E

1

; : : : ; E

t

) is an edge

of F if and only if E

i

2 E(F

i

) for every i 2 [t℄. Thus e(F) =

Q

i2[t℄

e(F

i

). For

example, the join of two 1-graphs is a 
omplete bipartite graph (possibly plus

isolated verti
es).

Suppose that we are given t families F

i

of r

i

-graphs, i 2 [t℄. We de�ne their

join by

F = F

1


 : : :
F

t

= fF

1


 : : : 
 F

t

: F

i

2 F

i

; i 2 [t℄g :

Let these 
onventions apply to the following results.
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Lemma 61 If G

i

2 w-SAT(n

i

;F

i

), i 2 [t℄, then G 2 w-SAT(n;F), where

G = G

1


 : : :
G

t

. In parti
ular,

w-sat(n;F) �

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

��

n

i

r

i

�

� w-sat(n;F

i

)

�

:

Proof. Denote b

i

= e(G

i

). Let E

i;j

2 G

i

, j = 1; : : : ; b

i

, be an F

i

-proper

ordering, i 2 [t℄. There is the obvious bije
tive 
orresponden
e between the

elements in B = [b

1

℄ � : : : � [b

t

℄ and the edges of G whi
h maps (j

1

; : : : ; j

t

) to

[

i2[t℄

E

i;j

i

.

Now we add the missing edges to G so that the 
orresponding elements of B

are taken in the lexi
ographi
 order. Consider any added edge E. Let H

i

� X

i

be an F

i

-subgraph 
reated by E

i

. (Note that E

i

62 E(G

i

) by the de�nition ofG.)

We 
laim that H = H

1


 : : :
H

t

is a forbidden subgraph 
reated by E. Indeed,

let D 6= E, be an edge of H. Clearly, for ea
h i 2 [t℄, the edge D

i

2 E(H

i

) must

be present in G

i

or be added before E

i

or equal to E

i

. If D

i

2 E(G

i

) for at least

one index i then D 2 E(G). If not, then 
learly the edge D 
omes before E, as

required.

Finally, e(G) =

Q

i2[t℄

e(G

i

), whi
h 
ompletes the proof.

Lemma 62 If F

i

is a 
hain in G

G

i

, i 2 [t℄, then F = F

1


 : : : 
 F

t

is a 
hain

in G

G

, where G = G

1


 : : : 
G

t

.

Proof. By the assumption, there is h

i

2 Z

G

i

�

V

r

i

V

i

su
h that supp

e

i

(h

i

) =

E(F

i

), i 2 [t℄. Consider

h = h

1


 : : :
 h

t

2

V

r

V:

Obviously, supp

e

(h) = E(F) and supp

f

(h) � E(G). Therefore, h 2 Z

G

and

every edge in F is dependent on the rest, as required.

Theorem 63 Suppose that, for every i 2 [t℄, the pair (F

i

, G

i

) admit a G-proof.

Then so does the pair (F ;G), where G = G

1


 : : : 
G

t

.

Suppose that, for ea
h i 2 [t℄, we 
an g-prove that w-sat(n

i

;F

i

) � l

i

. Then

we 
an g-prove that

w-sat(n;F) �

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

��

n

i

r

i

�

� l

i

�

: (80)
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In parti
ular, if ea
h F

i

admits a g-proof for n

i

, then F admits a g-proof for n.

The analogous statement is true for the r-te
hnique.

Proof. Let us 
onsider G-proofs �rst. By Lemma 61, G 2 w-SAT(n;F), and

by Lemma 62, every F

1


 : : :
 F

k

2 F is a G

G

-
hain, and the 
laim follows.

Now, 
onsider the g-
ase. For i 2 [t℄, 
hoose G

i

su
h that ea
h graph in

F

i

is a G

G

i

-
hain and the G

G

i

-rank of K

r

i

n

i

is at least l

i

; let H

i

� K

r

i

n

i

be a

G

G

i

-independent subgraph of size l

i

and order n

i

. Let

G = G

1


 : : : 
G

t

;

H = H

1


 : : : 
H

t

:

By Lemma 62, ea
h F

1


 : : :
 F

k

2 F is a G

G

-
hain.

Let us show that H is independent in G

G

. As ea
h H

i

is G

G

i

-independent,

we 
an �nd a linear map p

i

:

V

r

i

V

i

! Z

G

i

whi
h is the identity map on Z

G

i

while p

i

(e

E

) = 0 if E 2 E(H

i

), i 2 [t℄. De�ne

p = p

1


 : : :
 p

t

:

V

r

V! Z

G

1


 : : : 
 Z

G

t

;

that is p(u

1


 : : : 
 u

t

) = p

1

(u

1

) 
 : : : 
 p

t

(u

t

). Now, p is the identity map on

Z

G

1


 : : :
Z

G

t

= Z

G

, while p is zero on e

E

for ea
h E = E

1

[ : : :[E

t

2 E(H):

E

i

2 E(H

i

) for some i 2 [t℄ and then p

i

(e

E

i

) = 0. Hen
e, no non-zero linear


ombination of e

E

, E 2 E(H) 
an lie in Z

G

, that is, H is independent in G

G

.

The size of H equals the right-hand side of (80), as required.

The 
laim about g-proofs follows from Lemma 61.

In the r-
ase, our task is to 
onstru
t a matroid M on the set of r-subsets

of X su
h that every graph in F is anM-
hain, should we be given appropriate

matroids M

i

on Y

i

= X

(r

i

)

i

, i 2 [t℄.

Let k

i

: Y

i

! V

i

, for some ve
tor spa
e V

i

, be a representation of the matroid

M

i

, i 2 [t℄. Identify Y

i

with a basis of some ve
tor spa
e W

i

via g

i

: Y

i

,! W

i

.

Let h

i

: W

i

! V

i

be the linear map extending k

i

. Denote Z

i

= ker(h

i

) � W

i

.

Clearly, 
odimZ

i

= R

M

i

(Y

i

) = e(G

i

) � l

i

, where G

i

is a base of M

i

.

Let G = G

1


 : : : 
 G

t

. Identify the r-subsets of V (G) with a basis of

W =

N

i2[t℄

W

i

by mapping E = (E

1

; : : : ; E

t

) into g(E) =

N

i2[t℄

g

i

(E

i

). Let

Z =

N

i2[t℄

Z

i

�W and p :W!W=Z be the proje
tion.
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Let M be the matroid represented by p Æ g : V (G)

(r)

!W=Z. Let us show

that M r-proves (80).

As g(V (G)

(r)

) is a basis for W, we 
on
lude that the rank of M is

dimW� dimZ =

Y

i2[t℄

�

n

i

r

i

�

�

Y

i2[t℄

e(G

i

);

whi
h is at least the right-hand side of (80).

Thus, all we have to do is to 
he
k that any F = F

1


 : : : 
 F

t

2 F is an

M-
hain. Fix an edge E = (E

1

; : : : ; E

t

) 2 E(F). As F

i

is an M

i

-
hain, we


on
lude that there are 


i;E

2 R, E 2 E(F

i

) n fE

i

g, and z

i

2 Z

i

su
h that

g

i

(E

i

) = z

i

+

X

D2E(F

i

)nfE

i

g




i;D

g

i

(D); i 2 [t℄: (81)

If we take the tensor produ
t of (81) over i 2 [t℄, we obtain on the left-hand

side the element g(E) while on the right-hand side we will have z

1


 : : : 
 z

t

2

Z plus some other tensor produ
ts. Next, in the remaining tensor produ
ts

repla
e ea
h z

i

by the linear 
ombination of (g

i

(D))

D2E(F

i

)

by (81). Ea
h term

then be
omes 


i2[t℄

g

i

(D

i

) for some D

i

2 E(F

i

), i.e., it is of the form g(D),

D = (D

1

; : : : ;D

t

) 2 E(F) and, moreover, we never have D = E. So we have a

representation of g(E) as a linear 
ombination of an element of Z and of g(D),

D 2 E(F) n fEg whi
h is pre
isely the required. The theorem is proved.

Unfortunately, there does not seem to be a natural tensor produ
t operation

for matroids, 
f. Lov�asz [Lov77℄, so we do not know if joins preserve m-proofs.

Alon [Alo85℄ (a di�erent proof is presented by Yu [Yu93℄) solved one extremal

problem for set systems, whi
h 
an be easily seen equivalent to 
omputing the

w-sat-fun
tion for joins of 
omplete graphs. As 
omplete graphs admit a G-

proof (e.g. by Theorem 60), the result of Alon 
an be dedu
ed as a spe
ial 
ase

of Theorem 63.



Part III

Chain De
ompositions

13 Introdu
tion

13.1 Dis
ussion

There are many important results about 
hain de
ompositions of posets, that is,


olle
tions of 
hains su
h that every element in the poset belongs to exa
tly one


hain. (We will also refer to these as vertex de
ompositions.) Typi
al questions

are the following. What is the minimal number of 
hains of su
h a partition? Do

there exist partitions with some extra properties (e.g. into symmetri
 
hains)?

Are there any appli
ations of these de
ompositions?

In this part we investigate the notion of an edge de
omposition whi
h is a


olle
tion of 
hains su
h that every pair of adja
ent elements (one 
overs the

other) belongs to exa
tly one 
hain and we try to answer the above questions.

Su
h 
onsiderations may arise, for example, when in a 
omputer programme

we want to operate with posets, and so we wish to represent them eÆ
iently

in the memory. If keeping the relational binary n � n-table is impossible or

undesirable, we 
an try to maintain a list of 
hains 
ompletely determining the

poset, and a natural question to ask is, for example, how small su
h a list 
an

be. The related notion of line poset also arises naturally.

In Se
tion 14 we 
ompute the minimal size of a skipless 
hain de
omposition

of a poset in terms of other parameters, whi
h 
an be viewed as an analogue

of Dilworth's theorem [Dil50℄. Surprisingly, this fundamental theorem is a new

result. We prove it using the linear programming method of Dantzig and Ho�-

man [DH56℄. Graham Brightwell simpli�ed our proof by repla
ing the linear

programming argument by an easy appli
ation of Hall's theorem. We present

both these proofs.

The minimal size of an edge de
omposition of P 
an be dedu
ed as a 
orollary

but we present a short and dire
t proof.

In Se
tion 15 we provide an expli
it edge de
omposition of the latti
e of sub-

sets of a �nite set into symmetri
 
hains. Although the existen
e of su
h a par-

tition 
an be dedu
ed from the results of Anderson [And67℄ and Griggs [Gri77℄,
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a 
onstru
tive proof seems to be unknown. The dis
overed partition has some

extra properties and interesting appli
ations. For the latter we refer the reader

to Se
tion 16.

In Se
tion 17 we 
hara
terize line posets in terms of forbidden 
on�gurations

and point out whi
h information determines and 
an be re
onstru
ted from its

line poset.

13.2 De�nitions

Let P = (X;>) be a poset (a partially ordered set). We say that y 
overs x

(denoted by y m x or x l y) if y > x and no z 2 X satis�es x < z < y (su
h

x, y will be also 
alled adja
ent elements). With every poset P we asso
iate its

Hasse diagram D = D(P) whi
h is the digraph with X as the vertex set and

(x; y) 2 E(D) i� y 
overs x. Given a 
y
le-free digraph D, we 
an build a poset

on the same vertex set by letting x < y if there is a dire
ted xy-path. Note

that a 
y
le-free digraph D is the Hasse diagram of some P if and only if for

every (x; y) 2 E(D) there is no dire
ted xy-path of length greater than 1. The


orresponden
e `posets-digraphs' is very useful, so we often swit
h between the

poset and digraph terminology without any warning.

A 
hain in P is 
alled skipless if every element 
overs its prede
essor; skipless


hains 
orrespond to oriented paths in the Hasse diagram. The width w(P) is

the maximal size of an anti
hain in P.

The line poset L(P) of a poset P has as the vertex set the pairs (x; y) of

elements in P with y 
overing x and we agree that (xl y) is less than (x

0

l y

0

)

in L(P) if and only if y � x

0

. (This operation somewhat resembles taking the

line graph, hen
e the name.)

Every skipless 
hain in P 
orresponds to a skipless 
hain in L(P) of size

smaller by 1. We usually identify these 
hains.

One 
an ask whi
h important poset properties are preserved by the operator

L. In fa
t, L preserves very few properties (e.g. self-duality, regularity). As in

almost every 
ase it is trivial to �nd a 
ounterexample/proof, we do not dwell

on this topi
.

A vertex partition (de
omposition) of P is a 
olle
tion of 
hains su
h that

every x 2 X belongs to exa
tly one 
hain. An edge partition (de
omposition) is
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a family of skipless 
hains su
h that every pair x; y 2 X with x being 
overed by

y belongs to exa
tly one 
hain. Note that the 
hains in an edge de
omposition

are required to be skipless. One 
an see that edge partitions of P 
orrespond to

vertex partitions of L(P) into skipless 
hains.

The subsets of [n℄ partially ordered via the in
lusion relation, form the ranked

poset B

n

= (2

[n℄

;�). The 
orresponding Hasse diagram is the oriented n-
ube

Q

n

. For B

n

, the relation `B 
overs A' is denoted by A � B.

We �nd it useful to identify A 2 B

n

with its ()-representation whi
h is

the n-sequen
e of left and right parentheses 
orresponding to the elements of

A = [n℄ n A and A respe
tively. Likewise, the (�)-representation of an element

(A � B) 2 L(B

n

) 
ontains `(' for the elements in B, `)' for the elements in A

and `�' for the element in B nA.

Generally, let F be a sequen
e 
ontaining left and right parentheses. Con-

se
utively and as long as possible remove mat
hed pairs of adja
ent bra
kets, ie.

substrings `( )'. (Clearly, the order of operations does not matter.) The elements

whi
h would be removed by the above mat
hing are 
alled �xed or paired ele-

ments and the remaining ones are 
alled free. In parti
ular, the free parentheses

always form the following (possibly empty) sequen
e: ) ) : : : ) ) ( ( : : : ( (.

14 Skipless Chain De
ompositions

Here we present a theorem 
omputing the minimal number of skipless 
hains

partitioning a given poset P . In fa
t, we prove a more general result about

dire
ted graphs.

Let D be any digraph. We may have loops and may have edges (i; j) and

(j; i) simultaneously. Consider partitions of V (D) into vertex-disjoint dire
ted


y
les and dire
ted paths. (We 
onsider any isolated vertex as a path of length

zero; loops and pairs of opposite edges are 
onsidered as 
y
les.) Let m(D) be

the minimal number of dire
ted paths in a su
h partition.

On the other hand, let M(D) be the maximal value of jAj � jBj taken over

all pairs of disjoint sets A;B � V (D) su
h that any dire
ted path 
onne
ting

two distin
t verti
es from A, 
ontains a vertex of B and any 
y
le interse
ting

A interse
ts B. (In parti
ular, if (i; i) 2 E(D) then i 62 A.) Clearly, for any

su
h pair (A;B) we have jP \ Aj � jP \ Bj+ ", where " = 1 if P is a dire
ted
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path and " = 0 if P is a dire
ted 
y
le. This implies that m(D) �M(D).

We will show that we have in fa
t equality for any D. Our proof is a mod-

i�
ation of the proof by Dantzig and Ho�man [DH56℄ of Dilworth's theorem,

whi
h exploits methods of linear programming. (A simpler argument by Graham

Brightwell is outlined after our proof.)

Theorem 64 For any dire
ted graph D we have m(D) =M(D).

Proof. As we have already observedm(D) �M(D), so let us prove the 
onverse

inequality. Assume that V (D) = [n℄. For i; j 2 [n℄ de�ne 


00

= 1, 


0j

= 


i0

= 0,

and




ij

=

(

0; if (i; j) 2 E(D),

�1; if (i; j) 62 E(D).

Consider the linear programming problem of �nding k, where

k = max

X

i;j2[0;n℄




ij

x

ij

; (82)

given the following restri
tions:

n

X

j=0

x

0j

=

n

X

i=0

x

i0

= n; (83)

n

X

j=0

x

ij

=

n

X

j=0

x

ji

= 1; i 2 [n℄; (84)

x

ij

� 0; i; j 2 [0; n℄: (85)

Restri
tions (83), (84) and (85) de�ne a non-empty set; for example, we 
an

satisfy them by letting x

ij

be 0 for i; j 2 [n℄ and 1 otherwise, ex
ept x

00

= 0.

As for any feasible solution we have x

00

� n while the 
oeÆ
ients 


ij

at other

variables are non-positive, we 
on
lude that the right-hand side of (82) is at

most n and thus k is well-de�ned.

We 
laim that we 
an 
hoose an integral solution to (82), that is, we 
an

ensure that ea
h x

ij

is an integer. To do so, take a solution in whi
h as many

as possible variables are integers. Suppose there is x

i

1

i

2

62 Z. By (83) or (84),

the i

2

th 
olumn 
ontains another non-integer, x

i

3

i

2

. Next, we 
onsider the i

3

th

row and �nd x

i

3

i

4

62 Z, and so on, until 
onsidering a 
urrent variable x

i

s

i

t

we

have a 
han
e to sele
t a previously 
hosen variable x

i

u

i

v

. In fa
t, we may have
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two 
hoi
es at this step, but we will always be able to 
hose one with s+ v and

t + u being odd. Then the subsequen
e S of elements between x

i

s

i

t

and x

i

u

i

v

(in
lusive) is of even length. If we add any " to ea
h x

i

k

i

k+1

2 S and subtra
t "

from ea
h x

i

k+1

i

k

2 S, then we do not a�e
t (83) and (84). (Be
ause ea
h row

or 
olumn 
ontains either two variables, whi
h re
eive di�erent signs, or none.)

The fun
tion

P




ij

x

ij

is linear in ", suppose it is non-de
reasing. Let " be the

minimum of the fra
tional part of x

i

k+1

i

k

2 S; then our transformation makes

at least one more variable integral, while (85) still holds. This 
ontradi
tion

proves the 
laim.

Any x

ij

, ex
ept perhaps x

00

, is either 0 or 1. A moment's thought reveals

that by (84) the set f(i; j) 2 [n℄

2

: x

ij

= 1g � E(D) is a union of vertex-disjoint

dire
ted paths (this is to in
lude isolated verti
es) and 
y
les partitioning V (D).

The number of paths equals the number of o

urren
es of 1 among x

0j

, j 2 [n℄,

whi
h by (83) is n� x

00

= n� k. Hen
e,

m(D) � n� k: (86)

Now, the Duality Theorem asserts that

k = min

0

�

n(u

0

+ v

0

) +

n

X

i=1

u

i

+

n

X

j=1

v

j

1

A

; (87)

given the following restri
tions on variables u

i

; v

i

, i 2 [0; n℄:

u

0

+ v

0

� 1; (88)

u

i

+ v

0

� 0; i 2 [n℄; (89)

u

0

+ v

j

� 0; j 2 [n℄; (90)

u

i

+ v

j

� 0; (i; j) 2 E(D): (91)

We 
laim that we 
an 
hoose an integral solution to (87). To do so, take

a solution with as many as possible variables among u

i

; v

i

, i 2 [0; n℄, being

integers. Let I = fi 2 [0; n℄ : u

i

62 Zg and J = fj 2 [0; n℄ : v

j

62 Zg. Suppose

I 6= ;. If we de
rease ea
h u

i

, i 2 I, by " and in
rease ea
h v

j

, j 2 J , by ",

then the right-hand side of (87) is linear in "; suppose it non-in
reases with ".

Let " = min

i2I

(u

i

� bu

i


). We obtain at least one more integer among the u's,

so to obtain a 
ontradi
tion it is enough to 
he
k that (88){(91) still hold. The
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restri
tion (88), for example, may 
ause us a problem only if 0 2 I n J . Then

v

0

2 Z and, by de�nition, " is at most the fra
tional part of u

0

+v

0

whi
h would

su�er the de
rement by " without 
rossing the integer 1. The 
laim is proved.

We may assume that v

0

= 0, be
ause we 
an add some integer " to ea
h u

i

and subtra
t " from ea
h v

i

, i 2 [0; n℄, without a�e
ting (87){(91). Also, we


an make u

0

= 1, be
ause we 
an subtra
t " > 0 from u

0

and add " to ea
h

v

i

, i 2 [n℄. Hen
e, k = n + min(

P

n

i=1

u

i

+

P

n

j=1

v

j

), given 
onditions u

i

� 0,

v

i

� �1, i 2 [n℄, and (91). It is easy to see that in our (integral) solution, ea
h

u

i

is either 0 or 1 and ea
h v

i

is either �1 or 0. Let X = fj 2 [n℄ : v

j

= �1g

and let X

0

= fi 2 [n℄ : 9j 2 X (i; j) 2 E(D)g, that is, X

0


onsists of verti
es

sending at least one edge to X.

To satisfy (91) we must have u

i

= 1 for ea
h i 2 X

0

. Also, if we set u

i

= 0

for i 2 [n℄ nX

0

, then (88){(91) are still satis�ed while the linear fun
tion in (87)

does not in
rease. Hen
e, we may assume that X

0

= fi 2 [n℄ : u

i

= 1g; then

n� k = jXj � jX

0

j.

Let A = X nX

0

and B = X

0

nX. Let P = fx

1

; : : : ; x

l

g be a dire
ted path

in D with x

1

; x

l

2 A, l � 2. As x

1

62 X

0

, we 
on
lude x

2

62 X. As x

l

2 X, there

must be i 2 [2; l � 1℄ su
h that x

i

62 X but x

i+1

2 X. By de�nition, x

i

2 B.

Similarly, any 
y
le interse
ting A interse
ts B. By (86) we obtain,

m(D) � n� k = jXj � jX

0

j = jAj � jBj �M(D);

whi
h was required.

Remark. Graham Brightwell 
onsiderably simpli�ed our proof shortly after it

had been announ
ed. Let us outline his argument whi
h exploits Hall's theorem.

Given a digraph D, 
onsider the bipartite graph G on two 
opies of V (D),

say X = fv

_

: v 2 V (D)g and Y = fv

^

: v 2 V (D)g, where we 
onne
t u

_

to v

^

if and only if (u; v) 2 E(D). It is easy to 
he
k that the number of edges missing

in a maximum mat
hing in G equals m(D). By a version of Hall's theorem, this

number equals the maximum of jZj � j�(Z)j over Z � X. Choose any extremal

set Z. Now, it is routine to 
he
k that

A = fv 2 V (D) : v

_

2 Z; v

^

62 �(Z)g;

B = fv 2 V (D) : v

_

62 Z; v

^

2 �(Z)g;

are two sets exhibiting m(D) = jAj � jBj �M(D).
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The following 
orollary is obtained by applying Theorem 64 to the Hasse

diagram of P.

Corollary 65 For any poset P, the minimal number m of skipless 
hains par-

titioning it equals the maximal value of jAj � jBj over all disjoint sets A;B � P

su
h that any skipless 
hain 
ontaining two elements from A interse
ts B.

Of 
ourse, the minimal size m of an edge de
omposition of P 
an be 
om-

puted by applying Corollary 65 to L(P). However, we present a dire
t proof

whi
h is short and gives a dire
t algorithm for 
onstru
ting su
h a partition. It

turns out that to 
ompute M(L(P)) it is enough to 
onsider only pairs A;B �

L(P) of the following rather spe
ial form: take a partition X [ Y = P and let

A = f(xl y) 2 L(P) : x 2 X; y 2 Y g and B = f(ylx) 2 L(P) : x 2 X; y 2 Y g.

We state the result in terms of digraphs. Let e(X;Y ), X;Y � V (D), denote

the number of the edges in D starting in X and ending in Y and M(X;Y ) =

e(X;Y )� e(Y;X).

Theorem 66 The minimal number m of dire
ted paths partitioning the edge

set of a 
y
le-free digraph D is equal to

M(D) = maxfM(X;Y ) : X [ Y = V (D); X \ Y = ;g:

Proof. It is immediate that m � M be
ause for any partition X [ Y = V (D)

and any path P the removal of the edges on P 
an de
rease M(X;Y ) by at

most one. To prove the reverse inequality by indu
tion on jE(D)j it is enough

to show that, for the graph D

0

obtained from D by the removal of the edges of

a maximal path P = (x

1

; : : : ; x

k

), we have M(D

0

) < M(D).

To show this take a partition X [ Y = V (D

0

) with

M(D

0

) =M(X;Y ) = e(X;Y )� e(Y;X):

Sin
e P is maximal and D is a
y
li
 there is no y 2 V (D) with (y; x

1

) 2

E(D). Therefore if x

1

2 Y we 
an move x

1

to X without de
reasing M(X;Y ).

Likewise we may assume x

k

2 Y . But if we add ba
k the edges of P we will

in
rease M(X;Y ) by 1: if moving along P we 
hange side from Y to X i times,

then we go from X to Y i + 1 times. This shows that M(D

0

) < M(D) as

required.
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Remark. In
identally, we dis
overed an algorithm produ
ing an optimal edge

de
omposition: sele
t and remove maximal paths one by one.

15 Symmetri
 Edge Partitions of Cubes

The result of de Brujin, Tengbergen and Kruyswijk [BTK51℄ (see [Bol86, The-

orem 4.1℄ or [And87, Se
tion 3.1℄ for a proof) asserts that B

n

= (2

[n℄

;�) is a

symmetri
 
hain order, that is, admits a de
omposition into symmetri
 
hains.

(A 
hain x

1

< : : : < x

k

in a ranked poset (P; r) is 
alled symmetri
 if it is skip-

less and r(x

1

) = r(P)�r(x

k

).) This was strengthened by Anderson [And67℄ and

Griggs [Gri77℄, who showed that a LYM poset P with a unimodal symmetri


rank-sequen
e is a symmetri
 
hain order. (Note that the number of 
hains is

w(P)|minimal possible.)

The latter result is appli
able to L(B

n

) whi
h, as a regular poset, has the

LYM property, see e.g. [Eng97, Corollary 4.5.2℄. However, this way we obtain a

purely existential result while one would wish to have an expli
it de
omposition.

Here we provide an expli
it 
onstru
tion, whi
h like that of Leeb (unpublished)

and Greene and Kleitman [GK76℄ on B

n

, utilizes bra
ket representations.

Theorem 67 L(B

n

) is a symmetri
 
hain order. In other words, B

n

admits an

edge de
omposition into symmetri
 
hains.

Proof. Assume that the numbers 1; : : : ; n are pla
ed on a 
ir
le 
lo
kwise in this

order. Let � denotes the shift whi
h maps every element to the next position


lo
kwise: �(k) = k + 1 (mod n) and let �

(i)

be its ith iterate. (These are also

referred to as rotations.) For the 
larity of language we use the same symbol �

for the 
orresponding a
tion on the vertex set and the edge set of Q

n

. We will

produ
e a �-invariant edge partition.

We build, indu
tively on n, a family F

n

of n-element sequen
es, starting for

the 
ase n = 1 with the family F

1

= f ( g. To build F

n+1

apply Operations A

and B to every sequen
e F 2 F

n

and let F

n+1


omprise the resulting sequen
es.

Operation A: add `(' to the right of F . Operation B: add `)' to the right of F

and throw away the resulting sequen
e if it does not 
ontain free elements (i.e. if

all its parentheses 
an be paired).
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Pro
eeding in this way we obtain, for example,

F

2

= f ( ( g;

F

3

= f ( ( (; ( ( ) g

F

4

= f ( ( ( (; ( ( ( ); ( ( ) ( g:

It is easy to see that F

n

is the set of all n-sequen
es beginning with `(' whi
h

is a free element. (In parti
ular, all right parentheses are paired.)

For any sequen
e F 2 F

n

we build the 
orresponding 
hain C

F

in L(B

n

)

whi
h has length t, where t is the number of free members of F . To obtain

the (�)-des
ription of the ith element of C

F

, i 2 [t℄, we reverse in F the last

i� 1 free parentheses and repla
e the ith free element (when 
ounted from the

right) by star �. Thus, for example, `( ( ) ( ( )' gives ( ( ) � ( ) and � ( ) ) ( ) whi
h


orrespond to the following 
hain in L(B

6

):

(f3; 6g � f3; 4; 6g) l (f3; 4; 6g � f1; 3; 4; 6g):

It is easy to see that every C

F

is a symmetri
 
hain. We 
laim that

D

n

= f�

(j)

(C

F

) : F 2 F

n

; j = 0; : : : ; n� 1g

is the required edge partition.

We have to prove that for every element x = (A � B) in L(B

n

) there are

unique F 2 F

n

and j 2 [0; n� 1℄ su
h that x 2 �

(j)

(C

F

). First we show how to

�nd at least one su
h pair (F; j).

Step 1. Write x in the (�)-representation. Step 2. Rotate the pattern to

bring the star to position 1 and then identify all free parentheses. Clearly, if

disregarding the paired elements, our sequen
e is `� ) : : : ) ( : : : (.' Step 3. Rotate

again so that the �rst free left parenthesis identi�ed in Step 2 (or the star itself

if no `(' is free) is moved to position 1. Let j be the number of positions that

the star was moved anti
lo
kwise by Steps 2 and 3 
ombined. Step 4. Repla
e

the star and all free right parentheses identi�ed in Step 2 by left parentheses.

Let F be the resulting sequen
e.

Obviously, when we pair bra
kets in Step 4, we obtain the same sets of

free/paired elements as in Step 2. This implies that F 2 F

n

as it starts

with free `(' and that x 2 C

F

as required. Here is an illustration for x =
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(f1; 6; 7g � f1; 4; 6; 7g) 2 L(B

8

):

Step 1: ) ( ( � ( ) ) (

Step 2: � ( ) ) ( ) ( (

Step 3: ( ( � ( ) ) ( ) (and j = 1)

Step 4: ( ( ( ( ) ( ( ) (this is F )

The uniqueness of (F; j) 
an be established in di�erent ways. One, whi
h

a
tually gives an alternative de�nition of D

n

, is the following. Given the (�)-

representation of x, for 0 � i � n � 1 let g(i) = l

i

� r

i

, where l

i

and r

i

are

respe
tively the number of left and right parentheses in the i positions pre
eding

`�' 
lo
kwise. If x 2 �

j

(C

F

) then j is the smallest element in [0; n� 1℄ on whi
h

g a
hieves its maximum. Why? Just pair the bra
kets in the (�)-representation

of �

�j

(x) 2 C

F

, e.g.

( ( ( ) ( ) ) ( ) ( � ) ( ) ) ( ) ;

and noti
e that any paired blo
k (boxed regions) 
ontributes 0 to g while any

right-hand-sided part of it 
ontributes a stri
tly negative value. Now, the max-

imum of g is the number of free left parentheses and this is a
hieved for �rst

time when 
onsidering the segment pre
eding the star, as required.

But now, on
e that j has been identi�ed, there trivially 
ould not be two

suitable F 's.

For the remainder of this part let D

n

denote the edge de
omposition of B

n


onstru
ted above. It has the following properties.

Theorem 68 Let C = (A

1

� : : : � A

k

) be one of the 
hains in D

n

. If A

i+1

=

A

i

[ fa

i

g, then the elements a

1

; : : : ; a

k�1

are situated on the 
ir
le in this other

anti
lo
kwise and between a

i

and a

i+1

(anti
lo
kwise) there is an even number

of pla
es. For ea
h i 2 [k � 3℄, there is an element (B � B

0

) belonging to a


hain of D

n

shorter than C su
h that

A

i

� B � B

0

� A

i+3

: (92)

Proof. Take the sequen
e F 2 F

n

giving rise to C. (We may assume j = 0.)

The fa
t that in F every pair of 
onse
utive free elements 
ontains only paired

bra
kets in between implies the �rt part of the theorem.
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To show the se
ond 
laim, let F

0

be the sequen
e F with the (i + 1)st free

left bra
ket (if 
ounted from the right) repla
ed by `)' whi
h is then paired with

the (i+ 2)nd free element:

F : (

�

(

�

(

�

(

�

(

�

(

�

� . . . . . . . . . . A

i

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

i+3

F

0

: (

�

(

�

(

�

)

�

(

�

(

�

� . . . . . . . . . . B

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B

0

The new sequen
e 
orresponds to a 
hain of length k� 2 and its ith and i+1st

elements obviously satisfy the required property.

We de�ne the 
omplementary 
hain C of a 
hain C by repla
ing every ele-

ment by its 
omplement, ie. if C = (A

1

� : : : � A

k

) then C = (A

k

� : : : � A

1

).

Lemma 69 Two elements x

1

= (A

1

� B

1

) and x

2

= (A

2

� B

2

) of L(B

n

) 
an

belong simultaneously to D

n

and D

n

only if n = 2k is even and fjB

1

j; jB

2

jg =

fk; k + 1g.

Proof. Let i

h

2 [n℄ be the element of B

h

not in A

h

, h = 1; 2, and let pairs

(F; j) and (F

0

; j

0

) give rise to 
hains C;C

0

2 D

n

su
h that C

0


ontains x

1

and

x

2

while C 
ontains x

1

and x

2

respe
tively. Assume that j

0

= 0 and x

1

< x

2

,

ie. B

1

� A

2

.

In F

0

i

2

pre
edes i

1

and we 
laim that F

0

does not 
ontain a free element

between them. Indeed, if it be in the position y 2 [n℄ then y 2 B

1

and y 62 A

2

,

that is, �

�j

(y) must be a free element in F . But then �

�j

(y) must lie between

�

�j

(i

1

) < �

�j

(i

2

). (In C the element x

2


omes before x

1

.) This 
ontradi
tion

(on one hand the elements i

2

; y; i

1

go 
lo
kwise, on the other|anti
lo
kwise)

proves the 
laim.

Thus all the elements between i

2

and i

1

are paired in F

0

; therefore B

1

= A

2

and there must be the same number of left and right parentheses in this interval.

Considering x

2

; x

1

2 C we show the analogeous statement about the elements

between i

1

and i

2

(if going 
lo
kwise), whi
h 
learly implies the 
laim.
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16 Appli
ations of the Partition D

n

We would like to in
lude here some appli
ations of the edge partition D

n

built

in Theorem 67. Basi
ally, we are inspired by known results where a symmet-

ri
 vertex de
omposition of B

n

is used. We refer the reader to Se
tion 3.4 of

Anderson's book [And87℄ for an exposition of a few results of this type. I am

grateful to Ian Anderson for drawing my attention to some other appli
ations

not surveyed in his book.

16.1 On the Number of Anti
hains in L(B

n

)

Let us 
onsider the following question: what is '(L(B

n

)), the number of an-

ti
hains in L(B

n

)? The 
omputation of '(B

n

) is an old and diÆ
ult problem; a


ompli
ated asymptoti
 formula was established by Korshunov [Kor81℄.

Here we provide some rough estimates of '(L(B

n

)) by applying ideas of

Hansel [Han66℄ who showed that 2

N

� '(B

n

) � 3

N

, where N = w(B

n

) =

�

n

bn=2


�

.

Considering all possible subsets of the largest anti
hain of L(B

n

) we obtain

trivially '(L(B

n

)) � 2

m

, where m = w(L(B

n

)) = dn=2e

�

n

bn=2


�

.

On the other hand, observe that an anti
hain A � L(B

n

) is uniquely de-

termined by the ideal �(A) = fx 2 L(B

n

) : 9 a 2 A x � ag. Consider any

C = (x

1

l : : : l x

l

) 2 D

n

. By Theorem 68 for 3 � i � l � 2 we 
an �nd y

i

in

a shorter 
hain with x

i�2

< y

i

< x

i+2

. Knowing �(A) \ C

0

for every C

0

2 D

n

shorter than C we know �(A) \ fy

3

; : : : ; y

l�2

g. But then it is easy to 
he
k

that only for at most 4 elements of C we are unable to dedu
e whether it is in

�(A), and therefore �(A) \ C 
an assume at most 5 possible values. Consid-

ering 
onse
utively the 
hains of D

n

in some size-in
reasing order we 
on
lude

that '(L(B

n

)) � 5

m

.

16.2 Orthogonal Partitions of L(B

n

)

Two 
hains in a poset P are 
alled orthogonal if they have at most one 
ommon

element. Two vertex 
hain partitions D and D

0

are orthogonal if any C 2 D is

orthogonal to any C

0

2 D

0

. A result of Shearer and Kleitman [KS79℄ (see [And87,

Se
tion 3.4℄) asserts that there exist two orthogonal 
hain de
ompositions of B

n

into

�

n

bn=2


�


hains ea
h.
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What 
an be said about L(B

n

)? If n is odd, then D

n

and D

n

are orthogonal

by Lemma 69, where D

n

is the de
omposition built in Theorem 67.

Theorem 70 For odd n there is a pair of orthogonal symmetri
 
hain de
om-

positions of L(B

n

).

Remark. Unfortunately, we do not know if the 
orresponding 
laim is true for

even n.

The result of Baumert, M
Elie
e, Rodermi
h and Rumsey [BMRR80℄ (for

a proof, see [And87, Se
tion 3.4.3℄ or [Bol86, Se
tion 6℄) states that posets

admitting a pair of orthogonal de
ompositions satisfy the probabilisti
 form of

Sperner's theorem, whi
h in our 
ase, by Theorem 70, is the following.

Corollary 71 If two elements x and y in L(B

n

), odd n, are 
hosen inde-

pendently with arbitrary probability distribution (same for both elements) then

Pfx � yg � w(L(B

n

))

�1

.

16.3 A Storage and Retrieval Problem

Suppose we maintain a database with n re
ords whi
h we number from 1 to

n and we wish to organize an eÆ
ient sear
hing. We assume that we have

queries Q

1

; : : : ; Q

M

ea
h of whi
h we identify with the set of re
ords satisfying

it, that is, Q

i

� [n℄ and these subsets are not ne
essarily distin
t. One idea,

see Ghosh [Gho75℄, is to �nd a sequen
e X of elements of [n℄ su
h that every

Q

i

o

urs in X as a subsequen
e of 
onse
utive terms so that every Q

i


an be

de�ned by a starting position in X and the size of Q

i

.

In 
onne
tion with this Lipski [Lip78℄ 
onsidered the following problem. Find

the shortest sequen
e of elements of X = [n℄ su
h that X 
ontains every A � [n℄

as a subsequen
e of jAj 
onse
utive terms. He showed that s

n

, the length of an

optimal sequen
e, satis�es

�

2

�n

�

1=2

2

n

� (1 + o(1))s

n

�

�

2

�

�

2

n

: (93)

As far as I know, these might be the best known bounds to date.

Here we 
onsider a similar problem. Namely, we ask what is the value of

t

n

, the shortest length of a sequen
e X su
h that for every A � B � [n℄ the
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sequen
e X 
ontains A as a subsequen
e of jAj 
onse
utive terms pre
eded by

x, where fxg = B nA. Su
h a situation 
an happen if every query is a set with

a sele
ted point. For example, we sear
h in a di
tionary, the allowed queries

are of the form \Find word" and the answer should give the entry where word

is de�ned plus all relevant entries. Applying the ideas of Lipski [Lip78℄ we �nd

the following upper and lower bounds.

Theorem 72

�

n

2�

�

1=2

2

n

� (1 + o(1))t

n

�

�

n

�

�

2

n

: (94)

Proof. As the number of di�erent pairs A � A [ fxg with jAj = bn=2
 whi
h


an lie within a sequen
e of length m does not ex
eed m � bn=2
 we 
on
lude

that

t

n

� dn=2e

�

n

bn=2


�

+ bn=2


whi
h implies the lower bound in (94) by Stirling's formula.

On the other hand, asso
iate with every 
hain C = (A

1

� : : : � A

q

) in D

n

a

sequen
e of elements of [n℄ whi
h 
ontains �rst the elements of A

1

in any order

whi
h then are followed by a

2

; : : : ; a

q

, where fa

i

g = A

i

n A

i�1

, i = 2; : : : ; q.

Let [n℄ = S [ T be a partition of [n℄ into 2 parts of (nearly) equal sizes. Let

�

1

; : : : �

k

be the sequen
es 
orresponding to a symmetri
 vertex de
omposition

of 2

T

. Also, let  

1

; : : : ;  

l

be the sequen
es 
orresponding to a symmetri
 edge

de
omposition of 2

S

, ea
h sequen
e being reversed.

Clearly, for every A � S there exists �

i


ontaining A as the �rst 
onse
utive

jAj terms and for every A � A[fxg � T there exists  

j


ontaining, at the end,

A pre
eded by x.

Now 
onsider the sequen
e

X =  

1

�

1

 

1

�

2

: : :  

1

�

k

 

2

�

1

 

2

�

2

: : :  

l

�

k

:

Take any A � [n℄ and x 2 T nA. There is  

i


ontaining x at the end followed by

A\T and �

j


ontaining A\S as an initial subsequen
e. Therefore, X

1


ontains

x followed by A. Inter
hanging S and T , we write a sequen
e X

2


ontaining

every pair A � A [ fxg with x 2 S. The sequen
e X = X

1

X

2

is the required

(and expli
itly 
onstru
ted) sequen
e. It is easy to see that the average size of a
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sequen
e 
orresponding to a 
hain of a symmetri
 vertex or edge de
omposition

of B

n

is (

1

2

+ o(1))n. Therefore,

t

n

� jXj � 2

�

1

2

+ o(1)

�

nkl

whi
h gives the desired upper bound by Stirling's formula.

16.4 One Numeri
al Problem

There exists a so 
alled Audit Expert Me
hanism whi
h 
an be used to prote
t

small statisti
al databases, see Chin and Ozsoyoglu [CO82℄. To �nd an optimal

me
hanism the following problem has to be solved. Suppose we operate with

n-tuples of non-zero real numbers a

1

; : : : ; a

n

and we want to �nd what is the

maximum possible number of subsets I � [n℄ su
h that a

I

is equal to either 0

or 1. (Here and later we denote a

I

=

P

i2I

a

i

.) The best possible bound of

�

n+1

b(n+1)=2


�

was found by Miller, Roberts and Simpson [MRS91℄ and all extremal

sequen
es were 
hara
terized by Miller and Sarvate [MS95℄. Both papers make

use of the existen
e of a symmetri
 
hain de
omposition of B

n

.

Here, applying a symmetri
 
hain de
omposition of L(B

n

), we 
an �nd K,

the maximal possible number of elements (I � J) 2 L(B

n

) su
h that fa

I

; a

J

g =

f0; 1g, over all real sequen
es a

1

; : : : ; a

n

. A
tually, we 
an allow zero entries

for, as we will see later, this does not a�e
t K. Apparently, this problem does

not have su
h an appli
ation like that of the original problem, but it might be

of some interest espe
ially as an unexpe
ted appli
ation of a symmetri
 
hain

de
omposition of L(B

n

).

The expression (a)

i

is a shorthand for a repeated i times. Also we assume

that all n-tuples have their entries ordered non-de
reasingly.

Theorem 73 For n � 2 we have

K = dn=2e

�

n

bn=2


�

; (95)

and this value is a
hieved for and only for the following sequen
es. For n = 2k,

((�1)

k

; (+1)

k

), ((�1)

k�1

; (+1)

k+1

) and ((�1)

k�1

; 0; (+1)

k

). For n = 2k + 1,

((�1)

k

; (+1)

k+1

).
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Proof. Let m be the largest index for whi
h a

m

< 0. De�ne f : 2

[n℄

! 2

[n℄

by

the formula

f(I) = I4[m℄ = (I n [m℄) [ ([m℄ n I); I � [n℄:

One 
an easily 
he
k that I � J � [n℄ implies a

f(I)

� a

f(J)

.

D

n


an be viewed as a 
olle
tion of symmetri
 
hains in 2

[n℄

. Let X

r

� : : : �

X

n�r

be one su
h 
hain. The sequen
e

a

f(X

r

)

; : : : ; a

f(X

n�r

)

is non-de
reasing and therefore 0 and 1 
an o

ur side by side there at most

on
e. As every A � B is present in exa
tly one 
hain and f is a bije
tion

preserving or reversing the �-relation, K does not ex
eed the total number of


hains, whi
h gives the required upper bound.

A moment's thought reveals that a ne
essary and suÆ
ient 
ondition for an

n-tuple to be optimal is the following. If n = 2k+1 then for every A � B � X,

jAj = k, we have a

f(A)

= 0 and a

f(B)

= 1. If n = 2k then for every A � B �

C � X, jAj = k � 1, among the numbers

a

f(A)

� a

f(B)

� a

f(C)

(96)

there is a 0 adja
ent a 1.

This 
ondition is ful�lled for the sequen
es mentioned in the statement.

Indeed, let us 
onsider ((�1)

k

; (+1)

k+1

), for example. Here m = k and for any

A � B with jAj = k we have

a

f(A)

= a

A4[k℄

= (�1)(k � s) + (k � s) = 0; (97)

where s = jA \ [k℄j. Similarly, a

f(B)

= 1 so the sequen
e is optimal.

We 
laim that these are essentially the 
ases of the equality. Let us do

the harder 
ase n = 2k. If, for some i 6= j, we have a

i

6= �1 and a

j

6= �1,

then A � A [ fig � A [ fi; jg with any A 2 X

(k�1)

, A 63 i; j, obviously

violates the 
ondition. If, for exa
tly one i, we have a

i

6= �1, then 
onsidering

A � A [ fig � C we 
on
lude that a

f(A[fig)

= 0 for any A 2 (X n fig)

(k�1)

.

Suppose a

i

� 0, for example. Then a

f(A[fig)

= k � j � 1 + a

i

= 0, where j is

the total number of elements equal to �1 (so 2k � 1� j elements equal +1). If
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a

i

= 0, then we have the third example mentioned in the theorem. If a

i

� 2

then j � k+1 and any sequen
e (96) with C 63 i violates the 
ondition. Finally,

if ja

i

j = 1 for every i then arguing as in (97) we dedu
e that we 
an have either

k or k + 1 positive entries.

17 Chara
terization of Line Posets

For graphs we know that we 
an 
hara
terize line graphs in terms of forbidden

indu
ed subgraphs (Beineke [Bei68℄) and we 
an re
onstru
t a 
onne
ted graph

G given L(G) ex
ept for L(G) = K

3

when G is either K

3

or K

1;3

.

Here we ask ourselves when a given poset L is the line poset of some P

and what information about P 
an be re
onstru
ted from L(P). (Of 
ourse, it

is impli
itly understood that we operate with isomorphism 
lasses of posets.)

While for line graphs there are nine forbibben 
on�guration, for line posets we

have only two (or in�nitely many, depending on how we look at it).

Note that L(P) 
annot 
ontain elements w; x; y; z su
h that w l y, x l y,

wl z but x 6lz; 
all this 
on�guration N . Indeed, if y and z 
over w they must

be of the form (al b), (al 
), where w = (dl a), some a; b; 
; d 2 P. Then the

relation xl y implies that x = (el a) whi
h implies that xl z.

Also, L(P) 
annot 
ontain the 
on�guration C

n

, n � 3, made of elements

y and x

1

; : : : ; x

n

su
h that x

1

l y l x

n

and x

i

l x

i+1

, for i 2 [n � 1℄. Indeed,

suppose the 
ontrary. Clearly, P 
ontains elements z

0

l z

1

l : : :l z

n

su
h that

x

i

= (z

i�1

l z

i

). But y 
overs the same element as x

2

and is 
overed by the

same element as x

n�1

, so y = (z

1

l z

n�1

) and n = 3; but then y = x

2

, whi
h is

a 
ontradi
tion.

For a poset P let T (P) = (C; k; l; u) be the quadruple with C being a subposet

of P spanned by the non-extremal elements, that is by fa 2 P : 9 b; 
 2 P; b <

a < 
g and k is the number of pairs (al b) with a; b 2 P n C while the fun
tions

l; u : C ! N

0

are given by

l(a) = jfx 2 P n C : xl agj;

u(a) = jfx 2 P n C : xm agj; a 2 P:

It is easy to see that T (P) determines L(P) uniquely.
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The following theorem states that the above examples provide a 
omplete

answer to our two questions.

Theorem 74 A poset L is isomorphi
 to L(P) for some P if and only if L


ontains neither 
on�guration N nor any of C

n

, n � 3. Furthermore, T (P)

determines L(P) and 
an be re
onstru
ted from it.

Proof. Given a poset L without N or C

n

let X be two disjoint 
opies of its

vertex set, namely X = fx

^

; x

_

: x 2 Lg. Let x

^

� y

_

if xl y; let x

^

� y

^

if,

for some s 2 L, we have sm x and sm y; let x

_

� y

_

if, for some s 2 L, sl x

and sl y.

We 
laim that � is an equivalen
e relation. Indeed, if x

^

� y

^

and y

^

� z

^

then there are s; t 2 L su
h that x; y l s and y; z l t. But then t must 
over

x for otherwise x; y; s; t would span a forbidden 
on�guration. So x; z l t and

x

^

� z

^

. The remaining 
ases are equally easy.

Let x denote the equivalen
e 
lass of x 2 X. De�ne the poset P (also

denoted by L

�1

(L)) on V = X=� = fx : x 2 Xg by A < B, A;B 2 V i� in L

there exist y � z with y

_

2 A and z

^

2 B. One 
an 
he
k that this is indeed an

ordering. For example, to 
he
k its transitivity, let A < B and B < C, 
hoose

w � x and y � z in L with w

_

2 A, x

^

; y

_

2 B and z

^

2 C; then x

^

� y

_

implies that w � xl y � z and A < C.

Let us show that x

^


overs x

_

. Assuming the 
ontrary we �nd z � y and

w � v in L with z

^

� x

^

, y

_

� w

^

and v

_

� x

_

. By the de�nition of �,

some t 2 L 
overs both x and z, some s 2 L is 
overed by both x and v and

v � w l y � z|whi
h implies that L 
ontains some C

n

, whi
h is forbidden.

We 
laim that L

�

=

L(P) via the map F whi
h sends x 2 L to (x

_

l x

^

).

First note that F is an order preserving map: if xm y in L then x

_

� y

^

whi
h

implies F (x) m F (y) as desired. Next, F is inje
tive for if F (x) = F (y) then

x

^

� y

^

and x

_

� y

_

whi
h implies that for some w and z we have wlxlz and

w l y l z; but as L does not 
ontain 
on�guration C

3

we 
on
lude that x = y.

To show that F is surje
tive take any (A l B) 2 L(P). As A < B, for some

L-elements x � y we have A = x

_

, B = y

^

. But it is easy to see that x

^

� y

^

,

whi
h implies (A l B) equals (x

_

l x

^

) = F (x). Finally, if F (x) l F (y) then

x

^

� y

_

and xl y. This proves 
ompletely that L

�

=

L(P).
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In the se
ond part it is enough to show that for any poset R we have T (R)

�

=

T (P), where P = L

�1

(L), L = L(R). To build a natural isomorphism H :

C(R) ! C(P) take, for any element a 2 C(R), some b l a whi
h exists as a is

a non-extremal element of R. Now let H(a) = x

^

, where x = (b l a) 2 L and

� is as above. To show that H is well de�ned, let b

0

be another 
hoi
e of b and

denote y = (b

0

l a). Let 
 be an element 
overing a. Then (a l 
) 
overs in L

both x and y, so by the de�nition of P we have x

^

� y

^

. Also, H(a) 2 P is not

extremal as

(bl a)

_

< H(a) < (al 
)

^

:

Next, H is an order-preserving bije
tion. Indeed, let am b in C(R). Choose


 l b. Then H(a) = (bl a)

^

and H(b) = (
l b)

^

. But (
 l b)

^

� (b l a)

_

and we have H(a) > H(b) by the de�nition of the order on P. To show that

H is inje
tive 
hoose any a; a

0

2 C(R). Then H(a) = H(a

0

) implies that y =

(
la)

^

� y

0

= (


0

la

0

)

^

, some 
; 


0

2 R. Therefore there is x 2 L 
overing both

y and y

0

whi
h implies a = a

0

in R as required. To establish the surje
tivity of

H 
onsider x = (al b)

_

2 C(P), for example. Observe �rst that a 2 R is not

extremal. Indeed, take any y 2 P 
overed by x; as we have already shown any

pair ylx is of the form (
l d)

_

l (
l d)

^

whi
h implies d = a and 
la. Now

H(a) = (
l a)

^

= x as required. Again, any two adja
ent elements of C(P)


an be represented as (al b)

_

l (al b)

^

and then they are the images of two

adja
ent elements, al b of C(R), whi
h implies that C(P)

�

=

C(R).

Finally, as P and R give rise to naturally isomorphi
 line posets, in the sense

that

F (al b) =

�

(al b)

_

l (al b)

^

�

= (H(a)lH(b)) ; a; b 2 C(R);

our mapping H preserves k, l and u, whi
h are naturally re
onstru
tible from

the line poset.



Part IV

Enumeration Results for Trees

18 Introdu
tion

The notion of a tree and its di�erent extensions to hypergraphs play an im-

portant role in dis
rete mathemati
s and 
omputer s
ien
e. We will dwell

upon the following, rather general, de�nition suggested independently by Dewd-

ney [Dew74℄ and Beineke and Pippert [BP77℄.

Let us agree that the vertex set is [n℄ = f1; : : : ; ng. Fix the edge size k

and the overlap size m, 0 � m � k � 1. We refer to k-subsets and m-subsets

of [n℄ as edges and laps respe
tively. A non-empty k-graph without isolated

verti
es is 
alled a (k;m)-tree if we 
an order its edges, say E

1

; : : : ; E

e

, so that

for every i, 2 � i � e, there is i

0

, 1 � i

0

< i, su
h that jE

i

\ E

i

0

j = m and

(E

i

nE

i

0

) \

�

[

i�1

j=1

E

j

�

= ;. In other words, we start with a single edge and 
an


onse
utively aÆx a new edge along an m-subset of an existing edge.

Thus, a (k;m)-tree with e edges has n = e(k�m)+m verti
es and its edges


over f = e

�

�

k

m

�

� 1

�

+ 1 laps. For example, a (k; 0)-tree 
onsists of disjoint

edges.

The problem of 
ounting (m+1;m)-trees whi
h are known in the literature

as m-trees, re
eived great attention and was 
ompletely settled by Beineke and

Pippert [BP69℄ and Moon [Moo69℄. This extends the 
elebrated theorem of

Cayley [Cay89℄ as, 
learly, 1-trees 
orrespond to usual (Cayley) trees. Later,

di�erent bije
tive proofs for m-trees appeared as well, see [RR70, Foa71, GI75,

ES88, Che93℄.

Here we enumerate (k;m)-trees. In fa
t, a 
onsiderable diÆ
ulty was to

guess the right formula. When we had a plausible 
onje
ture, we tried to prove

it indu
tively by writing a re
urren
e relation. We were rather fortunate: the

result redu
ed to the identity proved by Beineke and Pippert [BP69, Lemma 2℄.

This enabled us to write a short indu
tive proof, published in [Pik99
℄, whi
h is

presented in Se
tion 19.

Of 
ourse, a bije
tive proof (that is, a 
orresponden
e between the set of

trees to 
ount and some simple set) is a far more satisfa
tory answer. (For
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example, a bije
tive proof may allow us to generate one by one all trees or to


ount the number of trees satisfying some given property.) In Subse
tion 20.2

we exhibit an expli
it bije
tion between the set of rooted vertex labelled trees

of given size and a trivially simple set; it is based on the ideas of Foata [Foa71℄

whi
h are presented in Subse
tion 20.1. The knowledge of the a
tual formula

was essential, as otherwise we would have had little idea what and how to bije
t.

In fa
t, this method (based on Foata's bije
tion) 
an be applied to enumerate

bije
tively other tree-like stru
tures. For example, we 
an enumerate so 
alled

k-gon trees, a stru
ture studied in [CL85, Whi88, Pen93, KT96℄. In order not

to repeat the same portions of proof twi
e, we present a more general result

in
luding both (k;m)-trees and k-gon trees as partial 
ases.

In Subse
tion 20.3 we 
onsider the question whether our bije
tion 
an 
ount

edge labelled trees. We present a 
onstru
tion for 2-graphs only, whi
h in fa
t

answers a question posed by Cameron [Cam95℄. This question was motivated

by the possibility that su
h a bije
tion might simplify some of his enumeration

results (or proofs) from [Cam95℄. However, although we answered Cameron's

question, we were not able to improve [Cam95℄. Please refer to Subse
tion 20.3

for further details.

19 Indu
tive Proof

Let T

km

(e) denote the number of distin
t (k;m)-trees on [n℄ with e edges, n =

e(k�m)+m, and let R

km

(e) 
ount the trees rooted at the lap [m℄, that is, those

trees for whi
h [m℄ is 
overed by some edge.

Theorem 75 Given integers k, m, e with 0 � m � k � 1 and e � 1, let

n = e(k �m) +m, l =

�

k

m

�

and f = e(l � 1) + 1. Then the number of di�erent

(k;m)-trees on [n℄ equals

T

km

(e) =

n!f

e�2

e!m! ((k �m)!)

e

: (98)

Proof. As in Beineke and Pippert [BP69℄, to prove the theorem, we write

down a re
urren
e relation for T

km

(e) and then verify that (98) does satisfy the

relation. Let us agree that T

km

(0) = R

km

(0) = 1.
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Counting in two di�erent ways the number of pairs (H;L), where H is a

(k;m)-tree on [n℄ rooted at L 2 [n℄

(m)

, we obtain

�

n

m

�

R

km

(e) = f � T

km

(e): (99)

Next, 
onsider the following method for 
onstru
ting trees. Sele
t an edge

E 2 [n℄

(k)

and label by L

1

; : : : ; L

l

the laps of E. Represent e� 1 as a sum of l

non-negative integers, e�1 = e

1

+ : : :+ e

l

. Partition [n℄nE into sets X

1

; : : : ;X

l

of sizes e

1

(k�m); : : : ; e

l

(k�m) respe
tively. On ea
h L

i

[X

i

build a (k;m)-tree

H

i

rooted at L

i

, i 2 [l℄. Clearly, the union of all H

i

's plus the edge E forms a

(k;m)-tree and every su
h tree is obtained exa
tly e times. Therefore, by (99),

we obtain

eT

km

(e) =

�

n

k

�

X

e

(n� k)!

(e

1

(k �m))! : : : (e

l

(k �m))!

l

Y

i=1

R

km

(e

i

)

=

n!

k!

X

e

l

Y

i=1

m!(e

i

(l � 1) + 1)T

km

(e

i

)

(e

i

(k �m) +m)!

; (100)

where

P

e

denotes the summation over all representations e� 1 = e

1

+ : : : + e

l

with non-negative integer summands.

Clearly, formula (98) gives 
orre
t values for e = 0. Also, the substitution

of (98) into the both sides of (100) gives (after routine 
an
ellations)

l(e(l � 1) + 1)

e�2

=

X

e

(e� 1)!

e

1

! : : : e

l

!

l

Y

i=1

(e

i

(l � 1) + 1)

e

i

�1

:

The last identity (in slightly di�erent notation) was established by Beineke and

Pippert [BP69, Lemma 2℄, whi
h proves our theorem by indu
tion.

Corollary 76 The number of vertex labelled m-trees on n verti
es, n > m � 1,

is T

m+1;m

(n�m) =

�

n

m

�

(mn�m

2

+ 1)

n�m�2

.

20 Bije
tive Proofs

20.1 Foata's Bije
tion

Given disjoint �nite sets A, B, C and a surje
tion 
 : B ! A, a fun
tion

f : A ! B [ C is 
alled 
y
le-free if for every b 2 B the sequen
e (f Æ 
)

i

(b)
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eventually terminates at some 
 2 C. Foata [Foa71, Theorem 1℄ exhibited a

bije
tion between F (A;B;C; 
), the set of 
y
le-free fun
tions, and the set of

fun
tions g : A ! B [ C su
h that g(a

1

) 2 C, some beforehand �xed a

1

2 A;

this implies

jF (A;B;C; 
)j = jCj(jBj+ jCj)

jAj�1

: (101)

We brie
y des
ribe a simpler 
onstru
tion than that in [Foa71℄. Fix some

ordering of A. Let f 2 F (A;B;C; 
). Let Z = (z

1

; : : : ; z

s

) denote the in
reasing

sequen
e of the elements in A n 
(f(A)). (For 
onvenien
e we assume that


(
) = 
, 
 2 C.) We build, one by one, s sequen
es Æ

1

; : : : ; Æ

s


omposed of

elements in B[C. Having 
onstru
ted sequen
es Æ

1

; : : : ; Æ

i�1

, let m

i

� 0 be the

smallest integer su
h that (f Æ 
)

m

i

(f(z

i

)) either belongs to C or o

urs in at

least one of Æ

1

; : : : ; Æ

i�1

. We de�ne (mind the order)

Æ

i

=

�

(f Æ 
)

m

i

(f(z

i

)); (f Æ 
)

m

i

�1

(f(z

i

)); : : : ; f(z

i

)

�

: (102)

One 
an 
he
k that Z is non-empty if A is, every m

i

exists, and Æ, the

juxtaposition produ
t of the s sequen
es Æ

1

; : : : ; Æ

s

, 
ontains jAj elements. (In

fa
t, Æ is but a permutation of (f(a))

a2A

.) The obtained sequen
e Æ of jAj

elements of B [C, whi
h starts with an element of C, 
orresponds naturally to

the required fun
tion g : A! B [ C.

Conversely, given g (or Æ), we 
an re
onstru
t Z whi
h 
onsists of the ele-

ments of An
(g(A)). Then, exa
tly s = jZj times, an element of Æ either belongs

to C or equals some pre
eding element. These s elements mark the beginnings

of Æ

1

; : : : ; Æ

s

. Now we 
an restore the required f by (102). To establish (101)


ompletely, one has to 
he
k easy details.

20.2 H-Built-Trees

Adopting the ideas of Foata [Foa71℄, we present a bije
tive proof of (98). Our

method 
an enumerate some other tree-like stru
tures. For example, we 
an

�nd a bije
tion for vertex labelled k-gon trees (also known as 
a
ti or trees of

polygons), a stru
ture that appears in [CL85, Whi88, Pen93, KT96℄.

We de�ne a k-gon tree indu
tively. A k-gon (that is, a k-
y
le) is a k-gon

tree. A k-gon tree with g+1 k-gons is obtained from a k-gon tree with g k-gons

by adding k � 2 new verti
es and a new k-gon through these verti
es and an
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already existing edge. Thus, a k-gon tree is a (usual) 2-graph; if we have g

k-gons, then it has e = g(k � 1) + 1 edges and n = g(k � 2) + 2 verti
es.

In order not to repeat the same portions of proof twi
e, we present the

following, more general, result whi
h in
ludes (k;m)-trees and k-gon trees as

partial 
ases.

Let H be any m-graph on [k℄. An H-built-tree (T; fH

1

; : : : ;H

e

g) 
onsists of

a usual (k;m)-tree T with edges E

1

; : : : ; E

e

plus H-graphs H

i

on E

i

, i 2 [e℄,

su
h that if E

i

\E

j

is a lap (that is, has size m), then it is an edge of both H

i

and H

j

, for any distin
t i; j 2 [e℄. Let n = e(k�m) +m be the total number of

verti
es and let

f =

�

�

[

i2[e℄

E(H

i

)

�

�

= e(l � 1) + 1;

where l = e(H). Also, let R

H

be the set of distin
t H-graphs on [k℄ rooted at

[m℄, that is, 
ontaining [m℄ as an edge. Clearly,

jR

H

j =

k!l

�

k

m

�

jAut(H)j

:

An H-built-tree is rooted on an m-set L if L 2 [

i2[e℄

E(H

i

).

Theorem 77 There is a bije
tion between the set Y of H-built-trees on [n℄

rooted at [m℄ and the set

Z = F (A;B;C; 
) �

e

Y

i=1

(X

i

�R

H

) ;

where A = [e℄, B = [e℄ � [l � 1℄, C = f[m℄g, 
 is the 
oordinate proje
tion

B ! A, and X

i

= [

�

(k�m)(e�i+1)�1

k�m�1

�

℄. In parti
ular,

jY j = f

e�1

 

k!l

�

k

m

�

jAut(H)j

!

e

e

Y

i=1

�

(k �m)(e� i+ 1)� 1

k �m� 1

�

:

Proof. Given an H-built-tree T rooted at [m℄, order its edges E

1

; : : : ; E

e

so

that [m℄ 2 E(H

1

) and ea
h E

i

, i 2 [2; e℄, shares a lap with some E

j

, j < i.

Correspond an edge E

i

to the lap g

0

(E

i

) = E

i

\ [

i�1

j=1

E

j

, 2 � i � e. (We

agree that g

0

(E

1

) = [m℄.) Call the set f(E

i

) = E

i

n g

0

(E

i

) the free part of E

i

;

the free parts partition [n℄ n [m℄. Clearly, these de�nitions of g

0

and f do not

depend on the parti
ular ordering.
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Relabel the edges by D

1

; : : : ;D

e

so that d

i

= minf(D

i

) in
reases; let H

0

i

denote the 
orresponding H-graph on D

i

. Label, in the 
olex order, all edges

(laps) of H

0

i

but g

0

(D

i

) 2 E(H

0

i

) by (i; j), j = 1; : : : ; l � 1. Note that now we

have indexing of the edges of T by A, namely (D

i

)

i2A

, and of the laps of T by

B[C. Let g : A! B[C be the map 
orresponding to g

0

. A moment's thought

reveals that g is 
y
le-free.

Repeat the following for i = 1; : : : ; e. Index, in the 
olex order, the (k�m�

1)-subsets of ([

e

j=i

f(D

j

)) n fd

i

g by the elements of X

i

and let x

i

2 X

i

be the

index 
orresponding to f(D

i

) n fd

i

g. Consider the bije
tion h : D

i

! [k℄ su
h

that h is monotone on g

0

(D

i

) and f(D

i

) whi
h are respe
tively mapped onto

[m℄ and [m+ 1; k℄. Let r

i

2 R

H

be the image of H

0

i

under h.

Now, (g; x

1

; r

1

; : : : ; x

e

; r

e

) 2 Z is the `
ode' of T 2 Y .

Conversely, given an element (g; x

1

; r

1

; : : : ; x

e

; r

e

) 2 Z we 
an 
onse
utively

re
onstru
t the sequen
e (d

i

; f(D

i

)), i = 1; : : : ; e. Indeed, d

i

is the smallest

element of V = [n℄n(([

i�1

j=1

f(D

j

))[[m℄) while f(D

i

)nfd

i

g is the x

i

th (k�m�1)-

subset of V n fd

i

g. For i 2 A with g(i) 2 C, we have D

i

= [m℄ [ f(D

i

) and

(knowing g

0

(D

i

) = [m℄ and f(D

i

)), we 
an determine H

0

i

from r

i

; then we 
an

re
over the lap 
orresponding to (i; j) 2 B as the jth lap of E(H

0

i

) n f[m℄g,

j 2 [l � 1℄.

Likewise, we 
an re
onstru
t all information aboutD

i

for any i 2 A with g(i)

being already asso
iated with a lap. As f is 
y
le-free, all edges are eventually

identi�ed, produ
ing T 2 Y .

A plain veri�
ation shows that we have indeed a bije
tive 
orresponden
e

between Y and Z.

It is trivial to 
he
k that if a union of K

m

k

-graphs 
an be formed into a

K

m

k

-built-tree, then the latter is uniquely de�ned. Hen
e, the number of vertex

labelled (k;m)-trees equals the number of K

m

k

-built-trees. Now, jR

K

m

K

j = 1,

jY j = R

km

(e), and we 
an easily dedu
e formula (98).

Similarly, k-gon trees are in bije
tive 
orresponden
e with C

k

-built-trees.

We have jR

C

k

j = (k � 2)!, so we obtain that there are

(g(k � 1) + 1)

g�1

((k � 2)!)

g

g

Y

i=1

�

(k � 2)(g � i+ 1)� 1

k � 3

�

rooted k-gon trees with g k-gons, whi
h implies the following result.
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Corollary 78 The number of vertex labelled k-gon trees with g k-gons is

(g(k � 2) + 2)!(g(k � 1) + 1)

g�2

2(g!)

; k � 3:

20.3 Edge Labelled Trees

Cameron [Cam95℄ enumerates 
ertain 
lasses of what is 
alled there two-graphs:

redu
ed, 5-free, and (5; 6)-free and presents their 
onne
tions to Coxeter groups

of graphs. Please refer to his work for all de�nitions and details. Also, he

de�nes, for a given (Cayley) tree T , the equivalen
e relation

�

=

on its edges

whi
h is the smallest one su
h that two edges are related if they interse
t at a

vertex of degree 2 in T . For example, T is series-redu
ed (that is, T does not


ontain a vertex of degree 2) if and only if

�

=

is the identity relation.

Cameron had to 
ount the number S

n

of trees with n edges with labelled

�

=

-
lasses. He found the following formula ([Cam95, Proposition 3.5(a)℄):

S

n

=

n

X

k=1

S(n; k)

1

k + 1

k�1

X

j=0

(�1)

j

�

k + 1

j

��

k � 1

j

�

j!(k � j + 1)

k�j�1

; (103)

where S(n; k) is the Stirling number of the se
ond kind: the number of partition

of an n-set into k non-empty parts. The sequen
e (S

n

) starts as 1; 1; 2; 8; 52; : : :

and probably 
annot be represented in a simple form but, of 
ourse, one 
an try

to simplify (103).

Cameron [Cam95℄ asks the following question.

Problem 79 (Cameron) Des
ribe a 
onstru
tive bije
tion between edge la-

belled trees and edge Pr�ufer 
odes, not going via vertex labellings. Des
ribe

the equivalen
e relation

�

=

in terms of this 
ode.

The motivation for the problem was apparently that su
h a 
ode might

simplify (103). Although we answer here this question, we have not so far been

able to simplify (103) or its proof from [Cam95℄. But anyway, let us des
ribe our


onstru
tion. Of 
ourse, we use Foata's [Foa71℄ bije
tion for 
y
le-free fun
tions.

Let e

1

; : : : ; e

n

be the edges. Suppose e

1

= fa; bg; this edge will play a

spe
ial role. Let A = B = fe

2

; : : : ; e

n

g, C = fa; bg and 
 : B ! A be the

identity fun
tion. Let us 
orrespond an f 2 F (A;B;C; 
) to a given tree T .

Ea
h edge e 
an be 
onne
ted to e

1

by the unique path in T . If e is in
ident



20 BIJECTIVE PROOFS 120

to e

1

, then let f(e) be equal to their 
ommon vertex; otherwise, let f(e) be

the �rst edge on the path from e to e

1

. This gives a 
orresponden
e between

twi
e the number of edge-labelled trees (we 
an label the two verti
es of e

1

by

a and b in two di�erent ways) and F (A;B;C; 
). Foata's bije
tion shows that

jF (A;B;C; 
)j = jCj(jAj+ jCj)

jAj�1

, whi
h implies, as desired, that the number

of edge-labelled trees with n edges is (n+ 1)

n�2

.

Of 
ourse, the 
ode is rather simple; we des
ribe brie
y only one dire
tion.

A 
ode Æ is a sequen
e of length n� 1 
onsisting of elements in fa; b; e

2

; : : : ; e

n

g

and staring with a or b. The set Z � fe

2

; : : : ; e

n

g of edges whi
h do not o

ur

in the sequen
e 
onsists of leaves. (If a or b does not o

ur, then e

1

is also a

leaf.) Clearly, an element of Æ equals either a or b or some previously o

urring

element exa
tly z = jZj times. Cut Æ before ea
h su
h element; we have z pie
es

Æ

1

; : : : ; Æ

z

. Append the ith element z

i

of Z to the end of Æ

i

to obtain Æ

0

i

, i 2 [z℄.

The reversed sequen
e Æ

0

i

des
ribes the initial segment P

0

i

of the path P

i

from the element z

i

2 Z to e

1

until it hits e

1

or some previous path P

j

, i 2 [z℄.

Clearly, this determines some tree.

This bije
tion 
orresponds to every edge-labelled tree two 
odes, one starting

with a and the other|with b. To make this 
orresponden
e one-to-one, we


onsider only a half of the 
odes, e.g. those starting with a.

How 
an we read the

�

=

-relation from Æ? First, let

�

=

0

be the minimal equiv-

alen
e relation on fa; b; e

2

; : : : ; e

n

g su
h that e

i

�

=

0

e

j

if e

i

and e

j

interse
t at a

vertex of degree 2, 2 � i < j � n, and x

�

=

0

e

i

if x is a degree-2 vertex in
ident to

e

i

, x 2 fa; bg, i 2 [2; n℄. (Informally, we 
ut e

1

in its middle and take the usual

�

=

-relation on the both 
reated 
omponents separately.) Clearly,

�

=

is obtained

from

�

=

0

by identifying a and b into a single element e

1

, so let us indi
ate how

to determine the latter relation.

Take any maximal 
ontiguous subsequen
e S � Æ 
onsisting of elements that

o

ur in Æ exa
tly on
e. Clearly, S lies entirely within some Æ

i

and S [ fyg is a

�

=

0

-equivalen
e 
lass, where y is the symbol following S in Æ

0

i

. Conversely, it is

easy to 
he
k that all non-trivial

�

=

0

-
lasses are obtained this way, as required.

This answers Problem 79. Unfortunately, I do not see how this des
ription


an simplify Cameron's formula (103).

Remark. We do not know any bije
tion enumerating edge labelled (k;m)-trees

for k � 3.



Part V

Large Degrees in Subgraphs

21 Introdu
tion

All resear
h 
arried in this part revolves around the following 
onje
ture of

Erdos [Erd81℄ whi
h is disproved here.

Erd}os [Erd81℄, see also e.g. [Chu97, Erd99℄, 
onje
tured that for n � 3 any

graph with

�

2n+1

2

�

�

�

n

2

�

� 1 edges is a union of a bipartite graph and a graph

with maximum degree less than n. This value arises from the 
onsideration of

P

n+1;n

whi
h does not admit the above representation. (P

m;n

= K

m

+ E

n

has

m+ n verti
es of whi
h m verti
es are 
onne
ted to every other vertex.)

In the arrowing notation the latter statement reads \P

n+1;n

! (K

1;n

; C

odd

)":

for any blue-red 
olouring of the edge-set of P

n+1;n

we ne
essarily have either

a blue star K

1;n

or a red 
y
le of odd length. (By C

odd

we denote the family of

odd 
y
les.) Thus the 
onje
ture states that r̂(K

1;n

; C

odd

) = e(P

n+1;n

) and, if

true, would give the same value for the size Ramsey number r̂(K

1;n

;K

3

), sin
e


ertainly r̂(K

1;n

;K

3

) � r̂(K

1;n

; C

odd

) and in fa
t P

n+1;n

! (K

1;n

;K

3

).

We show, however, that both these size Ramsey numbers grow as n

2

plus a

term of order n

3=2

. (A
tually, the 
onje
ture fails for all n � 5.) More pre
isely,

our main result is the following.

Theorem 80

r̂(K

1;n

;K

3

) < n

2

+

p

2n

3=2

+ n; for n � 1; (104)

r̂(K

1;n

; C

odd

) > n

2

+ 0:577n

3=2

; for suÆ
iently large n. (105)

In [FRS97, Se
tion 1℄ it is asked whether the 
onje
ture is true for graphs

with (at most) m verti
es. Faudree (for a proof see [ERSS96℄) showed this is

the 
ase for m = 2n+ 1. Our 
onstru
tion 
an beat P

n+1;n

on 3n+ 1 verti
es.

Perhaps P

n+1;n

is extremal for graphs with 2n plus few more verti
es, but even

for 2n+ 2 verti
es we do not know whether this is true.

Some previous attempts to prove Erd}os' 
onje
ture resulted in new interest-

ing dire
tions of resear
h; here we investigate also some of these questions.
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Erd}os and Faudree [EF99℄ 
onsider the related problem of determination of

the minimal size of a graph G su
h that if G is a union of two graphs, one

having maximal degree less than n, then the other 
ontains all odd 
y
les C

m

with 3 � m � n� 3. Here we demonstrate a graph G of size (1 + ")n

2

, for any

given 
onstant " > 0, su
h that, for any blue-red 
olouring of G without a blue

K

1;n

, we have red 
y
les of all lengths (odd and even) between 3 and 
n, where


 = 
(") > 0 does not depend on n.

For positive integers n; k; j with k � j, Erd}os, Reid, S
help and Staton

[ERSS96℄ 
onsider the property M(n; k; j) whi
h is de�ned as follows. A graph

G belongs toM(n; k; j) if it has n+k verti
es and for every (n+j)-set A � V (G)

we have �(G[A℄) � n. (That is, the maximal degree of the subgraph of G

spanned by A is at least n.) The problem is to 
ompute

m(n; k; j) = minfe(G) : G 2M(n; k; j)g:

Erd}os et al [ERSS96, Conje
ture 1℄ 
onje
tured that for any n � k � j � 1 and

n � 3, we have

m(n; k; j) = (k � j + 1)n+

�

k � j + 1

2

�

: (106)

This value arises from the 
onsideration of P

k�j+1;n

tE

j�1

. Erd}os et al [ERSS96,

Theorem 3℄ proved that (106) is true if j = 1 or if j � 2 and

n � max

�

j(k � j);

�

k�j+2

2

�

�

: (107)

In Se
tion 23 we demonstrate a 
onstru
tive 
ounterexample to (106) if n �

(j � 2)(k � j). On the other hand, we show that the formula (106) is true if

n � max

�

�

j +

1

2

�

(k � j) +

j+k

4j�2

; 14

�

;

whi
h is an improvement on (107) for j / k=3. This shows that the value j(k�j)

is roughly the threshold on n when the obvious 
onstru
tion suggesting (106)

fails to be extremal. Some other 
onstru
tions are presented.

Another fun
tion whose study was motivated by Erd}os' 
onje
ture is as

follows. Let B(n;m) 
onsist of all graphs su
h that, for any partition V (G) =

A [ B, either �(G[A℄) � n or �(G[B℄) � m (or both). We are interested in

the bisplit fun
tion b(n;m) = minfe(G) : G 2 B(n;m)g. Clearly, b(n; n) =
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r̂(K

1;n

; C

odd

) is pre
isely the fun
tion investigated in Erd}os' 
onje
ture, whi
h

was the original motivation for introdu
ing the `o�-diagonal' numbers b(n;m).

In Subse
tion 24.1 we present a simple argument giving a lower bound on

b(n;m), any n;m, and a 
onstru
tion of G 2 B(n;m) (whi
h obviously gives

an upper bound) whi
h together 
ompute the fun
tion asymptoti
ally when

m = min(n;m) is large:

b(n;m) = 2nm�m

2

+ o(m)n: (108)

Con
erning small values of m, not mu
h is known. Of 
ourse, the bounds

of Subse
tion 24.1 are appli
able here, but the error term is not negligible if

m is bounded. Namely, we obtain that, for any �xed m � 1, the numbers

b(n;m), n 2 N, lie between two fun
tions linear in n with slopes 2m + 1 and

2m+

p

2m+

5

2

.

We prove that b(n; 1) = 4n � 2 for n � 8 (and 
hara
terize all extremal

graphs) and that b(n; 2) = 6n + O(1). As the reader will see the proofs are

rather lengthy and require 
onsideration of many 
ases. This indi
ates that the


omputation of lim

n!1

b(n;m)=n for any �xed m (if the limit exists) is perhaps

a hard task.

22 Triangle-vs-Star Size Ramsey Number

Here we will prove the bounds on r̂(K

1;n

;K

3

) stated in the introdu
tion.

22.1 Upper Bound

Proof of (104). We provide an expli
it 
onstru
tion of a (K

1;n

;K

3

)-arrowing

graph G.

Take any representation n = k

1

+ : : :+k

m

and let G be the disjoint union of

P

k

i

;n

, i 2 [m℄, plus a vertex x 
onne
ted to everything else. Consider any blue-

red 
olouring of E(G) without a blue K

1;n

. Among n(m+1) edges in
ident to x

there are at least mn+1 red ones. By the pigeon-hole prin
iple, x sends at least

n+ 1 red edges to some P

k

j

;n

, say fx; y

i

g, i 2 [0; n℄, of whi
h at least one must

be in
ident to a vertex of K

k

j

� P

k

j

;n

, say y

0

. But of n edges fy

0

; y

i

g 2 E(G),

i 2 [n℄, one is ne
essarily red and 
reates a red triangle whose third vertex is x.

Hen
e, G! (K

1;n

;K

3

).
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We have e(G) = (m + n + 1)n +

P

i2[m℄

�

k

i

2

�

. To minimize e(G) we take

the k

i

's nearly equal; so they are essentially uniquely determined by m. Any

value of m we 
hoose will give some upper bound for r̂(K

1;n

;K

3

). Choose m so

that n = 2m

2

+ r, where jrj � 2m. So, for example, when n = 2m

2

� 2m we


ould 
hoose either m or m� 1. We believe, though we do not prove, that su
h

a 
hoi
e of m is optimal. The veri�
ation of (104) is now best split into four


ases. For example, for 0 � r � m we have m � r times k

i

= 2m and r times

k

i

= 2m+ 1. Routine simpli�
ations show that

2n

3

� (e(G) � n

2

� n=2� r=2)

2

= 3m

2

r

2

+ 2r

3

� 0;

whi
h implies (104). The other 
ases 
an be veri�ed similarly.

One 
an 
he
k that the bound (104) gives stri
tly better values than

�

2n+1

2

�

�

�

n

2

�

for all n � 6. In fa
t, Erd}os' 
onje
ture fails also for n = 5 when the

representation n = 2 + 3 produ
es a graph with 44 edges.

We do not know any example beating our 
onstru
tion, whi
h therefore

might be an extremal one, but we do not dare to make any 
onje
ture yet. It is

surprising that a 
ounterexample was not found earlier. An explanation might

be that P

n+1;n

is perhaps extremal among all (K

1;n

; C

odd

)-arrowing graphs with

few verti
es; as shown by Faudree (for a proof see [ERSS96℄) this is the 
ase for

graphs of order 2n+ 1. Note that we 
an beat P

n+1;n

using 3n+ 1 verti
es for

n � 5: take m = 2 in our 
onstru
tion.

22.2 Lower Bound

In this se
tion we suppose on the 
ontrary to (105) that there is a (K

1;n

; C

odd

)-

arrowing graph G with at most n

2

+ 0:577n

3=2

edges and try to derive a 
on-

tradi
tion for large n.

Instead of 2-
olourings of E(G) we �nd it more 
onvenient to operate with

2-partitions of V (G). Thus our assumption on G states that

max f�(G[A℄);�(G[B℄)g � n

for any partition V (G) = A [B.

The following simple argument, whi
h we 
all the greedy algorithm, shows

that any A � V (G) spans at least n(n� jAj+ 1) edges, where A = V (G) n A.
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Indeed, indu
tively let x

i

be any vertex (if exists) of degree at least n in

G[Anfx

1

; : : : ; x

i�1

g℄. Let X = fx

1

; : : : ; x

k

g � A be the set eventually obtained.

By de�nition, �(G[A nX℄) < n. But then A[X 
ontains at least n+1 verti
es

(to allow a vertex of degree n), that is, k � n� jAj+ 1, and the 
laim follows.

Taking A = V (G) we obtain e(G) � n

2

+n. We will add an n

3=2

-term to this

trivial bound by using a probabilisti
 argument. But before we 
an apply it, we

have to �ddle a lot with the greedy algorithm in order to gain some stru
tural

information about G.

Let us introdu
e some notation �rst. By d

A

(x) = jA \ �(x)j we denote

the number of neighbours of x lying in A, x 2 V (G), A � V (G). Also let

L = fx 2 V (G) : d(x) � ng, l = jLj � n and e(G) = n

2

+ 


g

n

3=2

. Thus we

assume that 


g

� 0:577 and in fa
t, by adding edges to G, that 


g

= 0:577+o(1).

Lemma 81 l � 


g

n

1=2

+O(1).

Proof. Apply a modi�ed greedy algorithm. Set initially A = C = ; and

B = V (G). These three sets will always partition V (G).

Repeat the following as long as possible or until jAj = n+ 1. Take a vertex

x 2 B (if exists) with d

B

(x) � n and move it to A; 
olour aqua all edges


onne
ting x to B. Then for every su
h x do the n-
he
k, that is, move to C

all verti
es in B \ L whose B [ C-degree is now smaller than n, that is, equals

n�1. (Thus before we pro
eed with another x we ensure that a vertex z 2 LnA

belongs to B if and only if d

B[C

(z) � n.)

When we stop we have a+
 � n+1, where a, b, 
 are the 
ardinalities of the

eventual sets A, B, C. Indeed, if a < n+1 then �(G[B℄) < n so �(G[A[C℄) � n

and the 
laim follows.

The number of aqua edges is e

a

� an. Call non-aqua edges in
ident to C


yan. Every vertex in C is in
ident to exa
tly n� 1 
yan edges; hen
e we have

e




� 
(n� 1)�

�




2

�


yan edges.

By applying our usual greedy algorithm to B[C we obtain that there is a set

Y = fy

1

; : : : ; y

n+1�a

g � B[C su
h that ea
h y

i

has at least n neighbours in the


omplement of A [ fy

1

; : : : ; y

i�1

g. Clearly, Y must be disjoint from C, that is,

Y � B. We have e

y

� (n+1�a)n edges between Y and C [B; 
olour all these

edges yellow. (Some edges may be yellow and 
yan simultaneously.) Finally,

ea
h vertex in R = L\(B nY ) has degree in B[C at least n (otherwise it would
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have been moved to C earlier). Hen
e R is in
ident to e

r

� r(n� jY j � 
)�

�

r

2

�

edges lying within B n Y , where r = jRj; 
all them red edges.

We 
laim that 
 = o(n). Suppose not. As e

a

+ e

y

> n

2

, the number of 
yan-

only edges is o(n

2

) and the average yellow-degree of x 2 C is n + o(n); hen
e

jY j � n+o(n). Now jCj � jY j be
ause a+
 � n+1 = a+ jY j, so jCj � n+o(n).

But C [ Y � L and jLj � 2n + o(n) by the handshaking lemma. Therefore


 = n+ o(n), a = o(n), r = o(n) and all but o(n

2

) edges lie between C and Y .

But 
onsider partition V (G) = V

1

[ V

2

obtained by pla
ing in V

1

all of A [ R,

n=3 verti
es from C, n=3 verti
es from Y and all (= o(n)) verti
es from C (and

resp. from Y ) whi
h have in G at least n=6 neighbours outside Y (resp. outside

C). As jV

1

j = 2n=3 + o(n) some x 2 V

2

satis�es d

V

2

(x) � n. But x ne
essarily

belongs to Y [C, say x 2 C, and 
an have at most jY \V

2

j+n=6 � 5n=6+o(n)

V

2

-neighbours, whi
h is a 
ontradi
tion proving 
 = o(n).

Using the above lower bounds on e

a

; e




; e

y

and the inequality a � n� 
+ 1

we obtain

e(G) = n

2

+ 


g

n

3=2

� e

a

+ e




+ e

y

� (n� a+ 1)


� n

2

+ n�




2

+3


2

+ a
 � n

2

+ n+

�3


2

+
(2n�1)

2

:

Solving this (quadrati
 in 
) inequality we obtain that ne
essarily 
 < 


g

n

1=2

for

large n as 
 
annot be bigger than the larger root 2n=3 + o(n).

Writing e(G) � e

a

+ e




+ e

y

� (n�a+1)
+ e

r

and substituting a � n� 
+1

everywhere (as the total 
oeÆ
ient of a is positive) we obtain




g

n

3=2

�

�r

2

+r(2n+1)

2

+ 
n� 2
r +O(n):

The larger root of this quadrati
 in r inequality is 2n+o(n), but r � n+o(n) sin
e

a = n+ o(n) and a+ r � jLj. So we 
on
lude that l� 1 = 
+ r � 


g

n

1=2

+O(1)

as required.

Now let us try to derive a �nal 
ontradi
tion.

Proof of (105). Let x

max

be a vertex of maximal degree �(G) = 


m

n

3=2

.

The greedy algorithm shows that e(G) � n

2

+ �(G), that is, 


m

� 


g

. Let




0

= ((4 + 


2

g

)

1=2

� 


g

)=2 and 


f

= 1:732.

We apply a version of the greedy algorithm. Set initially A = C = ; and

B = V (G).
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At Stage 1 move to A, one by one and as long as possible, a vertex x 2 B

with d

BnL

(x) � n � l and d

B[C

(x) � n. After x was moved do the n-
he
k,

that is, move to C all verti
es y 2 B \ L with d

B[C

(y) < n. We may assume

that we were sele
ting x 2 B so that d

G

(x) was non-in
reasing. Let A

1

be the

set of verti
es moved to A at Stage 1, F = fx 2 A

1

: d

G

(x) � n+ 


f

n

1=2

g and

a

f

= jF j=n. By Lemma 81 we have l � 


g

n

1=2

+ o(1), so the number of edges

in
ident to F is at least

X

x2F

d(x) �

X

x2F

d(x)� n+ l

2

� a

f

n

2

+ a

f




f

� 


g

2

n

3=2

+ o(n

3=2

):

At Stage 2 move to A, one by one and as long as possible, any vertex x 2 B

having at least n + 


0

n

1=2

neighbours in B [ C and for every su
h x do the

n-
he
k as in Stage 1.

At Stage 3 we repeat the following until B\L = ;. Take x 2 B\L. As long

as d

B[C

(x) � n move to A some x-neighbour y 2 B\L (note that d

B[C

(y) � n)

and perform the n-
he
k. Su
h y ne
essarily exists as x has fewer than n � l

neighbours in B n L while jCj � l. (The latter inequality is true be
ause if

jCj > l at some moment then 
ontinuing with the standard greedy algorithm

applied to B [C we �nd at least n� jAj+1 verti
es in B \L whi
h 
ontradi
ts

jLj = n+ l.) Of 
ourse, the last n-
he
k moves x itself to C.

Let a

i

n (resp. 


i

n

1=2

) be the number of verti
es moved to A (resp. to C) at

the ith Stage. As eventually �(G[B[C℄) < n we 
on
lude that a

1

+a

2

+a

3

> 1.

Also a

3

� 


0




3

as for every x moved to C at Stage 3 we moved at most 


0

n

1=2

verti
es to A.

Note that the �rst vertex moved at Stage 1 may be assumed to have degree

�(G) = 


m

n

3=2

unless �(G) = O(n). So our algorithm produ
es the following

lower bound on the size of G:

e(G) � n

2

+

�




m

+ a

f




f

�


g

2

+ a

2




0

+ 


3

(1� a

3

) + o(1)

�

n

3=2

: (109)

Now using the inequalities a

3

� 


0




3

(twi
e) and 0 � 


3

� 


g

+ o(1) (by

Lemma 81 we have 


3

� jCjn

�1=2

� 


g

+ o(1)) we obtain from (109) that

a

2

+ a

3

�




g

� a

f

(


f

� 


g

)=2� 


m

� 


3

+ 


0




2

3




0

+ 


0




3

+ o(1)

�




g

� a

f

(


f

� 


g

)=2� 


m




0

+max

�

0; 


2

g

+ 


0




g

� 


g

=


0

�

+ o(1):
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But our 


0

satis�es 


2

g

+ 


0




g

= 


g

=


0

so the se
ond term disappears.

Choose a set Y � L by pla
ing ea
h vertex of L into Y independently with

probability p = (


f

+ 2")n

�1=2

, where " > 0 denotes a small 
onstant.

The number of Y -neighbours of any x 2 L has a binomial distribution with

expe
tation at most p


m

n

3=2

= (


f

+ 2")


m

n. Hen
e the probability that say

d

Y

(x) > (


f




m

+3")n is exponentially small in n by Cherno�'s bounds [Che52℄.

Similarly, the expe
ted value of d

Y

(x) for x 2 A

1

is at least p(n � l) �

(


f

+ 2")n

1=2

and d

Y

(x) < (


f

+ ")n

1=2

with probability at most exp(�
n

1=2

)

for some 
onstant 
 > 0.

Hen
e, there exists Y (in fa
t, almost every 
hoi
e would do) su
h that

d

Y

(x) � (


f




m

+ 3")n for every x 2 L and d

Y

(y) � (


f

+ ")n

1=2

for every

y 2 A

1

.

Now 
onsider the partition V (G) = V

1

[ V

2

, where V

1

= (L n Y ) [ (A

1

n F ).

Any x 2 A

1

n F has at least (


f

+ ")n

1=2

> d(x) � n neighbours in Y , so

d

V

1

(x) < n. But then d

V

2

(x) � n for some x 2 L \ V

2

. Hen
e,

n � jV

2

n Y j+ d

Y

(x) � n+ l � jA

1

j+ jF j+ (


f




m

+ 3")n;

or equivalently

a

2

+ a

3

+ a

f

+ 


f




m

� 1 + error term; (110)

where the error term 
an be made arbitrarily small by 
hoosing the 
onstant "

small.

Chopping o� some terms in (109) we obtain that a

f

lies between 0 and

2(


g

� 


m

)=(


f

� 


g

) + o(1). Hen
e

a

2

+ a

3

+ a

f

�




g

� a

f

(


f

� 


g

)=2� 


m




0

+ a

f

+ o(1)

� max

�




g

�


m




0

; 2




g

�


m




f

�


g

�

+ o(1): (111)

Using the values of 


g

and 


f

we obtain from (110) and (111) that ne
essarily

max(0:767 + 0:403 


m

; 0:9992 + 0:0004 


m

) � 1 + o(1);

whi
h 
annot be satis�ed for 0 � 


m

� 0:577.

Remark. The 
onstant 0:577 
an be improved, even with the present proof.

For example, the optimal 
hoi
e




f

= min

�

q

4 + 


2

g

; 


g

+

q

2(


g

� 


m

)=


m

�

;
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should give (with extra algebrai
 work) 


g

� 0:591.

Also, after Stage 2 we 
ould apply the algorithm of Lemma 81: we have

identi�ed at least (


m

+ a

2

(


0

� 


g

) + a

f




f

�


g

2

)n

3=2

`useless' (from the point of

view of Lemma 81) edges, whi
h should bring down the bound on l there. We

do not know how mu
h gain this would have given (the 
al
ulations get rather

messy) but we believe that we have rea
hed a good 
ompromise in the sense

that the proof is not too long and the bound is not too bad.

22.3 Cy
les of Conse
utive Lengths

As we already mentioned, Erd}os and Faudree [EF99℄ study minimum graphs G

su
h that if G is a union of two graphs, one having maximal degree less than

n, then the other 
ontains all odd 
y
les C

m

with 3 � m � n � 3. Here we

show, that if we require 
y
les lengths from 3 to �(n), then we 
an present a


onstru
tion with only (1 + ")n

2

edges for any �xed " > 0.

In the proof below we introdu
e 
onstants 


1

; 


2

; and so on. It should not be

hard to 
he
k that we 
an always 
hoose 


i

(depending on 


1

; : : : ; 


i�1

) satisfying

all 
onditions set in the proof. We do not try to optimize the 
onstants.

Theorem 82 For any �xed " > 0, there is a graph G with at most (1 + ")n

2

edges su
h that if E(G) is 
oloured blue-red without a blue K

1;n

, then we have

red 
y
les of all lengths (even and odd) between 3 and 
n for some 
 = 
(") > 0

whi
h does not depend on n.

Proof. Choose integers

m =

p

n=2 +O(1);

k = (

p

2 + 


1

)

p

n+O(1);

l = n+ 


1

n+O(1);

h = 


1

p

n+O(1):

Choose k-sets K

1

; : : : ;K

m

, l-sets L

1

; : : : ; L

m

, and an h-set H (all disjoint). Let

G 
onsist of all edges interse
ting H and of all edges interse
ting K

i

and lying

within K

i

[ L

i

, i 2 [m℄, that is, G = K

h

+mP

k;l

. If 


1

> 0 is small, then G has

at most (1 + ")n

2

edges.
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Consider any blue-red 
olouring of E(G) without a blue K

1;n

. Let G

0

� G

be the red subgraph, let d

0

(x) be the red degree of x 2 V (G), and so on.

De�ne the bipartite graph F with 
lasses H and [m℄ as follows; x 2 H is


onne
ted to i 2 [m℄ if and only if x sends at least l+


2

p

n red edges to K

i

[L

i

,




2

= 


1

=2. Now, the inequality

(m� d

F

(x))


2

p

n+ d

F

(x)k � mk � n+ 1;

implies that ea
h x 2 H has d

F

(x) � 


3

p

n neighbours in F .

First, let us show how to �nd red 
y
les of all lengths up to 


4

p

n. Choose,

any fx; ig 2 E(F ).

In G

0

, we have d

0

K

i

(x) � 


2

p

n and ea
h vertex in �

0

K

i

(x) has at least 


1

n+

o(n) neighbours in �

0

K

i

[L

i

(x). (Be
ause the latter set has size n+ 


1

n+O(

p

n)

while we do not have a blue K

1;n

in G.) Thus we have �(n

3=2

) red edges within

�

0

K

i

[L

i

(x). By the theorem of Erd}os and Gallai [EG59℄, we have a red path of

length 


4

p

n there, whi
h together with x 
reates red 
y
les of all lengths up to




4

p

n.

Next, the graph F (whi
h, in fa
t, has positive density) has a 
y
le of

length 2t = �(

p

n) with 4t < 


4

p

n for large n; let it go through verti
es

x

1

; i

1

; ; : : : ; x

t

; i

t

; x

t+1

= x

1

, where x

j

2 H for j 2 [t℄.

To prove the theorem it is 
learly enough to show that, for any j 2 [t℄, we


an �nd a red path 
onne
ting x

j

and x

j+1

through K

i

j

[ L

i

j

of any length

between 2 and 


5

p

n, for some 
onstant 


5

.

ConsiderX = (�

0

(x

j

)[�

0

(x

j+1

))\(K

i

j

[L

i

j

). Now, X\K

i

j

has at least 


2

p

n

elements, ea
h being in
ident to at least 


1

n+O(

p

n) red edges. It is not hard to

see that we 
an �nd a red 
y
le C within X of length at least 


5

p

n interse
ting

�

0

(x

j

)\�

0

(x

j+1

). (The latter set has size n+ 


1

n+O(

p

n) and it is in
ident to

almost all red edges lying within X.) It is easy to see that we 
an additionally

require that C has a red 
ord E. Now, by a simple lemma (whi
h is impli
it in

Bondy and Simonovits [BS74℄ and expli
it in Verstra�ete [Ver99℄), C+E 
ontain

paths 
onne
ting �

0

(x

j

) \ V (C) to �

0

(x

j+1

) \ V (C) (two interse
ting sets that


over V (C)) of all lengths from 0 to v(C)� 1, as required.

Remark. For ea
h j 2 [t℄, we 
an �nd a red 
y
le of any pres
ribed length

between 3 and 


4

p

n lying withinK

i

j

[L

i

j

[fx

j

g. Hen
e, we 
an �nd t = �(

p

n)
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su
h vertex disjoint 
y
les in G. Of 
ourse, one 
an try to prove many other

similar results about our graph G. For example, what is 
 = 
(") if " tends to

zero with a given rate as n ! 1, say " = �(1=

p

n)? But we do not want to

build a whole theory out of it: our purpose was to demonstrate that if we allow

(1 + ")r̂(K

1;n

; C

odd

) edges then we 
an witness mu
h stronger properties.

23 Removing Verti
es

In this se
tion we denote l = k� j � 0. Thus a graph of order n+ k belongs to

M(n; k; j) if after the removal of any l verti
es the maximal degree is at least

n.

23.1 Some Constru
tions

Here is our 
ounterexample to the 
onje
ture of Erd}os, Reid, S
help and Sta-

ton [ERSS96, Conje
ture 1℄.

Example 83 The formula (106) is not true if n � (j � 2)l.

Proof. Write n = lq + r with 0 � r < l. Let A = [l + 1℄, y = l + 2, and

R = [l+3; l+r+2℄, that is, R � X n (A[fyg) is a set of size r. Our assumption

on n implies that j � q + 2, that is,

n+ k � l � r � 2 � (l + 1)q:

Therefore, in X n (A [R [ fyg) we 
an 
hoose disjoint q-sets Q

1

; : : : ; Q

l+1

. Let

our graph G 
onsist of the following edges: ff; hg 2 A

(2)

with jf � hj > 1 (that

is, A spans the 
omplete graph but for a Hamiltonian path), all edges between A

and R, all edges 
onne
ting f 2 A to Q

h

with h 6= f and edges ff; yg, f 2 [2; l℄.

Thus all verti
es in A have degree n+ l � 1. It is easy to 
he
k that the size of

G is by one smaller than the bound given by (106).

We 
laim that G 2 M(n; k; j). Suppose on the 
ontrary to our 
laim that

we 
an remove some set L of size l so that the remaining graph has maximal

degree less than n. Let x be any vertex in A n L whi
h is not empty as jAj > l.

As the degree of x should be less than n now, we 
on
lude that x is 
onne
ted to

ea
h vertex in L. Therefore, any vertex in A non-in
ident to some x 2 AnL lies
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itself in A nL. As G[A℄ is 
onne
ted (it is a path), we 
on
lude that A\L = ;.

But the set of verti
es 
onne
ted (in G) to everything in A is pre
isely R and it

has r < l elements, whi
h is a 
ontradi
tion.

Remark. In Example 83 we 
an win a few more edges if n is yet smaller. As

before, we let A = [l+1℄ and y = l+2. Suppose that for some p we 
an squeeze

into [l + 3; n + k℄ an r-set R and q-element sets Q

1

; : : : ; Q

p+1

with r < p and

pq + r = n. To de�ne G, let G[A℄ 
onsist of h = b

l+1

p+1


 vertex-disjoint paths of

length p+ 1 ea
h; for every su
h path (x

1

; : : : ; x

p+1

) we 
onne
t x

i

, i 2 [p+ 1℄,

to everything in R and in Q

j

, j 6= i, and we 
onne
t x

i

, i 2 [2; p℄, to y. Also, we

add some extra edges so that any vertex of A not on a path has degree n+ l.

Suppose that G 62 M(n; k; j), that is, there is an l-set L with �(G�L) < n.

Let x

0

2 A n L. It must lie on a path P . (Otherwise d

G

(x) = n + l.) Like

in Example 83 we argue that P does not interse
t L and, in fa
t, every x 2 P

is 
onne
ted to all verti
es in L. But the number of verti
es 
onne
ted to the

whole of P is j(L n P ) [Rj < l, whi
h is a 
ontradi
tion.

It is easy to see that we have h edges less than in (106), so it is advantageous

to 
hoose p as small as possible. The 
ondition we have to satisfy is

n+ k � l � 2 � r + (p+ 1)q

or, equivalently, j � 2 � q = bn=p
. Therefore, we 
hoose p = d

n

j�2

e. Note that

our gain 
ompared to (106) is h = b

l+1

p+1


.

Erd}os et al [ERSS96℄ observe that (106) is not true `when k is very large


ompared to n.' Here is an example, for any given l and n, giving only a fra
tion

of (106) with k moderately small (starting with k � n+ l + 1).

Example 84 Suppose that n + k � pn + l + 1, where p is an integer greater

than 1. Take a representation l+1 = l

1

+ : : :+ l

p

and let G = t

i2[p℄

(K

l

i

+E

n

).

Then G 2M(n; k; k � l).

Proof. Let L � V (G) be any l-set. There must exist i 2 [p℄ su
h that L

interse
ts the 
orresponding 
omponent C

i

in less then l

i

verti
es. Hen
e, at

least one vertex in K

l

i

survives and it has at least n neighbours outside L.
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23.2 Improving Condition (107)

We 
an prove the following (whi
h is an improvement of (107) if j / k=3).

Theorem 85 Let j � 2 and n � 14. Then (106) is true if

n �

�

j +

1

2

�

l +

2j + l

4j � 2

:

Proof. Let G 2M(n; k; j). To prove the theorem by indu
tion is it enough to

show that maximal degree of G is at least n + l. (Be
ause removing a vertex

from G we obtain a graph in M(n; k � 1; j) and 
learly m(n; j; j) = n.)

Let H = fx 2 V (G) : d(x) � ng and h = jHj. Let us show that h is not

large by applying the following pro
edure to G.

Let A = C = ; and B = V (G). Repeat the following as long as possible

or until jAj = l + 1. Move to A any vertex x 2 B (if it exists) having at

least n neighbours in B. For every su
h x do the n-
he
k, that is, move to C all

y 2 B\H with d

B[C

(y) < n. (In fa
t, for every su
h y we have d

B[C

(y) = n�1.)

Suppose we have stopped. Let a; b; 
 be the sizes of the eventual sets A;B;C.

Indu
tively, we �nd a set Y = fy

1

; : : : ; y

l+1�a

g � B [ C su
h that ea
h y

i

has

at least n neighbours in C [ B n fy

1

; : : : ; y

i�1

g. As ea
h y 2 C has fewer than

n neighbours in B [ C, we 
on
lude that Y � B. Let R = (B n Y ) \ H and

r = jC [ Rj. Ea
h x 2 R has at least n neighbours in C [ B for otherwise it

would belong to C.

Counting the number of edges en
ountered in our algorithm we obtain that

e(G) � an+ jY jn+ r(n� 1)�

�

r

2

�

� rjY j:

Using a+ jY j = l + 1 (and the trivial inequality jY j � l) we obtain

�

l+1

2

�

� r

�

n� 1�

r�1

2

� jY j

�

� r

�

n� l �

r+1

2

�

:

To satisfy this quadrati
 in r inequality, r must not lie between the roots r

1;2

=

n� l �

1

2

�R, where

R =

1

2

p

4n

2

� 4n(2l + 1) + 1:

The assumption of the theorem implies that

l � 3n=8: (112)
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Using (112), one 
an 
he
k that R � (n� 3)=2. Suppose that r � r

2

. Observe

that

r

2

� n� l �

1

2

+

n�3

2

=

3

2

n� l � 2 �

9

8

n� 2: (113)

As before, the inequality e(G) � an+ jY jn+ r

n�1

2

� rjY j implies that

�

l+1

2

�

� r(

n�1

2

� l): (114)

Using (112) and (113), we 
an dedu
e from (114) that n �

9

128

n

2

+ 1, whi
h


annot be satis�ed for n � 14.

The above 
ontradi
tion implies that r � r

1

; then we have

h = r + l + 1 � n+

1

2

�R: (115)

Suppose on the 
ontrary that k > j and �(G) < n+ l. For every x 2 H we


hoose a j-set D

x

� �(x) and let D = [

x2H

D

x

. We have jDj � jh and we 
laim

that this does not ex
eed n + j. To verify this, it is enough to 
he
k by (115)

that jR � jn � n � j=2. Squaring, we obtain that the latter is equivalent to

n(2j � 1) � 2j

2

l + j, whi
h is pre
isely our assumption.

CompleteD to an arbitrary (n+j)-set E. AsG 2M(n; k; j), some x 2 E\H

has at least n neighbours in E, whi
h is a 
ontradi
tion as, by de�nition, E


ontains at least j non-neighbours of x.

Hen
e, �(G) � n+ l and the theorem follows by indu
tion.

24 Splitting into Parts

Here we 
onsider b(n;m) = minfe(G) : G 2 B(n;m)g, where B(n;m) 
onsists

of all graphs G su
h that, for any partition A [B = V (G), either �(G[A℄) � n

or �(G[B℄) � m.

Clearly, b(n;m) = b(m;n). Let us assume n � m.

24.1 General Bounds

The following simple argument gives a very good general lower bound on b(n;m).

Let G 2 B(n;m) be any graph. Set initially A = V (G) and B = ;. As

long as jBj � m, move to B any x 2 A with d

A

(x) � n. (Su
h a vertex exists,

be
ause obviously �(G[B℄) < m.)
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When we �nish, jBj = m + 1. Swap the sets A and B ea
h with the other.

(So that now jAj = m + 1.) Next, 
onse
utively and as long as possible, move

to A any vertex of G[B℄ of degree at least m. As eventually �(G[B℄) < m, our

assumption on G implies that jAj � n+ 1 (to allow a vertex of degree at least

n). Counting the edges en
ountered in this pro
edure, we obtain the following

bound valid for any n and m.

b(n;m) � (m+ 1)n+ ((n+ 1)� (m+ 1))m = 2mn�m

2

+ n: (116)

Next, we provide a general 
onstru
tion giving an upper bound on b(n;m).

Example 86 Choose representations m = m

1

+ : : : +m

f

and n �m = n

1

+

: : : + n

g

. Let G be the disjoint union of P

m

i

;n

, i 2 [f ℄, and P

n

j

;m

, j 2 [g℄, plus

a vertex x 
onne
ted to everything else. We 
laim that G 2 B(n;m).

Proof. Let V (G) = A [B be any partition.

Case 1 Suppose x 2 A. Observe that at least m

i

verti
es from ea
h P

m

i

;n

and

at least n

j

verti
es from ea
h P

n

j

;m

lie in A. (Otherwise �(G[B℄) � m.) But

then

d

A

(x) = jAj � 1 �

X

i2[f ℄

m

i

+

X

j2[g℄

n

j

= n:

Case 2 If x 2 B (and �(G[A℄) < n), then from ea
h P

m

i

;n

at least m

i

verti
es

go to B and d

B

(x) �

P

i2[f ℄

m

i

= m, as required.

Let us 
ompute how many edges we use in Example 86.

b(n;m) � e(G) = n+fn+gm+mn+(n�m)m+

X

i2[f ℄

�

m

i

2

�

+

X

j2[g℄

�

n

j

2

�

; (117)

To minimize it, we let the m

i

's (and the n

j

's) be nearly equal while f and g have

to be aroundm(2n)

�1=2

and (n�m)(2m)

�1=2

respe
tively. Putting bounds (116)

and (117) together we obtain the equality (108) 
laimed in the introdu
tion.

24.2 Small Fixed m

In the extreme 
ase when m is �xed and n tends to in�nity, we 
onsider Exam-

ple 86 with f = 1 (so m

1

= m) and g = n(2m)

�1=2

+O(1). Then

X

j2[g℄

�

n

j

2

�

< g

�

n

g

+ 1

�

n

g

2

�

n

2

(

p

2m+ 1) +O(1);
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and we obtain the following.

Corollary 87 Let m � 1 be �xed. Then b(n;m), n 2 N, lie between two linear

fun
tions, namely

(2m+ 1)n+O(1) � b(n;m) � (2m+

p

2m+

5

2

)n+O(1):

However, for a few parti
ular small instan
es of m we 
an be more pre
ise.

Let us provide a 
onstru
tion of G 2 B(n; 1), n � 2. Represent n = 2k+ l+1

and let G be disjoint union of k triangles, l disjoint edges, plus verti
es x; y; x is


onne
ted to every other vertex while y is 
onne
ted to some n verti
es (besides

x). Clearly, e(G) = 3k + 3k + l + 2l + n+ 1 = 4n� 2.

To show that G 2 B(n; 1), suppose that we have a partition V (G) = A [B

with B being an independent set. If one of x or y belongs to B, then A 
ontains

the other plus their n 
ommon neighbours and so �(G[A℄) � n. If fx; yg � A,

then at least 2 verti
es from ea
h triangle and at least 1 vertex from ea
h edge

must be in A and d

A

(x) � 1 + 2k + l = n, as required.

Theorem 88 For any n � 8, b(n; 1) = 4n�2 and all extremal graphs are given

by the above 
onstru
tion.

Proof. Let n � 1 and let G be any graph in B(n; 1) of size at most 4n� 2. Let

L be the set of verti
es of G of degree at least n. Clearly, jLj > 1.

First, suppose that jLj = 3, say L = fx; y; zg. The partition with B = L

shows that L is not independent in G.

Case 1 G[L℄ 
onsists of a single edge, say fx; yg. The partition with B =

fx; zg (resp. B = fy; zg)) shows that y (resp. x) has at least n neighbours

outside L. Hen
e, L is in
ident to at least 3n + 1 edges, and we have at most

(4n � 2) � (3n + 1) = n � 3 edges non-in
ident to L. Letting A 
onsist of all

verti
es of L plus an arbitrary endvertex of ea
h edge outside L, we obtain a


ontradi
tion: A is independent while jAj � n.

Case 2 G[L℄ 
onsists of two edges, say fx; yg and fx; zg. The partition with

B = fy; zg shows d

L

(x) � n. The partition with B = fxg shows that another

vertex of L has at least n neighbours outside L. Hen
e, L is in
ident to at least

3n+ 1 edges, and we 
an derive a 
ontradi
tion as above.
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Case 3 G[L℄ is the 
omplete graph. Pla
ing in B a vertex of L, we dedu
e that

some two verti
es in L, say x and y, have at least n+1 neighbours ea
h. Thus,

we have already found 3n� 1 edges in
ident to L; so we 
an have at most one

more su
h edge.

Case 3.1 Suppose that d(z) = n and d(x) � d(y). (That is, d(y) = n + 1.)

Every neighbour u of y is 
onne
ted to x. (Otherwise 
onsider B = fx; ug.) This

means that jU j = n�1, where U = (�(x)[�(y))nL. Choose any u 2 Un�(z) 6= ;.

The partition with B = fz; ug shows that d(x) = n+ 2. By letting A = L and


onse
utively moving to A a non-isolated vertex of G[A℄, we 
on
lude that G[L℄


onsists of n � 2 disjoint edges. (And e(G) = 4n � 2.) Furthermore, if n � 5,

we 
an 
hoose an independent 3-set C � �

L

(x). If z sends at least one edge to

C, let B = C; otherwise let B = C [ fzg. It is easy to see that in either 
ase

�(G[B℄) < n, whi
h is a 
ontradi
tion.

Case 3.2 Suppose d(x) = d(y) = d(z) = n + 1. As before, we 
on
lude that

G[L℄ 
onsists of n� 2 disjoint edges. (And e(G) = 4n� 2.) Let n � 7. Clearly,

jV j � 2, where V = �(x) \ �(y) \ �(z). (Otherwise, 
onsider any independent

2-set B � L.) Also, there is no v 2 (�(x) \ �(y)) n �(z). (Otherwise, let

B = fv; zg.) But then, for n � 5, we 
an 
hoose non-in
ident u; v 2 �(z)

with u 2 �(x) and v 2 �(y), and the 
onsideration of B = fu; v; zg yields a


ontradi
tion.

Similarly, but with less e�ort, we 
an ex
lude the 
ase jLj � 4 for n � 6. So,

we 
on
lude that L = fx; yg. Considering the partition with B = fx; yg, we see

that x is 
onne
ted to y. Considering the partition with B = fxg or B = fyg,

we 
on
lude that d(x) � n+ 1 and d(y) � n+ 1.

We apply the following pro
edure. Let A 
onsist of x and y plus all verti
es


onne
ted neither to x nor to y; let B = A. At Stage 0 
onse
utively move to

A a vertex of degree at least 3 in G[B℄. Stage 1: one by one and as long as

possible, move to A a vertex of degree 2 in G[B℄.

Now, G[B℄ 
onsists of isolated edges. Stage 2: for ea
h edge fa; bg 2 E(G[B℄)

with �(a) \ L � �(b) \ L we move a to A but keep b in B.

After this stage ea
h edge in G[B℄ together with L spans a C

4

; let s

3

=

e(G[B℄). For j 2 [0; 2℄ let s

j;i

be the number of verti
es moved to A at Stage j

whi
h were in
ident to i verti
es in L, i 2 [2℄, and let s

j

= s

j;1

+ s

j;2

.
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Case 4 Suppose that �(G[A℄) � n; let d

A

(x) � n. Then the total number of

edges in G is at least n+1 (edges in
ident to y) plus 3(n�1). (Be
ause for ea
h

of n � 1 verti
es in
ident to x whi
h were moved to A we 
ount at least three

edges; for example, for a vertex a moved at Stage 2, we en
ounter the edges

fa; xg, fa; bg 2 E(G[B℄) and fb; xg.) Hen
e, e(G) � 4n� 2 as required.

Case 5 Suppose that �(G[A℄) < n. As we 
an make B � V (G) independent

by moving an arbitrary endvertex of ea
h edge to A (and after this we must

have �(G[A℄) � n), we 
on
lude that now

2n� 1 � s

3

+ d

A

(x) + d

A

(y) = s

3

+ 2 +

2

X

j=0

(s

j;1

+ 2s

j;2

): (118)

On the other hand, we have the following estimate.

e(G) � 4s

0;1

+5s

0;2

+3s

1;1

+4s

1;2

+max(s

1

� s

2

� s

3

; 0)+3s

2;1

+5s

2;2

+3s

3

+1:

(119)

Only the max-term needs some explanation. After Stage 1 G[B℄ 
onsists of

s

3

+ s

4

isolated edges. Let us move ba
k to B the s

1

verti
es moved at Stage 1.

As the resulting graph has maximal degree 2, we must use at least s

1

�s

2

�s

3

new

verti
es. Ea
h of these verti
es sends at least one edge to L, whi
h 
onstitutes

the extra term. If we multiply (118) by 2 and substitute this from (119), we

obtain (using e(G) � 4n� 2)

s

3

+ 2s

0;1

+ s

0;2

+ s

1;1

+ s

2

+max(s

1

� s

2

� s

3

; 0) � 3:

Hen
e, s

1

� 3 (and s

2

+ s

3

� 3). From (118) we dedu
e that

n � (s

1

+ s

2

) + (s

3

+ 3)=2 � 7

1

2

:

Hen
e, we have shown that b(n; 1) = 4n�2, for n � 8. Conversely, if a graph

G a
hieves this bound, then jLj = 2, s

0

= 0, s

3

= 0, one vertex of L is 
onne
ted

to every L-neighbour of the other L-vertex, and every vertex moved at Stage 1

belonged to an isolated triangle of G[B℄. Now the required 
hara
terization

follows. The details are left to the reader.

Remark. Perhaps, b(n; 1) = 4n�2 for any n � 2 (
learly b(1; 1) = 3), but then

there are many other 
onstru
tions a
hieving this bound. A dire
t sear
h is

feasible (note that our proof of Theorem 88 
ontains some information redu
ing

this sear
h), but it would be too long to in
lude here.
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Theorem 89 b(n; 2) = 6n+O(1).

Proof. A 
onstru
tion of G 2 B(n; 2) �rst. Consider d

n

2

e disjoint 4-
y
les and

one triangle, say on X = fx

1

; x

2

; x

3

g. To this we add some further edges: x

1

is 
onne
ted to every other vertex while x

2

and x

3

are 
onne
ted to some �xed

m-set C � �(x

1

) n fx

2

; x

3

g.

Let V (G) = A [ B be any partition with �(G[B℄) � 1. If x

1

2 A, then at

least 2 verti
es of ea
h C

4

belong to A and d

A

(x

1

) = jAj � 1 � n, as required.

If x

1

2 B, then all but at most one vertex in C [ fx

2

; x

3

g lie in A and a vertex

in X \ A 6= ; has at least jCj = n neighbours in A. Hen
e, G 2 B(n; 2) and

b(n; 2) � 6n+O(1), as required.

We show the lower bound. Let G 2 B(n; 2) be any graph with at most 6n

edges; we have to dedu
e 6n� e(G) = O(1). Let L = fx 2 V (G) : d(x) � ng.

If jLj � 4 then we have at least 4n+ O(1) edges in
ident to L. Let A = L

and B = A. As long as possible, move to A a vertex of G[B℄ of degree at least

2. Before we stop, we repeat the iteration at least n+1� jLj = n+O(1) times,

whi
h means that there are 2n+O(1) edges not in
ident to L and we are home.

Clearly, jLj � 2. (Otherwise the partition with B = L 
ontradi
ts G 2

B(n; 2).) Hen
e, jLj = 3 and the theorem follows from Lemma 90 below.

The following related notion is useful. Let B

0

(n;m; l) be the 
lass of graphs

G with a �xed l-set L � V (G) su
h that d(x) � n, x 2 L, and for any partition

V (G) = A [B with �(G[B℄) < m and L � A some vertex x 2 L has at least n

neighbours in A. Also, denote b

0

(n;m; l) = minfe(G) : G 2 B

0

(n;m; l)g.

Lemma 90 For l 2 [3℄, b

0

(n; 2; l) � (3 + l)n+O(1).

Proof. Let G 2 B

0

(n; 2; l) be any graph. We may freely remove any vertex

in
ident to no vertex of the sele
ted set L = fx

1

; : : : ; x

l

g, as this does not

violates the B

0

(n; 2; l)-property. Let

�

A

=

�

y 2 L : fy; x

i

g 2 E(G) i� i 2 A

	

; A � [l℄:

Case 1 Let l = 1. Let A = L and B = V (G) n L. As long as possible, move

to A any y 2 B with d

B

(y) � 3. At the end, G[B℄ 
onsists of disjoint 
y
les,

paths and verti
es. But we 
an move to A at most b

p+2

3


 (resp. b

p+1

3


) verti
es
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from ea
h 
y
le (resp. path) of length p to ensure �(G[B℄) < 2. As the number

of moved verti
es must be at least n and we use at least 4 edges per vertex

(in
luding edges in
ident to x

1

), the 
laim follows.

Case 2 Let l = 2. We apply an indu
tive on n argument, ensuring that we have

at least 5 edges per every removed vertex, ex
ept in O(1) 
ases. First, whenever

we have y 2 L with d

G

(y) � 5, we remove it, obtaining a graph in B

0

(n�1; 2; 2).

Next, if we have y

1

2 �

1

and y

2

2 �

2

at distan
e at least 3, we 
ontra
t

them without loosing the B

0

(n; 2; 2)-property. Suppose we are �nally stu
k and

suppose j�

1

j � j�

2

j. As �(G[L℄) < 4, we 
on
lude that g = j�

1

j = O(1).

Removing �

1

from G, we obtain a graph in B

0

(n� g; 2; 2); further, removing x

2

(and at least n� g edges) we obtain a graph in B

0

(n� g� 1; 2; 1) whi
h has size

at least 4n+O(1). Hen
e, b

0

(n; 2; 2) � 5n+O(1).

Case 3 Let m = 3. Like in Case 2, we remove a vertex x 2 L of degree at least

6; also, we 
ontra
t any y 2 �

A

, z 2 �

B

, at distan
e at least 3 for A \ B = ;.

Next, removing O(1) verti
es we ensure that all but one of �

i

, i 2 [3℄, are

empty, say �

1

= �

2

= ;. Also, we make either �

12

or �

3

empty. If �

12

= ;,

then �(x

1

) � �(x

3

); removing x

1

(and � n+O(1) edges) we obtain a graph in

B

0

(n+O(1); 2; 2) of size at least 5n+O(1)|we are home.

So, suppose �

3

= ;. If possible, remove any three verti
es in respe
tively

�

12

;�

13

;�

23

in
ident to at least 12 edges to obtain a graph in B

0

(n � 2; 2; 3).

Removing up to O(1) verti
es, we 
an assume that d

L

(y) = 1 for ea
h y in, for

example, �

12

. Let z 2 L be the neighbour of some y 2 �

12

. If d

L

(z) = 1, then

we 
an remove y; z from G without violating the B

0

(n; 2; 3)-property; otherwise,

removing y; z we remove at least 6 edges and obtain a B

0

(n � 1; 2; 3)-graph.

Eventually, we a
hieve �

12

= ;, that is, �(x

1

) � �(x

3

) and we are home again

by Case 2.

Remark. In the next 
ase m = 3 we 
an only show that

7n+O(1) � b(n; 3) � 9n+O(1):
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