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Introduction

In this thesis we consider different extremal problems for set systems. The
extremal (hyper-)graph theory has long been regarded as an important subject
comprising a large number of various problems and methods.

Of course, we do not even try to present here all the features of the theory.
Instead, we consider a few different facets such as saturated hypergraphs, weakly
saturated hypergraphs, minimum chain decompositions, enumeration results for
hypertrees, and size Ramsey numbers. We try to demonstrate different proof
techniques in action and, indeed, the methods that we use are diverse: they
include, for example, exterior algebra and probabilistic arguments.

Let us indicate how this work is organized. It is split into separate parts,
each being a self-contained unit dealing with a particular feature. We tried
as far as possible to ensure that each part can be read independently of the
others. Please note that each part comes with its own introduction which can

be consulted for further information.

Part I: Saturated Hypergraphs

Here we counsider the notion of saturation. Let F be a family of forbidden k-
graphs, that is, k-uniform set systems. A maximal k-graph G not containing any
F € F as a subgraph is called F-saturated. We will be interested in sat(n, F), the
minimal number of edges that an F-saturated graph of order n can have. These
types of questions were considered as early as the late 40s by Zykov [Zyk49],
and by many other mathematicians henceforth.

However, there has been no good general upper bound on the sat-function.

Tuza [Tuz86] (also an unpublished conjecture of Bollobds) conjectured that
sat(n, F) = O(nF™1),  for any fixed k-graph F. (1)

While the conjecture was proved for k& = 2 by Kaszonyi and Tuza [KT86], and
all particular examples confirmed its validity, it was not even known whether
generally sat(n, F) = o(n¥) for k > 3. In Section 3 we verify this conjecture by
showing that sat(n, F) = O(n*~1) for all finite and certain infinite families F of
k-graphs.
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Different variations of the principle are presented in Section 4: we define the
notion of saturation for different graph-like structures and investigate whether a
form of (1) holds. While the technique of Section 3 extends to directed cycle-free
graphs, ordered graphs, and layered graphs, we had to invent a new method in
order to prove (1) for the class of k-row rectangular matrices.

In Subsection 4.4 we consider problems of the following type. Given a for-
bidden family, we say that a graph G kills an edge E € E(G) if the addition of
FE to G creates a forbidden subgraph. What is the maximal number of killed
edges if G has a given order and size? We settle these problems for complete
2-graphs, which extends a theorem of Erdds, Hajnal and Moon [EHM64] who
computed sat(n, K2,).

The sat-function is hard to handle: it lacks many natural regularity proper-
ties. For example, Kaszonyi and Tuza [KT86] showed that it is not monotone.
In Section 5 we amplify their example: we construct, for any constant d, a 2-
graph F' = F(d) such that sat(n, F) < sat(n £ 1, F') — d for a periodic series
of values of n. Furthermore, we demonstrate a finite family F of 2-graphs for
which the ratio sat(n, F)/n does not tend to a limit, which is rather unexpected
and counterintuitive.

Specific instances of forbidden graphs are considered in Section 6.

We asymptotically compute sat(n,SE ), thus extending a result of Erdds,
Firedi and Tuza [EFT91] who did the task for Sll§+1- (The generalized star S,
is the k-graph on m vertices consisting of all k-tuples containing a given vertex.)

The triangular family Ty consists of all k-graphs of size 3 in which the sym-
metric difference of some two edges is contained in the third one. We prove that
sat(n, Tx) =n — O(logn), k > 3, and sat(n,T3) =n — 2.

We show that, for any K,,-saturated graph G, the number of edges spanned
by the set {z € V(G) : d(z) < a} is at most a*m=2)a+e(ma) 5 function not
depending on n = v(G). We deduce that G has at least In + O(%) edges,
if the minimal degree of G is I > m — 1. Another consequence is a sharper form
of one result by Alon, Erdés, Holzman and Krivelevich [AEHK96, Theorem 2].

The following problem is, in fact, an instance of a sat-type problem. Suppose
that we try to construct designs by adding, one by one and as long as possible,
k-edges so that each t-set is covered by at most A\ edges. What is the worst

case, that is, how small the eventual system can be? We solve asymptotically
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this problem for £ = 2 and establish some connections with Turdn numbers for

general £.

Part II: Weakly Saturated Hypergraphs

A notion related to that of saturation is weak saturation which we consider in
Part II. A k-graph G is weakly F-saturated if we can add one by one all missing
edges to G so that every time at least one new forbidden subgraph appears; we
are interested in w-sat(n, F), the minimal size of a such graph G on n vertices.

These questions were first considered by Bollobds [Bol67c] who made a con-
jecture on complete graphs. The conjecture was verified by a number of people
who computed w-sat(n, K% ): Frankl [Fra82], Kalai [Kal84, Kal85]; the result is
implicit in Lovasz [Lov77]; cf. also Alon [Alo85]. They all applied some form
of dependence in order to derive the formula. This approach was most clearly
formulated by Kalai [Kal85]: if we have a matroid M on [n]*) such that any
F € F is a circuit, then w-sat(n, F) > R ([n]®)), the rank of M.

Usually, it is easy to construct a right example of minimum G € w-SAT(n, F)
for a given F, but it is hard to prove that this G is indeed extremal. So, the
above approach is helpful but it is not clear at all how to search for a suitable
matroid M.

Here we suggest two deterministic candidates for M to consider, provided
we have an example of G, € w-SAT(n,F). For this purpose we utilize gross
and count matroids which are defined in Section 8. The construction of a gross
matroid was exploited by Kalai [Kal90], but for other purposes. Our count
matroids form a new family of matroids, considerably and naturally extending
the count matroid of White and Whiteley [WW84].

If one of our approaches works, then G is indeed extremal and we say that we
have a G-proof or a C-proof respectively. Thus, we have two sufficient criteria for
G € w-SAT(n,F) to be minimal. Unfortunately, these criteria are not generally
necessary, but using them (and the related g/¢’'-proof technique) we can prove
the following results.

Given sequences of integers s = (s1,...,8;) and k = (k1, ..., k), the pyramid
P(s; k) is the k-graph, k = k1 + ...+ kq, with vertex set being the disjoint union
S1U...USy, |S;i| = si, and with the edge set consisting of those k-subsets which,

iii



INTRODUCTION

for every i € [t], intersect S; U...US; in at least k; + ...+ k; vertices. This
is a rather general definition: as partial cases we obtain complete graphs and
generalized stars.

In Subsection 10.1 we compute w-sat(n, P(s;k)) for all feasible values of
parameters. A partial case of this result proves the conjecture by Tuza [Tuz88,
Conjecture 7] that w-sat(n, Hg(k + 1,1)) = (n_f_zl_Q), n>k+1>1>2. (The
uniform family Hy(m,l) consists of all k-graphs with m vertices and [ edges.)

In Subsection 10.2 we present some further results about weakly Hy(m,[)-
saturated graphs: we make a general conjecture and verify it for a number of
parameters. In certain cases we characterize all extremal graphs, in particular
answering a question by Erdés, Firedi and Tuza [EFT91] (who verified Tuza’s
conjecture for [ = 3).

The cone cn(F) of a k-graph F' is obtained by adding an extra vertex z plus
all (11}9(51) ) edges containing x. Our more general results of Section 11 imply that
cones ‘preserve’ G/g/g'-proofs under certain covering conditions. This means
that if we know the w-sat-function for certain graphs by applying a G/g/g'-
proof, then we know it for the graphs obtained by the application of the cone
operator. For example, for 2-graphs we can compute w-sat(n, K; + F), where
for F' we can take a star, an odd cycle, a path, a matching, and many other
graphs.

In Section 12 we define join, another operation on graphs, and prove among
other things that joins always preserve G/g-proofs. As a special case, we deduce
the result of Alon [Alo85] who computed the w-sat-function for joins of complete

hypergraphs.

Part III: Chain Decompositions

A chain decomposition of a poset P is a partition of P into disjoint chains
(that is, linearly ordered subsets). Minimum chain decompositions have many
applications and are extensively studied.

In this part we consider the minimal size of an edge decomposition which is a
collection of skipless chains such that any pair z <y (z is covered by y) belongs
to exactly one chain. (A chain C is skipless if no element of P\ C can be inserted

between some two elements of C.) It is easy to see that edge decompositions

v
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of P correspond to skipless chain decompositions of the line poset L(P) whose
vertex set is {(z,y) : z,y € P, <y}, and (z,y) < («/,y') in L(P) if y < &
in P.

In Section 14 we present a few min-max theorems. Our more general theo-
rem implies that the minimal size of a skipless chain decomposition of P equals
the maximal value of |A| — |B| taken over all pairs of disjoint sets A, B C P
such that any skipless chain containing two elements from A intersects B. Sur-
prisingly enough, this fundamental theorem turned out to be a new result. Our
proof utilizes the linear programming method of Dantzig and Hoffman [DH56].
It was considerably simplified by Graham Brightwell who replaced the linear
programming argument by an easy application of Hall’s theorem. We present
both these proofs.

The minimal size of an edge decomposition of P can be deduced as a corol-
lary, but we provide a short and direct proof.

Hence, our basic question is generally completely answered, but we can ask
whether there is an edge decomposition with some extra properties. Of course,
one can consider these problems for many different posets and impose many
different restrictions. But as our theme is extremal set systems, we investigate
B, the poset of subsets of an n-set ordered by inclusion, and ask whether we
can require that all chains are symmetric. (A skipless chain Ay C ... C Ay of
By, is symmetric if |A;| + |Agk—i+1] = n, 1 < i < k.) Note that any symmetric
edge decomposition of B, has the minimal size.

In fact, the general results of Anderson [And67] and Griggs [Gri77] imply
the existence of a symmetric edge decomposition of B,,. However, their proofs
are non-constructive, so in Section 15 we provide an explicit construction.

Our decomposition has some extra properties and interesting applications,
see Section 16. In brief, we give estimates of the number of antichains in L(B,,),
construct a pair of orthogonal skipless chain decompositions of L(B,,), present
some applications to storing and searching records in a database, and solve one
numerical problem.

In Section 17 we characterize line posets in terms of forbidden configurations
and point out which information determines and can be reconstructed from the

line poset. (This resembles Beineke’s [Bei68] characterization of line graphs.)
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Part IV: Enumeration Results for Trees

Here we consider and enumerate different tree-like structures. Strictly speaking,
such problems belong to enumerative, rather than to extremal, graph theory,
but we include these results because we believe that the proofs are short and
nice.

The notion of a tree and its different extensions to k-graphs, that is, k-
uniform set systems, play an important role in discrete mathematics and com-
puter science. We will dwell upon the following, rather general, definition sug-
gested independently by Dewdney [Dew74] and Beineke and Pippert [BP77].

A k-graph is called a (k, m)-tree if it can be obtained from a single edge by
consecutively adding edges so that every new edge contains k — m new vertices
while its remaining m vertices are covered by an already existing edge.

The problem of counting (m + 1, m)-trees which are known in the literature
as m-trees, received great attention and was completely settled by Beineke and
Pippert [BP69] and Moon [Moo69]. Later, different bijective proofs for m-trees
appeared as well, see [RR70, Foa7l, GI75, ES88, Che93].

Here we enumerate vertex labelled (k,m)-trees. We present two different
proofs. The proof of Section 19 is inductive, that is, we write a recurrence
relation for the number of trees and prove our formula by induction.

In Subsection 20.2 we exhibit an explicit bijection between the set of rooted
vertex labelled trees of given size and a trivially simple set; it is based on the
ideas of Foata [Foa71]. This method can be applied to enumerate other tree-like
structures. For example, we enumerate vertex labelled k-gon trees. A k-gon
tree is obtain from a k-gon (that is, a k-cycle) by consecutively adding k-gons
along an existing edge, see e.g. [CL85, Whi88, Pen93, KT96]. In order not to
repeat the same portions of proof twice, we present a more general result which
includes both (k,m)-trees and k-gon trees as partial cases.

In Subsection 20.3 we present a bijection for edge labelled (2,1)-trees, an-
swering a question posed by Cameron [Cam95]. Unfortunately, we do not know

any direct bijection enumerating edge labelled (k, m)-trees for general k, m.
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Part V: Large Degrees in Subgraphs

Erdds [Erd81], see also [Chu97, Erd99], conjectured that for n > 3 any graph
with fewer than (2"; 1) - (%) = w edges is a union of a bipartite graph and
a graph with maximum degree less than n. All research carried in this part is
motivated by this conjecture which is disproved here.

The conjectured value arises from the consideration of P, 11, = K41 + Ej,
which does not admit the above representation. In fact, this graph has a stronger
property, namely P41, — (K., K3): for any blue-red colouring of the edge
set of P, 11, we necessarily have either a blue star K, or a red triangle. Thus,
if Erdés’ conjecture were true, it would give the same value for the size Ramsey
number 7(K 5, K3) = min{e(G) : G = (K1, K3)}. Apparently, the computa-
tion of 7(K1 p, K3) was the original motivation for the conjecture.

In Section 22 we show, however, that
P(Kip, K3) <n?+V2032 40, n>1,

by demonstrating an explicit construction. This disproves Erdés’ conjecture
which, in fact, fails for all n > 5. On the other hand, we prove that any graph
with n? + (0.577 + o(1)) n%/? edges is a union of a bipartite graph and a graph
with maximum degree less than n, which of course implies that this number is
a lower bound for #(K ,, K3).

There were different attempts to prove the conjecture, by different mathe-
maticians, which resulted in new interesting directions of research.

For example, as reported in [Erd99], Erdds and Faudree [EF99] consider the
minimal size of a graph G such that if G' is a union of two graphs, one having
maximal degree less than n, then the other contains all odd cycles C), with
3 <m < n—3. In Subsection 22.3 we demonstrate a graph G of size (1 + ¢)n?,
for any given constant € > 0, such that, for any blue-red colouring of G without
a blue K ,, we have red cycles of all lengths (odd and even) between 3 and cn,
where ¢ = ¢(¢) > 0 does not depend on n.

The following problem, which was introduced by Erdoés, Reid, Schelp and
Staton [ERSS96], is also motivated by Erdés’ conjecture.

For positive integers n,k,j with k& > j, let M(n,k,j) consist of all graphs
G of order n + k such that every (n + j)-subset of V(G) spans a graph with
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maximum degree at least n. The question is to compute
m(n,k,j) = min{e(G) : G € M(n,k,j)}.

Erdds et al [ERSS96, Conjecture 1] conjectured that, for n > k > 5 > 1 and

n > 3, we have

m(n,k,j):(k—j—i—l)nJr(k_;+l>. (2)

This value arises from the consideration of Pj_; 1 ,UE;_1. Erdds et al [ERSS96,
Theorem 3] proved that (2) is true if j =1 or if j > 2 and

n > max (j(k — j), (*379)). (3)

In Section 23 we demonstrate a constructive counterexample to (2) for n <
(7 = 2)(k — 7). On the other hand, we show that (2) is true if

anax((j—i—%) (k—j)+%,14),
which improves (3) for j < k/3. This shows that j(k—j) is roughly the threshold
on n when the obvious construction leading to (2) fails to be extremal. Some
other constructions are presented.
In Section 24 we consider the following related problem. Let B(n,m) consist

of all graphs such that for any partition V(G) = AU B either A(G[A]) > n or
A(G[B]) > m (or both). We are interested in the bisplit function

b(n,m) = min{e(G) : G € B(n,m)}.

Clearly, b(n,n) is precisely the function investigated in Erdds’ conjecture, which
was the original motivation for introducing the ‘off-diagonal’ numbers b(n, m).

We compute this function asymptotically when m = min(n,m) is large:
b(n,m) = 2nm — m?* + o(m)n.

In the extreme case, when m > 1 is fixed, we can prove only that the numbers
b(n,m), n € N, lie between two functions linear in n with slopes 2m + 1 and
2m 4+ vV2m + g

We prove that b(n,1) = 4n — 2 for n > 8 (and characterize all extremal
graphs) and that b(n,2) = 6n + O(1). As the reader will see, the proofs are
rather lengthy and require consideration of many cases. This indicates that the
computation of lim,,_, b(n,m)/n for any fixed m (if the limit exists) is perhaps
a hard task.

viii



Notation

Let us indicate some notation that we use. The relation A C B does not
exclude A = B; the strict inclusion is denoted as A ¢ B. Any unfamiliar term

(e.g. pyramid) should be identifiable via the index.

[m,n] = {m,m+1,...,n}; [n]={1,2,...,n}
A" = (BCA:|B|=r}

R/Q/Z/N the sets of reals/rationals/integers/positive integers
f=06(9) & HFc,c2>0 Ing Yn>ny cig(n) <|f(n)| < cag(n)
f=0(9) & FJc>0 Ing Vn>ng |f(n)| <cg(n)
f=o0(g) & VYe>0 Ing Vn>ng |[f(n)| <cg(n)

SA = Y icaSi» givenreals si,...,s, and A C [n]
By = UjeaBi, given sets By,..., B, and A C [n]
V(G) the vertex set of G
v(G) = |V(G)| the order of G
E(G) the edge set of G
e(G) = |E(GQ)| the size of G
G the complement of G
G[A] the subgraph induced by A C V(G)
a(G) the independence number of G
dlz) = |{E€EG):E>z}, z€V(G)
A(G)/4(G) the maximal/minimal degree of G
Pa(e) = {yeAs{z,y}€EG)}, 2-graph G; T(z) = Ty(g)(@)
da(z) = [Ta(z)|, z€V(G), ACV(G), 2-graph G
mG m disjoint copies of G
Cm the m-cycle
En, the empty graph of order m
KFk(A) the complete k-graph on a set A
Kﬁl the complete k-graph of order m; K,, = K2,
Ky the complete bipartite graph
Pn., = Kn,+E,
P(s;k) the pyramid
Sk the k-star of order m
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Part 1

Saturated Hypergraphs

1 Introduction

1.1 Discussion

Many combinatorial structures (especially graphs) have proved to be very use-
ful in other branches of human knowledge where discrete models play more and
more important role with the advance of computers. A fairly typical problem is,
given a class C of allowed graphs (for example, those whose structure is compat-
ible with the requirements of the used discrete model), to minimize/maximize
a certain parameter.

In many natural cases, C can be described by naming a family F of forbidden
subgraphs so that a graph belongs to C if and only if it is F-free, that is, if it
does not contain any F' € F as a subgraph. In this case, C can be also specified
by listing the family SAT(F) of all F-saturated graphs, that is, maximal F-free
graphs; clearly,

C={H:H CG for some G € SAT(F)}

and, instead of considering the whole of C, we can restrict ourselves only to
SAT(F), especially that many extremal parameters of C can be more quickly
determined from SAT(F).

Two related families are m-SAT(F) and w-SAT(F): G € m-SAT(n,F) if
the addition any new edge to G creates at least one new forbidden subgraph
(then we call G monotonically F-saturated); G € w-SAT(n,F) if we can add
all missing edges, one by one in some order, so that every edge creates a new
forbidden subgraph (then we call G weakly F-saturated). Note that we do not
require here that G is F-free.

For example, the Turidn-type problem studies the maximal size of an F-
free graph of a given order. This is clearly equal to the maximal size of an
F-saturated graph of a given order.

In Parts I and II we consider the sat-type problems which ask about the

minimal size of a (weakly/monotonically) F-saturated graph of a given order.



1 INTRODUCTION

The Turdn-problem and the sat-problem happen to be rather different in
nature. The former is perhaps more important in applications although many
real life situations lead to sat-type questions.

For example, monotonically K3-saturated graphs are precisely diameter-2
graphs. This problem has the following interpretation: there are n airports; we
can connect some pairs by a flight and we want to assure the possibility to fly
from each airport to any other one by changing the plane at most once. Clearly,
the minimal number of connections is n — 1 and this is achieved if and only if one
airport is connected to every other. (This may be not a perfect solution and we
may impose some extra conditions: e.g. some restriction on the maximal degree,
etc.) If we weaken the requirement by allowing any number of flight changes,
then we obtain weakly Kj-saturated (i.e. connected) graphs and the minimal
size is again n — 1 but we have many extremal graphs.

In this part (and Part II) we try to present a unified treatment of these,
sat-type, questions. The above definitions are applied to k-graphs (k-uniform
set systems) which are the main object of our consideration. Also, we present
different variations of the principle and make a few excursions into some related
areas (for example, the forbidden submatrix problem). Section 2 briefly surveys
known results on the topic including those proved here. But before we proceed,

let us give all necessary definitions.

1.2 Definitions

Let F be a family k-graphs (that is, k-uniform set systems) which are usually
referred to as forbidden. A k-graph G is called F-admissible (or F-free) if it
does not contain any F' € F as a subgraph.

We say that G is F-saturated, denoted G € SAT(n,F), if it is a maximal

F-free k-graph with n vertices. We are mainly interested in
sat(n, F) = min{e(G) : G € SAT(n,F)}, (4)

the minimal number of edges in an F-saturated graph of order n.

The following auxiliary notion is helpful: G is called monotonically (or
strongly) F-saturated, denoted G € m-SAT(n,F), n = v(G), if the addition
of any new edge to G creates at least one extra F-subgraph, some F' € F. Note

that we do not require that G is F-admissible.
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Clearly, SAT(n,F) = {G € m-SAT(n,F) : G is F-free}, so sat(n,F) >

m-sat(n, F), where
m-sat(n, F) = min{e(G) : G € m-SAT(n, F)}.

For a graph F', we denote SAT(n, F) = SAT(n, {F'}), etc.

2 Survey

Here is a brief but comprehensive (to the best of the author’s knowledge) survey
of known results related to (strong) saturation. Also, we indicate all interesting

results proved in this part.

2.1 General Families

Not much is known about sat(n,F) for a general F. Készonyi and Tuza [KT86]
showed that, for any family F of 2-graphs, including all infinite families, we
have sat(n, F) = O(n). Tuza [Tuz92] showed that, for any fixed k-graph F,

m-sat(n, F) = O(n4). (5)
Here d(F) € [0,k — 1] is what Tuza calls the local density of F':
d(F) =min{d(E) : E € E(F)}, (6)

where the density d(E) of an F-edge E is max{|ENE'|: E' € E(F) E' # E}.

Clearly, in terms of constructive upper bounds, SAT is more restrictive than
m-SAT. Thus, it is not surprising that, up to now, there were no good upper
bounds on sat(n, F') for a general k-graph F. Tuza [Tuz86, Tuz88] (also an
unpublished conjecture of Bollobds) conjectured that, for any fixed k-graph F,
sat(n, F) = O(nF1).

In Section 3 we show that
sat(n, F) = O(n* 1) (7)

for all finite and certain infinite families F, which, of course, proves this conjec-

ture. Our proof is constructive.
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In Section 4 we try to extend the notion of saturation to different structures
connected to hypergraphs and every time we ask whether the analogue of esti-
mate (7) is valid. Although the estimate is not true for simple directed graphs,
we show that (7) is valid for all finite families of cycle-free directed k-graphs
and for ordered k-graphs. Furthermore, the estimate sat(n,F) = O(n) is true
for any family F of cycle-free or ordered 2-graphs.

In Subsection 4.2 we consider similar question for structures that we call
layered graphs and show that a form of (7) holds here. Also, we show that,
for the class of layered (1,1)-graphs (that is, bipartite graphs), the size of any
minimum F-saturated graph is bounded by a linear function of its order for any
forbidden family F.

In Subsection 4.3 we consider the sat-type problems for the class of rectan-
gular matrices, for which the dual (Turdn-type) problems are well studied. We
show that for any family F of forbidden k-row matrices sat(n, F) = O(nF~1).

Although the notion of saturation was considered as early as the late 40s
by Zykov [Zyk49], the theory does not seem to be well developed. This might
be the case because minimum saturated graphs are hard to handle. For example,
as demonstrated by Készonyi and Tuza [KT86], the sat-function lacks many
natural regularity properties; in Section 5 we provide further examples.

Answering a question by Tuza [Tuz92] we exhibit an example of connected
2-graphs H C F of the same order such that sat(n, H) > sat(n, F') for all large
n. (Of course, it is ‘natural’ to expect the converse inequality.)

Among other things, we demonstrate, for any fixed d > 0, a 2-graph F' =
F(d) such that

sat(n, F') <sat(n+1,F) —d,

for a periodic series of values of n.

Tuza [Tuz88] conjectured that, for any 2-graph F, the limit limsat(n, F')/n
exists. Of course, a number of similar questions arise for k-graphs as well.
Unfortunately, there is not much progress in this direction.

Truszczynski and Tuza [TT91], characterized those 2-graphs F' for which
¢ = limsat(n, F)/n exists and is smaller than 1; then, in fact, ¢ = 1 — 1/p,
peN.

In Section 5 we demonstrate a finite family F of 2-graphs for which the limit
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limsat(n, F)/n does not exist.

In the literature, there are many different variations on the topic; one possi-
bility is to consider minimum saturated graphs (most frequently K2 -saturated)
with some extra restrictions, for example, on degrees (Hajnal [Haj65], Hanson
and Seyffarth [HS84], Duffus and Hanson [DH86], Erdds and Holzman [EH94],
Firedi and Seress [FS94], Alon et al [AEHK96]), chromatic number (Hanson
and Toft [HT91]), etc. Hanson and Toft [HT87] consider edge-coloured satu-
rated graphs.

2.2 Particular Cases

Erdés, Hajnal and Moon [EHM64] via an inductive argument and contractions
computed the sat-function for all complete 2-graphs. Bollobds [Bol65] intro-
duced the powerful weight method and proved that

sat(n,Kﬂ)z(Z)—(n_T,Z+k>, n>m> k. (8)

The cases of equality were characterized in both papers.

We show that, for any K,,-saturated graph G, the number of edges spanned
by the set {z € V(G) : d(z) < a} is bounded by a2 2)eto(mae) " function of a
and m only. We deduce that G has at least In + O("l?ogfgl%g") edges, n = v(G),
if the minimal degree of G is | > m — 1. Another consequence is a sharper form
of one result by Alon, Erdds, Holzman and Krivelevich [AEHK96, Theorem 2].
Please refer to Subsection 6.4 for details.

The star S, has m vertices and consists of k-tuples containing a fixed ver-
tex. The uniform family Hy(m, 1) consists of all k-graphs of order m and size [.
Erdds, Firedi and Tuza [EFT91] determined the exact sat-values for #3(6,3)
and H3(4,3) = S} and described the cases of equality. Also, they found asymp-
totic values for Hy(k+1,k) = S’l§+1- In Subsection 6.1 we extend the last result
by computing asymptotically sat(n, S},) for all possible r and m.

In Subsection 6.2 we define a t-(v, k, \)-sub-design G as a maximal k-graph
of order n such that no ¢-set is covered by more than A edges. (Sub-designs
naturally arise when we try to construct designs by consecutively adding edges
as long as possible.) If we let D = D(\, k,t) be the family of all k-graphs with
A + 1 edges sharing at least ¢ common vertices then SAT(n, D) is the family of
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all sub-designs of order n. We compute exactly sat(n, D(\ k,t)) for £ = 1 and
any A\, k,n (except for a few small values of n) and (asymptotically) for ¢t = 2
and any fixed A\, k. In the general case t > 3 we deduce some lower bounds and
establish connections with the Turdn problem for complete hypergraphs.

In Subsection 6.3 we forbid 3 edges such that the symmetric difference of
some two edges is contained in the third one and compute asymptotically the
corresponding sat-function. (For 3-graphs, we find the exact value.)

Erdds and Gallai [EG61] showed that m K3 is the (unique) minimum graph
in SAT(n,mK2) for n > 3m. (By mF we denote the union m disjoint copies of
F.) The case of mK ,’j, k > 3, is harder. Many authors present different lower
and upper bounds on sat(n, 2K ,’g) for specific k. The best known general bounds
seem to be sat(n, 2K,’§) < k%, k > 1, by Blokhuis [Blo87], and sat(n, 2K,’§) > 3k,
k >4, by Dow et al [DDFL85].

Wessel [Wes66, Wes67] and Bollobds [Bol67b, Bol67a] computed indepen-
dently the sat-function and characterized extremal graphs for all complete bi-
partite graphs in the class of bipartite, that is, (1, 1)-layered, graphs.

Concerning 2-graphs, Készonyi and Tuza [KT86] found the complete answer
for all paths and stars. The situation for cycles looks rather complicated. Of
course, the case C3 = K3 is known. Ollman [O1172] proved that sat(n,Cy) =
|(3n—5)/2] and all extremal graphs were described by Tuza [Tuz89]. According
to a recent paper by Barefoot et al [BCET96], for every k > 5, we know the
exact values of sat(n,Cy) only for finitely many values of n although some
general bounds are available.

A result of Bondy [Bon72b] implies that
sat(n,Cp) > [3n/2]. (9)

There was a great amount of work invested in computing this function exactly
(Isaacs [Isa75], Clark et al [CE83, CCES86, CES92]) until the computation was
completely finished by Xiaohui et al [XWCY97] (with final touches made by
computer search). In fact, estimate (9) is sharp for all even n > 20 and all odd
n > 17.

Firedi et al [FHPZ98] considered digraphs and showed that sat(n,C_>’3) =
(14 o0(1))nlogyn. (Here s denotes the directed 3-cycle.)

In Subsection 4.4 we investigate the maximal number of edges which cannot
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be F-freely added to G, given v(G) and e(G). We settle this problem (with
a description of all extremal graphs) for complete 2-graphs, which extends the
already mentioned result of Erdds, Hajnal and Moon [EHM64] who computed
sat(n, K2,).

3 Construction

Here we demonstrate some constructive upper bounds on sat(n,F) for a gen-
eral family F which, in particular, imply the conjecture of Tuza [Tuz86] (also
conjectured by Bollobés, unpublished) that, for any k-graph F,

sat(n, F) = O(nF1). (10)

Note that we cannot replace &k — 1 by a smaller exponent in (10) if we want
the estimate to be valid for every k-graph F'; this follows, for example, from
formula (8).

Készonyi and Tuza [KT86] proved that sat(n,F) = O(n), for any family
F of forbidden 2-graphs, including infinite families; this verifies (10) for k =
2. However, there has been no progress in proving (10) for & > 3 and the
conjecture is mentioned in a few different papers, e.g. in [Tuz88, EFT91, Tuz92,
Fra95]. Also, the importance of estimate (10) might be indicated by the fact
that Bollobas [Bol95], in his authoritative survey of the whole of extremal graph
theory, gives two different proofs of sat(n,F) = O(n) for 2-graphs.

Let us present some general construction of H € sat(n, F) which implies (10);
this result appears in [Pik99d].

For a k-graph H, we say that A C V(H) is independent if it does not span
an edge in H, that is, A®) N E(H) = 0.

Theorem 1 Let F be a family of k-graphs. Suppose that there is s € N such
that no F € F contains an independent set A C V(F) of order s+ 1 which can
be covered by a union of F-edges sharing a common vertez outside A. Then, for
any n,

sat(n, F) < (3'—s+2k_1(3—1)> <kil>’ (11)

where ' = min{v(F) : F € F}.
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Proof. It is enough to construct a graph H € SAT(n,F) whose size does not
exceed the stated bound. Our construction will be by means of an algorithm.
Our algorithm works in the following way. Let us agree that the vertex set
is X = [n] with the usual ordering. Given z € X and B C X, we write B < z
if every vertex in B is smaller than z. By U, = {y € X : y > =} we denote the
upper shadow of z and in the obvious way we define the lower shadow L,. If

|B| < k, say B consists of elements by < ... < b;, i <k, then we define its tail
T = {{bl,... 06 Tig1,y - - ,.’L’k} th <zip1 < ... < .’L'k} C X(k) (12)

We construct an F-saturated graph H by starting with the empty hyper-
graph H on X and adding to H one by one certain families of edges until we
obtain H € SAT(n,F).

The algorithm is rather simple. We take, one by one in order, the vertices
of X. For every vertex x, we consider all of the i-subsets of L;, beginning with
i = 0 and increasing ¢ until ¢ = k — 1. For every such subset A < z, we consider
Ts, B = AU {z}, which is, by the definition, the family of k-subsets having B
as an initial segment. If at this moment 7 ¢ E(H) and the addition of 7p
to the edge set of H does not create any forbidden subgraph, we add 7p to H.
This is a crucial feature of the algorithm: for every x and A we either add all
of Tp or we add nothing.

Another important detail is the order of the steps. The outermost cycle has
x increasing from 1 to n. The next cycle runs for ¢ increasing from 0 to k£ — 1.
In the innermost cycle we consider all i-subsets of L, and here we are free to
choose them in any order, but for uniformity let us agree that we use here the
colex order.

In the course of the algorithm we define, on the vertex set X, auxiliary
hypergraphs Hy,...,H, and Gi,...,G; which we need for an estimation of
e(H) = |E(H)|.- The k-hypergraph H, contains precisely those edges which
were added whilst considering vertices from 1 to z inclusive. The i-hypergraph
G; contains as edges those i-subsets B for which the set 75 was added to H.

We claim that the resulting graph H = H,, is an F-saturated graph. Indeed,
H is F-admissible, as we were adding edges only if they did not produce any
forbidden subgraphs. On the other hand, take any k-subset E not in E(H). We
did not use the opportunity to add F to F(H) when £ = max FE, i = k — 1 and
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A = E\ {z} (when Tp = {E}). The only reason for our not doing so is that
the addition of E would have created a forbidden subgraph F. Then certainly,
H + E contains F, which shows H € SAT(n,F).

We claim that e(G1) < s’ — 1 and

e(Gi)g(s—n(ifl), i=2,... k. (13)

Assume that for some i € [2, k| the estimate (13) is not true. Then there is
some (i —1)-set V = {vy,...,v;—1}, v1 < ... < vj_1, which is the initial segment
of at least s edges of G;. Let E1,...,Es € E(G;) be s distinct edges containing
V' as an initial segment, say E; =V U{z;},j€[s], V <21 <... < z,.

Since E; € E(G;), all edges whose initial segment is F; were added to H at
the moment when z = z; and A = V. It follows that V ¢ E(G;_1) for otherwise
these edges would have already been present in H. The only reason that we did
not add V' to E(G;_1) earlier when z = v;_; and A = {vy,...,v; 2} must have
been that the hypergraph H' = H,._, + Ty contains some forbidden subgraph
F. Let

Y={ueU, ,:ue€kFEforsome £ e E(F)NTy}.

As U,,_, is an independent set in H' and each edge in 7y contains v;_; the
assumptions of the theorem imply that |Y| < s.

By the way algorithm works, any permutation ¢ of X affecting only the upper
shadow U, of a vertex z € X (that is, o(y) = y for all y < 2) is an automorphism
of H, because any T C X*¥) with z > max B is o-invariant. Applying this
remark to z = v;_; we see that we may assume Y C Z = {z1,...,2s}.

Let F € E(F)\ E(H) C Ty which exists as F' ¢ H. Clearly, ENU,, , CY
and E € Tg;, where z; = min E'N{z1,...,2}. Since E; € E(G;) we obtain the
contradiction F € E(H), so (13) is proved for any i € [2, k].

The case ¢ = 1 does not fall into general scheme of the proof. But it is
rather trivial, for if we have at least s’ edges (one-element subsets) in G1, say
{v1},...,{vy} € E(G1), then these vertices span a complete k-graph in H,
because if B € {vy,...,vy}*) then F € Timin £y C E(H). Therefore H contains
every k-graph of order s’ which is certainly a contradiction.

Clearly, every edge of GG; corresponds to less than (";jl) edges of H so
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by (13) we obtain

- -9(," ) < <s_1>§<n;§jl>(if1>

which establishes the theorem.

Remark. Our construction is not generally best possible. For example, for

2K2, the sat-function equals 3 while our algorithm gives n — 1.

Corollary 2 For any finite family F of k-graphs, sat(n,F) = O(nF~1). I
An interesting question which still remains open is the following.

Problem 3 Is the estimate sat(n,F) = O(n*~1) valid for any infinite family
F of k-graphs, k > 3% (True for k = 2, see Kdszonyi and Tuza [KT86].)

Tuza [Tuz92] made the following (still open) conjecture which is stronger
than (10).

Conjecture 4 (Tuza) For any k-graph F we have sat(n, F) = ©(n“")), where
d(F) is defined by (6). Probably, the stronger assertion sat(n,F) = en®F) 4

On¥EF)=1) | for some constant ¢, is also true.

4 Variations

Here we consider sat-type questions for a variety of structures. Note that the
notion of a saturated structure can be defined in quite general settings, cf.
Tuza [Tuz86].

Suppose that we have a class C of objects with a binary relation ‘C’ which
is a partial order and a rank function r : C — N such that G C H implies
r(G) < r(H). Given a family F of elements of C, we say that H € C is F-
admissible if H does not contain an F' € F as a subobject. Now, let SAT(n, F)
be the family of all maximal F-admissible objects of rank n. An object H is
called F-saturated if H € SAT(r(H),F).

10
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In some cases, C will be the class of hypergraphs with some additional struc-
ture: for G,H € C, r(H) = v(H) and G C H holds if G is a subgraph of H
in a structure-compatible way. Thus, H is F-saturated if it does not contain
any forbidden substructure and this fails to be true for any H' € C strictly
containing H and having the same order.

Usually, we will ask whether the estimate
sat(n, F) = O(n"1) (14)

is true for a general ‘k-graph’ family F and for the appropriately defined sat-

function.

4.1 Graphs with Oriented Edges

Here we shall consider, roughly speaking, k-hypergraphs with the additional

structure of directed edges.

4.1.1 Directed Hypergraphs

To obtain a directed hypergraph we take a usual hypergraph and on every one
of its edges introduce some orientation, that is, a linear order.

In fact, estimate (14) is not generally true in these settings. For example,
improving previous results of Katona and Szemerédi [KS67], Firedi, Horak,
Pareek and Zhu [FHPZ98] showed that sat(n,C3) ~ nlog, n, where C_>’3 denotes
the directed 3-cycle: E(Ch) = {(1,2),(2,3), (3,1)}.

But the situation is different if we consider cycle-free (or acyclic) hyper-
graphs, that is, those not containing a cycle which is, by definition, an alternat-

ing sequence of vertices and edges
(:L'la Ela Z2, E27 - Ly, Ela Zj41 = xl)

such that x; precedes x;41 in F;. Equivalently, a graph H is cycle-free if we can
order its vertices in a way compatible with the ordering of its edges.

By definition, H is F-saturated if no F' € F is a subgraph of H but the
addition of any new (ordered) edge to G creates either a forbidden subgraph or
an oriented cycle. We say that A C V(F') is independent if no edge of F' lies
within A.

11
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Theorem 5 In the class of the cycle-free k-graphs, let F be a forbidden family
such that the size of any independent set A C F € F covered by a union of
F-edges sharing a vertex outside A, is bounded. Then sat(n,F) = O(nF~1).

Proof. We proceed essentially in the same way as in the proof of Theorem 1,
but there are new technicalities.

Consider one by onex € X =[n],i =0,...,k—1, A€ LY. Let B = AU{z}
and let 7p be defined by (12). An orientation of the edges in 7p is called
symmetric if any order preserving injections f, g : [k] — [n] with f([k]),g([k]) €
Tp induce identical orientations of [k].

If T ¢ E(H) (as unoriented k-tuples) and there exists a symmetric orien-
tation of 7Tp such that H 4+ Tp does not contain a forbidden subgraph or a cycle,
then we add Tp (with this orientation) to the edge set of H.

That is the algorithm. The obtained hypergraph H does not contain a
forbidden configuration. As every k-subset £ C X was tested (for B = F
we had Tp = {E} and every orientation was symmetric), we conclude that
H € SAT(n, F).

As in Theorem 1 we define the auxiliary hypergraphs H, (directed) and G;
(undirected). We have to show that e(G;) = O(n*~1).

First, suppose that E(G1) = {{z1},...,{zi}}, z1 < ... < ;. One can easily
check that, as H is cycle-free, there is no choice for the orientation of the edges
of Tyz;1, 2 <4 <l and H contains the complete cycle-free k-graph on [ vertices,
which implies [ = O(1), as required.

Suppose that e(G;) # O(n*~1), for some 1 < i < k. Then, for some (i — 1)-
tuple V' C X, we can find an arbitrarily large set Z = {z1,...,25} C Uy, © =
max V, such that VU{z;} € E(G), i € [s], and the orientation of U;cqFyuizy C
E(H) extends to a symmetric orientation ‘<’ of 7yy. As V & E(G;_1) we
conclude that H' = H, + (Tv, <) contains a forbidden subgraph F or a cycle.
If a copy of F is present we follow the proof of Theorem 1. Otherwise let
C = (y1,Er,--.,y;, E,y111 = y1) be a shortest cycle in H'.

We claim that C' can be chosen so that [W| < 3k —5, where W = (U Ei) N
Ug. Then for s > 3k — 5 we may assume that W C Z, and the argument of
Theorem 1 shows that C' C H, which is a contradiction proving the theorem.

IfY ={yi,...,y1} C Uy then [ <2 and the claim is true. Indeed, there is

12
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an i € [[] such that y;4; is larger than y; and y; 42 in [n] but it follows y; in E;
and precedes y; 1o in F;11, which by the symmetry of U, C H' implies that any
two y,y' € U, form a 2-cycle.

Next, |Y NU,| < 1; otherwise pick yp,y; € Uy, NY, h < i, with y;41 € Y\ U,
and obtain a strictly shorter cycle through (y1,...,Yn, Yit1,---,Y+1 = Y1) as
Uy C H' is ‘symmetric’. The two edges containing the point (if it exists) in
Y NU, contribute at most 2k —3 to |W|. By the symmetry of U, we can assume
that for the remaining edges F; N U, lies within some fixed (k — 2)-subset of Uy,
which shows that |W| < 3k —5. 11

For k = 2, we can prove a stronger result which includes all infinite families.
We exploit the ideas of Készonyi and Tuza [K'T86].

Theorem 6 In the class of cycle-free 2-graphs, we have sat(n,F) = O(n) for
any family F.

Proof. It is enough to provide a construction. Repeat the following as long as
no forbidden subgraph appears: take the next vertex z of X = [n]| and add all
of T;. Here, T, is the set of the (oriented) edges of the form zy, y € U,.

Suppose that we have repeated the iteration m = m(n) times. Let G' =
G'(n) be the graph received after these m steps. As [m] C V(G') spans the
complete cycle-free digraph, the number of iterations is bounded by a constant
not depending on n; namely, m < u, where u = min{v(F) : F € F}.

Obviously, m(n) is non-increasing as a function of n for n > wu, so it is
constant for n sufficiently large. Then, the reason for terminating the procedure
is that the addition of 7,,+; would create a forbidden subgraph F' and it will
be the case for any subsequent n, that is, G'(n) + 7,41 contains the same
subgraph F'.

Now we add edges to G’ in any order as long as we create neither a cycle
nor a forbidden subgraph. In the resulting graph G, no d = |V (F) N Upyy1|
edges can start at the same vertex y € U,,, as otherwise we have a subgraph

isomorphic to F. So, the number of edges in G is at most

m(n —1) - (g) +(n—m)d—1)=0(n). I

Actually, one can argue that, for sufficiently large n,

m = min{v(F) — o/ (F): F € F} -1,

13
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where o/ (F) is the maximum size of A C V(F') such that no edge starts in A.
Equivalently, m is the minimum number of vertices one needs to remove from
some F' € F to obtain a directed star (a digraph whose edges start at a common
vertex). We can take for d the size of any such star. This observation allows us

to write more explicitly the bound of Theorem 6.

4.1.2 Ordered Hypergraphs

We can introduce yet another interesting class: ordered k-graphs. Every ordered
k-graph is a usual (unoriented) k-graph with an extra structure: we have a fixed
ordering on the vertex set and the vertices of a subgraph inherit their order
from the original graph. To avoid a confusion note that an ordered graph comes
equipped with a fized vertex ordering while a cycle-free graph is one that admits
at least one compatible vertex ordering.

Without any difficulties we can restate word by word the proof of Theorem 1
(except that now we have already been given an order on the vertex set and in

the construction we take the vertices in this order).

Theorem 7 Let F be a family of ordered k-graphs. Suppose that there is s € N

such that the following holds for any x € F € F: if U, C V(F) is an independent

set covered by a union of F-edges sharing some vertex y < x, then |Uz| < s.
Then we have sat(n, F) = O(n*~1). I

Using the ideas of Theorem 6 one can see that, for £ = 2, our result can be

extended to all infinite families.
Theorem 8 For any family F of ordered 2-graphs, sat(n,F) = O(n). 1

Trivial examples show that if we enlarge any of the above classes by admitting

multiple and/or non-uniform edges, then the estimate (14) fails to be true.

4.2 Layered Hypergraphs

Let t € N be fixed. A layered set X of signature n = (ny,...,n;) (or an n-
set) is a sequence of t disjoint sets, X = (Xi,...,X;) such that |X;| = n,,
i € [t]. (Usually we typeset symbols in bold when we want to emphasize that

the object has some layered structure.) The components of X are called layers.

14
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Given k = (ki,...,kt), a layered k-graph G is a pair (V(G), E(G)), where V(G)
is a layered set and E(G) C (V(G))®), that is, F(G) is a family of k-subsets
of V(G). In other words, every k-graph G is a k-graph (usually, given k, we
denote k = kpy = >

vertex set into t layers such that every edge intersects the ¢th layer in exactly

il ki, etc.) which comes with a fixed partition of the
k; vertices. The sequence k is called the signature of G; the ith layer of G is
denoted by V;(G). For example, a bipartite graph is a layered graph of signature
(1,1) and, for ¢ = 1, we obtain the usual notion of a k-graph. All morphisms
between k-graphs preserve layers.

In the obvious way we define the notion of a subgraph, a saturated graph,
etc. For example, SAT (n, F) consists of all maximal F-admissible k-graphs on
a set of signature n.

It is not very hard to extend Theorem 1 to layered graphs. But, to make
this work self-contained, we present a complete proof.

For a k-graph F on X = (X1,...,X}), aset A C Xj is called independent if
for every E € E(F), E; ¢ A.

Theorem 9 If, for a given family F of k-graphs, there exists s such that

1. for every F € F, any independent A C V1 (F) covered by a union of

F-edges sharing a vertex in Vi(F) \ A, has at most s elements;

2. for every j € [2,t] and F € F, no (s+1)-set A C V;(F) can be covered
by a set of F-edges coinciding on the first j — 1 layers;

then there exists ¢ = ¢(F) such that, for any n,

k1 k¢
X ...
sat(n, F) < ¢ el B
min(n,...,n)

Proof. As in Theorem 1, we provide a construction of H € SAT(n, F).

Order linearly the vertex set X = (Xi,...,X;) so that any vertex of X;
comes before any vertex X; for i < j. As usual by U, = {y € X : y > z} we
denote the upper shadow of x.

We construct an F-saturated graph H by starting with the empty k-graph
H on X and applying the following procedure.

Let j run from 1 to z. Take x € X in order. For every such x let 7 vary from
0 to k; —1. Choose one by one C' C X;\ U, of size i and let B = CU{z}. Given
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B consider in any order sets A such that A intersects every X; in k; vertices,
lelj—1], AnNX; = B and ANU, = . For every such A we consider T4 which
is by the definition the family of k-subsets having A as an initial segment. If
Ta ¢ E(H) and the addition of the elements of 74 to the edge set of H does
not create any forbidden subgraph, we add 74 to H.

We argue that H exhibits the claimed upper bound in a similar way as in
Theorem 1. It is not hard to do, although there are a few new technicalities to
overcome.

We define auxiliary k-graphs Hy, ..., H, on X and auxiliary layered graphs
G; of signature (ki,...,k;j—1,i) on the set X; U...U X}, j € [t], i € [kj].

We need these graphs for estimates of e(H) = |E(H)|. H; is the k-graph con-
taining precisely those edges which were added while considering vertices from
1 to z inclusive. The hypergraph Gj; contains as edges those A = (Ay,...,4;)
for which |A;| =7 and the set Tp was added to H.

We claim that the resulting graph H is F-saturated. Indeed, H is F-admis-
sible, as we were adding edges only if it did not produce any forbidden subgraph.
On the other hand, take any edge E in the complement of E(H). We did not
add E to F(H) when z = maxE, j=t¢,i=k — 1, Ay = E; forl € [t — 1] and
Ay = Ey \ {z} (then Tao = {E}). The only reason for this is that it would have
created a forbidden subgraph F. Then H + E contains F, which shows that
H € SAT(n, F).

We want to show that

(Gy) < (s 1) (ﬁl)jﬂ (1) demicwt )

(In fact, e(G11) is bounded by some other constant s’ = s'(F) but nothing
prevents us from assuming s > s'.) This would establish the theorem as then

we would obtain the required

e(H) < ifje(cﬁ) (kjni Z) |
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Assume that, for some j and i, estimate (15) is not true. Assume first that
i# 1.

For every edge E in Gj; consider the set V of its first ky +... +kj_1 +7—1
vertices. When E varies over all edges of Gj;, by the pigeon-hole principle some

set V appears at least

o (=) |+

times. Let V consist of classes V1,...,V; of sizes kq,...,k; 1,7 — 1 respectively.

Let Eq,...,E; € E(Gj;) be s distinct edges of G;; containing V as an initial
segment, say E; = VU{z},l=1,...,5, V<2 <...<z. Let z=max V.

Since E; € E(Gj;), all edges whose initial segment is E; were added to H
at the moment when z = 2z;, A = VU {z}. It follows that V ¢ E(G;;—1),
for otherwise these edges would have already been present in H. The only
reason that we did not add V to E(Gj;) earlier, when z = 2z, C = V; \ {z}
and A = V, must have been that the k-graph H = H, + 7y contains some
forbidden subgraph F € F. Let

A={ue X;NU,:uckEforsome E c Ty NEF)}. (16)

By Assumption 1 (for j = 1) or by Assumption 2 (for j > 2) of the theorem,
|A| < s. One can argue that any layer-preserving permutation o of X affecting
only U, is an automorphism of H,, because any 7g with z > maxB is o-
invariant. Therefore, we may assume that A C Z = {z1,...,2s}.

Now let E € E(F)\ E(H) C Tv. Clearly, E € Tg, C E(H), where z; =
min(E N {z1,...,2}), since E; € E(Gy;); the obtained contradiction F C H
proves (15) for j € [t], i € [2, k;].

Suppose that (15) is not true for ¢ = 1. Then as before we argue that there
are at least s edges in G, say Vi,...,V € E(Gj1), such that their restrictions
to X1 U...U X;_; are the same which we denote by V. Let V; N X; = {v},
le[s].

First, if j > 1 then as above we argue that V is not in G;_ 1, , because
Tv, C Tv was added later. The only reason for omitting V is that the addition
of Tv would have created a forbidden F. The set A defined by (16) has at most

17
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s elements by Assumption 2; we can assume that A C {v1,...,vs} and deduce
a contradiction.

Finally, if j = 1 then H contains all k-edges E intersecting {v1,...,vs} and
s = 0O(1) follows. 1

A version for bipartite graphs (that is, (1,1)-graphs) covers all (including

infinite) families and uses slightly different ideas.

Theorem 10 For any family F of bipartite graphs, there is ¢ = ¢(F) such that,
for any ni,ne > 0,

sat(ni,n2, F) < ¢ nam

min(ny,ny)’

Proof. Suppose first that n; > ny. Choose a large s = s(F) (to be specified
later). If ng < s then any (n1,n2)-bipartite graph contains O(n;) vertices and
we are home. Otherwise, as long as no forbidden subgraph appears, take one
by one vertices in the first layer and for every such vertex z € X; = [n;] add
all edges connecting it to Xo to obtain a graph H'. Suppose we do it m times.
Note that as no — oo then m = m(ng) does not increase so we can assume that
m is constant for every ng > s, some s = $(F). Then, the only thing preventing
us from adding the edges {{m + 1,y} : y € X2} is the creation of a forbidden
subgraph F. Let |V (F) N X3| = I. We see that if we draw through any point
z € X; \ [m] any [ edges, we would obtain a copy of F. Therefore, in whatever

way we complete H' to H € SAT(ny,n2, F), we would have
e(H) <mns+1iny < (I +m)ny = O0(nq).

We settle the case nq < no in the same manner. i

4.3 Forbidden Matrices

Here we investigate sat-type problems for 01-matrices. We show that sat(n,F) =
O(n¥=1) for any family F of k-row matrices and indicate other results.

The expression ‘n x m-matriz’ means a matrix with n rows (which we view
as horizontal arrays) and m vertical columns. We restrict entries to only two
values, 0 and 1. For an n x m-matrix M, its order v(M) = n is the number

of rows and its size e(M) = m is the number of columns. Please distinguish



4 VARIATIONS

expressions like ‘an m-row matrix’ and ‘an n-row’ standing respectively for a
matrix with n rows and for a row containing n elements.

A matrix F' is a submatriz of a matrix A (denoted F' C A) if deleting some
set of rows and columns of A we can obtain a matrix which is a row/column
permutation of F. Given a family F of matrices (referred to as forbidden), we
say that a matrix M is F-admissible (or F-free) if M contains no F' € F as a
submatrix. A simple matriz M (that is, a matrix without repeated columns)
is called F-saturated if M is F-admissible but the addition of any column not
present in M violates this property; this is denoted by M € SAT(n,F), n =
v(M). Please note that, although the definition requires that M is simple, we
allow multiple columns in matrices belonging to F.

A popular extremal problem is to consider forb(n, F), the maximum size of
a simple F-admissible matrix with n rows or, equivalently, the maximal size
of M € SAT(n,F). For example, the fundamental formula (17) falls into this
class. The interested reader may start with a recent paper by Anstee, Griggs
and Sali [AGS97] containing many references.

On the other hand, the ‘dual’ of the forb-type problem has received little
attention so far. Namely, one can ask what is the value of sat(n, F), the minimal

size of an F-saturated matrix with n rows:
sat(n, F) = min{e(M) : M € SAT(n,F)}.

We will be mainly interested in this function. Obviously, sat(n,F) < forb(n, F).
If F = {F} consists of a single forbidden matrix F' then we write SAT(n, F') =
SAT(n,{F}), etc.

For an n x m-matrix M and sets A C [n] and B C [m], M (A, B) denotes the
corresponding | A| x | B|-submatrix of M. We use the following self-obvious short-
hands: M(A,) = M(A,[m]), M(A,i) = M(A,{i}), etc. For example, the rows
and the columns of M are denoted by M(1,),...,M(n,) and M(,1),...,M(,m)
respectively while individual entries—by M (i, ), i € [n], j € [m].

The n x (m1 4+ mg)-matrix [M;, Ms] is obtained by concatenating an n X m;-
matrix M; and an n X mg-matrix Ms. Let mM = [M,..., M] denote m copies
of M. We write N =2 M to say that N is a column/row permutation of M.
Thus, N C M if N = M(A, B) for some index sets A and B.

By T,i we denote the simple £ x (]f)—matrix consisting of all k-columns with
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exactly [ ones and by Kj,—the k x 2¥ matrix of all possible columns of size k.

Naturally, Tkgl denotes the k x ( fl)—matrix consisting of all distinct columns

with at most [ ones, etc. (We use Ehe shortcut (fl) = (g) + (’f) +.+ (’f))
We will need the following result proved inde[;endently by Vapnik and Cher-

vonenkis [VCT71], Perles and Shelah (see [She72]) and Sauer [Sau73].

forb(n, K}) = (s k"_ 1) - kz_:l (?) (17)

i=0

Suppose that F consists of k-row matrices. Is there any good general upper
bound on forb(n, F) or sat(n, F)? There were different papers dealing with gen-
eral upper bounds on forb(n, F), e.g. by Anstee and Fiiredi [AF86], by Frankl,
Firedi and Pach [FFP87] and by Anstee [Ans95], until the conjecture of Anstee
and Fiiredi [AF86] that forb(m, F) = O(n¥) for any fixed F was elegantly proved
by Fiiredi (see [AGS97] for a proof).

On the other hand, we can show that sat(n,F) = O(nF~!) for any family
F of k-row matrices (including infinite families). Note that we cannot decrease
the exponent of k — 1 with the estimate remaining true for any F; for example,

sat(n, Tf) = (' ,) as T;°% is the only matrix in SAT(n, TF).
Theorem 11 For any family F of k-row matrices, sat(n, F) = O(nF~1).

Proof. We may assume that K is F-admissible for otherwise we are home
by (17) as then sat(n,F) < forb(n, K;) = O(n*~1).

Let [ € [0,k] be the smallest number such that there exists m for which
[mTkgl,Tk> l] is not F-admissible. Clearly, [ is well-defined as, for [ = k, we
obtain the matrix m K}, which, of course, is not F-admissible for large m.

Let d > 1 be the maximal integer such that [mT,~', dT}, ;"] is F-admissible
for any m. Observe that letting d equal 1 we obtain the matrix [mT,fl,TkZl]
which is F-admissible. Indeed, for [ > 0 this is true by the choice of /; for [ =0
we have K} which is F-admissible by our assumption. By the choice of [, d is
bounded, that is, d is well-defined.

Choose any m such that [mT,~', (d + 1)T},T;"] is not F-admissible.

Suppose first that [ < k. Given n, let N C T't! be the n-row matrix
corresponding to the following set system:

H=|J{y enV:¥ ., y=j(modn)}.
Jjeld]
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Note that any A € [n]() is covered by at most d edges of H as there are
at most d possibilities to choose ¢ € [n]\ A so that AU {i} € H: i = j —
Y aca @ (modn), j € [d].

On the other hand, the set H; of all [-subsets of [n] covered by fewer than
d edges of H has size at most 2d(,",). Indeed, if A € H; then, for some j € [d]
andz € A, 2z =j—3 c4_,a (mod n) so, once A\{z} and j have been chosen,
there are at most 2 choices for x.

Call X € [n]®) bad if, for some A € X1,

HY EH: Y DA YN(X\A) =0} <d-1. (18)

To obtain a bad k-set X, we either complete some A € H; to any k-set or take
any [-set A and let X D A intersect some H-edge covering A. Therefore, the

number of bad sets is at most

AN O TAEI R

Assume that n is so large that N(X,) D mT;~ for any X € [n]*). This is
possible as d > 1. Of course, e(N) = O(nk~1).

Clearly, N(X,) C [d(’;)T,fl,dT,i,T,iH], for any X € [n]¥). Hence, N cannot
contain a forbidden submatrix by the choice of [ and d. Now complete it to an
arbitrary M = [N, N1] € SAT(n, F).

Suppose that e(N;) # O(n¥~1). Then, by (17), K; = N{(X,Y) for some
X,Y. Now, remove the columns corresponding to Y from N; and repeat the

procedure as long as possible to obtain more than O(nF~1)

column-disjoint
copies of K in Ni. If some X € [n](*) appears more than d times, then M (X,) D
[mT;~, (d + 1)K}] is not F-admissible. Otherwise, K C Ni(X,) for some good

(ie. not bad) X € [n]*); but then N(X,) D dT} and
M(X,) D [mT;, dT}, Ky]

contains a forbidden matrix. This contradiction proves the required bound for
[ <k.

Let us consider the case when | = [(F) equals k; the above argument does
not work in this case because N has size ©(n*), which is too large.

Consider the family H obtained by interchanging zeros and ones in each
F € F. Clearly, sat(n,H) = sat(n,F). If [(H) < k, then we are home by the
above argument applied to H. So, we assume that [(H) = k.
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Consider first the case kK = 1. Let F' € F be a matrix of the smallest size f.
Let the only row of F' consist of fy zeros and f; ones; fo + fi = f. Note that
fi > 2 and fo > 2, because [(F) = [(H) = 1. Trivially, for any n there exists
a simple n X (f — 1)-matrix M such each row of M contains exactly fy zeros.
By the minimality of f, M is F-admissible. When we try to complete M to
any F-saturated matrix, any added column cannot contain an entry equal to 1;
hence, all we can add is at most one all-zero column. Hence, sat(n,F) < f for
any n, which implies the required.

So assume that k& > 2. Now we repeat a part of the above proof with some
modifications. Probably, it would be possible to write a general single argument
covering all the cases, but we are afraid that the proof would be very hard to
follow then.

Let I' € [0,k — 1] be the smallest number such that there exists m for which
[mTEl,,Tk> l’,T,ffl, mT,f] is not F-admissible. Observe that [’ is well-defined as
this matrix contains mKj}, as a submatrix if we let I’ = k — 1.

Define d to be the maximal integer such that [mT,fl,, dT/,i',Tk> l’,T,f_l, mTF]
is F-admissible for any m. Note that letting d = 1 we obtain the matrix
[mT]fl,, Tkzl’ , T,f -1 mT,f] which does not contain a forbidden submatrix. Indeed,
if I’ > 0, this is true by the choice of I'; if I = 0, then our matrix [Kj, T,f*l, mTF]
is necessarily F-admissible as {(#) = k > 1 by our assumption.

Choose any m such that [mT,fl’, (d+ 1)T,i,,Tk>l,,T,f_1, mT}F] is not F-free.

Let N be the n-row matrix corresponding to the following set system:

H=|J{y en¥:¥ . y=j(modn)}
Jj€ld]

As above we observe that every A € [n](l') is covered by at most d edges of
H and the number of bad sets (that is, such X € [n]*) that (18) holds for some
A e XW)is O(n*1). Assume that n is so large that N(X,) D mT,fl, for any
X € [n]®), which is possible as d > 1.

Let My = [N, TZ""!]. Clearly,

Mi(X,) C [d() TS dry, Tf T nT)],  for any X € [n]®).

Hence, M, cannot contain a forbidden submatrix by the choice of I’ and d. Now
complete it to an arbitrary M = [M;, Ms] € SAT(n, F).

22



4 VARIATIONS

Clearly, e(M;) = O(n*~1). Suppose that e(Ms) # O(n*~1). Then, by (17),
K =2 My(X,Y) for some X,Y. Now, remove the columns corresponding to
Y from Ms and repeat the procedure as long as possible to obtain more than
O(n*=1) column-disjoint copies of K}, in My. If some X € [n]*) appears more
than d times then M (X,) D [mT,fl’, (d+ 1)Ky, TF~', mT}] is not F-admissible.
(We assume n > m + k.) Otherwise, K C M2(X,) for some good (ie. not bad)
X € [n)®); but then N(X,) D dT} and M(X,) D [mT,<"  dT} , TF 1, mTF, Ky

contains a forbidden matrix. This contradiction proves the theorem. 1

Let us present some other results.

The following simple observation is useful in tackling sat-type problems.
Suppose that no forbidden matrix has two equal rows. Let M’ be obtained from
M € SAT(n,F) by duplicating the nth row of M, that is, we let M'([n],) =
M and M'(n +1,) = M(n,). Complete M', in an arbitrary way, to an F-
saturated matrix. Let C be any added (n + 1)-column. As both M’'([n],) and
M'([n — 1] U {n + 1},) are equal to M € SAT(n,F), we conclude that both
C([n]) and C([n — 1] U {n + 1}) must be columns of M. As C is not an M’'-
column, C' = (C',b,1—b) for some (n — 1)-column C’ such that both (C’,0) and
(C',1) are columns of M. This implies that sat(n + 1, F) < e(M) + 2I, where
[ is the number of pairs of equal columns in M after we delete the nth row. In

particular, the following theorem follows.

Theorem 12 Suppose that no matriz in F has two equal rows. Then either

sat(n, F) is constant for large n or sat(n,F) > n+ 1 for every n.

Proof. If we have some M € SAT(n,F) with at most n columns then a well-
known theorem of Bondy [BonT72a] (see e.g. [Bol86, Theorem 2.1]) implies that
there is ¢ € [n] such that the removal of the ith row does not produce multiple
columns. Now the duplication of the 7th row gives an F-saturated matrix, which

implies sat(n + 1, F) < sat(n,F), and the theorem follows. I

There are many open problems concerning particular forbidden matrices; for
example, the computation of sat(n, T ) or sat(n, K). Of course, Theorem 12 is
applicable here. While it is easy to see that sat(n,T%) > n+1 for any m € [0, k]
and k > 2, we do not know for which £ we have sat(n, Ki) = O(1). We could

only show that sat(n, K2) = n+ 1, which is an easy (and perhaps known) result,
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and (surprisingly) sat(n, K3) = 10 for n > 4. We do not provide any proofs
here, except we exhibit an example of an n-row Kjs-saturated matrix of size 10

for any n > 6. For n = 6 we can take

000O0OT1T1TO0OT1TT1:1

001 100O01T171

01 01001011
M =

100001 1O011

10100O01T1OCO0T1

01 00101101

It is possible (but rather boring) to check by hand that M is indeed K3-saturated
as is, in fact, any n x 10-matrix M’ obtained from M by duplicating any row,
cf. Theorem 12. (The symmetries of M shorten the verification.)

The author would like to thank Richard Anstee for drawing the author’s
attention to the Turdn-type problem for matrices and Andrew Thomason for

his computer programme used for computing sat(n,F) for small n and F.

4.4 Edge Killers

Here we introduce certain extremal problems which are closely related to the
sat-type questions. We settle the problem for complete 2-graphs, which extends
a theorem of Erdés, Hajnal and Moon [EHM64] who computed sat(n, K2,).

Given a forbidden family F, we say that a k-graph G F-kills (or simply kills
when F is understood) an edge E € E(G) if the addition of E to G creates a
new forbidden subgraph. For example, G € m-SAT(n,F) if and only if it kills
all edges in its complement. The F-closure Cl’z(G) of G is the k-graph on V(G)
consisting of all edges of G plus all F-killed edges. Let cl’(G) = |Cl=(G)|.

Let us define k-m-sat(e, F;n) to be the maximum size of Clz(G) where
G is a k-graph of order n and size e, e < m-sat(n,F). In the same way we
define k-sat(e, F;n) except we consider only F-free graphs of order n and size e,
e < sat(n, F). We agree that k-sat = k-m-sat = (}) for other (larger) values of e.
Clearly, k-m-sat(e, F;n) > k-sat(e, F;n); both k-m-sat and k-sat are monotone
increasing in e.

Here we compute k-m-sat and k-sat (and describe all extremal graphs) for

complete 2-graphs. This extends a result of Erdés, Hajnal and Moon [EHM64]
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who computed sat(n, K2,), as sat(n, F) = min{e : k-sat(e, F;n) = (})}.
Let us provide a construction. Given n > m > 3 and e,

— 2
(?) —1<e< <Z> - (n ZH_ ) = m-sat(n, K2) = sat(n, K2),

write e — ("™, %) = I(m — 2) +r with r € [0,m — 3]. Choose an (m — 2)-set A
and a disjoint [-set B. Let G be P4 p (which consists of all edges lying within
A U B and intersecting A) plus any r extra edges, none within B. (So B is an
independent set in G.) It is routine to check that G can be accommodated within
[n]. Clearly, G kills all (é) edges of K%(B). We show that this is best possible
by applying the contraction technique of Erdés, Hajnal and Moon [EHM64].

Theorem 13 In the above notation,
)
k-sat(e, K2;n) = k-m-sat(e, K2;n) = <2> +e, (19)
and all extremal graphs are given by the construction preceding the theorem.

Proof. To prove the upper bound, we use induction on [ with the case [ = 2
being trivially true. Let [ > 3. Given a graph G of order n and size e (not
necessarily K2 -free), fix any killed edge {x1,z2} and let G’ be obtained from G
by contracting the vertices z; and z9 into one vertex z. Fix an (m — 2)-set ¥
such that G[Y U {z1,z2}] is the complete graph but for {z,z2}; colour these
("21) — 1 edges red. Clearly, during the contraction at least m — 2 red edges
disappear, so ¢(G') < e(G) — m + 2.

Obviously, an edge killed by G is also killed by G’ (except {z1,z2}) but two
G-killed edges, say {a,z1},{a,z2} € E(G), may produce only one edge in G’
(which is also killed). When this happens then, for ¢ = 1,2, choose an arbitrary
(m — 2)-set X; with G[X; U {a,z;}] = Pyp—22 and colour all edges connecting
a to X; blue. Let D be a blue edge. Some a € D is incident neither to z; nor
to 9, so D is not coloured red. As the other endvertex of D sends at least one
edge to {z1,z2}, D cannot be coloured blue more than twice.

We have e — (Tg) + 1 non-red edges each being coloured blue at most twice,
while each time two killed edges contract together exactly 2(m — 2) edges are

coloured blue. This yields

m — 2
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(the last term 1 counts the edge {z1,z2}) and the induction assumption applied
to the graph G’ of order n — 1 and size at most e — m + 2 proves the desired
upper bound.

Let us follow our argument to characterize the cases of equality. Clearly, for
l =2, when e = (T;) — 1+, we must have an induced Pj,_2 2-subgraph present
while the remaining r edges can be placed arbitrarily, which is precisely what
our construction says.

Let [ > 3 and let G be an extremal graph. Apply the above contraction to
G, preserving the above notation. By induction, G' = Psp+ E; + ... + E,,
where B is an independent (I — 1)-set disjoint from an (m — 2)-set A. The vertex
z, which has degree at least m — 2 in G’, must belong to AU B as r < m — 3.

Suppose that z € A. Then the (m—1)-set Y U{z}, which spans the complete
graph in G’, must equal AU{y}, for some y € B. Each blue edge of G lies within
a Py,_22-subgraph in G’ and, as r < m — 3, none of Ej, ..., E, can be blue (nor
red, of course). But then, for z € B\ {y}, F(G) contains either {z1, z} or {z2, 2}
(because {z,z} € E(G")) which is also uncoloured. So, we have at least r + 1
uncoloured edges and we cannot have equality in (20), which is a contradiction.

Hence, ¢ € B; then Y must equal A, and G is given by our construction. I

5 Irregularities

Here we demonstrate many irregularities of the sat-function in the comparison
to the Turdn function ex(n,F) = max{e(G) : G € SAT(n,F)}.

Clearly, ex(n, F1) < ex(n, F5) whenever F} is a subgraph of Fy. Készonyi and
Tuza [KT86] demonstrated an example of F; C F» with sat(n, F1) > sat(n, F»)
for all large n. Tuza [Tuz92, p. 401] asks if there exists a connected irregular pair

Py C Fy; this is answered in the affirmative by the following simple example.

Example 14 There is a pair of connected graphs Fy C F> on the same vertex
set such that sat(n, Fy) > sat(n, Fy) for all n > v(F).

Proof. Let m > 5 and Fy = S2, that is, V(F\) = [m] and E(Fy) = {{1,i} :
i € [2,m]} and let F» be obtained from F; by adding the edge {2,3}. Clearly,

sat(n, Fp) <n—1,n > m, as S2 is an example of an Fy-saturated graph.
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On the other hand, in any monotonically Fj-saturated graph G, any two
vertices of degree at most m — 3 must be connected. (Otherwise the addition of
this edge cannot create a forbidden subgraph.) If we have v € [0,m — 2] such
vertices, then e(G) > (3) + (m — 2)(n —v)/2, which is easily seen to exceed n — 1
foralln > m. 11

Remark. Curiously enough, the w-sat-function (studied later) exhibits the
analogous irregularity on the very same pair: it is not hard to check that
w-sat(n, Fy) = e(Fy) — 1 = m — 2 while w-sat(n, F1) = (", '), n > m.

Clearly, for every n > v(F), we have ex(n, F) < ex(n + 1, F'). On the other
hand, Készonyi and Tuza [KT86] observe that, for any n = 2k — 1, sat(n, P3) =
k+1 > sat(n+1, P3) = k, where Pj is the path with 3 edges. Our next example

amplifies this irregularity.
Example 15 For every constant d, there is a 2-graph F = F(d) such that
sat(n, F') <sat(n+1,F) —d,
for a periodic series of values of n.
Proof. Let m = 2d + 3 and let F' = B,,;, be the dumb-bell
E(Bmm) = [m]® U[m +1,2m]® U {{1,m + 1}},

that is, By, is the disjoint union of two copies of K, plus one edge connecting
them.

Let us show that the claim is true for any n = Im if [ € N is large. Clearly,
sat(lm, F) < Im(m — 1)/2 (in fact, this is sharp) as [K2, € SAT(Im,F). On
the other hand, let n = Im — 1 and suppose that G € sat(n, F') has at most
g =1Im(m —1)/2 4+ d edges.

Clearly, §(G), the minimal degree of G, is at least 0(Bpym) — 1 = m — 2.
Suppose that for some z € V(@) d(xz) = m — 2. Then for every y non-incident
to = the edge E = {z,y} € E(G) cannot be the bridge in a created B,-
subgraph as the degree of x is too small; that is,  and y fall in the same

K2 -half. Therefore, y must be connected to all m — 2 neighbours of z and

e(G) > (m — 2)n 4+ O(1) which is a contradiction.
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Hence 6(G) > m — 1. The inequality A(G) + (m — 1)(n — 1) < 2¢(G) < 2¢g
implies that A(G) < 2(d+m — 1). If some z € V(G) does not belong to an
m-clique then any missing edge {z, y} must create a K2 -subgraph and we arrive
at a contradiction again, as d(z) < A(G) is bounded. Thus the whole of V(G)
is covered by m-cliques.

We want to find a set X C V(G) with the surplus s(X) = e(G[X]) — 21| X|

at least m — 1 as then the claim would follow:

m—1 m—1

e(G) = e(GX]) + (n —[X]) =

n+m-—1>g.

As m does not divide n, there are two distinct cliques A, B € V(G)™ with
i =|ANB| > 0. It is straightforward to verify that

s(AUB):2<T;> - (;) —mT_l(Qm—i) > m2_1.

No m-clique C' ¢ AU B can intersect some other clique or AUB. (Otherwise

we gain another suplus of (m — 1)/2.) By the divisibility argument, i = 1. As
a (2m — 1)-clique has suplus at least m — 1, there exists some E € E(G) lying
within AU B. It is easy to see that G+ E must contain a K2 -subgraph on some
m-set C ¢ AU B intersecting A U B, which implies sS(AUBUC) > m — 1 as
required.

Clearly, for n = ml + 1, sat(n, Bpm) > mT_ln > ¢, which completes the

proof. 1

The elegant averaging argument of Katona, Nemetz and Simonovits [KNS64]
shows that the limit ex(n, F)/n* exists for any family F of k-graphs. Concerning
the sat-function, Tuza [Tuz88] made the following (still open) conjecture.

Conjecture 16 (Tuza) For any 2-graph F, the limit lim,,_, sat(n, F)/n ez-

151s.
We can show that this assertion is not true for families of forbidden graphs.

Example 17 There exists a finite family F of 2-graphs such that, for some
¢ > 0 and for infinitely many n, sat(n,F) < sat(n £ 1,F) —cn. In particular,
the ratio sat(n,F)/n does not necessarily tend to a limit for a finite family F

of 2-graphs.
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Proof. Fix m > 4 and consider the family F consisting of the dumb-bell By,

and lea s ’Fm,m—l, where
E(le) = [m](2)U[m_Z+172m_Z](2)a 7 € [m—l]a

that is, F},; is the union of two K2 -graphs sharing i common vertices.

Clearly, the disjoint union of K2 -graphs is F-saturated as any missing edge
connects two different copies and thus creates a By,,-subgraph. Hence, if m
divides n then sat(n, F) < 2 ().

On the other hand, suppose that m does not divide n and let G be any
F-saturated graph on [n]. By the definition of F, no vertex can belong to two
different K2 -subgraphs of G; suppose that the sets A; = [m(i — 1) + 1,mi],
i € [s], are all m-sets spanning complete subgraphs in G.

Note the following two properties of G. Property A: G[Aq] = sK2,. (Because
B is forbidden.) Property B: any missing edge E intersecting B = [n] \ A[
creates a K2 -subgraph. (Because it is impossible that B,,, C G + E with E
being the bridge.)

We claim that these two properties and the fact that B # () (as m is not a

@) e

We use induction on n. If some E € B is not a G-edge then it is easy to check

divisor of n) imply that

e(G) >

s

that the graph G’ obtained from G by contracting the edge F has the properties
in question. The endvertices of E have at least m — 2 common neighbours in G
(because E creates a K2-subgraph) so e¢(G) > e(G') +m — 2 and (21) follows

by induction.

Suppose that B spans the complete graph in G. If some E € E(G) intersects
both A; and B then a K2 -subgraph created by F lies within A; U B and so at
least m — 2 G-edges intersect both A; and B. Therefore,

m—1 b n—>b
> = — - - — 2
e(G) > f(b) =(n—0b) 5 + <2> + - (m —2),
where b = |B|. (We correspondingly count the edges within A[y), within B and in

between.) The minimum of f is achieved for b = 2 4+ ™=2 and our estimate (21)

follows rather crudely.
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6 SPECIFIC CLASSES

Hence, if we increase/decrease n = ml by one, then sat(n,F) increases at
least by n™=2 4+ O(1). I

6 Specific Classes

Our aim in this section is to give precise information about sat(n, F) for special

classes F.

6.1 Stars

The star Sk, = P(1,m — 1;1,k — 1), m > k > 2, has [m] as the vertex set and
{E € Im]*) : E 5 m} as the edge set. In other words, S¥, has m vertices and its
(7;:11) edges are the k-tuples containing some fixed vertex, which is called the
centre.

The exact values of sat(n, S¥) are known only for S2,, any m, (see [KT86])
and for S} (see [EFT91]).

The asymptotic behaviour of sat(n, S’,; +1) was found by Erd6s, Fiiredi and
Tuza [EFT91, Theorem 2]. Exploiting their ideas we extend their result to all

stars; this theorem appears in [Pik99b].

Theorem 18 Let m >k > 2 and S = S¥. Then

m—k( n ) m—k( n B k—4/3
— (k - 1) > sat(n, S) > m-sat(n,S) > 5 (k - 1) O(n ). (22)

Proof. Let us provide a construction of an S-saturated graph G = G,’jl,n of order
n proving the upper bound. Partition the vertex set [n] into n' = [n/(m—k+1)]
blocks By, ..., By of size m — k 4+ 1 each except possibly the last one. The edge

set is
E(G) = {FG [n]*) : |FNBj| >2, j =min{i € [n']:FﬂBi#@}}.

Thus every edge of G has at least two common points with some B; and inter-
sects no B; with 7 < j.
Let us show that S ¢ G. Suppose not and we have an S-subgraph S’ C G

centered at x. Let

j=min{i € [n']: V(S') N B; # 0}. (23)
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Choose a k-set F' > z so that it contains one vertex from B; and some k — 1
vertices in V(S') \ B; which is possible since |V (S’) \ B;| > k — 1. We obtain
a contradiction as on one hand F' contains the centre z and must belong to S
while on the other hand F' ¢ E(G) by definition.

If we add any extra edge F' to G then the set Y = F'U B; spans a copy of
S centered at x where B; is the first block intersecting F' and {z} = F' N B;.
Indeed, every F' € Y(¥) containing z either equals F or intersects Bj in at least
two points and so belongs to E(G).

Therefore we conclude that G is S-saturated. To prove the desired upper
bound |G}, | < m=k (") we observe, for k = 2, that each vertex of the 2-
graph G%w has degree at most m — k while, for £ > 3, we use induction and
the equality [GX,, 1| = G5, + G .

Of course, sat(n,S) > m-sat(n, S).

Finally, let G be a minimum monotonically S-saturated graph on V = [n].
By the definition, the addition to G of any edge F € E(G) creates at least one
S-subgraph S’ C G + F. Let S(F) be the set of all such subgraphs S’ created
by F.

Let F(F) denote the set of edges in G which intersect F € E(G) in k — 1

points and create a copy of S containing F' as an edge. Formally,
FF)={F €eE@G):|FNF|=k-1, 35 € S(F') Fe E(S")}, F € E(G).
Also we define
F(G) = Upep@)FF), G CG,
oF = Fk-1), F e [n)®),
oG = UFeE(G,) OF, a k-graph G'.

As @ is monotonically S-saturated we conclude that
F(G) =V \ E(@G). (24)

Choose an integer ¢ = t(n), to be specified later, such that ¢ — oo and
t/n — 0. On the vertex set V we define two subgraphs Gy,G; C G; Gy is
a maximal subgraph of G with |F(Gy)| < t|Gy| and G consists of the edges
of G not in Go: E(G1) = E(G) \ E(Gy). By the maximality of Gy for every
F € E(G:) we have

F(F)\ F(Go)| > t. (25)
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From (24) and the proved upper bound in (22) we conclude that |F(G)| =
(1) =1G| = (}) = O(n*~1). Taking into the account that F(G) = F(Go) UF(G1)
and |F(Go)| < t|Go| = O(tn*~1) we obtain

x1= () - otnt, (26)

where X = .7:(G1) \.7:(G0)
Let Z = V=D \ 9G;. We claim that

|Z| = O(t'/2nk=3/2), (27)

Suppose not. Then the average value of z(D) = [{E € Z : E D D}| over all
D € V-2 i5 greater than O(t'/?n'/?). For any E, E' € Z with |ENE'| = k-2
we have F' = F U E' ¢ X, because otherwise at least one of E,E' € OF is
covered by an edge of S’ € S(F) which then is necessarily an edge of G (as
it intersects F' € F(G1) \ F(Go) in k — 1 vertices). Therefore, we have at
least (’2“)71 Y Deyk-2) (Z(f)) k-sets not in X, which exceeds (,",)O(tn) by the
convexity of (5). This contradicts (26) and proves the claim.
Let
g1(E)=|{F € E(Gy): F D E}|, FE€0dG.

Take any F' € E(G1). Let OF = {E,...,Ey}. We claim that all but at most
two of g1 (E;)’s are larger than t/6. Suppose not, say ¢ (E;) < t/6, 1 =1,2,3.
Take F' € F(F) \ F(Gy) and any S’ € S(F') containing F' as an edge. Let
F' = E; U{z}, some i € [k], z € V' \ F. The star S’ contains k — 2 edges of the
form E; U{z}, j # i. These edges cannot be in G and so contribute at least 1
to g1(E1) +g1(E2) + g1(£3). In total, each {2} UE; € E(G1) is counted at most
twice. (Once it occurs then at most 2 edges of the form {z} U E; can belong to

E(G).) But this contradicts (25). The claim is proved.
Define

W = {E68G1 :gl(E) Sm—k—l},
T = {FeE(G):WnaoF +0}.
We claim that |[W| = O(t'/?n¥=3/2). Suppose not. Note that for E, E' € W

with |[E N E'| = k — 2 we necessarily have F = EU E' ¢ X for otherwise in an
S’ € S(F) centered at x, say x € E, there are m —k edges (necessarily in F(G1))
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different from F' and covering E. Thus there are at least (g) ! Y Devik-2) (w(ZD ))
edges not in X, where w(D) = [{E € W : E D> D}|, D € V=2, Using
the convexity of the (g)—function as before we can argue that there more than
O(tn*~1) edges not in X, contradicting (26). The claim is established.

Every E € W is contained in at most m — k — 1 edges of Gy, so |T| =
O(t'/?n*=3/2). For every F € E(G1)\T we have > Eeor 5 < =5 +(k—2)8.

91(E)
Note the following easy identity

1 1
T () B
1 FeE%l)\T EgF 91(E) 1%; E%(‘;F 91(E)
< (% —i—O(l/t)) Gy| + kIT).

We know, see (27), that [0G1| = (,",) — O(t*/?n¥~3/2). Hence

Taking ¢ = |n!/?| we obtain the required result. i

6.2 Sub-Designs

A t-(v,k, X)-design (or an Sy(t,k,v)) is a k-graph G of order v in which every
t-set is covered by exactly A edges. As the question whether a design exists for
a given set of parameters is generally notoriously hard, one direction of research
is to consider what we call here sub-designs. A t-(v,k, \)-sub-design G is a

maximal k-graph of order v such that no t-set is covered by more than A edges.

k

—1
t) edges so we take

Clearly, in the latter case, G can contain at most A(z)(
e(G) as the measure of the ‘goodness’ of G.

It is easy to construct sub-designs. This can be done, for example, by starting
with the empty graph and consecutively adding missing k-subsets as long as
possible. If we are lucky, we obtain an S) (¢, k,v); in this case e¢(G) is maximal
possible. On the other hand, one can ask how unlucky we can be, that is, how
small G can be. Let D = D(\,t, k) be the family of all k-graphs with A + 1
edges such that some t vertices belong to every edge. Then SAT(n,D) is the
family of all sub-designs of order n. Thus we are interested in sat(n, D(A, t, k)),

the minimal size of a ¢-(n, k, A)-sub-design.
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Note that D(A, 1,2) consists of one graph, namely the star S§+2 = K41
Készonyi and Tuza [KT86] computed sat(n, 5% ,,). In fact, their method extends
to any D(\, 1,k).

We need the following simple lemma, whose proof we include for the sake of

completeness.

Lemma 19 Given integers n', A and k with A\ < (72__11), there is a k-graph G’
on [n'] such that every vertex has degree A except a set D of at most k—1 vertices

of degree A — 1.

Proof. Place the elements of [n'] clockwise on a circle to form a regular n’-gon.
Define the equivalence relation ~ on [n']*) so that two k-sets are equivalent if
some rotation maps one onto the other. (Note that we do not allow mirror re-
flections.) Let Hy,...,H), C [n/]%) be the obtained equivalence classes. Clearly,
each H; is a regular covering of [n] of degree which is a divisor of k. Let H,
be the equivalence class of the set [k] which consists of k consecutive vertices.
Starting with the empty hypergraph G’ on [n/], for i € [p — 1], add H; to G’ if
the maximal degree does not exceed A. At the end, we will be left with some
d-regular k-graph. Clearly, A — d is at most k& because otherwise we had to add
every H;, i € [p—1], so adding H, we obtain the complete k-graph on [n'], which
implies the contradiction (7;’_—11 ) <A

Finally, we try to add some subset of H, to make G’ nearly A-regular. Take
some edge E € H, which has not been added to G’, say E = [i + 1,7 + k]. We
add, one by one, the following shifts of E:

i4+1,i+k], [i+k+1,i+2k], [i+2k+1,i+3k], ...

and so on in this order until either we come across £ again or we cannot add the
current edge (because then the maximal degree of G becomes larger than ). In
the former case, we take any other unused edge and repeat the procedure. In
the latter case, we have the required graph built because every time the added
portion of H), is nearly regular, that is, the difference between the maximal and

minimal degrees is always at most 1. 1

The following theorem gives the exact answer in almost every case, except

for some small n when we have only a lower bound.
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Theorem 20 Given A\ > 1 and k > 2, let D = D(\,1,k) and define v by
Mk € [(Zj),(kﬁl)] Then m-sat(n,D) > (}) + [@] If, furthermore,

A< ("07Y) then

m-sat(n, D) = sat(n, D) = (Z) + [W] . (28)

Proof. Given G € m-SAT(n,D), let V. C V(G) consist of all vertices whose
degree (that is, the number of containing it edges) is at most A — 1. Clearly, V'
must span the complete k-graph, for otherwise the addition of a missing edge F €
V) to G cannot create any forbidden subgraph. Thus e(G) > min, e, f(v),

where f(v) = (}) + A(",;”), which implies the lower bound on m-sat.

Conversely, let n’ = n — v and let G be the nearly A-regular k-graph G’
on [n'] built in Lemma 19, plus the complete k-graph on V' = [n' + 1,n] and
(it D ={z € [n'] : d(xz) < A} # 0) plus an edge E intersecting [n'] in the set
D. (Note that v > k — |D| if D # §: otherwise G' + K¥(V) € m-SAT(n, D)
contradicts our lower bound.)

All vertices in [n'] have degree A and any missing edge (which must intersect
[n']) creates a forbidden subgraph. Also, G is D-free: if (Zj) > A, then we
obtain the contradiction f(v) > An/k > f(k — 1). The required G € SAT(n, D)
is built. 1

Next, let t = 2 and D = D(A, 2, k), that is, we forbid A + 1 edges having 2
common vertices. The Turdn number t(n,t, k) = ex(n, Kf) is the maximum size
of a K!-free t-graph of order n. Define a(n,t,k) = (7;) —t(n,t, k). We are able
to compute asymptotically sat(n, D).

Theorem 21 Given A > 2 and k > 3, let ¢ = A/(g) Then, for any n >
max(k + ¢ — 1, ket/(F=2)),

m-sat(n, D(X,2,k)) > ca(n,2,k). (29)

On the other hand, for any fized X\ and k,

n2
sat(n, D(A, 2,k)) < ca(n,2,k) + O (W) . (30)

Proof. Given a monotonically D-saturated k-graph H, we build, on the same

vertex set, the 2-graph G so that {3,j} € E(G) iff there are at least A\ H-edges
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containing both 4,7 € V(H). Clearly, any k-set E independent in G must be
an edge of H, for otherwise the addition of E' to H does not create a forbidden
subgraph. This implies that

e(H) > L(G) = k2(G) + ce(G), (31)

where k,% (@) denotes the number of K,%—subgraphs of G, the complement of G.
We want to find, for which 2-graphs G, the right-hand side of (31) is minimized.
By a theorem of Bollobéas [Bol76] (for some extensions see Schelp and Thoma-
son [ST98]), this happens if G is a complete multipartite 2-graph (that is, if G is
a disjoint union of complete graphs). If the parts are of sizes ny > ng > ... > ny,

then we have to minimize

L(G) = kX(G) + ce(G Z Hnﬁ—cZ( > (32)
A€[l)(R) i€A
given the condition 22:1 n; =n.

Suppose that I > k. Let G’ be obtained from G by merging the smallest
two parts together. This adds n;_n; extra edges to G, but this eliminates all
K,%—subgraphs of G intersecting both of the affected parts, that is,

G k(G =nan Y ] (33)
Ag[l—-2)(k=2) €A

We claim that EAE[l72}(k72) HieA n; > c¢. As n; and n;_; are two smallest

parts, it is enough to verify the inequality for ng = ... =nj_o=n_1 =n; =2

in which case it reduces to to

o(z) = (i‘_i) s (;:i) (n— (I - Da)zt— > c. (34)

Taking the derivative, one can see that the minimum of g over =z € [1,n/l] is
achieved either for z = 1 or for x = n/l. For z = 1, the right-hand side of (34)
is h(l) = (,lg:?é) + (,lg::;) (n —1+1) and, for any [ € [k, n], the inequality h(l) > ¢
is true as h(k) > ¢ and

hi+1) =h() = (23 + (e =1+ 1) () — (123) = (e =D (2} > 0.

For z = n/I,

o= (13) ()= g I (- )
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which is clearly minimized for [ = k. But g(n/k) > ¢ by our assumptions.

Thus we may assume that [ < k—1. But then k2(G) = 0 and e(G) is minimal
if we have exactly k — 1 parts of nearly equal sizes (i.e. if G is the Turdn graph)
and (29) follows.

To demonstrate the upper bound we have to use as bricks almost optimal
sub-designs. Rodl [R6d85] was first to show that for fixed A, k,¢ there exists a
t-(v, k, A)-sub-design with A(’t’)/(’:) +o(v') edges, v — 00, that is, asymptotically
approaching the absolute upper bound. The error term was made more specific
by Gordon, Kuperberg, Patashnik and Spencer [GPKS96] who showed it to be
O(F(v)), where F(v) = v*/(logv)"/P and D = (Itg) — 1. Gordon, Kuperberg
and Patashnik [GKP95] present a few different methods suitable for practical
construction of nearly optimal sub-designs.

Let us construct G € SAT(n, D) showing that (29) is asymptotically correct.
Partition [n] = V4 U... U Vi_; into k — 1 nearly equal parts. On each part V;
construct a maximum 2-(|V;|, k, A)-sub-design H;. The union of Hy,...,Hj 1
is obviously D-free and has the size within O(F(n)) of (29). Completing it in
an arbitrary way to G € SAT(n,D), we add O(F(v)) extra edges as each extra
edge intersect some part in at least 2 vertices while each H; has O(F(v)) 2-sets

covered by strictly less than A edges. The theorem is proved. I

Finally, let us consider the general case t > 3. It seems that sat(n, D(\, t,k))
is generally related to a(n,t, k).

Theorem 22 For any fixzed X\, t and k,
A !
m-sat(n, D(A,t, k) > (1 —o(1))Aa(n, t, k) (t) , (35)
as n tends to infinity.

Proof. Let H € m-SAT(n,D(\,t,k)). Let the t-graph G consist of all t-sets
covered by at least A\ edges of H. Similarly to the above, we note that any
k-subset of [n] not spanning an edge in G, must belong to E(H) and therefore,

e(H) > Xe(Q) (k

-1
> t) + kL(G). (36)

If e(G) < (1 + o(1))t(n,t, k) then the first summand in the right-hand side
of (36) itself gives the desired lower bound. Otherwise, the result of Erdés and
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Simonovits [ES83] implies that the second summand is ©(n*) which is far more

than required. 1

We do not have many structural results related to the Turan problem for

complete hypergraphs. Sidorenko [Sid95] mentions the following conjectures.

a(n,3.k) = (%)2@)“@3), (37)

a(n,4.5) = % (Z) + o(nf). (38)

Recall that «(n,t, k) = (7;) —t(n,t,k) is the minimum size of an «(n, t, k)-graph,

that is, a t-graph on n vertices in which any k-set spans at least one edge.

Example 23 Let D = D(\,3,k), where either k = 4 or k > 5 is odd. Then
there is a D-saturated k-graph H with A(%)Q(g)/(g) +o(n?) edges. In partic-

ular, if (37) is true, then H is asymptotically extremal.

Proof. Let k = 4. Let m = [n/3]. Define A; = [(¢ — 1)m + 1,im], i € [3]. The
graph G on [3m] consisting of all triples {z,y, 2z} withz,y € A; and z € A;UA; 1,
where Ay = Ay, is an «(3m, 3,4)-graph with approximately %(g) edges.

Consider the graph H' consisting of edges E = {w,z,y, 2} with {z,y,z} €
AZ@ and w € A;y1 (then E®) C E(G)), i € [3], such that u 4+ z + y + z is
congruent modulo m to an element in [A]. Let D € E(G). For example, suppose
that D consists of z,y € A1 and w € Ay. To find z with {w,z,y,z} € E(H')
we have to satisfy w +z +y + 2z = j (mod m) for some j € [A]; there are A
solutions, but we may have to discard possible degenerate cases when z = x or
z = gy. A similar claim is true if D C A;. Hence, each G-edge, except O(n?)
edges, is covered by exactly A\ edges of H'.

It is therefore clear that if we complete the D-free graph H' to any D-
saturated graph H on [n], then we add only O(n?) edges; therefore, H has the
required size.

For k =20+ 1, [ > 2, an example of an «(n, 3, k)-graph G attaining (37) is
obtained by partitioning [n] = A; U... U A; into nearly equal parts and letting
G = Ui K?(A;). The result of Rodl [R6d85] implies that we can find a D-free
k-graph on each A; which is a nearly optimal 3-(|4;], k, A)-sub-design; let H' be
the union of these. Completing it arbitrarily to a D(\, 3, k)-saturated graph, we

add only o(n?)-extra edges, which proves the claim. 1l
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However, we do not know any matching construction for ¢ = 3 and even
k > 6. In this case, a conjectured extremal a(n,t,k)-graph G is the disjoint
union of complete 3-graphs plus at least one «(m,3,4)-extremal graph. The
last graph causes us the problem: the constructions by Kostochka [Kos82] do
not admit an almost perfect covering by k-edges, k > 6.

Here is a short explanation why. In all Kostochka’s graphs we have three
equisized sets A; U Ay U A3 = [n] and let G = (U}_;K3(4;)) UG, where G’
consists of %(3) + o(n®) other edges. Also, any k-set E with EG) ¢ E(G)
has the property that |[K N A;| > k — 2 for some %, so it can cover at most
I = (g) - (k_Q) edges of G'. Hence, we need at least e(G")/l covering edges,

3
which exceeds (%)Q(Q)/(g) + o(n?®) for k > 8. (For k = 6 we need a slightly
more refined argument.)
For similar reasons, there is no almost perfect covering of the construction by
de Caen, Kreher and Wiseman [dCKW88] which gives the upper bound in (38).
Unfortunately, we do not know any other, essentially different, constructions
attaining (37) or (38) and we do not have any likely guess what sat(n,D) could

be then.

6.3 Triangular Families

The notion of a triangle-free 2-graph can be extended to hypergraphs in the
following way: a k-graph is triangle-free if the symmetric difference of any two
distinct edges is not contained in a third edge. Clearly, this is the same as
forbidding the triangular family T, which consists of all k-graphs with three
edges F, Es, F5 such that FyAFEs C Ejs.

Katona [Kat74] raised the problem of computing ex(n, 73) which was solved
by Bollobés [Bol74] who showed that the complete 3-partite 3-graph with parts
of nearly equal sizes is a maximum triangle-free 3-graph. Bollobés [Bol74] stated
the general conjecture that the analogous construction gives ex(n, 7;) for any
k > 4; Sidorenko [Sid87] proved that this is the case for k = 4.

Concerning the sat-function, we have the following obvious example of a 7-
saturated graph: the pyramid P = P(k —1,n — k+ 1;k — 1,1) which consists of
all k-subsets of [n] containing the set [k — 1] called basic. Indeed, any missing

edge E intersects [k, n] in at least 2 points and creates a forbidden subgraph on
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the set £ U [k — 1]. Thus
sat(n, Ty) <nm—k+1, n>k+1

and this might be sharp. It is remarkable that P can be viewed as the complete
k-partite k-graph with k — 1 parts consisting of only one vertex.

In the general case we are able to prove only the following.
Theorem 24 Let k > 3 be fized. Then
n— O(logn) <sat(n,Tx) <n—Fk+1.

Proof. We have to prove the lower bound. Let G be a minimum 7j-saturated
graph on [n]; e(G) < n—k+ 1. Consecutively choose G1,G3,... C G as follows:
let e;41 be the largest integer such that the k-graph H;, E(H;) = E(G) \
(E(G1)U...UE(G))), contains a P(k —1,ej41;k —1,1)-subgraph and let G+1
be any such subgraph. We terminate the procedure when b; =n —ej;;—j(k—1)

is less than max(j, k). (We denote ep;) = ;15 €, etc.)

i€lj]

Let j > 0 and suppose we have chosen G1,...,G;. Let B; consist of some
b; vertices not covered by an edge of G;, i € [j]; B; exists as v(G;) =e; +k — 1.
(We let by = n.) Label all (k — 1)-subsets of [n] by Ay,...,A;, | = (k’fl). Let d;

be the number of edges of H; containing A;, i € [I]. Clearly,
dy = ke(Hj) <k(n—k+1—ej) =k(bj+ (j —1)(k — 1)) <k*b;.  (39)

The number of ways to add an element of Byc) creating a forbidden subgraph
with any given Ey, By € [n]*) is at most (17,;:22) +O(1)if |[EyNEy =k —1 and
it is O(bf_4) otherwise. As the addition of any F € B](.k) \ E(H;) to H; creates
a forbidden subgraph (because E is disjoint from any edge of G;, i € [j]), we
conclude that

ot (P (T (9) 2 () ey o)

1€]l]
and, by (39), 2
> (%) 2wy - o (a1)

i€l]
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We have ej;; = max;cd;. The convexity of the (g)—function implies that

the left-hand side of (41) does not exceed ;_[—Jlr]l(ejgl) < $k*bjejy1. Therefore,
we obtain that
> 2 0(1)
e; — - :
=k — 1)

From this inequality (and from the fact that e;;1 > 1 if b; > k) we deduce the

following inequality
bj1 < min ((1 - m) b; +O(1), b; — k) : (42)
It is clear that, starting with by = n, we stop after j = O(logn) steps. Now,
e(G) > e =n—bj —j(k—1) =n— O(logn).

The theorem is proved. 1

Let us consider the case k = 3; note that 73 contains only 2 non-isomorphic

graphs, S3 and Tj:

E(Si)) = {{1’273}7 {172’4}’ {1’374} }7
E(T;) = {{1,2,3}, {1,2,4}, {3,4,5} }.

Theorem 25 For any n > 4, sat(n,T3) =n — 2.

Proof. Let G be any Ts-saturated graph on [n]. Make a list of all edges of G
and, consecutively and as long as possible, merge together any two sets in the
list sharing at least 2 vertices (that is, replace then by their union.) Call the
resulting sets C1,...,C; C [n] components. Let v; = |C;|. Define the 2-graph H
on [n] by

E(H) = {{z,y} € [n]? : {z,y} = BE\AE, for some E|, By € E(G)}.

Consider any component C. It is easy to see by induction on |C| that C' is
composed of at least |C| — 2 edges of G.

Note that if £ € E(H[C]) then any E1, B2 € E(G) with E1AEy = E share 2
vertices and so belong to the same component C’; but F C C'NC so necessarily
C'=cC.

Claim 1 For every component C, A(H[C]) < e(G[C]) — 1.
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Let € C be arbitrary. For each {z,y} € E(H[C]), choose Dy, E, € E(G)
with Dy,AE, = {z,y} and Ey, > y. If {z,2} is another edge of H[C] then
E, # E,: indeed, otherwise D,AE, = {z,z} C D, and G contains a forbidden
subgraph. Hence, d(z) < e(G[C]) — 1 (we must have at one G-edge incident to

x) and the claim is proved.

Claim 2 If ¢(G[C]) < |C| -1 then for any = € [n]\ C there is a component
C' 5 z intersecting C.

By Claim 1, there exists {a,b} € E(H[C]). Asz ¢ C, E = {a,b,z} ¢ E(G).
Consider a forbidden subgraph F' created by E. We are home if {a, z} or {b, z} is
covered by Ej or Ey, where E(F) = {E, E1,Ey}. If {a,b,y} € E(F) theny € C
and the remaining edge of F' contains both  and y. Finally, if E1AFE, C E
then, as {a,b} ¢ E(H), x belongs to the component containing F; and Eo which
is the required one.

The claim is proved. In particular, Cy = V(G).

Now, if every component C spans at least |C] — 1 edges then we are home:
by Claim 2 relabel components C1,.. ., Cy so that C; N Cp;_11 # 0, i € [2,1], and
it is easy to show by induction on 7 that Cf; is made of at least [Cl;| — 1 edges,
which gives e(G) > n — 1.

So, suppose that, for example, e(G[C}]) = |C1|—2. If for every z € V(G)\C},
there are two distinct components containing z and intersecting C; then are

home:

e(G@) > Z(Ui—Q)Zvl—l—lJr Z(Ui_l)
iell) ic[2,]
> vy —1l—1+max(2l —2,2(n—vy)) > n—2. (43)

So let (5 be the only component containing some vertex z ¢ Cy and inter-
secting C1. Let {y} = C1 NCy. Let z € V(G) \ C[y) be arbitrary. (The below
argument works without any changes if C1 U Cy = V(G).)

If {z, 2} C C;, for some i € [3,1], then, by the choice of z, C; N Cy = 0 and,
by Claim 2, there exists another component through z intersecting C1.

If no component contains both z and z then, for every y' € C; \ {y},
E = {z,y',z} ¢ E(G) and considering a forbidden subgraph created by E
we conclude that, for some i € [3,1], {¢/,z} C C; (as {z,y'} cannot lie within
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a component by the definition of z). As |Ci| > 3, we have at least 2 distinct
components containing z and intersecting C}.

Now the argument similar to (43) shows that C3;) is made of at least n —
|C1 U Cy| edges, which gives e(G) > n — 3.

Can we have e¢(G) = n — 37 If we have the equality then every Cj, i € [3,1],
must intersect Cy U Cy in exactly one vertex and e(G[Cj]) = |Cj| =2, 7 € [I].
By Claim 1, there exists y; € C; such that {y,y;} € E(H), i = 1,2. But
then {y,y1,y2} & E(G) (e.g. because it intersects Cy in two vertices) and the
consideration of a created forbidden graph yields a component containing both

y1 and yo. Hence, e(G) > n — 3 as required. 1

Remark. Our further analysis has not yet yielded any characterization of the
cases of equality: we have got stuck considering different cases and, even if we
had succeeded, the proof would have been rather long. Therefore, we present
only some other constructions which we have discovered in our search. First,

there is another minimum 73-saturated graph of order 7: let V(G) = [7] and

EG)={{1,2,5}, {1,3,6}, {1,4,7}, {2,3,4}, {5,6,7} }.

Also, concerning the m-sat-function, we have yet another construction with n—2
edges for any n > 6: add, to the pyramid P(2,n — 4;2,1) with basic vertices

a,b, new vertices z,y and new edges {z,y,a} and {z,y,b}.

6.4 K,,-Saturated Graphs

Duffus and Hanson [DH86] consider sat(n, K, ) which is the minimum size of
G € SAT(n,Kp,l) ={G € SAT(n,K,,) : 6(G) > }.

Of course, any K,,-saturated graph G has minimal degree at least m — 2, so we
assume [ > m — 1.

Duffus and Hanson [DH86] proved that, for n > 5, sat(n, K3,2) = 2n—>5 and,
for n > 10, sat(n, K3,3) = 3n — 15. However, their general lower bound [DHS86,
Theorem 2], which states that sat(n, Kp,,[) > H’"‘T_Qn + O(1), is far from the
actual value. Trying to improve this bound, we showed that sat(n, K,,,[) = In+
O(M) for any fixed [ > m—1. Later, we learned that Alon, Erdds, Holzman

logn

and Krivelevich [AEHK96, Theorem 2| showed that any G € SAT(n, K,,) with
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O(n) edges has an independent set of size n — O(w), which implies that
sat(n, Ky, 1) = In + O(%). However, we decided to present our proof

because it improves all these bounds and we think that our general Theorem 26
is of independent interest.

However, the question of Bollobéds [Bol95, p. 1271] whether sat(n, K3,1) =
In + O(1) for any fixed [ > 4, remains open.

Let us give a construction of G € SAT(n, K,,,1) with in + O(1) edges: take
G = Ky -3 + Ki_y 43, which has minimal degree [ for n > 2l — m + 3.
The complete bipartite graph K;_,,13,—; does not contain a triangle but the
addition of any new edge violates this; hence, G is K,,-saturated.

To prove our lower bound we need some preliminaries. Given any d, define

a4d—m+2 = 2 and, consecutively for j =d —m +1,d —m,...,1,0,
cit1 = (m—2)(aj41 —1)+1
bjt1 = (m—2)(¢1 —1)+1
d—j—
o= I (b1 — 1) + 1,
d—j—1
aj = (7.5)05 0 -1)+2

Finally, let a = (1 +2(d — 1) + 2(d — 1)?)ao.
Given a K,,-saturated graph G, let A denote the set of G-edges connecting

two vertices of degree at most d in G:
A= {{z,y} € B(G) : d(z) < d, d(y) < d}.

The following theorem states that the size of A is bounded by a = a(d,m)
which does not depend on n. Note that we do not impose any restriction on the

minimal degree of G.
Theorem 26 For any G € SAT(n, K,;,), m > 3, we have |A| < a.

Proof. Suppose, on the contrary, that |A| > a.

We prove, by induction on j = 0,1,...,d — m + 2, that we can find the
following configuration in G: aj-sets X; and Y; and j-sets U; and Vj (all disjoint)
such that (i) X;UY; induces in G exactly a; edges which form a perfect matching
between X and Y and belong to A; (ii) I'y;uv;(z) = Uj for any x € X; and
Ly,uv; (y) = Vj for any y € Y.
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For j = 0 (when Uy and V| are empty), we take, one by one, edges from
A. Once we have selected an edge F € A, cross out all incident to E edges (at
most 2(d — 1) edges) and their neighbouring edges (of which at most 2(d — 1)?
can belong to A). Hence, we can build an induced matching of size at least
|A]/(1 4 2(d — 1) +2(d — 1)?) > ag as required.

Suppose that j € [0,d —m + 1] and we have Xj, etc., constructed. Choose
x € Xj; it has already got j + 1 neighbours in G the neighbour y € Y; plus all j
vertices of U;. Let N, denote the remaining neighbours of z; thus |N,| < d—j—1.
For any z € Yj distinct from y, the addition of the edge {z,z} must create a
copy of K, say on a set D, U{z,z}. Now, D, C I'(z) N I'(z) C N,.

Thus some set D, z € Y; \ {y}, appears at least b}, = [(a; — 1)/(d;LJ__21)]
times; suppose it is D € N2 which equals D, for z € B’ C Y; \ {y}, |B'| =
o
and find a set £ € Némﬁ) spanning the complete graph and connected to every
z from a set B C X; matched into B’ of cardinality b1 = [b;-H/(d*j*l)].

m—2

In a similar manner, we try to connect y to the X;-matches of B'-vertices

Clearly, no z € B can be connected to every vertex of D; otherwise D, z

and the match of z in B’ span K,,. Therefore, some v € D is not connected

bjt+1
m—2

to at least cjy1 = | | vertices of B; let C' C B consist of all such vertices.
Similarly, we can find u € E, not connected to an a;1-set Y; ;1 matched into C.
Of course, u # v. Now, let Uj 11 = UjU{u}, V11 = V;U{v}, and let X; 1 C X
consist of the matches of Yj,1, which completes our induction.

At the end, we try to apply our argument again, for j = d — m + 2. We
obtain that z € X has at least 1+j+(m—2) > d neighbours, which contradicts

the fact that {z,y} € A, where y is the Yj-match of z. Il

Now we are ready to improve the result of Alon et al [AEHK96, Theorem 2]
mentioned above. Let a(G) denote the maximal size of independent Y C V(G).

Lemma 27 For any G € SAT(n, K,;,) with O(n) edges, we have

&(G) =n—0 (nloglogn) .
logn

Proof. Suppose ¢(G) < Cn. Let d = lggl?gg"n for some fixed € > 0 and let

X ={z € V(G) : d(x) > d}. Now, d|X|/2 < e(G) < Cn implies that

X < 2Cnloglogn
-~ elogn
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By Theorem 26, Y = V(G)\ X spans at most a < n?*(m=2)+o(1) edges. Removing
at most a vertices we can make Y independent; it has the required size if ¢ <
=L

Clearly, e(G) > «(G)6(G). Therefore, Lemma 27 implies the following re-

sult.

Theorem 28 For any fized | > m — 1, sat(n, K,,,l) =In + O(nlogIOgn)_ I

logn



Part 11

Weakly Saturated Hypergraphs

7 Introduction

In this part we move to studying weakly-saturated graphs. They are briefly
mentioned in Section 1 which also contains an example how such a notion can
naturally appear in real-life problems.

Let us give some basic definitions, describe what is known about the w-sat-

function, and indicate which new results are obtained in this part.

7.1 Definitions

Let F be a family of forbidden r-graphs. An r-graph G of order n is called
weakly F-saturated, denoted G € w-SAT(n,F), if we can consecutively add all
missing edges to G so that each time we add an edge at least one new forbidden
subgraph appears. Such an ordering of E(G) is called F-proper. Equivalently,
G € w-SAT(n,F) if the weak closure Clg(G) is the complete r-graph on V(G).
(The weak closure is obtained by taking the iterated (strong) F-closure (defined
in Subsection 4.4) until it stabilizes: Clg(G) = Clz(...(Cl%(G))...).) We are

generally interested in
w-sat(n, F) = min{e(G) : G € w-SAT(n, F)}.

Note that we do not require that G is F-admissible as this does not affect
w-sat(n, F): if G € w-SAT(n, F) contains a forbidden subgraph F' C G, then the
graph obtained from G by the removal of any F-edge is still weakly F-saturated,
so G cannot be minimal. Clearly, w-sat(n,F) < m-sat(n,F) < sat(n,F).

If the forbidden family consists of only one member, F = {F'}, then we use
the shortcuts w-SAT(n, F') = w-SAT(n, F), etc.

7.2 Survey

Let us give a short survey of w-sat-type results. Unfortunately, not much is

known about the w-sat-function.
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Tuza [Tuz92] showed that, for any fixed r-graph F,
w-sat(n, F) = ©(n*). (44)
Here s(F') € [0, — 1] is what he calls the local sparseness of F':
s(F) =min{s(F): F € E(F)}, (45)

where the sparseness of an edge ' € E(F') is the smallest natural number s for
which there is an A C E with |A| = s + 1 such that A C E' € E(F) implies
E' =E.

Alon [Alo85] proved that, for any fixed 2-graph F, the ratio w-sat(n, F')/n
tends to a limit as n — oo.

Apparently, w-sat-type problems were first considered by Bollobas [Bol67c]
who made a conjecture about the value of w-sat(n, K2). This conjecture was
proved by Frankl [Fra82] and by Kalai [Kal84, Kal85]; the result is implicit in
Lovész [LovT77]; see also Alon [Alo85]. They proved that

— k
w-sat(n, K,) = (Z) — <n 7:+ >, n>m> k. (46)

In fact, Alon [Alo85] proved a more general result: he computed the w-sat-
function for KJ! ® ... ® K]!,,

Section 12. (A different proof of Alon’s result is presented by Yu [Yu93].)
Kalai [Kal85] showed that, for the complete bipartite graph K,

where ® denotes the join operator defined in

s—1

w-sat(n, Kg) > (s — 1)n — < 5

>, 2<s<t, (47)

which is sharp for s =¢ and n > 3s — 2.
Kalai [Kal85] also proved that, for the wheel W,,, = v 4+ Cy;,, we have

w-sat(n, Wy,) > 2n — 3, (48)

while it is easy to show that sat(n, W,,) < 2n—3+¢, wheree =0if m <n—2is
odd and € =1 if m is even or if m = n — 1, cf. Theorems 49-51 and Lemma 59.

Tuza [Tuz88, Conjecture 7] conjectured that

n—r+1l—2

w-sat (n, H,(r + 1,1)) = < I _o

> n>r+1>101>3, (49)
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where the uniform family H,(m,[) consists of all r-graphs of order m and size
I. Clearly, H,(r + 1,7+ 1) = {K] }, so (46) implies (49) for [ = r + 1. The
case | = 3 of Tuza’s conjecture was settled by Erdés, Fiiredi and Tuza [EFT91].

These were perhaps all known results on w-sat(n, F) for non-trivial specific

instances of F.

7.3 Our Approach

The characteristic feature of w-sat-type problems is that, given a particular
forbidden family F, it is usually fairly easy to come up with a correct example
of G,, € w-SAT(n,F), which gives us an upper bound on w-sat(n,F). (And,
as a rule, we have many different extremal graphs.) However, it is usually very
hard to prove the matching lower bound. So, techniques for establishing lower
bounds are of importance.

The notion of dependence turned out to be useful; for example, all proofs
of (46) exploit some form of it. This approach was most clearly formulated by
Kalai [Kal85]: if we have a matroid M on [n](") such that any F € F is an
M-chain, then

w-sat(n, F) > Raq([n]™), (50)

the rank of M. (An r-graph F' is an M-chain if, for any embedding V (F') C [n],
any edge £ € E(F) lies in the M-span of E(F) \ {E}.) See Lemma 33 for a
proof of (50).

We base our approach (which is described in detail in Section 9) on this idea;
we exploit what we call gross and count matroids.

Gross matroids are constructed by means of exterior algebra. They were
considered by Kalai [Kal90] (but for other purposes); we define them in Sub-
section 8.1. In brief, the gross matroid Gg of an r-graph G is a matroid on
r-uniform set systems with G being a base; thus its rank is e(G). Now, if every

F € F is a Gg-chain, then
w-sat(n, F) > Rg.([n]). (51)

The lower bound (51) is said to be g-proved. If this method gives the actual
value of w-sat(n,F), then we say that F admits a g-proof for n. A related
method (g'-proof) is also introduced.
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The principal difficulty of the matroid approach (50) is that it is not clear
at all how to search for a suitable matroid M. However, if we have G €
w-SAT(n, F) conjectured to be minimal, then G¢ is a good candidate for M. If
each forbidden graph is a G;-chain, then, by (51), we know w-sat(n, F) exactly.
In this case we say that the pair (F,G) admits a G-proof.

Our count matroid is a general and natural extension of the construction
by White and Whiteley [WW84], see Subsection 8.2. For example, our count
matroids admit many polynomials in n as the rank function while the original
definition yielded linear functions only. If M in (50) is a count matroid, then
the lower bound (50) is said to be c-proved. If the bound is sharp, then F admits
a c-proof for n. Here as well, if we have a conjecture on w-sat(n,F), then there
is one particular count matroid which is worth looking at; if this method works,
then we have a C-proof.

Unfortunately, our approaches do not always succeed: we can indicate many
concrete pairs (F, @) not admitting a C/G-proof with G € w-SAT(n,F) being
minimal. However, using these techniques we have managed to prove many new
results which we are going to describe now.

Given sequences of integers s = (s1,...,5;) and r = (r1,...,7;), the pyramid
P(s;r) is the r-graph, r = r; + ... + 7, with vertex set being the disjoint union
S1U...USy, |Si| = si, and with the edge set consisting of those r-subsets which,
for every i € [t], intersect Sy U...US; in at least r; + ...+ r; vertices. The

notion of a pyramid is rather general: we obtain, as partial cases,

Ky, = P(m;r),
Sy, = P(l,m—1;1,r),
Ki+E, = P(,m;1,1),
He(r+1,1) = Plr—1+15Lr—-1+1,01-1),

and more. Instances of pyramids appear explicitly quite often in the literature.
Applying gross matroids, we compute w-sat(n, P(s;r)) for all feasible sets of
parameters n, s and r, see Subsection 10.1. Among other things, this implies (46)
and computes w-sat(n, H,(r 4+ 1,1)), confirming the formula (49) conjectured by
Tuza [Tuz88, Conjecture 7).
Erdés, Furedi and Tuza [EFT91] asked for a description of all minimum
weakly #,(r + 1,3)-saturated graphs. In general, G/g/g'-proofs do not provide
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any good characterization of the cases of equality, but our Theorem 44 does
this for H,(r + 1,3) by providing a different (combinatorial) proof which em-
ploys some ideas from [EFT91]. (In fact, H,(r + 1,3) admits a C-proof.) In
Section 10.2 we provide a construction of G € w-SAT(n,H,(m,!)), for all n,
k, I and m, which we conjecture to be minimal. Applying count matroids, we
determine more values of w-sat(n,H,(m,[)). Applying the g'-proof technique,
we compute exactly w-sat(n,Ha(m,l)) for all possible n, m and [ and obtain
some asymptotic results. Also, we observe that we have incidentally computed
(with a g’-proof) the w-sat-function for any initial segment of [n](®) in the colex
order.

Our more general results of Section 11 imply in particular that if (F,Q)
admits a G/g/g'-proof and every r — 1 vertices of F' are covered by an edge,
then the pair (¢cn(F),cn(G)) admits a G/g/g’-proof. (The cone cn(F) of an k-
graph F is obtained by adding to F' a new vertex v and all r-edges containing v.)

In the class of 2-graphs, for example, we have cn!(F) = K;+F. The following
2-graphs are shown to admit a G/g/g’-proof: complete graphs, stars, odd cycles,
initial colex-segments of [n]®, disjoint edges, paths (more generally, almost
every forest or tree), and some others; please refer to Subsection 10.3 for details.
Therefore, we are able to compute the w-sat-function for K; + F', where F' is
any of these graphs.

Note that cn(K},) = K], ., and K], the single edge, trivially admits a G-
proof as w-sat(n, K]) = 0. This shows that complete graphs admit a G-proof
and gives another proof of (46).

In Section 12 we define the ®-operator, which we call join, and prove among
other things that if every pair (F;, G;), i € [t], admits a G/g-proof, then so does
the pair (F1®...®F;, G), where G = G1 ®...®G;. As complete graphs admit
a G-proof, the computation of the w-sat-function for joins of complete graphs
by Alon [Alo85] (another proof is presented by Yu [Yu93]) is a special instance
of our result. By applying the join operator, we can indicate many new graphs

for which we can compute the w-sat-function exactly.
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8 MATROIDS

8 Matroids

Here we define gross and count matroids and establish their basic properties.
(For an introduction to matroid theory, we refer the reader to the texts by
Welsh [Wel76] or Oxley [Ox192].) Our approach to w-sat-type problems, which

exploits these notions, is described in Section 9.

8.1 Gross Matroids

Here we define the notion of a gross matroid by means of exterior algebra. Some
background in multilinear algebra is included; for a more comprehensive treat-

ment of the topic, the reader may consult Bourbaki [Bou74] or Marcus [Mar75].

8.1.1 Exterior Algebra

Let V be an n-dimensional real vector space with a basis e = {e,...,e,}. Its
exterior algebra AV is the 2"-dimensional vector space with the formal basis
(ea)acn)- (We identify e; with er;; and ey with the scalar 1 € R.) It comes
equipped with an associative bilinear A-product which is completely determined
by

e Nej = —ej Ne;, i,j € [n],

eoy Nooo N ey, =€y s 1<y <... <y <n.
Let (e})acln) be the dual basis of (ea) ac[n)- We naturally identify A(V*) and

(AV)* so that e; A...Aep corresponds to €] 1<v <...<wv <m.

'Ul,...,'l}k}’
Let f = (f1,..., fn) be another basis of V'; in the obvious way we define f4,
fi for A C[n], etc. By M = (aij); jen) we denote the n X n-matrix satisfying

f* = Me*, that is,
fi = aiel + ...+ ainer, i € [n].

Assume that f is in the generic position with respect to e, that is, the entries
of M are n? transcendentals algebraically independent over the rationals. An
alternative definition is to assume that the entries are n? independent variables;
any equation we will consider can be reduced to the form P = 0 for some
polynomial P in the o’s with integer coefficients and we agree that the statement

is true if and only if P is the zero polynomial.
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Let /\iV be the subspace of AV spanned by (eA)Ae[n](i)- We denote
(9", h) =g"(h), g" € AV", he AV.
For g* € A\V*, h € \V, the left interior product g* L h € \V is defined by
(u*,g" Lh)y = (u" ANg*,h), forallu*e AV*.

Thus, if g* € A®V* and h € A*T'V then g* Lh € A'V, d,1 > 0. One can easily
check that L is a bilinear function, such that v* L (¢* L h) = (u* A g*) L h and,

for the basis vectors, we have:

N :l:eB\A, if AC B,
ealep = .
0, if A¢ B.

(The actual signs of +1-coefficients do not interest us at all.) Note that by the
generality of f we have (f5,er) # 0 for any E,F € [n]"). Moreover, for any
|E|=r, f e N'V and g € \" 'V, we have

(e fAg) = Z O'A,E<ej(47f> (€F—-1:9), (52)
AcE®
where 04 g = £1 depending on A and E.
For h € AV, its support is defined by

supp(h) = {A C [n] : 3 (h) # 0}. (53)

That is, to find supp(h), write h = EAc[n} caeas and take those A C [n] for
which the corresponding coefficient is non-zero. If we take the support in the

basis f we emphasize this by adding a subscript:

suppe(h) = {A C [n] : fi(h) # 0};

while the supp alone always means the support relative to e as defined by (53).

Note that the cancellation (¢*Ae%) L (hAes) = g* L h (which is not generally
correct) can be applied if, for example, each B € supp(h) is disjoint from A.
We will use identities like this a few times without detailed explanations. (The

best way to verify them is to check them for the basis vectors.)
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8.1.2 Definitions

Let us describe how to construct the gross matroid Gg of an r-graph G of order n.
Identify the vertices of G with the basis e = {e1,...,e,} of V. Let Z C A"V

be defined by the following linear relations:
Z={he N'V:fiLh=0foral E € E(G)}. (54)

As (fg)pepp)e forms a basis for A'V*, we conclude that the e(G) relations
defining Z are linearly independent so dim Z = (’;) — ¢(@) and, in fact, Z is
spanned by {fr : F € E(GQ)}.

We define the gross matroid Gg on [n]") so that an r-graph F on [n] is
dependent if; for some coefficients cg (not all zero), we have 3 pc gy cECE € Z.
To verify this condition we have to find a non-zero solution (cx)gep(r) of the

following system of e(G) linear equations:

Y cepfbren=0, DeEQG). (55)

ECE(F)
By M (G, F) we denote the ¢(G) x e(F')-matrix corresponding to (55). The
columns of M (G, [n](")) provide a representation of Gg. Note that the matroid
G does not depend on the choice of generic f. Also, G is a symmetric matroid,

r

that is, for any permutation o : [n] — [n], A C [n]") is Gg-independent if and
only if o’(A) is, where ¢’ is the induced action on [n]("). Therefore, we can
apply the notion of Gg-dependence to an r-graph F with any vertex set. (If
v(F) > v(G), we add isolated vertices to G.)

This construction is not new; Kalai [Kal90] used it to construct symmetric
matroids with a given growth polynomial. Also, in the partial case G = Py ,,_,
the matroid G¢ is exactly Kalai’s [Kal85] k-hyperconnectivity matroid on [n]®?)
which was used to compute the w-sat-function for complete graphs. These two
papers by Kalai were the starting points of our research on gross matroids.

Clearly, the rank of G¢ is codim(Z) = e(G). It is easy to show that G is a
base of G. Indeed, the determinant of M (G, G) is a polynomial in the a’s which
assumes value 1 when M (and then M (G, G)) is the identity matrix. Therefore,
the determinant is non-zero for a generic M and the columns of M (G, G) are

independent, which proves the claim.
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An r-graph F is a Gg-chain if every E € E(F) is dependent on E(F) \ {E£}

in Gg, that is, for some h € Z and real ¢’s, we have

eg =h+ Z cCpep-. (56)

DeE(F)\{E}
This is easily seen to be equivalent to the existence of h € Z with supp(h) =
E(F). To verify the last condition we have to find a solution (cg)gecp(r) with

all entries non-zero of the system (55).

8.2 Count Matroids

Here we present the definition of a count matroid and establish some its prop-
erties. We generalize naturally the original definition of White and White-
ley [WW84] to obtain a considerably wider family of matroids for which we
preserve the same name. For example, our count matroids admit many poly-
nomials in n as the rank function while the original definition is confined to
linear functions only. An advantage of count matroids is that they are defined
in purely combinatorial terms and it is usually easy to identify their independent
sets and circuits.

Count matroids are helpful in computing the w-sat-function, as is described
in Section 9. We hope that they will have many other interesting applications;
one is presented by Whiteley [Whi89].

8.2.1 Definitions

A function p : X(<®) — R (from finite subsets of X to the reals) is called
integral if it is integer-valued, increasing if p(A) < p(B) whenever A C B and

submodular if
p(AUB) +p(AN B) < p(A) +p(B), A, B e X<, (57)

Given p: X(€®) 5 R we say that non-empty A C X is p-balanced (or just
balanced if p is understood) if |A| > p(A) + 1 but, for every proper B C A (that
is B# () and B # A), we have |B| < p(B).

Edmonds and Rota [ER66] observed the following result. (The proof is easy
and can be found, for example, in Oxley [Ox192, Proposition 12.1.1].)
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Lemma 29 For any integral increasing submodular function p : X (<) 5 R
the family of p-balanced sets satisfies the circuit axioms and therefore defines a

matroid on X. 1

We are interested in defining a matroid on X = [n](™). (Then 2% is identified
with the set of r-graphs on [n].) White and Whiteley [WW84], see also [Whi96],

introduced a family of count matroids on [n](r) by defining
p(H) :a1|UE€HE|+a07 HC [n](r)’

for some fixed a; and ayp.
We have found it possible to generalize this construction in the following

way. For H C [n]™"), we denote p;(H) = |9;H|, where
OH ={D € [n]") : D C E for some E € H}, i€ 0,r].

For example, p.(H) = e(H) and p,(H) = | Ugeng E|.

We consider linear functions, that is, functions defined by
r—1
L(H)=ao+ Y ap(H), H C[n]", (58)
i=1

for some constants a; € R, i € [0, — 1].

Let us see when the function L satisfies the above properties for X = N,
It is easy to see that L is integral if and only if all coefficients are integers.
Submodular and increasing linear functions are characterized by the following

two lemmas which are of independent interest.

Lemma 30 A linear function L : X(<®) — R is increasing if and only if

ffaj (;) >0, ielr—1]. (59)

j=i
Proof. Suppose that L is increasing. Given i € [r — 1], consider the r-graph
H={Eecn":|En[r]| <i}, n>2r—i+ 1. We must have

L(H U{[r]}) - L(H) = Z (]) >0,

j=i

which is exactly inequality (59).
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On the other hand, suppose that L satisfies (59). Clearly, it is enough to
show that, for any finite H C X and £ € X \ H, we have L(H) < L(HU{E}).
Let C; = 0;,(H) N EY, ¢; = |Ci|/(}), D; = EY\ 9;(H) and d; = |D;|/(}),
i € [r —1]. Clearly, for any ¢ and j, 1 <i < j <r —1, the set system D; U Cj is
an antichain in 2€. By the LYM inequality, d; < 1 — c¢j = dj, that is,

0<d <...<dp—1 <1 (60)
It is easy to check that
r—1 r
L(HU{E}) — L(H) = Eaidi(i) (61)
1=

Consider the problem of minimizing (61) given only the constraints (60). A
moment’s thought reveals that there exists ¢ € [0, — 1] such that the extremum
is achieved when d; = ... =d; =0 and d;11 = ... =d,_1 = 1. But then (61) is

non-negative by (59), so L is increasing. il

Lemma 31 A linear function L : X(<®) — R is submodular if and only if
a; >0,i€[r—1].

Proof. The trivial consideration shows that, for any i € [r] and H,G C [n]"),
we have p;(H) + pi(G) > pi(H UG) +p;(H N G). This implies (57) if every
coefficient of L (except perhaps ap) is non-negative.

On the other hand, suppose that L is submodular. Given any i € [r — 1]
consider the following set systems. Choose a ‘large’ m-set Z C N and (r —1)-sets
Dy and Ey, indexed by Y € Z(®), so that all 2(77) + 1 selected sets are disjoint.
Let

H {DyUY :Y € zW}

G = {ByuY:Y ezW},
Clearly, we have p;(HNG) =0, j € [r—1],as HNG = 0, and
1<j<r—1,

o [0
P =R = e (-0) . 1<isa

J

HuG - 2(”: ;)’ 1<j<r-—1,
PR = e (- 0)+ ) 1<i<i
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Routine calculations show that
L(H) + L(G) - L(H UG) — LHN G) = q; (T> L O(mi ),

which, by the submodularity of L, implies a; > 0. I

Thus we restrict our attention to integer coefficients satisfying
r—1 r
a; >0,3€[r—1], and Z@(_)Zl, (62)
- J
7=0

in which case, by Lemma 29, L defines a matroid N}* on (7)), n > r, which we
still call a count matroid. The second condition in (62) excludes the degenerate
case when already a single edge is dependent. Obviously, N}' is a symmetric
matroid, that is, for any permutation o of the vertex set [n], H C [n](") is
independent if and only if o/(H) is, where o’ denotes the induced action on
[n]("). Clearly, the nested sequence (N I )n>r is compatible so we do not usually
specify n.

Actually, N, admits an alternative definition if ag > 0. Let X = [n]") and
let Y be the disjoint union of a; copies of [n](*), i € [0, —1]. Define the bipartite
graph G on X UY by connecting E € X to all elements of Y corresponding to
subsets of E € [n]("). (For example, every vertex in X has degree Y/ a; (%).) It
is easy to see that the transversal matroid of G, in which H C X is independent
if and only if H can be matched into Y, equals N7'.

Any transversal matroid is representable over fields of every characteristics,
see Piff and Welsh [PW70]; this applies to all count matroids with ag > 0. We

do not know if N, is representable for ag < 0.

8.2.2 Rank

Let us determine the rank of N}

Theorem 32 Let L satisfy (62). Then R(N]') = min ((”),L([n](T))).

r

Proof. We may assume that N' = NJ* contains a non-trivial circuit for otherwise
R(N) = (") < L([n]") and our claim is true.
Let an r-graph G form a base for N.
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Claim 1 There exists an ordering of G = {E1, ..., Es} such that
F_gNF;#0, je€[2s], (63)

where F; denotes the (unique and, by (62), non-empty) subgraph of G such that
F; + E; is a circuit. (Also we denote F1 = UjerFy, F+ E = FU{E}, etc.)

To show the claim choose arbitrary E; € G and, inductively, take for E; any
available edge satisfying (63). Suppose, on the contrary, that we are stuck after
having chosen E1, ..., Ej 1, some j € [2,s]. Let Gy = Fj;_;j and G2 = G'\ G1.
Both G| and G5 are non-empty. Clearly, for any E € G we must have either
F C Gy or F C Gy where F + F is the circuit with F' C GG. Thus, if H; is the
closure of Gy, i = 1,2, then Hy = Gy + E;_y) and Hy = [n](’") \ H;.

Let C be any N-circuit. We claim that C' cannot intersect both Hy and H.
Suppose not. Let E € C'N Hy. As Gy spans Hs, the rank of (C' N Hy) UG,
wo not decrease if we remove E. Therefore, there is a circuit C' 3 F such that
C'NHy C C and C'N Hy C Gy. Likewise, fixing some D € C' NGy # ), we
obtain a circuit C” C G which contradicts the independence of G.

Note that if we replace C' by the r-graph C' composed of the first e(C)
elements of [n](") in the colex order, then p;(C') will not increase by the Kruskal-
Katona Theorem [Kru63, Kat66], so e(C’) > L(C"). If C' is not a circuit, take
any proper subcircuit and repeat. The first two edges, [r] and [2,7 + 1], of the
eventual circuit C’ (which by (62) has size at least 2) share r — 1 vertices and fall
into the same half of [n]") = H; U Hy. But every two edges can be connected
by a sequence of edges such that any two neighbours share r — 1 vertices. By
the symmetry of N, one of the halves must be empty, which is a contradiction

proving Claim 1.

Choose an ordering guaranteed by Claim 1. Let us prove, by induction on
j, the following.
Claim 2 L(F[j] —l—E[j]) = L(Fm) = e(Fm), jE [8]

First we note that, for every i € [s],
e(F;) < L(F}) < L(F; + Ey) < e(Fi + ;) — 1 = e(F),

which implies L(F; + E;) = L(F;) = e(F;); in particular, our claim is true for

j = 1. Now we argue as follows:

L(Fm + E[J]) < L(F[j,l} + E[jfl}) + L(Fj + Ej) — L(F[j,l] N Fj)
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< B(F[j,ﬂ) + B(Fj) — G(F[jfl] N Fj) = B(Fm)

In the above transformations, we use the submodularity of L, induction and the
inequality L(Fj;_1) N Fy) > e(Fj_y) N Fj); the last inequality is valid because
Fjj_1)N Fy is independent and non-empty. (Actually, Claim 1 could be skipped
if ag > 0.) Now, Claim 2 follows.

Clearly, Fi;) = G. Therefore, L([n](")) = L(G) = e(G) = R(N}). I

Remark. Kalai [Kal90] showed that, for any symmetric matroid M on N,
Raq([n]")) is a polynomial in n for all sufficiently large n and characterized all
possible polynomials. Unfortunately, these are not confined to L([n]™)) with
some L satisfying (62). For example, the k-hyperconnectivity matroid on N
introduced by Kalai [Kal85] gives the polynomial kn — (kgl) It would be of
interest to have a purely combinatorial construction (like that of a count ma-
troid) producing every possible growth polynomial. (Matroids in [Kal90] are

constructed by means of multilinear algebra.)

9 Proof Techniques

Here we present a few different methods for proving lower bounds on w-sat(n, F).
Of these, C-proofs and G-proofs can be viewed as sufficient criteria for G, €
w-SAT(n, F) to be of the minimal size. Our approach is based on gross and
count matroids which are defined in Section 8.

The links with matroid theory are not surprising insofar as the definition
of weak saturation suggests some kind of dependence; loosely speaking, an F-
proper addition of edges corresponds to closure and the notion of a minimum
weakly saturated graph resembles that of a base.

The following observation, due to Kalai [Kal85], is crucial to our work. Sup-
pose that we have a matroid M on [n](r) and an r-graph F which is an M-chain,
that is, for every embedding V(F) C [n], every edge E € E(F) C [n]") is de-
pendent on E(F)\ {E}. Then we claim that the size of any weakly F-saturated
graph G on [n] is at least Ruq([n]")), the rank of M. Indeed, let Ei,...,E}
be an F-proper ordering of E(G). By the definition, for every i € [k], there
is an F-subgraph of G; = G + Fy ...+ E; containing E;. Thus, E; lies in the
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M-closure of G;_1, which inductively implies that G spans [2](") in M, and the
claim follows.

Clearly, the above argument can be applied to a family F of forbidden r-
graphs.

Lemma 33 (Kalai) We have
w-sat(n,F) > 1, (64)

if we can find a matroid M on [n](r) such that every F' € F is an M-chain and
Rm([n)") > 1. 0

In this case we say that we can m-prove the inequality (64). If, furthermore,
M is a count matroid, a gross matroid, or a representable matroid, then (64)
is said to be c-proved, g-proved, or r-proved correspondingly. Of course, if there
exists G € w-SAT(n,F) with e(G) = [, then G is extremal. In this case we
say that F admits an m-proof for n. In the obvious way we define a c-proof, a
g-proof, and an r-proof.

Given a matroid M on [n]™) and an r-graph F, let

Dm(F) = Fnéi[g] (e(F) — Rm(E(F)))

that is, for every embedding F' C [n], we compute how many F-edges can be
removed without decreasing the M-rank of E(F') and take the minimum over

all embeddings F' C [n]. For a family F of r-graphs, we define
Dp(F) = min{ Dy (F) : F € F}. (65)
The following refinement of Lemma 33 is also useful.

Lemma 34 Suppose that, for some family F of r-graphs and a matroid M on
[n)"), every F € F is an M-chain. Then,

w-sat(n, F) > Ra([n]")) + Dag(F) — 1. (66)

Proof. As in Lemma 33, we conclude that E(G) spans [2)") in M for any
weakly F-saturated graph G on [n]. Consider the first edge F added to G. It
creates some forbidden F' C [n]; clearly, E(F) \ {E} C E(G). Therefore, there
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are Dyq(F) —1 edges in G which are dependent on the remaining edges and the

lemma follows. |

We say that (66) is m'-proved. If M is a count, gross, or representable
matroid, then we respectively ¢’-prove, g'-prove, or r’-prove (66). If the lower
bound in (66) is sharp, then we obtain an m’-proof. In the obvious way we
define a ¢’-proof, a ¢'-proof, and an r’-proof.

The characteristic feature of w-sat-type problems is that, given F, it is usu-
ally fairly easy to come up with a correct example of a weakly F-saturated graph
G (as a rule, there are many different extremal graphs) and the harder part is
to prove that G is minimal. So, a typical problem is, given G € w-SAT(n, F),
to verify whether e(G) = w-sat(n, F), that is, we want to have some sufficient
and/or necessary conditions that a weakly F-saturated graph G has the mini-
mal number of edges. Even if there exists an m-proof; it is not obvious at all
how to search for a suitable matroid.

However, the gross matroid of G seems a good candidate for M. If each
element of F is a Gg-chain, then we immediately conclude that G is extremal.
In this case say that the pair (F,G) admits a G-proof. Hence, the G-proof can
be viewed as a sufficient criterion for G € w-SAT(n, F') to be of the minimal
size.

As gross matroids are representable, we have the following ‘hierarchy’ of

proofs (and other implications):
G-proof = g-proof = r-proof = m-proof.

Unfortunately, gross matroids are not, in general, very easy to handle; it
takes some efforts to identify their chains. Also, there are many examples of
eligible pairs which do not accept a G-proof. For example, minimum weakly
K2-saturated graphs are trees, of which only stars produce a G-proof. Besides,
G/g/g¢'-proofs do not provide an immediate characterization of minimum weakly
saturated graphs, as usually there seems to be no easy combinatorial description
of the set of bases of a gross matroid.

However, many new results are proved here using gross matroids. Let us
prove one trivial lemma which, when combined with the results of Sections 11

and 12, has non-trivial consequences.
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Lemma 35 Let K = [K] be the union of | disjoint r-edges. Then Gk is the
uniform matroid of rank I, that is, an r-graph F is independent in G if and
only if e(F) <.

In particular, for any family F of r-graphs and for any n with (Z) > 1, we
can g-prove that w-sat(n,F) > [, where | = min{e(F) : F € F} — 1.

Proof. Let us show, by induction on [, that any r-graph H of size | is Gg-
independent. We may assume that £ = [r] is an edge in both these graphs.

One can see that
det(M(K,H)) = +aq1 ... apr det(M(K', H')) + (other terms),

where H' and K' are obtained respectively from H and K by removing E and
none of the ‘other terms’ contains aqi...ap, as a factor. By induction, we
conclude that det(M (K, H)) # 0, and the claim follows as the rank of Gx is
e(K)=1.1

Count matroids can be applied to w-sat-type problems in the following,
slightly different, way. Suppose that, for a range of values of n, we have G,, €
w-SAT(n, F) (conjectured to be extremal) such that e(G,) is a polynomial in
n. Then we try to write explicitly the (unique, if it exists) count matroid N
such that Ry ([n]™) = e(G,) and check whether each F € F is an N-chain. If
we succeed, then G, is indeed extremal and we have a C-proof.

This approach is usually less successful than the one via gross matroids. Its
weaknesses are that we must have a guess for a number of values of n and that
not many polynomials are the growth polynomials of a count matroid. But still
there are a few natural problems for which, of the above approaches, only count

matroids produce results, e.g. for some uniform families, see Subsection 10.2.

10 Specific Classes
Here we obtain various results for certain particular forbidden families.

10.1 Pyramids

Here we compute the w-sat-function for pyramids, which includes a few inter-

esting results as partial cases: for example, this proves formula (49) conjectured

63



10 SPECIFIC CLASSES

by Tuza [Tuz88, Conjecture 7].

Let t be fixed. Suppose we are given a sequence r = (ry,...,r;) of non-
negative integers and a sequence of disjoint sets St, ..., Sy of sizes s = (s1,...,S¢)
such that r}; < sy, ¢ € [t]. (Dealing with sequences, we use such shortcuts as
rr =Y ermi and Sp = UierS;, I C [t]; we also assume rg = 0, Sp = 0.)

The pyramid P = P(s;r) is the r-graph, r = r, on § = S} such that
E € S is an edge of P if and only if, for every i € [t], we have |E N Syl > -
Of course, this condition is vacuously true for ¢ = ¢.

For example, for ¢ = 1 we have complete graphs; P(s1, s2;71,72) consists of
those (r; + r9)-subsets of S U Sy which intersect Sy in at least r; vertices. As
a warning, we emphasize that pyramids are usual (not layered) r-graphs.

Without loss of generality we may assume that s; > r;, 7 € [t]. If some r;
exceeds s; then, letting r' = r except r; = s; and 7,_; = r;_; +r; — s; (note that
i > 2asr < s1), we obtain the same pyramid P’ = P. Indeed, ri;]'s do not
change except r/. | = Tli—1] + 73 — i, s0, trivially, P' ¢ P. On the other hand,

li—
E € E(P) implies that

|[ENSi—ygl 2 [EN S| —si 2 1) — i = rfi_l],

and FE € E(P'). Tterating the step as long as possible, we prove the claim.

Likewise we can get rid of r; = 0 by merging S; and S;;; together (or
removing S; if i = ¢).

Here we calculate w-sat(n, P) by showing that pyramids admit a G-proof.
Note that we obtain the exact answer for all feasible values of the parameters
n, r and s. This result appears in [Pik99a].

Let us, for any n > s = s|;, provide a construction of G € w-SAT(n, P).
Partition [n] = A; U... U Ayyq so that a; = |4;| = s; +1i—1 — 13, @ € [t]; thus

t

apr1 = A =n — Z(sl +ri1—r) =n—s+r.
i=1

We also assume that our partition is consecutive, that is, in [n], any element of
A; comes before any element of A; whenever 7 < j.

Let £ € [n](") be an edge of G if and only if, for some i € [t], we have
|EN Aj| > ;1) Equivalently, the complement of G is isomorphic to

P(ags1,---,a1;74...,71,0),
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so, for example, any r-tuple intersecting A; is in E(G).

Lemma 36 G € w-SAT(n, P).

Proof. Order the missing edges in any way so that the sequences
(1A N El,....|[Agey N El), E € BE(G),

are non-increasing in the lexicographic order. (Thus, we start with (0,7r1,...,7)
and end with (0,...,0,r).) Let us show that this ordering is P-proper. Consider
the moment when we add some edge E € E(G). Let E; = EN A1, 4 € [t].
Also, let £ = Ry U...UR; and [n]\ E = T1 U...UT;;, be the consecutive
partitions with |R;| = r; and |T;| = s; — 1y, @ € [t].

Let us show that Ep;) C Rp;) and Ti;) C Ay \ Ej;_y), @ € [t]. As all partitions
in question are consecutive, it is enough to verify the sizes. By the definition of

G, we have |E};)| = |E N Ajyq| < rpj. Also,
i
|A[z’} \E[i—1]| > |A[z’}| —Tli—1] = Z(Sy +rjo1— 7"]) — Ti—1) |T E
i=1

and the claim follows.

Let S; = T; U R;, i € [t]. We claim that E creates a forbidden subgraph P
on the set S = Sj;). For every i € [t], we have |[ENS;| = |R;| =1, so £ € E(P).

Suppose, on the contrary, that there exists D € E(P) coming after . Let

us show by induction on ¢ that, for every i € [0,¢], we have
DHSM = EHSM and DﬂA[iJrH = EﬂA[iJrH, (67)

which would be a contradiction to the assumption D # E. As D,E € E(G)
are disjoint from Aj, the claim is true for s = 0. Let ¢ € [t]. As Tj; C Ay,
we conclude, by the inductive assumption, that D N Ty = ENTy = = 0. As
S[] li] Y R[], we have D N S[i] - Rm. On the other hand, D € E(P) so
|D N Spy)| > rpij, which implies

Dn SM = R[i] =FEnN S[i],
and the first part of (67) is proved. Now,

Dn A[i+1] D R[z] N A[i+1] D E[z] N A[i+1]'
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By induction, D N A = E N Apj and, as D was added later than E, we must
have |D N Ay < |E'N Apiyq)], which proves (67) completely. I

Theorem 37 The pair (P,G) admits a G-proof.
Proof. We have to show that P is a Gg-chain. Let us consider

h="hiA...\Nhy, where hi:f;}[ill_eg[] e NV, i€lt],

i

where, as usual, f* is a generic V*-basis relative a V-basis e. Each E € supp(h)
is of the form E) U...U E;, for some E; € supp(h;), ¢ € [t]. Clearly, |E;| = r;
and E; C Sp. Therefore, |E'N S| > |E};| = ry), so supp(h) C E(P). Similarly,
suppg (h;) lives within Aj; iy 441, @ € [t], which implies that suppg(h) C E (Q).

So, to prove the theorem, it is enough to show that for any E € FE(P) we
have Py = (e};,h) # 0. To do so, we can assume that S is an initial segment
in [n] and every element of S; comes before every element of S; whenever ¢ < j.
Furthermore, we may assume that F; = E N S; is a final segment of S;. Note
that Aj; C S C Ajipq) and R; = S5 \ A consists of the last r; elements of
Si, i € [t]. Clearly, |E| = |R|, where R = Ry, so let g : E\ R — R\ E be the
order-preserving bijection.

As Pg is a polynomial in the «’s, to show that Pg # 0, it is enough to

demonstrate a particular example of the a’s (or f*) such that Pg # 0. Define

: (68)

1 { e;+ez(x), x € F\R,

e otherwise.

Let ¢ € [t]. To compute h;, we expand f:‘[i] in the e*-basis by (68). Denote
Wi = A[l] \ (E \ R) and

Xi = {ze€Ay\Wi:g(z) € A},
Y, = {zeAy\Wi:g(2) ¢ Sy},
Z; = {3;' € A[i] \ W; . g(a;) S S[i] \ Am}.

As Ay C S we have a partition Ay = W;UX;UY;UZ;. As [ = e; for z € W,
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Take some z € X;; then g(z) € W;. Now, for some uv* € AV*, we have the

following representation
Fhg = Ja Mg N = (eg + €a) N egay A" = eg Mgy Au,

which implies that f:‘[i] =Fey, Nex, N fy, Nz
Next, consider some z € Y;; then g(z) € Sj;). For some u* € AV*, we have

fjl[i] Les, = (U Afy)Les, = (u* A (er + e;(w))> Leg, = (u" Aep)Les,,

that is, we can replace f; by e} without affecting h;. Also g(Z;) N Ay = () and
St \ A = Ry, so

h; = ﬂ:(e*VVi AN e}i AN 6% A f}l) Lesy, = ﬂ:f}l L eZ,UR;-

For i € [t], we have |E};_1j| > |R};_y)| and one of E; and R; is a subset of the
other, so, for each z € E; \ R, g(w) lies in R; = S}; \ A};) and z € Z;, for some
j € [i + 1,t]. Therefore, Z;; = E'\ R.

When we compute Pp = £(ep, Aicg(f7, L ez,ur,)) by expanding further
each h; in the e-basis, we obtain A as a sum of terms each of the form e, for
some D € [n](". By definition, (e%,ep) = 0 unless E = D. Consider some
r€Z; CE. Asz ¢ Rand Zy,...,Z; are disjoint, no element of supp(h;) can

contain z unless 5 = i. Computing h;, we have for some u*
hi = (u" A fz) Lezur, = (U™ A e;(m)) Lezur; + (U Aey)Lezur;,

and no element in the e-support of the second summand can contain z. Thus
we can harmlessly replace f by ez( )" (Clearly, this does not affect h; for j # i.)
Now, since g(Zi) C S[i] \ AM = R;,
Pp = £{ep Niey(egz,) L ez,ur:))
= :t<e>x£<?7 eZ[t]UR[t]\g(Z[t])> = :t<e>x£<?7 eE) = =£1.

Thus Pg is non-zero and the theorem follows. 1

Corollary 38 Suppose that we are given two sequences s = (s1,...,5;) and

r = (ry,...,7¢) of integers such that s; > r; > 1,4 € [t]. Then, for n > sy,

w-sat(n, P(s;r)) = ( n ) _ Z (n - Sitl} + rt) H <3i+1 + :t — 7'i-|-1>7
t i ;

ju r/ elt—1] é
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where the summation is taken over all sequences of non-negative integers r' =

(ry,...,r}) such that Tfﬂ =11 and, for any i € [t — 1], r{i] <7 B

Remark. To achieve equality in Corollary 38, the edges of a weakly P-saturated
graph H must form a base in Gg. As it is the case with G/g-proofs, there is no

easy combinatorial interpretation of this condition.

Pyramids cover many interesting graphs as partial cases and Corollary 38
implies new results even for r = 2: we are able to compute the w-sat-function
for P;; = P(s,t;1,1), the disjoint union of K? and E? plus all edges between
them. Namely, forn > s+, s >1,¢> 1, we have

w-sat(n, Py) = (s — 1)n — (;) 4 (;)

As P(m;r) = K, we can compute w-sat(n, K] ), formula (46) here.

Observe that P(r—1+1,l;r —1+ 1,1 —1) is the only member of H,(r + 1,1),
which proves the formula (49) conjectured by Tuza [Tuz88, Conjecture 7).

Also, S}, = P(1,m — 1;1,r — 1). Therefore, Corollary 38 directly implies

that
—k —k
w—sat(n,S&):<n>—<n )—k(n >, n>m>r>2,
T T r—1

where kK = m—r+1. A complete description of all minimum weakly S}, -saturated
graphs is available only for S2, when we can find a simple combinatorial proof
which, fortunately, works for the following, wider, class of graphs.

A delta system D] , contains [ r-tuples so that the intersection of every two

is equal to a fixed m-set called the centre. Thus, v(D] ) = m + I(r —m).

Theorem 39 For any r >m > 1 and n > m+I(r —m), w-sat(n,D] ) = (é)

Proof. To construct G € w-SAT(n, D" ), choose A € [n)(™~1) and distinct
vertices yi,...,y—1 € [n]\ A. For each i € [l —1], place into E(G) any [ —¢ edges
m.i—i-graph centred at AU {y;} and disjoint from {y1,...,yi—1}.

Let us show that G € w-SAT(n,D] ). Repeat the following step for i =

forming a D

1,...,1 — 1. Suppose, we have already added to G all edges containing A and

r
m,l—1

centred at A U {y;}. It is not hard to check that we can properly add to G all

intersecting {y1,...,y;—1}. Observe that by now we have a D -subgraph

edges containing A U {y;}, cf. Theorem 52.
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Finally, add, in any order, the remaining edges so that |[E' N A| is non-
increasing. Easy details are omitted.

Conversely, given G € w-SAT(n, D) ), define inductively A;,..., 4,1 C
V(G) as follows. Fori =1,...,[—1, consider the first edge added to G containing
none of Aq,..., A;_1 as asubset. Let A; be the centre of a created D] ;-subgraph
F. For any j € [¢ — 1], at most one edge of F' can contain A; because any two
such edges overlap in A; U A; which has size at least m + 1. Therefore, at least
I — ¢ edges of F belonged to the initial G. These edges contain A; but none of
Apyoo Ay So,e(G) > (=1 +(1—=2)+...+1=(}).

Remark. It is easy to read off the proof the characterization of all extremal
graphs for S2, = Dim_l (and for some other cases): all minimum weakly S2,-
saturated graphs can be obtained in the following way. Choose {z1,...,Tnm_2} €
[n](™=2). For every i € [m — 2], add any m — i — 1 edges through the vertex z;

not incident to x1,...,x;—1.

10.2 Uniform Families

Fix [,m,r € N with 1 <1 < (™). The uniform family H = H,(m,l) is the
family of all r-graphs of order m and size [. By definition, G € w-SAT(n,H),
n > m, if we can consecutively add the missing edges so that each creates a new
subgraph with at most m vertices and at least [ edges.

There are quite a few papers dealing with the Turdn ex-function for uniform
families; we refer the reader to Griggs, Simonovits and Thomas [GST98] for
references and for new recent results.

The sat-type problems for uniform families were considered by Tuza [Tuz88],
who made a conjecture about the value of w-sat(n,H,(r + 1,1)) (formula (49)
here), and by Erdés, Fiiredi and Tuza [EFT91] who settled the case | = 3 of
Tuza’s conjecture. Observe that we have essentially only one graph in H, (r+1,1)
which consists of all edges containing some fixed (r—I+1)-set. In our notation it
is denoted by P(r—1+1,l;r—1+1,l—1), and Corollary 38 implies formula (49).

However, the general case is still open.

Here we present, for all sets of parameters, a construction of a weakly
H,(m,l)-saturated graph which we conjecture to be extremal. Our conjecture

is in perfect accordance with the above results.
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Clearly, our construction gives an upper bound. To establish some lower
bounds, we use use gross and count matroids. This way we verify our con-
jecture for more sets of parameters. In certain cases, we characterize the sets
of minimum weakly H-saturated graphs. In particular, we answer a question
by Erdés, Fiiredi and Tuza [EFT91] who asked for a characterization of the
extremal graphs for H,(r + 1,3). These results appear in [Pik98].

10.2.1 Construction

Let n >m, 1 <1[< (T) and H = H,(m,l). We build, inductively on n, an
example of a weakly H-saturated graph G,, = G(n,r,m,l) on [n]. If n = m,
then we can take for G, any member of H,(m,l — 1). If n > m, then choose
inductively any G, 1 = G(n — 1,7,m,l) and G' = G(n — 1,r — 1,m — 1,1),
where I' =1 — (mgl) (If1 < (m;l) + 1 then we take the empty graph for G'.)
Let G,, be the r-graph on [n] defined by

E(Gp) = E(Gu_1) U{EU{n} : E € G").

Let us show that G, is indeed weakly H-saturated. By the definition of
Gy -1, we can add edges so that [n — 1] spans the complete r-graph. Then add
edges E1 U {n},...,E;U{n}, where (E1,...,FEs) is any H,_1(m — 1,I")-proper
ordering of the complement of G’. As each E; creates a subgraph of size I’ on
some (m —1)-set M D E;, M U{n} C V(G) spans at least I’ + (mfl) = [ edges
after F; U {n} has been added, which shows that G,, € w-SAT(n,H).

Conjecture 40 For any n,r,m,l € N satisfying m < n and 1 <[ < (m),

r

G(n,r,m,l) is a minimum weakly H,(m,)-saturated graph.

Remark. Generally, not all extremal graphs are given by our construction, cf.
Theorem 44.

Let us compute the size of G,,. Given [ > 2, define (uniquely) ¢ and d so
that

d—1 .
m_]_l m—d—1
[l = 1 de0,r—1].

- +;< rj ) cell %)L delor-
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The definition of G,, implies, after some thought, the following formula for e(G,,)

which, alternatively, can be routinely checked by induction on n.
d

d—1 . .
—i-1 — —1
= c+z<m I ) (n m;rz >, n > m.
j=i

r —
1=0 J

(We agree that (Z) = 1, for any i.) For our purposes, we have to find a rep-
resentation of the form e(G,) = Ek 00k (). The substitution (”7’";”71) =
Zk:o(_ )R (7 kk) which is an instance of Vandermonde’s convolution (see
e.g. [GKP89, p. 174]), implies

Lo () (802

r—
i=k Jj=t J

Now, occasionally applying the identity Efzo(—l)i(‘j) = (—l)t(jzl), t >0, we

)

can find that a = (—1)d_kc(m;_k,;1) + (=1)¥sg, where

T Ml (i Bl iy

S Gy [

Therefore, in summary,

=S (75D ()

One can check that Conjecture 40 is compatible with (44), which is one more

point supporting Conjecture 40.

10.2.2 Applications of Count Matroids

Recall that the size of G,, = G(n,r,m,l) is Zizo ay, (2), where

w0 ("5 () (G0 e

We define L = Eld:[] arpe, so that L([n]")) = e(Gy), the conjectured value.
If L defines a matroid and every F € H,(m,l) is an Np-circuit then we can
conclude that w-sat(n,H,(m,[)) = e(Gy,), which establishes the validity of our

conjecture in this case.
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The condition ay > 0, k € [d], can be rewritten as

m—k—1\ (r—k—1
(=1)%Fe > (=1)d* ( r—(l;d)_kidl—)k—l) _ (_1)d7k% (m r_—dd_ 1)_

The modulus of the latter expression is strictly decreasing with &, so, unfortu-
nately, no suitable ¢ would satisfy the conditions unless d < 2 and we have to

confine ourselves to the three cases below.

Case 1: d = 0. In this case the problem is trivial: it is easy to prove directly
the following result (also observed by Erdds, Firedi and Tuza [EFT91]).

Lemma 41 Forn>m>r>1and 1 <1< (m;l)—i-l,
w-sat(n, Hp(m,l)) =1— 1.

All extremal graphs are can be obtained by adding n — m isolated vertices to an

F € H.(m,l —1). (Which is exactly what our construction says.) I

Case 2: d=1. Let [ = (mr_l) +14+¢1<c< (T__f) By (69), we let a; = ¢
and ag = (™) — c(m — 1), that is,

T

m—1

L(H) :cpl(H)—l—( >—c(m— 1), Hc[n]™.

r

The condition 1 < ay7 + a¢ implies that either m = r + 1 (then ¢ < (T__f) must

equal 1) or m > r+ 2 and

cgmm((m;l) =y (m—2>> -t
m—r—1 r—1 m—r—1
which we assume.

Let us show that every F € H,(m,1) is a circuit in N. Obviously, pi(F) =
m, so e(F) = L(F) 4+ 1 and F is not independent. Take any proper F' C F.
If pr(F') = m then L(F') = L(F) > e(F'). If py(F') < m — 1 then F' is
independent by Theorem 32 as L([m —1](")) = (mr_l). Hence F is a circuit and

our conjecture is true.

Lemma 42 Given r, m,l andn withn>m >r > 2, letc=1- (m_l) - 1. If

r

m>r+1landl <c< —L (mfl) orifm=r+1and c=1 (whenl =3),

—r—1 r

then w-sat(n, H,(m,l)) =1 —1) +c(n—m). 1
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In some cases, we can characterize extremal graphs by providing a combina-

torial proof.

Lemma 43 In addition to the assumptions of Lemma 42, assume that m > r+1

and ¢ < ﬁ(mfl)

T

Then any minimum G € w-SAT(n,H,(m,l)) is given by

our construction.

Proof. Let G = {E\, ..., E} be a proper ordering; suppose that each E; creates
a forbidden subgraph on an m-set M; C [n] and let L = a1p1 + ap be as above.
We know that any A C [n] spans at most a;|A| + a¢ edges in G. (In fact, this
is easy to see directly for otherwise we could replace these edges by a copy of
G(]A],r,m,l), which would produce a smaller weakly saturated graph.)

We prove by induction on ¢ that, for any ¢ € [s], H; C G, the subgraph
spanned by Mj; C [n], is given by our construction.

Clearly, this is the case for ¢ = 1.

Let 7 > 1. We have to consider only the case when k = [M; \ M};_y| > 1.
Of [ edges of a forbidden subgraph F' created by FE;, at most (mr_k) can belong
to H; 1, which shows that

e(H) —e(Hi1) 21— (") = 1=c+ ("1 = ("F).

r r T

It is routine to check that the last expression is strictly greater than ck for
k € [2,m]. To prevent the contradiction |H;| > a1|Mj;| + ap, we must have
k=1and E; \ M;_y) = {z} for some vertex z contained in exactly c edges of
FNG. These edges (minus z) must lie within the (m —1)-set M[;_;; N M;, which

is exactly what our construction says. 1

As we mentioned, the value of w-sat(n, H,(r+1,3)) was computed by Erdés,
Fiiredi and Tuza [EFT91]. They asked if there is a characterization of the
extremal graphs. Our Lemma 43 does not cover this case but we can provide a
different proof of the lower bound which gives us the desired characterization.
Some ideas from [EFT91] are used here but, of course, we have to be more

delicate if we want to extract the cases of equality.
Theorem 44 For H = H,(r + 1,3) we have

w-sat(n,H) =n—r+1, n>r. (70)
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Every extremal graph G can be obtained in the following way. Start with the set
system G containing only one edge [n]. As long as possible, remove from G any
edge E of size at least v + 1, choose A € EU=Y | partition E \A =X, UXo,
X1,X9 #0, and add to G the edges AU X, and AU X,.

Proof. Although we have already established (70), we have to provide a com-
binatorial proof of the lower bound. Let G € w-SAT(n,#). Note that every
vertex in G is covered by at least one edge because otherwise the first edge
added to G and containing this vertex cannot create a forbidden subgraph.

Let Ei,...,E; be the edges of G. With this sequence we do, step by step
and as long as possible, the following operation. If some 2 sets have at least
r — 1 common points we merge them together, that is, replace them by their
union (so the resulting system is no longer r-uniform).

We claim that we end up with a sequence containing a single member (which
then must be equal to V(G)). Suppose not. Let Y7,...,Y;, t > 2, be the eventual
family. Every two different resulting sets can have at most  —2 common points.
Obviously, every edge of G lies within some Y;. Let E € G be the first edge
added to G which does not lie entirely within some Y;. (If for every E € [n](")
there is Y; D FE, then, considering chains of r-sets with overlaps of size r — 1, we
conclude that Y; = [n], some i.) The addition of £ must have created F' € H.
The two other edges E}, B2 € E(F) either belong to G or were added before £
and share r — 1 vertices, so they lie each within some set Y;. But then Y; must
contain £ C Fy U Ey which is a contradiction. The claim is proved.

Now it is easy to prove by induction that in the above process every set of
size m was a merger of at least m — r + 1 edges of G. Trivially, it was the case
for all initial sets which were precisely the edges of G. If we merge together
2 sets of sizes m; and mg made of e; > my —r+1and ex > my — 7+ 1 G-
edges respectively, the resulting set has at most m; + mo — r + 1 vertices and
e1 +es > my +me — 2r + 2 edges produced it, so the claim follows by induction.

If we have equality in (70), then, in each step of the merging procedure,
every two sets merged together have exactly » — 1 common vertices, so every
extremal graph can be obtained by reversing the merging process described in
the statement of the theorem (of course in many different ways, generally).

We have to show that any anti-merging produces an extremal graph. Clear-
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ly, at the end we are left with r-subsets and we have exactly n — r + 1 of these.
To complete the theorem, it is enough to show that a union of two complete r-
graphs H; and Hs of order at least r each with intersection A = V(H;) NV (Hz)
of size r — 1, is weakly S-saturated. But this is easy: for ¢ = r —2,r — 1,...,

add the missing edges which intersect A in exactly ¢ points. 1

Remark. The construction of G(n,r,r + 1,3) before Conjecture 40 does not

cover all cases as is demonstrated, for example, by r =3, n = 6 and

G = {{1,2,3}, {2,3,4}, {4,5,6}, {5,6,1}}.

Case 3: d = 2. Assumer > 3and [ = (m_l)—l—(T__f)—i—c—i—l with ¢ € [(T__Q?’)]

r

By (69), we let ag = ¢, a; = —c(m —2)+ (T:lz) and ag = c(mgl) —(r— 1)(m;1)

Let us check when L satisfies (62). Of course, as > 1. Next, the condition

m—2

"70)(m —2)7 It is false for = r 4 1, so assume

a1 > 0 is, in our case, ¢ < (

m > r + 2. The inequality 0 < ag (g) + air + agp reduces to

o<e("Ty T ) (- Y (2

Note that (71) is automatically true if m = r + 2 (when the coefficient at c is
zero), but then the condition a; > 0 implies ¢ = 1. So, we conclude that L

satisfies (62) if and only if either m =742 and ¢ =1 or m > r + 3 and

((m = 1)(r=1) =) (77}) . ((T:f) (m - 3)) )
< ¢ < min =

T(mfgfl) m_27 r—9 m_2. (72)

Let us check that any F € H,(m,[) is a circuit in N. Clearly, every two
vertices in F' are covered by an edge for otherwise we would have at most
(™ = (™F) <1 edges in F. Therefore, L(F) = L([m]?) =1 -1 = ¢(F) - 1
and we conclude that F' is not N -independent. On the contrary suppose that
L(H) < e(H) for some r-graph H on [m] with at most [ — 1 edges. Clearly, we
may assume that H is an initial segment of [m](") in the colex order.

Note that L([m —1](")) = (mr_l) and, by Theorem 32, [m — 1](") is indepen-
dent. Therefore, H must have m vertices. Also the 2-set {m — 1,m} cannot
be covered by an H-edge, as then e(H) > L([m]")) +1 > I. Let H' be the

(r — 1)-graph on [m — 2] satisfying

EH)=[m—-1"u{DU{m}: D e E(H")}.
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If we let L' = agp; + a; then L'([m — 2]0~Y) = (T:lz) and, by Theorem 32,
H' C [m — 2]V is independent in N7, and L'(H') > e(H').
Obviously, po(H) = p1(H') + (m2—1)‘ Therefore,

-1
L(H) = L([m — 1]) + L'(H") > (m ) +e(H') = e(H),
T
which is the desired contradiction.

Theorem 45 Assume that r > 3 and | = (mr_l) + (T:f) +c+ 1 are such that

either m =r+2 and c =1 orm > r+3 and c satisfies (72). Then Conjecture 40

15 true.

Remark. Unfortunately, we do not have any characterization of the extremal

graphs in this case.

10.2.3 Applications of Gross Matroids

We establish some further results by applying gross matroids. Namely, we prove
that our conjecture is asymptotically true for d = r — 1. Moreover, by applying
the g’-method we settle completely the case r = 2.

First, we need one simple preliminary result.

Lemma 46 Let G be an r-graph of order n and size at least (?) —n+m, where
n>m >r > 2. Then any E € E(G) is contained in a complete subgraph of

order m.

Proof. Given E € E(G), remove from each missing edge one (arbitrary) vertex
not belonging to E. We are left with at least m vertices spanning a complete

subgraph which contains E. 1

Remark. The above bound on e(G) is sharp: if the complement of G consists
of n —m + 1 edges containing some fixed (r — 1)-set A then this set is covered

only by m — r G-edges of which none lies within K], .
Theorem 47 Let | = (') — k and H = H,(m,l). If m > k+r, then

w-sat(n, H) = (m —k —r) (T " 1) +O(n"2). (73)
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Furthermore, if r = 2, then we have a g'-proof that
w-sat(n, Ha(m,l)) =(m -k —-2)(n—m)+1—-1, n>m. (74)

Proof. Implementing our construction, from the identity > , (m:;l) = ("),
we obtain that d = r — 1 and ¢ = m — r — k, which implies the upper bounds
in (73) and (74).

On the other hand, in any F' € H, any edge lies within a K] _, -subgraph
by Lemma 46. But by Theorem 37, K| , is a chain in Gp, the gross matroid
of P = P(c,n —¢;1,7 — 1), so each F € H is a Gp-chain. By Lemma 33,
w-sat(n,H) > Rg,([n]")) = e(P), which g-proves the required lower bound
in (73).

Finally, let us g’-prove the lower bound in (74) for r = 2. Let F € H. As F

has m vertices,
RQP(F) < RgP(Km) < e(P(c,m -Gl 1)) =com — (C—gl)'

(The second inequality is true because P(c,m —¢; 1,1) € w-SAT(m, K2,_,) and
Kfn_k is a Gp-chain.) Therefore some set of at least p = [ —cm+ (C‘QH) edges of F

lies in the Gp-span of the remaining edges, that is, Dg,(F) > p. By Lemma 34,
w-sat(n,H) > Rg, (Ky) + Dg, (F)—1

1
> cn—(c_; )—I—p—l = c¢n—m)+1—-1

The theorem is proved. 1

Note that for r = 2 we know w-sat(n, Ha(m, 1)) for any any feasible m and I:
for I < (m; 1) we have a g-proof that it is [ — 1 (constant) by Lemma 35, while
all other cases are covered by the g'-proof of Theorem 47.

Also note that, under the assumptions of Theorem 47 on [, the graph
G(n,r,m,l) constructed before Conjecture 40 is weakly F-saturated, where
E(F) consists of the first [ elements of [m](") in the colex order. So, Theo-
rem 47 remains valid if F' is the only member of H; this covers all possible cases

for r = 2 except the trivial case [ = (", 1) + 1.

10.3 Miscellaneous Graphs

Here we indicate a few easy results for some simple forbidden graphs such as

cycles, disjoint edges, trees, etc. The proofs are easy but they often require a
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lengthy and boring verification that the specified graph is weakly saturated. We

include them for the sake of completeness.

Cycles

Let C; denote the cycle of length I. We know (see Section 2) that the determi-
nation of the exact value of sat(n, C;) is a hard task. For the w-sat-function, on
the contrary, the complete answer is available in all cases.

The following trivial observation will be used a few times, so we state it as

a lemma.

Lemma 48 Let | > 4 be even. Then any weakly Ci-saturated graph G contains

an odd cycle.

Proof. Indeed, otherwise G is a bipartite graph. Let E be the first added edge
lying within one part. By the parity argument, any [-cycle through E must
contain another edge lying within a part, which is a contradiction to the choice
of E. 1

Let us first consider the case when the forbidden cycle is Hamiltonian.

Theorem 49 For any n > 4, w-sat(n,Cy,) = n and all extremal graphs are
obtained from a Hamiltonian cycle by adding an edge which creates an odd cycle

and then removing some other edge.

Proof. Let G be a Hamiltonian cycle visiting the vertices 1,2,...,n € [n] in this
order, minus the edge {1,n} but plus the edge {i,n}, for some even i. To prove
that G € w-SAT(n, C),,) we have to show how to properly add the missing edges
to G. First we add {1,n} thus creating a Hamiltonian cycle through 1,2,...,n.

We fix this cycle and define a t-chord as an edge connecting 2 vertices at
a distance t if we go along the cycle. Thus, after the first step, G is made of
all 1-chords and one i-chord. Next, we add all ¢-chords in the following order
{m,i+m}, m =1,2,...,n — 1. (Of course, we do all arithmetic modulo n.)
Every time we receive an extra cycle: for example, the chord {1,i + 1} creates

the cycle via

nyii—1,4—2,...,21,i4+1,i+2,...,n—2,n—1.
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Having all chords of length 1 and i > 4, it is possible to add any (i —2)-chord.

For example, the chord {2,i} creates the following Hamiltonian cycle
Le+1,04+2,2,4,0—1,...,4,3,1+3,:+4,....,n—1,n.

Therefore, we can eventually have all 2-chords.
Finally, consequently for m = 3,4, 5,..., we add all missing m-chords in any
order. This is legitimate; when we add, for example, the chord {1, m + 1} we

have a Hamiltonian cycle via
L,2,....m—-1,nn—-1....m+2mm+1

which uses only already present chords (of length 1, 2 and m — 1). Therefore,
G € w-sat(n,Cp).

On the other hand, suppose that G € w-SAT(n,C,). The first edge added
to G creates a Cp-subgraph F' (that is, a Hamiltonian cycle), so there is a
Hamiltonian path P,_; in G. It is easy to see that P,_; ¢ w-SAT(n,C,) so
there is at least one more edge F and w-sat(n,C,) > n. Moreover, F' + E
must contain at least one odd cycle by Lemma 48, which is precisely what our

construction says. 1

Let us consider odd and even cycles separately.

Theorem 50 Let | > 3 be odd and let n > . Then w-sat(n,C;) =n — 1, all

extremal graphs are trees of order n and diameter at least | — 1, and C; admits

a g-proof for n.

Proof. Let G be any such tree. First we add any edge connecting two vertices
at distance [ — 1; suppose the created I-cycle goes through the vertices 1,...,[ €
V(G) in this order. As v(G) > [ and G is connected, we may assume that
the vertex [ + 1 € V(G) is connected to [. Obviously, we can add the edge
{2,1 4+ 1} which creates the Il-cycle through 2,3,...,l,l + 1. Next, we can add
the edge {1,4} which creates the l-cycle through 4,5,...,1,0 +1,2,1. Now the
set [l] C V(G) spans an [-cycle plus the edge {1,4} creating an odd (I — 2)-
cycle—the situation in which we can apply Theorem 49 to add all edges within
[1].

But it is trivial to show that a connected graph with an [-clique is weakly
Cj-saturated, which implies G € w-SAT(n, C}).
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Now it is easy to deduce that w-SAT(n,C;) consists exactly of all connected
graphs containing a path of length [ — 1 as a subgraph and the desired charac-
terization of the minimum ones follows.

Let us show that C; admit a g-proof for n > [. Indeed, consider § = Gg:.
Any edge of C; is G-dependent on the remaining ones because the path with [
edges is weakly K3-saturated and K? is a G-circuit. Clearly, Rg([n]®) =n — 1.
(In fact, if restricted to [r]®), G is the usual cycle matroid.) The claim clearly

follows. 1

Theorem 51 Let | > 4 be even and let n > . Then w-sat(n,C;) = n, all
extremal graphs are trees of order n and diameter at least | — 1 plus an extra

edge creating an odd cycle, and Cy admits an r-proof for n.

Proof. Similarly to the proof of Theorem 50, to show that any indicated graph
G is weakly Cj-saturated, we first argue that adding a few edges we can obtain
an [-cycle containing a 3-chord. Unfortunately, this configuration is not weakly
C-saturated but, like in Theorem 49, we can add all 3-chords, 5-chords, and so
on to obtain the complete bipartite graph Kj /2.

Observe that having an edge {z,y} with y belonging be K ;-subgraph with
s,t > 1/2, we can connect z to any vertex lying in the same part as y. Hence,
we can add edges so that G contains a K, _-subgraph with s,n —s > [/2;
moreover, as we have an odd cycle present in the original G, one part spans an
edge and G € w-SAT(n, C)).

The required characterization of extremal graphs easily follows.

Finally, let M be Doob’s [Doo73] even-cycle matroid on [n]?) which can

be represented by f : [n]®) — V which maps {i,j} to e; + e; for some basis

{e1,...,en} of areal vector space V. The cycle C; is an M-chain: if C; goes via

the vertices 1,2,...,[,1, then we have the linear relation
(61+62)—(62+63)+...—(6l+61) =0

with all coefficients non-zero.
For n > 3, the rank of M is n as any basis vector e; admits a representation

e; = %((Bi +¢j) + (e; +ex) — (ej + ex)), which implies our claim. 1

Remark. Probably, even cycles do not admit a g-proof. But if we consider

(1,1)-layered (i.e. bipartite) graphs, then Cy as the complete (1, 1)-graph admits
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a G-proof by the results of Section 12. A little more work shows that any even
cycle admits a g-proof in the class of bipartite graphs, because any connected

(1,1)-graph is weakly Cy-saturated.

Disjoint Edges

Suppose that we forbid (K], [ > 1, that is, [ disjoint r-edges.

Theorem 52 Let F' = IK], let n > Ir, and let G consist of | — 1 disjoint r-
edges plus n —r(l — 1) isolated vertices. Then w-sat(n,F) =1—1, G is the only
extremal graph, and the pair (F,G) admits a G-proof.

Proof. Let us show that G is weakly F-saturated. As v(G) > kl, we can add
an edge disjoint from the edges of G which creates a copy of F' and leaves at
least one vertex of G isolated.

Fix any D € [n]("). We have to show that D € Clx(G). We prove that the
existence of E € Clp(G) with [END| = k < r implies that there is £’ € Clp(G)
with |[E' N D| = k + 1. Given E, there are Fs, ..., E; € Clp(G) which together
with E form an F-subgraph. If there is z € D\ V, V = E'U Ejy, then we
can take E' = E +x —y € Clp(G), for some y € E\ D. Otherwise take any
z € D\E, say x € E, replace Ey by El, = Es—z+y € Clp(G), wherey ¢ V', and
consider E' = E —z+x, z € E'\ D which (together with E}, Es, ..., E;) creates
a forbidden subgraph. The required E’ is found. Hence, w-sat(n, F) <[ — 1.

Any weakly F-saturated graph contains [ — 1 disjoint edges; hence G is the
only extremal graph.

The pair (F,G) admits a G-proof by Lemma 35. I

However, if the forbidden graph is a perfect matching, then the exact answer

is known generally for r = 2 only.

Theorem 53 For n = 2] > 4, w-sat(n,lK2) = n — 1 and all extremal graphs
can be obtained in the following way: complete IK2 to a tree T, add an edge
E creating an odd cycle and remove any edge E' contained in some perfect

matching of T + E.

Proof. Let us show that any above constructed graph G is weakly F-saturated,
F = [K2. First we add the edge E’. Let C be the odd cycle (at this stage
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it is unique) of the obtained graph 7" = G + E' = T + E and let M be some
matching of 77. Let {x1,y1},...,{Tak+1,Y26+1} be all edges of M with z; € C
and y; € C.

Claim 1 A disjoint union of an odd cycle Co,_1 an a even path P, is weakly
(p + q) K2-saturated, p > 2, ¢ > 0.

We prove the claim by induction on ¢g. If ¢ = 0 then we can first connect
the isolated vertex to any other vertex of the cycle to obtain a wheel and then
we can add the remaining edges in any order. If ¢ > 0 then we can connect the
endpoints of the path to all vertices on a cycle and the obtained graph is easily

seen to contain Cgpy1 U Py o and the claim follows.

A moment’s thought reveals that, by Claim 1, 77 € w-SAT(n, F) if k = 0.
So, to prove that G € w-SAT(n, F'), we show that, for £ > 0, we can F-properly
add some extra edges to T and find other, strictly larger, odd cycle C.

Assume that z,...,2941 lie on the cycle C' in this order clockwise. Note
that we can add to T" all edges of the form {y;,yi+1}, i € [2k+ 1], which creates
the matching M’ = M AC;, where C; the cycle via y; 11, yi, ©;Cxiy1, yir1 created
just now. (By aCb we denote the part of the cycle C' going clockwise from a to b
inclusive.) If there are no vertices (along C) between some x; and x; 41 then we
have a strictly longer cycle CAC; as desired. Otherwise, we may assume that a
part of the cycle C looks like z1,...,a,22,b,...,c,z3,.... It is routine to check
that the addition of the edge {a, c} creates a matching which uses edges {z2, b},
{y1,y2}, {zi,yi}, 1 € [3,2k + 1], etc. But then we can find a strictly longer odd
cycle: x3Ca,cC'xy, 12,3, 73, which proves that G € w-SAT(n, F) as claimed.

On the other hand, consider any weakly F-saturated graph G and let G’ =
G + E be a graph with a perfect matching. If G’ is not connected, then all
its components have even order, but then the first F-properly added edge not
lying within a component cannot create a matching (by the parity argument),
which is a contradiction. If G’ is a bipartite graph, then its parts must be of the
same size, but then the first F-properly added edge lying within a part creates
no perfect matching, which a contradiction. Hence, G’ is a tree plus an edge

creating an odd cycle and all claims of the theorem easily follow. 1
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Dumb-Bells

Recall that the 2-graph By, called a dumb-bell, consists of two disjoint copies
of K,% plus one edge connecting them, k& > 3.

Theorem 54 Let k > 3, n =1k +q, g € [0,k —1],1 > 2; let ¢, = 1 except
g0 = 0. Then w-sat(n, Br) = (I + 1)(’;) - (kgq) — &g

Proof. To prove the upper bound consider the 2-graph G on [n] defined (for
any q) by

E(G) = (Uie[l]Al@)> U ([n Ck+1,n]P\ {n -1, n}) :

where A; = [ki — k + 1,ki], i € [I]. As G[kl] = IK?, we can add all missing
edges within [kl] each connecting some two of the A’s. If ¢ = 0, then we are
done; otherwise we add the edge {n,n — 1} making G[n — k + 1, n] complete and
then add the remaining edges in any order. Hence, G € w-SAT(n, By) and the
upper bound follows.

On the other hand, let G € w-SAT(n,By;) be arbitrary. Similarly to
Lemma 43, we take a By-proper ordering G = {FE1,..., E.}; assume that E;
creates a Byg-subgraph F; on a 2k-set M; C [n]. Define the surplus s(X) =
e(G[X]) — 521X, X C [n], and s; = s(Mp;).

Let ¢; € [0,k — 1] be equal to [M; \ Mj;_yj| (mod k). Given g;, it is routine
to see that if ¢; = 0 then s; > s;_1 and if ¢; > 0 then

si—sion > fla) = (5) — (V%) - e —1>0.

Furthermore, for p,q > 1, f(p +q) < f(p) + f(q). Hence, s(M)) > f(q) for
q > 0 and s(M) > 0 for ¢ = 0. Now, the identity e(G) = %n + s(V(G))

implies the required lower bound. 1

Remark. In fact, we c-prove that w-sat(n, Bgg) > %n for odd k, which is

sharp for n = kl. (For even k, the function L = %pl is not integral.)

Forests

Let us consider 2-graphs. Let T" be a forest of order m. Clearly, Kfn_l plus

n —m + 1 isolated vertices is weakly T-saturated, so w-sat(n,T) < (m; 1). This
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is sharp for T' = S2, by Corollary 38. The opposite extreme inequality is
w-sat(n,T) >e(T)—1, n>m. (75)

By Lemma 35, if we have equality in (75), then T admits a g-proof for n. In

fact, we can show that we have a G-proof.

Lemma 55 Let F' and H be any forests with e(F) < e(H). Then F independent

Proof. We use induction on [ = e(H). It is enough to prove the claim for
e(F) = e(H). Assume that 1 is an endvertex incident to the edge E = {1,2} in
both F' and H. Clearly,

det(M(H,F)) = fa1 1002 det(M (H — E, F — E)) + (ay,1-free polynomial).

By induction we conclude that det(M (H, F')) # 0, which proves the lemma. I

Corollary 56 If G € w-SAT(n,T), for some forest T, and e(G) = e(T) — 1
then the pair (T, G) admits a G-proof.

Proof. Indeed, G is a forest. Also, T" is dependent in Gg but, by Lemma, 55,

any proper subgraph of 7" is not; hence T is a Gg-circuit. 1

If T contains, for example, vertices a, b, ¢ of degrees 1,1, 2 respectively such
that {a,c}, {c,d},{b,d} € E(T), for some vertex d, then adding the edges {d, z}
and {z,y} to T, any z,y € V(G), we create each time a new graph isomorphic
to T'; this implies equality in (75) with possible exceptions for some n < 2m.
Generating a random tree by, for example, taking all m™ ? vertex-labelled trees
equiprobable, one can show that almost every tree contains the above ‘abc-
configuration’ and therefore admits a G-proof.

The above results can be extended to hypertrees, for the definitions see

Part IV, but we do not want to clutter the text with details.

11 Cones

In this section we prove that cones ‘preserve’ G/g/g’-proofs. These results ap-
pear in [Pik99a].
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To define the cone cn(G) of an r-graph G, add to G a new vertex and
all edges containing this vertex. In other words, pick v ¢ V(G) and define
V(en(G)) = V(G) U {v} and

E(cn(G)) = E(G) U {{v} UE:E¢ V(G)(“l)} .

For a family F of r-graphs, define cn(F) = {cn(F) : F € F}.
For 2-graphs, cn'(F) = K; + F; so, for example, the cones of empty graphs,

cycles, complete graphs are stars, wheels and complete graphs respectively.

Lemma 57 Suppose that every r — 1 wvertices of an r-graph F are covered by
at least one edge. If F is a Gg-chain, for some r-graph G, then cn(F) is a

Gen(a)-chain.

Proof. Suppose first that v(G) > v(F). Let G’ = cn(G), V(G) = [n — 1] and
V(G") = [n]. Identify the vertices of G' with the basis {ej,...,e,} of a vector
space V'. Let Z' be the subspace of A"V’ and let G be the gross matroid on
[2)(") corresponding to G.

We may assume that F' = cn(F') is embedded into [n] so that V(F")\V(F) =
{n}. We have to show that E(F') is a chain in G¢, that is, we have to find
h' € Z' such that supp(h') = E(F"). Define g} = f and

(6777}

gi=fr—-—"fr, i=1,...,n—1 (76)

Ann
Recall that f* is a generic basis of (V')* and «aj; = f(e;), so gf(en) = 0,
i € [n — 1], and this is the main point of our definition.
The matrix N = (g;(e;j))ijen—1) 15 a generic matrix for a generic choice
of the a’s. Indeed, if its entries, v;; = @i — Qinon;/ann, ,j € [n — 1], are
algebraically dependent, then clearly the a’s are.

As F' is a Gg-chain, the system of linear equations

gor | Y. cmen| =0, DeE®G), (77)

EEE(F)
with respect to the undeterminants (cg) e E(F), has a solution with all ¢’s being
non-zero for generic g (which is the case for generic f). Apply elementary matrix

transforms to write the system (77) in a diagonal form. For the free variables
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choose f,..., B, which (together with the «’s) are algebraically independent
over the rationals and compute the other variables each being a rational function
of the a’s and f’s.

Let b =3 pep cpep and h' = fr (h Aeyp). To complete the theorem it
is enough to show that A’ € Z' and supp(h') = E(F').

Let D € E(G"). We want to show that f;; L A" =0. If D > n, then

(fp:h')y = (FD\fny AN T fa b (R AN en)) = 0.

If n ¢ D, that is, D = {dy,...,d,} € E(G), then, by (76),

Qg
o= Nais = N (03, 22 17) = g + 13 1"
nn

some z* € \"'V*. Now,

(fD,h) ={gp + fa Na™, faL (W Aen)) = (gh A fa,h Aen).

But for every i € [n — 1] we have g/ (e,) = 0, so the above expression is equal to
Ir(en){g}), h) which is zero by the definition of h. Therefore h' € Z'.

Let us show that supp(h’) = E(F'). Clearly, every E € supp(h’) either
contains n or belongs to E(F) which shows that supp(h') C E(F’). On the
other hand, take any F € E(F'). If E € E(F), then

(€5, h) = (ex A fo b Nen) = (e, h) - (fr en) = cufhlen) #0,

because n € E. If E 5 n, then let Dy,...,D; be the edges of F' containing
E' = E\ {n}. By our assumption, [ > 0. Let D; \ E = {d;}. Then

Py = (e h') = (efg Nes ANfi hNey) = —(ej A fr h)
! !
= —<6*Ef/\ff{» > CE€E> = > e (firen) = Y Een,ang,
E€E(F) i=1 i=1

(The third equality is true as supp(h) = E(F) C [n — 1](").)
As every cp, is a rational function in the o’s and (s, so is Pg. To show
that Pg # 0 for a generic f, it is enough to demonstrate an example of f when

Pr #0. Let ajy, =0, @ € [n — 1]. Then system (77) reduces to

for | Y. egen) =0, DeEQ). (78)
EeE(F)
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By the algebraic independence of (f;(e;)); je[n—1), if we perform the diagonal-
isation for (78) in the same order as for (77), we will obtain the same set of
free variables. Therefore, (ci)pep(r) pProvides every solution for (78) when the
B’s range over the reals. Thus each cg is non-zero (as F' is a Gg-chain) and it
can depend only on ff(e;) = ayj, i,j € [n — 1], and the ’s. Now it is obvious
that Pg = 2221 €p; 0ty q; cannot be identically zero. This proves the lemma if
v(G) > v(F).

Otherwise, we can add v(F) — v(G) isolated vertices to G to obtain H. By
above, cn(F) is a chain in Gep g, that is, each edge of cn(F') is dependent on
the other edges. The latter claim is certainly true in Gen(g) which has more

dependences than Gen gy as en(G) C cn(H). I

Lemma 58 If an r-graph F is independent in G and v(F) < v(G), then cu(F)

is independent in Gen(q)-

Proof. We assume the same conventions as those appearing in the proof of
Lemma 57 before (77).

It is enough to prove our claim in the case e(G) = e(F): if e(G) > e(F) we
can remove a G-edge with F' being still Gg-independent.

Let us show that the rank of M'(G’, F') is e(F"), where M'(D, E) = (g},,€E),
D € E(G'), E € E(F'), which would imply the lemma.

By our assumption, the square submatrix M'(G,F) ¢ M'(G',F') is non-
singular because the matrix N is generic. As g¢;(e,) = 0 for i € [n — 1], we
conclude that all entries of the submatrix M'(G, F"') are zeros, where E(F") =
E(F")\ E(F). Therefore, to prove the claim we have to show that the submatrix
M'(G", F") has the maximal possible rank (z;(fl)), where E(G") = E(G')\ E(G).

For any D' =D U{n} € E(G"), E' = EU{n} € E(F"), we have

(g*D’aeE’> = g;(en) : (gEaeE>a

because gf(ep) =0, 7 € [n — 1]. (As n is the last element in D’ and E’, we do

not have £1 in the formula.) Now,
M'(G", F") = gy (en) - M'(K™"!([n = 1]), K"~ (V/(F)))

has rank (’;(F 1)) because NV is generic. I
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Remark. Is is not hard to show that if /' is not independent in G, then cn(F')
is not independent in Gen(g), for any r-graphs F' and G. But we do not need

this result.

Lemma 59 If G € w-SAT(n — 1, F), then cn(G) € w-SAT(n,cn(F)). In par-
ticular,

w-sat(n, cn(F)) < w-sat(n — 1, F) + (: B i)

Proof. Let E,..., E,, be an F-proper ordering of F(G). To show that G' =
cn(G) is weakly cn(F)-saturated, add these edges in the same order to G'.
(Note that E(G') = E(G).) Every E; creates an F-subgraph in G, F € F,
which, together with the extra vertex, creates a copy of cn(F) in G', so G' €
w-SAT(n,cn(F)). 1

Theorem 60 Let F be a family of r-graphs such that in each F' € F everyr—1
vertices are covered by at least one edge.

If a pair (F,G) admits a G-proof, then the pair (cn(F),cn(G)) admits a
G-proof.

If we can g-prove w-sat(n — 1,F) > 1, then we can g-prove

w-sat(n, en(F)) > I + (:: i) (79)

In particular, if F admits a g-proof for n — 1, then cn(F) admits a g-proof for

n. The analogous claim is true for the g'-technique.

Proof. Let us consider G-proofs first. By Lemma 59, cn(G) is weakly cn(F)-
saturated. By Lemma 57, cn(F') is a Gen(a)-chain for every F' € F. Hence, the
pair (cn(F),cn(G)) admits a G-proof.

Next, consider the g-technique. Take any G such that each F' € F is a
Gg-chain and Rg, (K]

r_1) > l. Adding extra vertices to G, we may assume
v(G) > n — 1. By Lemma 57, each graph in cn(F) is a chain in Gep ().
By definition, Rg, (K, _;) >, so choose a Gg-independent subgraph H C

K] | of rank . Assume v(H) =n — 1. By Lemma 58, cn(H) is independent in

n

Gen(a)- Hence, the rank of K in Gep () is at least e(cn(H)) =1 + (’:j), that

is, we can g-prove (79), as required.
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In the ¢'-case, choose G such that each F € F is a Gg-chain and
RQG(Kgfl) +Dgg(~7:) —1>1.

Now we proceed in the same way as in the g-case, except we have to show
additionally that, for any F' € F, we have Dg (F) < Dgcp ., (cn(F)).

Note that if we have F-edges E,...,E; whose removal does not decrease
the Gg-rank of E(F), then the system of equations (77) has a solution in which
CEys---5CE, can be chosen to be the free variables f1,...,34. Following the
proof of Lemma 57 (note that F' is a Gg-chain), one can let (cg) be such a
solution of (77) and observe that

(ks h) = (€, A frs b Nen) = (€, b) - (s en) = Bictnn, i € [d],

since F; C [n —1]. This means that, choosing generic 8’s, we can obtain h' € Z’
whose support is E(cn(F)) with ef, (h') being generic, which is precisely to
say that Fy,..., Ey are Gep(g)-dependent on the other edges of cn(F). Hence,
Dgena (cn(F)) > d and the claim follows. 1

Remark. We cannot generally discard the covering condition in Lemma 57
or Theorem 60. (But note that we do not have any covering condition on G.)
Counsider, for example, r = 2 when the condition rules out isolated vertices.
Let F' be a triangle plus an isolated vertex and let G be a star Kj ,_2, n > 5.
Then (F,G) admits a G-proof (see Subsection 10.1). But it is easy to see that
w-sat(n,cn(F)) = 6 < e(cn(G)) = 2n — 3, and so cn(F) cannot be a Gen(g)-
chain.

We noted already in Section 7 that many new results can be proved by

applying Theorem 60, so we do not repeat these examples here.

12 Joins

Here we indicate how to extend the idea of G/g/etc.-proof to layered graphs
(which were defined in Subsection 4.2) and prove that joins ‘preserve’ G/g/r-
proofs. These results appear in [Pik99a].

The notion of weak saturation extends to layered graphs in the obvious way.

For example, given an r-graph F, w-SAT(n, F) consists of all r-graphs G on an
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n-set such that we can consecutively add all missing r-edges to G creating every
time an F-subgraph.

It is clear how to extend the notion of an m/r-proof to layered graphs. It is
possible also to introduce the gross matroid of an r-graph G defined on an n-set
X. Indeed, identify each X; with a basis e; = (e;,j)je[n,] of an n;-dimensional
vector space V; and consider AV which, by the definition, is the tensor product

of the exterior algebras over V;, i € [t]:
AV = ®i€[t] AVi.
Let A"V be the linear subspace of AV spanned by the elements
h=h®...Q h, hi € N"'Vi, i€ [t].

Let f; = (fi ;) je[n;) be another basis of V; lying in generic position with respect
to e;, i € [t].

In the obvious way we define supports, etc. For any r-subset E C X, let

fg = ®i€[t] fi:Ei and eg = ®z’e[t} €i,E;»

or, in other words, in every AV;, we take the element corresponding to E; in the
basis f; or e; and then compute the tensor product. Let the linear subspace Z C
A’V corresponding to G be spanned by the elements {fg : E € E(G)} and let r-
sets Eq1, ..., E; be independent if no linear combination of eg,, ..., eg, (except
0) belongs to Z. The required matroid Gg of rank codim(Z) = e(G) is built.
Clearly, it is symmetric, that is, invariant under layer-preserving permutations.

Given t (usual) r;-graphs F;, ¢ € [t], with disjoint vertex sets, their join
(or tensor product) F = F; ® ... ® F} is the layered r-graph on the layered set
V(F) = (V(Fy),...,V(F})) such that an r-subset E = (E,...,E;) is an edge
of F if and only if E; € E(F;) for every i € [t]. Thus e(F) = ;e e(Fi). For
example, the join of two 1-graphs is a complete bipartite graph (possibly plus
isolated vertices).

Suppose that we are given ¢ families F; of r;-graphs, i € [t]. We define their
join by

F=F1®..0F={N®..@F :F,cF, iclt]}.

Let these conventions apply to the following results.
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Lemma 61 If G; € w-SAT(n;,F;), ¢ € [t], then G € w-SAT(n,F), where
G=G,®...9Gy,. In particular,

w-sat(n, F) < [] (:) -1 <(:> - w—sat(n,]—"i)> .

i€[t] i€[t]

Proof. Denote b; = e(G;). Let E;; € Gi, j = 1,...,b;, be an F;-proper
ordering, ¢ € [t]. There is the obvious bijective correspondence between the
elements in B = [by] x ... x [b] and the edges of G which maps (ji,...,j:) to
Usci Bijs-

Now we add the missing edges to G so that the corresponding elements of B
are taken in the lexicographic order. Consider any added edge E. Let H; C X;
be an Fj-subgraph created by E;. (Note that E; ¢ E(G;) by the definition of G.)
We claim that H = H; ® ...® H; is a forbidden subgraph created by E. Indeed,
let D # E, be an edge of H. Clearly, for each i € [t], the edge D; € E(H;) must
be present in G; or be added before E; or equal to E;. If D; € E(G;) for at least
one index ¢ then D € E(G). If not, then clearly the edge D comes before E, as
required.

Finally, ¢(G) = [Liciy e(G;), which completes the proof. I

Lemma 62 If F; is a chain in Gg,, © € [t], then F = F1 ® ... ® F} is a chain
in Gg, where G =G @...9 G,.

Proof. By the assumption, there is h; € Zg, C A\"'V; such that suppei(hi) =
E(F;), i € [t]. Consider

h=h®...Qh € \"V.

Obviously, suppe(h) = E(F) and suppg(h) C E(G). Therefore, h € Zg and

every edge in F is dependent on the rest, as required. 1

Theorem 63 Suppose that, for every i € [t], the pair (F;, G;) admit a G-proof.
Then so does the pair (F,G), where G =G, ®...® Gy.
Suppose that, for each i € [t], we can g-prove that w-sat(n;, F;) > l;. Then

we can g-prove that

w-sat(n, F) > H (:fz) - H ((ZZ) - li> . (80)
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In particular, if each F; admits a g-proof for ni, then F admits a g-proof for n.

The analogous statement is true for the r-technique.

Proof. Let us consider G-proofs first. By Lemma 61, G € w-SAT(n, F), and

by Lemma 62, every F1 ® ... ® Fj, € F is a Gg-chain, and the claim follows.
Now, consider the g-case. For i € [t], choose G; such that each graph in

Fi is a Gg,;-chain and the Gg,-rank of Kji is at least [;; let H; C K} be a

Gg,-independent subgraph of size [; and order n;. Let

G = G1®...9G,,
H Q.. QH,.

el
I

By Lemma 62, each F1 ® ... ® F} € F is a Gg-chain.

Let us show that H is independent in Gg. As each H; is Gg,-independent,
we can find a linear map p; : A"V; — Zg, which is the identity map on Zg,
while p;(eg) =0 if £ € E(H;), i € [t]. Define

P=p1®...9p: N'V > Zg ®...9 Zg,,

that is p(u1 ® ... @ ug) = p1(u1) ® ... @ py(uy). Now, p is the identity map on
726, ®...Q Zg, = Zg, while p is zero on eg for each E= E,U...UE, € E(H):
E; € E(H;) for some i € [t] and then p;(eg,) = 0. Hence, no non-zero linear
combination of eg, E € E(H) can lie in Zg, that is, H is independent in Gg.
The size of H equals the right-hand side of (80), as required.

The claim about g-proofs follows from Lemma 61.

In the r-case, our task is to construct a matroid M on the set of r-subsets
of X such that every graph in F is an M-chain, should we be given appropriate
matroids M; on Y; = XZ.(”), i €[t].

Let k; : Y; — V;, for some vector space Vj, be a representation of the matroid
M, i € [t]. Identify Y; with a basis of some vector space W; via g; : Y; — W;.
Let h; : W; — V; be the linear map extending k;. Denote Z; = ker(h;) C W;.
Clearly, codimZ; = R, (Y;) = e(G;) > 1;, where G; is a base of M;.

Let G = G1 ® ... ® Gy. Identify the r-subsets of V(G) with a basis of
W = @;ciq Wi by mapping E = (E,..., E;) into g(E) = Q¢ 9i(Ei). Let
Z = ®ie[t] Z; C W and p: W — W/Z be the projection.
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Let M be the matroid represented by pog: V(G)®) — W/Z. Let us show
that M r-proves (80).
As g(V(G)™) is a basis for W, we conclude that the rank of M is

dimW — dimZ = [ <"> ~ I @,

T3 :
i€[t] i€[t]

which is at least the right-hand side of (80).

Thus, all we have to do is to check that any F = F; ® ... ® F}; € F is an
M-chain. Fix an edge E = (E\,...,E;) € E(F). As F; is an M;-chain, we
conclude that there are ¢; p € R, E € E(F;) \ {£;}, and z; € Z; such that

gi(B)=z+ Y.  capg(D), i€t (81)
DeE(F;)\{E:}

If we take the tensor product of (81) over i € [t], we obtain on the left-hand
side the element g(E) while on the right-hand side we will have z; ® ... ® z; €
Z plus some other tensor products. Next, in the remaining tensor products
replace each z; by the linear combination of (g;(D)) peg(r,) by (81). Each term
then becomes ®;¢y9i(D;) for some D; € E(F;), ie., it is of the form g(D),
D = (Dy,...,D;) € E(F) and, moreover, we never have D = E. So we have a
representation of g(E) as a linear combination of an element of Z and of ¢g(D),

D € E(F) \ {E} which is precisely the required. The theorem is proved. I

Unfortunately, there does not seem to be a natural tensor product operation
for matroids, cf. Lovész [Lov77], so we do not know if joins preserve m-proofs.

Alon [Alo85] (a different proof is presented by Yu [Yu93]) solved one extremal
problem for set systems, which can be easily seen equivalent to computing the
w-sat-function for joins of complete graphs. As complete graphs admit a G-
proof (e.g. by Theorem 60), the result of Alon can be deduced as a special case
of Theorem 63.



Part 111

Chain Decompositions

13 Introduction

13.1 Discussion

There are many important results about chain decompositions of posets, that is,
collections of chains such that every element in the poset belongs to exactly one
chain. (We will also refer to these as vertex decompositions.) Typical questions
are the following. What is the minimal number of chains of such a partition? Do
there exist partitions with some extra properties (e.g. into symmetric chains)?
Are there any applications of these decompositions?

In this part we investigate the notion of an edge decomposition which is a
collection of chains such that every pair of adjacent elements (one covers the
other) belongs to exactly one chain and we try to answer the above questions.

Such considerations may arise, for example, when in a computer programme
we want to operate with posets, and so we wish to represent them efficiently
in the memory. If keeping the relational binary n x n-table is impossible or
undesirable, we can try to maintain a list of chains completely determining the
poset, and a natural question to ask is, for example, how small such a list can
be. The related notion of line poset also arises naturally.

In Section 14 we compute the minimal size of a skipless chain decomposition
of a poset in terms of other parameters, which can be viewed as an analogue
of Dilworth’s theorem [Dil50]. Surprisingly, this fundamental theorem is a new
result. We prove it using the linear programming method of Dantzig and Hoff-
man [DH56]. Graham Brightwell simplified our proof by replacing the linear
programming argument by an easy application of Hall’s theorem. We present
both these proofs.

The minimal size of an edge decomposition of P can be deduced as a corollary
but we present a short and direct proof.

In Section 15 we provide an explicit edge decomposition of the lattice of sub-
sets of a finite set into symmetric chains. Although the existence of such a par-

tition can be deduced from the results of Anderson [And67] and Griggs [Gri77],



13 INTRODUCTION

a constructive proof seems to be unknown. The discovered partition has some
extra properties and interesting applications. For the latter we refer the reader
to Section 16.

In Section 17 we characterize line posets in terms of forbidden configurations
and point out which information determines and can be reconstructed from its

line poset.

13.2 Definitions

Let P = (X,>) be a poset (a partially ordered set). We say that y covers x
(denoted by y >z or z < y) if y > z and no z € X satisfies z < z < y (such
x, y will be also called adjacent elements). With every poset P we associate its
Hasse diagram D = D(P) which is the digraph with X as the vertex set and
(z,y) € E(D) iff y covers x. Given a cycle-free digraph D, we can build a poset
on the same vertex set by letting x < y if there is a directed zy-path. Note
that a cycle-free digraph D is the Hasse diagram of some P if and only if for
every (z,y) € E(D) there is no directed zy-path of length greater than 1. The
correspondence ‘posets-digraphs’ is very useful, so we often switch between the
poset and digraph terminology without any warning.

A chain in P is called skipless if every element covers its predecessor; skipless
chains correspond to oriented paths in the Hasse diagram. The width w(P) is
the maximal size of an antichain in P.

The line poset L(P) of a poset P has as the vertex set the pairs (z,y) of
elements in P with y covering x and we agree that (z < y) is less than (z' < y’)
in L(P) if and only if y < 2’. (This operation somewhat resembles taking the
line graph, hence the name.)

Every skipless chain in P corresponds to a skipless chain in L(P) of size
smaller by 1. We usually identify these chains.

One can ask which important poset properties are preserved by the operator
L. In fact, L preserves very few properties (e.g. self-duality, regularity). As in
almost every case it is trivial to find a counterexample/proof, we do not dwell
on this topic.

A wvertex partition (decomposition) of P is a collection of chains such that

every € X belongs to exactly one chain. An edge partition (decomposition) is
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14 SKIPLESS CHAIN DECOMPOSITIONS

a family of skipless chains such that every pair z,y € X with  being covered by
y belongs to exactly one chain. Note that the chains in an edge decomposition
are required to be skipless. One can see that edge partitions of P correspond to
vertex partitions of L(P) into skipless chains.

The subsets of [n] partially ordered via the inclusion relation, form the ranked
poset B, = (2["}, C). The corresponding Hasse diagram is the oriented n-cube
@y For B,, the relation ‘B covers A’ is denoted by A C B.

We find it useful to identify A € B, with its ()-representation which is
the n-sequence of left and right parentheses corresponding to the elements of
A = [n]\ A and A respectively. Likewise, the (x)-representation of an element
(A C B) € L(B,) contains ‘(" for the elements in B, ‘)’ for the elements in A
and ‘«’ for the element in B\ A.

Generally, let F' be a sequence containing left and right parentheses. Con-
secutively and as long as possible remove matched pairs of adjacent brackets, ie.
substrings ‘()’. (Clearly, the order of operations does not matter.) The elements
which would be removed by the above matching are called fized or paired ele-
ments and the remaining ones are called free. In particular, the free parentheses

always form the following (possibly empty) sequence: ) )...) ) ( (... ( (.

14 Skipless Chain Decompositions

Here we present a theorem computing the minimal number of skipless chains
partitioning a given poset P. In fact, we prove a more general result about
directed graphs.

Let D be any digraph. We may have loops and may have edges (i,7) and
(7,) simultaneously. Consider partitions of V(D) into vertex-disjoint directed
cycles and directed paths. (We consider any isolated vertex as a path of length
zero; loops and pairs of opposite edges are considered as cycles.) Let m(D) be
the minimal number of directed paths in a such partition.

On the other hand, let M (D) be the maximal value of |A| — |B| taken over
all pairs of disjoint sets A, B C V(D) such that any directed path connecting
two distinct vertices from A, contains a vertex of B and any cycle intersecting
A intersects B. (In particular, if (7,7) € E(D) then i ¢ A.) Clearly, for any
such pair (A, B) we have |P N A| < |PN B| + ¢, where e = 1 if P is a directed
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path and ¢ = 0 if P is a directed cycle. This implies that m(D) > M (D).

We will show that we have in fact equality for any D. Our proof is a mod-
ification of the proof by Dantzig and Hoffman [DH56] of Dilworth’s theorem,
which exploits methods of linear programming. (A simpler argument by Graham

Brightwell is outlined after our proof.)
Theorem 64 For any directed graph D we have m(D) = M (D).

Proof. As we have already observed m(D) > M (D), so let us prove the converse
inequality. Assume that V(D) = [n]. For i,j € [n] define cop = 1, coj = ¢i0 =0,

and

. :{ 0, if(i,j) € BE(D),
Y —c0, if (4,7) & E(D).

Consider the linear programming problem of finding &, where

k = max Z CijTij, (82)
i,j€[0,n]

given the following restrictions:

n n
D moy =) wio=mn, (83)
i=0 i=0

n n
Z.’EZ’J‘ = Z:Eji =1, 1€ [n], (84)
J=0 Jj=0

x5 > 0, i,j € [0,n]. (85)

Restrictions (83), (84) and (85) define a non-empty set; for example, we can
satisfy them by letting x;; be 0 for 4,5 € [n] and 1 otherwise, except zgp = 0.
As for any feasible solution we have zgg < n while the coefficients c;; at other
variables are non-positive, we conclude that the right-hand side of (82) is at
most n and thus £ is well-defined.

We claim that we can choose an integral solution to (82), that is, we can
ensure that each z;; is an integer. To do so, take a solution in which as many
as possible variables are integers. Suppose there is z;,;, € Z. By (83) or (84),
the 7oth column contains another non-integer, x;,;,. Next, we consider the i3th
row and find x;,;, € Z, and so on, until considering a current variable z; ;, we

have a chance to select a previously chosen variable z; ; . In fact, we may have
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two choices at this step, but we will always be able to chose one with s 4+ v and
t + u being odd. Then the subsequence S of elements between z;_; and z;,
(inclusive) is of even length. If we add any ¢ to each z;,;,,, € S and subtract e
from each z;,, ;, € S, then we do not affect (83) and (84). (Because each row
or column contains either two variables, which receive different signs, or none.)
The function ) ¢;jx;; is linear in €, suppose it is non-decreasing. Let € be the
minimum of the fractional part of z;,_,; € S; then our transformation makes
at least one more variable integral, while (85) still holds. This contradiction
proves the claim.

Any w;;, except perhaps g, is either 0 or 1. A moment’s thought reveals
that by (84) the set {(i,7) € [n]? : z;; = 1} C E(D) is a union of vertex-disjoint
directed paths (this is to include isolated vertices) and cycles partitioning V(D).
The number of paths equals the number of occurrences of 1 among z¢;, j € [n],

which by (83) is n — zgp = n — k. Hence,
m(D) <n—k. (86)

Now, the Duality Theorem asserts that

k = min n(uO+Uo)+ZUi+ZUj ) (87)
=1 7=1

given the following restrictions on variables u;, v;, ¢ € [0,n]:

88
89
90
91

ug + vy > 1,
u; +vg > 0, i € [n],
up +v; >0, j€[n],

(
(
(
wi+v; >0, (i,§) € E(D). (

)
)
)
)

We claim that we can choose an integral solution to (87). To do so, take
a solution with as many as possible variables among u;,v;, @ € [0,n], being
integers. Let I = {i € [0,n] : u; € Z} and J = {j € [0,n] : v; € Z}. Suppose
I # 0. If we decrease each u;, i € I, by € and increase each v, j € J, by ¢,
then the right-hand side of (87) is linear in &; suppose it non-increases with e.
Let ¢ = min;er(u; — |u;]). We obtain at least one more integer among the u’s,

so to obtain a contradiction it is enough to check that (88)—(91) still hold. The
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restriction (88), for example, may cause us a problem only if 0 € I\ J. Then
vy € Z and, by definition, € is at most the fractional part of ug 4+ vy which would
suffer the decrement by ¢ without crossing the integer 1. The claim is proved.

We may assume that vg = 0, because we can add some integer ¢ to each u;
and subtract ¢ from each v;, i € [0,n], without affecting (87)—(91). Also, we
can make uy = 1, because we can subtract € > 0 from uy and add € to each
v, @ € [n]. Hence, k = n +min(32, w; + > 7, vj), given conditions u; > 0,
v; > —1,14 € [n], and (91). It is easy to see that in our (integral) solution, each
u; is either 0 or 1 and each v; is either —1 or 0. Let X = {j € [n] : v; = —1}
and let X' = {i € [n] : 3j € X (i,j) € E(D)}, that is, X' consists of vertices
sending at least one edge to X.

To satisfy (91) we must have u; = 1 for each i € X'. Also, if we set u; = 0
for i € [n]\ X', then (88)—(91) are still satisfied while the linear function in (87)
does not increase. Hence, we may assume that X’ = {i € [n] : u; = 1}; then
n—k=1X|-|X".

Let A= X\ X"and B= X'\ X. Let P = {z1,...,7;} be a directed path
in D with zy,z; € A, 1 > 2. As 21 € X', we conclude zo & X. As z; € X, there
must be ¢ € [2,] — 1] such that z; ¢ X but z;;1 € X. By definition, z; € B.
Similarly, any cycle intersecting A intersects B. By (86) we obtain,

m(D) <n—k=|X|-|X'| = |A| - |B| < M(D),
which was required. I

Remark. Graham Brightwell considerably simplified our proof shortly after it
had been announced. Let us outline his argument which exploits Hall’s theorem.

Given a digraph D, consider the bipartite graph G on two copies of V (D),
say X = {vV :v € V(D)} and Y = {v" : v € V(D)}, where we connect u" to v"
if and only if (u,v) € E(D). It is easy to check that the number of edges missing
in a maximum matching in G equals m (D). By a version of Hall’s theorem, this
number equals the maximum of |Z| — [['(Z)| over Z C X. Choose any extremal

set Z. Now, it is routine to check that

A = {veV(D):v €z v"¢I(2)},
B = {veV(D): v ¢gZ v el(2)},

are two sets exhibiting m(D) = |A| — |B| < M (D).
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The following corollary is obtained by applying Theorem 64 to the Hasse
diagram of P.

Corollary 65 For any poset P, the minimal number m of skipless chains par-
titioning it equals the mazimal value of |A| — | B| over all disjoint sets A,B C P

such that any skipless chain containing two elements from A intersects B. 1

Of course, the minimal size m of an edge decomposition of P can be com-
puted by applying Corollary 65 to L(P). However, we present a direct proof
which is short and gives a direct algorithm for constructing such a partition. It
turns out that to compute M (L(P)) it is enough to consider only pairs A, B C
L(P) of the following rather special form: take a partition X UY = P and let
A={(z<y) e L(P):zeX,yeY}and B={(y<z) € L(P):z € X,y e Y}.

We state the result in terms of digraphs. Let e(X,Y), X, Y C V(D), denote
the number of the edges in D starting in X and ending in Y and M (X,Y) =
e(X,Y) —e(Y, X).

Theorem 66 The minimal number m of directed paths partitioning the edge

set of a cycle-free digraph D is equal to
M(D) = max{M(X,Y): XUY =V(D), XNY = 0}.

Proof. It is immediate that m > M because for any partition X UY = V(D)
and any path P the removal of the edges on P can decrease M(X,Y) by at
most one. To prove the reverse inequality by induction on |E(D)]| it is enough
to show that, for the graph D’ obtained from D by the removal of the edges of
a maximal path P = (z1,...,zx), we have M(D'") < M(D).

To show this take a partition X UY = V(D') with

MD')=M(X,Y) =e(X,Y) —e(Y, X).

Since P is maximal and D is acyclic there is no y € V(D) with (y,x1) €
E(D). Therefore if z; € Y we can move z; to X without decreasing M (X,Y).
Likewise we may assume z, € Y. But if we add back the edges of P we will
increase M (X,Y’) by 1: if moving along P we change side from Y to X i times,
then we go from X to Y ¢+ 1 times. This shows that M(D') < M(D) as

required. 1
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15 SYMMETRIC EDGE PARTITIONS OF CUBES

Remark. Incidentally, we discovered an algorithm producing an optimal edge

decomposition: select and remove maximal paths one by one.

15 Symmetric Edge Partitions of Cubes

The result of de Brujin, Tengbergen and Kruyswijk [BTK51] (see [Bol86, The-
orem 4.1] or [And87, Section 3.1] for a proof) asserts that B, = (2[",C) is a
symmetric chain order, that is, admits a decomposition into symmetric chains.
(A chain 71 < ... < xj in a ranked poset (P,r) is called symmetric if it is skip-
less and r(z1) = r(P)—r(zy).) This was strengthened by Anderson [And67] and
Griggs [Gri77], who showed that a LYM poset P with a unimodal symmetric
rank-sequence is a symmetric chain order. (Note that the number of chains is
w(P)—minimal possible.)

The latter result is applicable to L(B,) which, as a regular poset, has the
LYM property, see e.g. [Eng97, Corollary 4.5.2]. However, this way we obtain a
purely existential result while one would wish to have an explicit decomposition.
Here we provide an explicit construction, which like that of Leeb (unpublished)

and Greene and Kleitman [GK76] on B, utilizes bracket representations.

Theorem 67 L(B,) is a symmetric chain order. In other words, By, admits an

edge decomposition into symmetric chains.

Proof. Assume that the numbers 1,...,n are placed on a circle clockwise in this
order. Let o denotes the shift which maps every element to the next position
clockwise: o(k) = k 4 1 (mod n) and let 0 be its ith iterate. (These are also
referred to as rotations.) For the clarity of language we use the same symbol o
for the corresponding action on the vertex set and the edge set of Q),,. We will
produce a o-invariant edge partition.

We build, inductively on n, a family F,, of n-element sequences, starting for
the case n = 1 with the family 7, = { ( }. To build F,,;1 apply Operations A
and B to every sequence F' € F;, and let F;, 1 comprise the resulting sequences.
Operation A: add ‘(’ to the right of F'. Operation B: add ‘)’ to the right of F
and throw away the resulting sequence if it does not contain free elements (i.e. if

all its parentheses can be paired).
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15 SYMMETRIC EDGE PARTITIONS OF CUBES

Proceeding in this way we obtain, for example,

Foo= {((}
Fso= {(((
Foo= L (CCGC CCO, COC)

It is easy to see that F, is the set of all n-sequences beginning with ‘(’ which
is a free element. (In particular, all right parentheses are paired.)

For any sequence F' € F, we build the corresponding chain Cp in L(B,)
which has length ¢, where ¢ is the number of free members of F'. To obtain
the (x)-description of the ith element of Cp, i € [t], we reverse in F' the last
i — 1 free parentheses and replace the ith free element (when counted from the

right) by star . Thus, for example, ‘(() (()” gives (()* () and *()) () which

correspond to the following chain in L(Bg):
({3,6} C {3,4,6}) < ({3,4,6} C {1,3,4,6}).
It is easy to see that every C'p is a symmetric chain. We claim that
D, ={cV(Cp): FeF,, j=0,...,n—1}

is the required edge partition.

We have to prove that for every element z = (A C B) in L(B,,) there are
unique F € F,, and j € [0,n — 1] such that z € ¢)(Cy). First we show how to
find at least one such pair (F),j).

Step 1. Write z in the (*)-representation. Step 2. Rotate the pattern to
bring the star to position 1 and then identify all free parentheses. Clearly, if
disregarding the paired elements, our sequence is ‘x)...) (... (. Step 3. Rotate
again so that the first free left parenthesis identified in Step 2 (or the star itself
if no ‘(’ is free) is moved to position 1. Let j be the number of positions that
the star was moved anticlockwise by Steps 2 and 3 combined. Step 4. Replace
the star and all free right parentheses identified in Step 2 by left parentheses.
Let F' be the resulting sequence.

Obviously, when we pair brackets in Step 4, we obtain the same sets of
free/paired elements as in Step 2. This implies that F' € F, as it starts

with free ‘(’ and that x € CF as required. Here is an illustration for z =
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15 SYMMETRIC EDGE PARTITIONS OF CUBES 103

({1,6,7} C {1,4,6,7}) € L(Bs):

Step 1: )
Step 2: *

—~

—~
*

—~

) )
(

(and j = 1)

( ) (this is F')

e

—~
~
~—
—~
~

Step 3: (
Step 4: (

—~
—~
~

e
—_~

The uniqueness of (F,j) can be established in different ways. One, which
actually gives an alternative definition of D,, is the following. Given the (x)-
representation of z, for 0 < i < n —1 let g(i) = l; — r;, where [; and r; are
respectively the number of left and right parentheses in the ¢ positions preceding
*’ clockwise. If z € 0/ (Cp) then j is the smallest element in [0, — 1] on which
g achieves its maximum. Why? Just pair the brackets in the (*)-representation

of 07/ (z) € Cp, e.g.

(COMJOleHTOD]O

and notice that any paired block (boxed regions) contributes 0 to g while any

7

right-hand-sided part of it contributes a strictly negative value. Now, the max-
imum of g is the number of free left parentheses and this is achieved for first
time when considering the segment preceding the star, as required.

But now, once that j has been identified, there trivially could not be two
suitable Fs. 1

For the remainder of this part let D,, denote the edge decomposition of B,

constructed above. It has the following properties.

Theorem 68 Let C = (A; C ... C Ag) be one of the chains in Dy,. If Ajy1 =
A;U{a;}, then the elements a,...,a,_1 are situated on the circle in this other
anticlockwise and between a; and a;y1 (anticlockwise) there is an even number
of places. For each i € [k — 3], there is an element (B T B') belonging to a
chain of Dy, shorter than C such that

A;,CBLC B'C Ai+3. (92)

Proof. Take the sequence F' € F, giving rise to C. (We may assume j = 0.)
The fact that in F' every pair of consecutive free elements contains only paired

brackets in between implies the firt part of the theorem.
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To show the second claim, let F’ be the sequence F' with the (i 4+ 1)st free
left bracket (if counted from the right) replaced by ‘)’ which is then paired with
the (i + 2)nd free element:

F: (oD (o (o (o (o (0
S A;
K e Aits
F'. (0O (0O |(o)y oo(o
X e B
K e B’

The new sequence corresponds to a chain of length k£ — 2 and its ith and 7 + 1st

elements obviously satisfy the required property. I

We define the complementary chain C of a chain C by replacing every ele-

ment by its complement, ie. if C = (A; C ... C Ay) then C = (A; C ... C Aj).

Lemma 69 Two elements ©1 = (A1 C By) and zo = (A2 T Ba) of L(B,) can
belong simultaneously to D,, and D, only if n = 2k is even and {|B1],|Bz2|} =
{k,k +1}.

Proof. Let ip, € [n] be the element of By not in Ay, h = 1,2, and let pairs
(F,j) and (F',j") give rise to chains C,C’ € D,, such that C’ contains x; and
z9 while C contains Z1 and T3 respectively. Assume that 7' = 0 and z1 < z9,
ie. By C As.

In F' iy precedes i1 and we claim that F’ does not contain a free element
between them. Indeed, if it be in the position y € [n] then y € By and y € A,
that is, 0/ (y) must be a free element in F. But then o~/ (y) must lie between
071(i1) < 077(i2). (In C the element T3 comes before 77.) This contradiction
(on one hand the elements i9,y,7; go clockwise, on the other—anticlockwise)
proves the claim.

Thus all the elements between 5 and 7; are paired in F’; therefore By = Ay
and there must be the same number of left and right parentheses in this interval.
Considering z3,7; € C we show the analogeous statement about the elements

between 41 and i9 (if going clockwise), which clearly implies the claim. 1
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16 APPLICATIONS OF THE PARTITION Dy

16 Applications of the Partition D,

We would like to include here some applications of the edge partition D,, built
in Theorem 67. Basically, we are inspired by known results where a symmet-
ric vertex decomposition of B, is used. We refer the reader to Section 3.4 of
Anderson’s book [And87] for an exposition of a few results of this type. I am
grateful to Ian Anderson for drawing my attention to some other applications

not surveyed in his book.

16.1 On the Number of Antichains in L(B,)

Let us consider the following question: what is ¢(L(B,)), the number of an-
tichains in L(B,)? The computation of ¢(B,,) is an old and difficult problem; a
complicated asymptotic formula was established by Korshunov [Kor81].

Here we provide some rough estimates of ¢(L(B,)) by applying ideas of
Hansel [Han66] who showed that 2 < ¢(B,) < 3V, where N = w(B,) =
(ny))-

Considering all possible subsets of the largest antichain of L(B,) we obtain
trivially p(L(By)) > 2™, where m = w(L(By,,)) = [n/2] (Ln72J)'

On the other hand, observe that an antichain A C L(B,) is uniquely de-
termined by the ideal A(A) = {z € L(B,) : 3a € A z < a}. Consider any
C=(x1<...<x) € Dy. By Theorem 68 for 3 < i <[ —2 we can find y; in
a shorter chain with z; 5 < y; < z;;2. Knowing A(A) N C' for every C' € D,
shorter than C' we know A(A) N {ys,...,y—2}. But then it is easy to check
that only for at most 4 elements of C' we are unable to deduce whether it is in
A(A), and therefore A(A) N C can assume at most 5 possible values. Consid-
ering consecutively the chains of D,, in some size-increasing order we conclude
that o(L(By)) < 5™.

16.2 Orthogonal Partitions of L(5,)

Two chains in a poset P are called orthogonal if they have at most one common
element. Two vertex chain partitions D and D’ are orthogonal if any C' € D is
orthogonal to any C’ € D'. A result of Shearer and Kleitman [KS79] (see [And87,
Section 3.4]) asserts that there exist two orthogonal chain decompositions of 5,

into (Ln% J) chains each.
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16 APPLICATIONS OF THE PARTITION Dy

What can be said about L(B,)? If n is odd, then D,, and D,, are orthogonal

by Lemma 69, where D,, is the decomposition built in Theorem 67.

Theorem 70 For odd n there is a pair of orthogonal symmetric chain decom-
positions of L(B,). 1

Remark. Unfortunately, we do not know if the corresponding claim is true for

even n.

The result of Baumert, McEliece, Rodermich and Rumsey [BMRRS80] (for
a proof, see [And87, Section 3.4.3] or [Bol86, Section 6]) states that posets
admitting a pair of orthogonal decompositions satisfy the probabilistic form of

Sperner’s theorem, which in our case, by Theorem 70, is the following.

Corollary 71 If two elements x and y in L(B,), odd n, are chosen inde-
pendently with arbitrary probability distribution (same for both elements) then
Pz <y} > w(L(Ba) L I

16.3 A Storage and Retrieval Problem

Suppose we maintain a database with n records which we number from 1 to
n and we wish to organize an efficient searching. We assume that we have
queries @1, ...,Q s each of which we identify with the set of records satisfying
it, that is, @; C [n] and these subsets are not necessarily distinct. One idea,
see Ghosh [Gho75], is to find a sequence X of elements of [n] such that every
Q; occurs in X as a subsequence of consecutive terms so that every (); can be
defined by a starting position in X and the size of Q;.

In connection with this Lipski [Lip78] considered the following problem. Find
the shortest sequence of elements of X = [n] such that X contains every A C [n]
as a subsequence of |A| consecutive terms. He showed that s,, the length of an

optimal sequence, satisfies

(i)m 9" < (14 0(1))s < (%) on, (93)

™n

As far as I know, these might be the best known bounds to date.
Here we consider a similar problem. Namely, we ask what is the value of

tn, the shortest length of a sequence X such that for every A C B C [n] the
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16 APPLICATIONS OF THE PARTITION Dy

sequence X contains A as a subsequence of |A| consecutive terms preceded by
z, where {z} = B\ A. Such a situation can happen if every query is a set with
a selected point. For example, we search in a dictionary, the allowed queries
are of the form “Find word” and the answer should give the entry where word
is defined plus all relevant entries. Applying the ideas of Lipski [Lip78] we find

the following upper and lower bounds.

Theorem 72
(%)”Q 2" < (L o(D)ta < (&) 2. (94)

™

Proof. As the number of different pairs A C AU {z} with |A|] = [n/2]| which
can lie within a sequence of length m does not exceed m — |n/2] we conclude

that
t > [n/2] (Ln% J> + n/2]

which implies the lower bound in (94) by Stirling’s formula.

On the other hand, associate with every chain C'= (4, C ... C 4y) in D), a
sequence of elements of [n] which contains first the elements of A; in any order
which then are followed by as, ..., a4, where {a;} = A;\ Ai—1,i=2,...,q.

Let [n] = SUT be a partition of [n] into 2 parts of (nearly) equal sizes. Let
@1, ... ¢ be the sequences corresponding to a symmetric vertex decomposition
of 2. Also, let 91, ..., 1, be the sequences corresponding to a symmetric edge
decomposition of 2%, each sequence being reversed.

Clearly, for every A C S there exists ¢; containing A as the first consecutive
|A| terms and for every A C AU{z} C T there exists ¢; containing, at the end,
A preceded by z.

Now consider the sequence

X =Pr1p1h1ga .. Pprdppadriads . Y Pr.

Take any A C [n] and € T'\ A. There is 9; containing = at the end followed by
ANT and ¢; containing AN S as an initial subsequence. Therefore, X; contains
x followed by A. Interchanging S and 7', we write a sequence X, containing
every pair A C AU {z} with z € S. The sequence X = X;X> is the required

(and explicitly constructed) sequence. It is easy to see that the average size of a
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16 APPLICATIONS OF THE PARTITION Dy 108

sequence corresponding to a chain of a symmetric vertex or edge decomposition
of B, is (3 + o(1))n. Therefore,

tn < |X| < 2(5+o0(1)) nkl

which gives the desired upper bound by Stirling’s formula. 1

16.4 One Numerical Problem

There exists a so called Audit Expert Mechanism which can be used to protect
small statistical databases, see Chin and Ozsoyoglu [CO82]. To find an optimal
mechanism the following problem has to be solved. Suppose we operate with
n-tuples of non-zero real numbers a1,...,a, and we want to find what is the
maximum possible number of subsets I C [n] such that as is equal to either 0
or 1. (Here and later we denote a; = } ,c;a;.) The best possible bound of
(L(nﬁj)l 1 J) was found by Miller, Roberts and Simpson [MRS91] and all extremal
sequences were characterized by Miller and Sarvate [MS95]. Both papers make
use of the existence of a symmetric chain decomposition of B,.

Here, applying a symmetric chain decomposition of L(B,,), we can find K,
the maximal possible number of elements (I C J) € L(B,) such that {ar,a;} =
{0,1}, over all real sequences ay,...,a,. Actually, we can allow zero entries
for, as we will see later, this does not affect K. Apparently, this problem does
not have such an application like that of the original problem, but it might be
of some interest especially as an unexpected application of a symmetric chain
decomposition of L(By).

The expression (a)’ is a shorthand for a repeated i times. Also we assume

that all n-tuples have their entries ordered non-decreasingly.

Theorem 73 For n > 2 we have
n
K= n/2( ) (95)
[n/2]
and this value is achieved for and only for the following sequences. For n = 2k,
((=1)F, (+1)8), (=DF=1, (1)) and ((~1)F1,0, (+1)F). For n = 2k + 1,
(=D, (+1)*+1).
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Proof. Let m be the largest index for which a,, < 0. Define f : oln] 5 2lnl by

the formula
fI) =IA[m] = (I\[m)U(m]\I), IC|n]

One can easily check that I C J C [n] implies ayy < ay(y)-
D,, can be viewed as a collection of symmetric chains in o[nl. Let X, C...C

X,,_ be one such chain. The sequence

CI,f(XT), . 7af(Xn7r)

is non-decreasing and therefore 0 and 1 can occur side by side there at most
once. As every A T B is present in exactly one chain and f is a bijection
preserving or reversing the C-relation, K does not exceed the total number of
chains, which gives the required upper bound.

A moment’s thought reveals that a necessary and sufficient condition for an
n-tuple to be optimal is the following. If n = 2k + 1 then for every A C B C X,
|A| = k, we have ag4) = 0 and ayg) = 1. If n = 2k then for every A C B C
C C X, |A| =k — 1, among the numbers

ara) < apm) < afc) (96)

there is a 0 adjacent a 1.

This condition is fulfilled for the sequences mentioned in the statement.
Indeed, let us consider ((—1)¥, (+1)*¥*1), for example. Here m = k and for any
A C B with |A| = k we have

apa) = aank) = (-1)(k —s) + (k —s) =0, (97)

where s = |A N [k]|. Similarly, aygy =1 so the sequence is optimal.

We claim that these are essentially the cases of the equality. Let us do
the harder case n = 2k. If, for some i # j, we have a; # £1 and a; # =*1,
then A C AU{i} C AU {i,j} with any A € X* D A ¥ 4 4, obviously
violates the condition. If, for exactly one i, we have a; # %1, then considering
AT AuU{i} C C we conclude that apauqy) = 0 for any A € (X \ {i})=1),
Suppose a; > 0, for example. Then a4y =k —J7 — 1+ a; =0, where j is
the total number of elements equal to —1 (so 2k — 1 — j elements equal +1). If
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a; = 0, then we have the third example mentioned in the theorem. If a; > 2
then 7 > k+1 and any sequence (96) with C Z i violates the condition. Finally,
if |a;| = 1 for every 4 then arguing as in (97) we deduce that we can have either

k or k + 1 positive entries. 1

17 Characterization of Line Posets

For graphs we know that we can characterize line graphs in terms of forbidden
induced subgraphs (Beineke [Bei68]) and we can reconstruct a connected graph
G given L(G) except for L(G) = K3 when G is either K3 or K 3.

Here we ask ourselves when a given poset L is the line poset of some P
and what information about P can be reconstructed from L(P). (Of course, it
is implicitly understood that we operate with isomorphism classes of posets.)
While for line graphs there are nine forbibben configuration, for line posets we
have only two (or infinitely many, depending on how we look at it).

Note that L(P) cannot contain elements w,z,y,z such that w <y, z <y,
w < z but x £z; call this configuration N. Indeed, if y and z cover w they must
be of the form (a <b), (a < ¢), where w = (d < a), some a,b,c,d € P. Then the
relation z < y implies that = (e < a) which implies that z < z.

Also, L(P) cannot contain the configuration Cj,, n > 3, made of elements
y and z1,...,z, such that 1 <y <z, and z; < x;41, for ¢ € [n — 1]. Indeed,
suppose the contrary. Clearly, P contains elements zy < z; < ... < z, such that
z; = (zi—1 < z;). But y covers the same element as zo and is covered by the
same element as z,_1, so y = (21 < z,—1) and n = 3; but then y = x5, which is
a contradiction.

For a poset P let T(P) = (C, k, [, u) be the quadruple with C being a subposet
of P spanned by the non-extremal elements, that is by {a € P : 3 b,c € P, b <
a < ¢} and k is the number of pairs (a < b) with a,b € P\ C while the functions
l,u :C — Ny are given by

lla) = HzeP\C:z<a},
u(a) = H{zeP\C:z>al, acP.

It is easy to see that T'(P) determines L(P) uniquely.
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The following theorem states that the above examples provide a complete

answer to our two questions.

Theorem 74 A poset L is isomorphic to L(P) for some P if and only if L
contains neither configuration N nor any of Cy, n > 3. Furthermore, T(P)

determines L(P) and can be reconstructed from it.

Proof. Given a poset £ without N or C), let X be two disjoint copies of its
vertex set, namely X = {z"\, 2" : x € L}. Let 2" ~ y" if z < y; let 2" ~ y" if,
for some s € £, we have s >z and s > y; let ¥V ~ y" if, for some s € £, s <z
and s < y.

We claim that ~ is an equivalence relation. Indeed, if 2" ~ " and y" ~ 2"
then there are s,t € L such that x,y < s and y,z < ¢. But then £ must cover
x for otherwise z,y, s,t would span a forbidden configuration. So z,z <t and
z” ~ 2. The remaining cases are equally easy.

Let T denote the equivalence class of x € X. Define the poset P (also
denoted by L™(L)) on V = X/~ ={F:x € X} by A< B, A,BeViffin L
there exist y < z with 4V € A and 2 € B. One can check that this is indeed an
ordering. For example, to check its transitivity, let A < B and B < C, choose
w< zand y < zin £ with w" € A, 2,y € B and 2" € C; then 2" ~ yV
implies that w <z <y < zand A < C.

Let us show that 2/ covers V. Assuming the contrary we find z > y and

Vo~ w™ and vV ~ zV. By the definition of ~,

w > v in £ with 2 ~ 2", y
some t € L covers both z and z, some s € L is covered by both = and v and
v < w <y < z—which implies that £ contains some C),, which is forbidden.

We claim that £ = L(P) via the map F which sends z € £ to (zV < z/).
First note that F' is an order preserving map: if z >y in £ then 2V ~ y which
implies F(z) > F(y) as desired. Next, F' is injective for if F(z) = F(y) then
" ~ y” and ¥ ~ y" which implies that for some w and z we have w <z <z and
w <y < z; but as £ does not contain configuration C'5 we conclude that z = y.
To show that F' is surjective take any (A < B) € L(P). As A < B, for some
L-elements z < y we have A = 2V, B = y. But it is easy to see that " < y/\,
which implies (A < B) equals (zV < ) = F(z). Finally, if F(z) < F(y) then
2" ~y" and x < y. This proves completely that £ = L(P).
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In the second part it is enough to show that for any poset R we have T'(R) =
T(P), where P = L~ YL), L = L(R). To build a natural isomorphism H :
C(R) — C(P) take, for any element a € C(R), some b < a which exists as a is
a non-extremal element of R. Now let H(a) = ", where z = (b < a) € £ and
~ is as above. To show that H is well defined, let b’ be another choice of b and
denote y = (' < a). Let ¢ be an element covering a. Then (a < ¢) covers in £
both x and y, so by the definition of P we have " ~ y. Also, H(a) € P is not
extremal as

(b<a)V < H(a) < (a<c).

Next, H is an order-preserving bijection. Indeed, let a > b in C(R). Choose
¢ <b. Then H(a) = (b<a)" and H(b) = (c<b)*. But (c<b)" ~ (b<a)’
and we have H(a) > H(b) by the definition of the order on P. To show that
H is injective choose any a,a’ € C(R). Then H(a) = H(a') implies that y =

(c<a) ~y' = (d <d)", some ¢,¢ € R. Therefore there is x € L covering both
y and ¢’ which implies @ = ¢’ in R as required. To establish the surjectivity of
H consider z = (a < b)Y € C(P), for example. Observe first that a € R is not

extremal. Indeed, take any y € P covered by x; as we have already shown any

pair y < z is of the form (¢ < d)V < (¢ < d) which implies d = a and ¢ < a. Now

H(a) = (¢ <a)® = z as required. Again, any two adjacent elements of C(P)

can be represented as (a < b)V < (a <b)" and then they are the images of two
adjacent elements, a < b of C(R), which implies that C(P) = C(R).

Finally, as P and R give rise to naturally isomorphic line posets, in the sense
that

Fla<b) = ((a <b)V < (a< b)A) — (H(a) < H()), a,beC(R),

our mapping H preserves k, [ and u, which are naturally reconstructible from

the line poset. 1
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Part IV

Enumeration Results for Trees

18 Introduction

The notion of a tree and its different extensions to hypergraphs play an im-
portant role in discrete mathematics and computer science. We will dwell
upon the following, rather general, definition suggested independently by Dewd-
ney [Dew74] and Beineke and Pippert [BP77].

Let us agree that the vertex set is [n] = {1,...,n}. Fix the edge size k
and the overlap size m, 0 < m < k — 1. We refer to k-subsets and m-subsets
of [n] as edges and laps respectively. A non-empty k-graph without isolated
vertices is called a (k,m)-tree if we can order its edges, say Fi,..., Fe, so that
for every i, 2 < i < e, there is ¢/, 1 < ¢/ < i, such that |E; N Ey| = m and
(E;\ Ey)N (U;'-;llEj) = (). In other words, we start with a single edge and can
consecutively affix a new edge along an m-subset of an existing edge.

Thus, a (k, m)-tree with e edges has n = e(k —m) 4+ m vertices and its edges
cover [ = e ((T’fL) — 1) + 1 laps. For example, a (k,0)-tree consists of disjoint
edges.

The problem of counting (m + 1, m)-trees which are known in the literature
as m-trees, received great attention and was completely settled by Beineke and
Pippert [BP69] and Moon [Moo69]. This extends the celebrated theorem of
Cayley [Cay89] as, clearly, 1-trees correspond to usual (Cayley) trees. Later,
different bijective proofs for m-trees appeared as well, see [RR70, Foa7l, GI75,
ES88, Che93].

Here we enumerate (k,m)-trees. In fact, a considerable difficulty was to
guess the right formula. When we had a plausible conjecture, we tried to prove
it inductively by writing a recurrence relation. We were rather fortunate: the
result reduced to the identity proved by Beineke and Pippert [BP69, Lemma 2].
This enabled us to write a short inductive proof, published in [Pik99c¢|, which is
presented in Section 19.

Of course, a bijective proof (that is, a correspondence between the set of

trees to count and some simple set) is a far more satisfactory answer. (For
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example, a bijective proof may allow us to generate one by one all trees or to
count the number of trees satisfying some given property.) In Subsection 20.2
we exhibit an explicit bijection between the set of rooted vertex labelled trees
of given size and a trivially simple set; it is based on the ideas of Foata [Foa71]
which are presented in Subsection 20.1. The knowledge of the actual formula
was essential, as otherwise we would have had little idea what and how to biject.

In fact, this method (based on Foata’s bijection) can be applied to enumerate
bijectively other tree-like structures. For example, we can enumerate so called
k-gon trees, a structure studied in [CL85, Whi88, Pen93, KT96]. In order not
to repeat the same portions of proof twice, we present a more general result
including both (k,m)-trees and k-gon trees as partial cases.

In Subsection 20.3 we consider the question whether our bijection can count
edge labelled trees. We present a construction for 2-graphs only, which in fact
answers a question posed by Cameron [Cam95]. This question was motivated
by the possibility that such a bijection might simplify some of his enumeration
results (or proofs) from [Cam95]. However, although we answered Cameron’s
question, we were not able to improve [Cam95]. Please refer to Subsection 20.3

for further details.

19 Inductive Proof

Let T, (e) denote the number of distinct (k,m)-trees on [n] with e edges, n =
e(k—m)+m, and let Ry, (e) count the trees rooted at the lap [m], that is, those

trees for which [m] is covered by some edge.

Theorem 75 Given integers k, m, e with 0 < m < k—1 and e > 1, let
n=elk—m)+m,l= (k) and f =e(l — 1)+ 1. Then the number of different

m
(k,m)-trees on [n] equals

nlfe—?
~ elm! ((k —m)he

Trm(e) (98)

Proof. As in Beineke and Pippert [BP69], to prove the theorem, we write
down a recurrence relation for T, (e) and then verify that (98) does satisfy the

relation. Let us agree that Ty, (0) = R, (0) = 1.
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Counting in two different ways the number of pairs (H, L), where H is a

(k,m)-tree on [n] rooted at L € [n](™), we obtain

(1)) = £ T (99)

Next, consider the following method for constructing trees. Select an edge
E € [n)®® and label by Ly,..., L; the laps of E. Represent e — 1 as a sum of [
non-negative integers, e — 1 = e; +...+¢;. Partition [n]\ E into sets X1,..., X
of sizes e1(k—m),...,e;(k—m) respectively. On each L; UX; build a (k, m)-tree
H; rooted at L;, i € [l]. Clearly, the union of all H;’s plus the edge E forms a
(k, m)-tree and every such tree is obtained exactly e times. Therefore, by (99),

we obtain

_(n (n—k)
eTkm(e) = (k) Z (61(k _m))' 6[ k m Hka Bz

_ ZH m!( el -1+ I)Tkm(el), (100)

(ei(k —m) +m)!

e =1

where ) denotes the summation over all representations e — 1 =e; + ...+ ¢
with non-negative integer summands.
Clearly, formula (98) gives correct values for e = 0. Also, the substitution

of (98) into the both sides of (100) gives (after routine cancellations)

[
l(e(l - 1) + 1)872 — Z % H(ei(l _ 1) + l)eifl.
Peoeepl oo

e

The last identity (in slightly different notation) was established by Beineke and
Pippert [BP69, Lemma 2], which proves our theorem by induction. 1

Corollary 76 The number of vertex labelled m-trees on n vertices, n > m > 1,

is Trn+1,m(n —m) = () (mn —m? + 1)"="2_

20 Bijective Proofs

20.1 Foata’s Bijection

Given disjoint finite sets A, B, C and a surjection v : B — A, a function
f:A—= BUC is called cycle-free if for every b € B the sequence (f o )% (b)
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eventually terminates at some ¢ € C. Foata [Foa7l, Theorem 1] exhibited a
bijection between F(A, B,C,), the set of cycle-free functions, and the set of
functions g : A — B U C such that g(ay) € C, some beforehand fixed a1 € A;
this implies

|F(4,B,C,9)| = [C(1B| + |C) =" (101)

We briefly describe a simpler construction than that in [Foa7l]. Fix some
ordering of A. Let f € F(A, B,C,7). Let Z = (z1,...,2s) denote the increasing
sequence of the elements in A\ y(f(A)). (For convenience we assume that
v(c) = ¢, ¢ € C.) We build, one by one, s sequences 61, ...,0s composed of
elements in BUC. Having constructed sequences 01, ...,0d;—1, let m; > 0 be the
smallest integer such that (f oy)™i(f(z;)) either belongs to C' or occurs in at
least one of d1,...,d;—1. We define (mind the order)

5 = ((Fo )™ (f(20))y (Fo)™ ™ (f(z))s ooy f(2)).  (102)

One can check that Z is non-empty if A is, every m; exists, and 0, the
juxtaposition product of the s sequences 01,...,ds, contains |A| elements. (In
fact, 0 is but a permutation of (f(a))sca.) The obtained sequence ¢ of |A]
elements of B U C, which starts with an element of C, corresponds naturally to
the required function g : A - BUC.

Conversely, given g (or ), we can reconstruct Z which consists of the ele-
ments of A\y(g(A)). Then, exactly s = |Z| times, an element of J either belongs
to C' or equals some preceding element. These s elements mark the beginnings
of 01,...,0s. Now we can restore the required f by (102). To establish (101)

completely, one has to check easy details.

20.2 H-Built-Trees

Adopting the ideas of Foata [Foa7l], we present a bijective proof of (98). Our
method can enumerate some other tree-like structures. For example, we can
find a bijection for vertex labelled k-gon trees (also known as cacti or trees of
polygons), a structure that appears in [CL85, Whi88, Pen93, KT96].

We define a k-gon tree inductively. A k-gon (that is, a k-cycle) is a k-gon
tree. A k-gon tree with g+ 1 k-gons is obtained from a k-gon tree with g k-gons

by adding & — 2 new vertices and a new k-gon through these vertices and an
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already existing edge. Thus, a k-gon tree is a (usual) 2-graph; if we have ¢
k-gons, then it has e = g(k — 1) 4+ 1 edges and n = g(k — 2) + 2 vertices.

In order not to repeat the same portions of proof twice, we present the
following, more general, result which includes (k,m)-trees and k-gon trees as
partial cases.

Let H be any m-graph on [k]. An H-built-tree (T,{H;,...,H.}) consists of
a usual (k,m)-tree T with edges F,..., E, plus H-graphs H; on E;, i € [e],
such that if F; N E; is a lap (that is, has size m), then it is an edge of both H;
and Hj, for any distinct i, € [e]. Let n = e(k —m) +m be the total number of
vertices and let

f=|VicE(H;)| = el =1) +1,

where | = e(H). Also, let Ry be the set of distinct H-graphs on [k] rooted at
[m], that is, containing [m] as an edge. Clearly,
k'
Rl = e
(7)|Aut(H)|

An H-built-tree is rooted on an m-set L if L € Uce)E(H;).

Theorem 77 There is a bijection between the set Y of H-built-trees on [n]

rooted at [m| and the set

Z = F(A7B7077) X H(XZ X RH)a
i=1
where A = [e], B = [¢] x [l = 1], C = {[m]}, v is the coordinate projection

]
B— A, and X; = [((k_"L)EZiI)_I)]. In particular,

o kil e ((k—m)e—i+1)—1
= <($2)|Aut<H>|>H< hi—m—1 )

i=1
Proof. Given an H-built-tree T rooted at [m], order its edges Ei,..., E, so
that [m] € E(H;) and each Ej, i € [2,¢], shares a lap with some Ej, j < .
Correspond an edge E; to the lap ¢'(E;) = E; N U;-;llEj, 2<i<e (We
agree that ¢'(E1) = [m].) Call the set f(E;) = E; \ ¢'(E;) the free part of Ej;
the free parts partition [n] \ [m]. Clearly, these definitions of ¢’ and f do not

depend on the particular ordering.
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Relabel the edges by Dy,..., D, so that d; = min f(D;) increases; let H]
denote the corresponding H-graph on D;. Label, in the colex order, all edges
(laps) of H] but ¢'(D;) € E(H]) by (3,7), 7 = 1,...,1 — 1. Note that now we
have indexing of the edges of T' by A, namely (D;);c4, and of the laps of T' by
BUC. Let g : A — BUC be the map corresponding to ¢’. A moment’s thought
reveals that g is cycle-free.

Repeat the following for 7 = 1,...,e. Index, in the colex order, the (kK —m —
1)-subsets of (U5_;f(D;)) \ {d;} by the elements of X; and let z; € X; be the
index corresponding to f(D;) \ {d;}. Consider the bijection h : D; — [k] such
that h is monotone on ¢'(D;) and f(D;) which are respectively mapped onto
[m] and [m + 1,k]. Let r; € Ry be the image of H] under h.

Now, (g,%1,71,...,%e,Te) € Z is the ‘code’ of T € Y.

Conversely, given an element (g, 21,71,...,%e,Te) € Z we can consecutively
reconstruct the sequence (d;, f(D;)), @ = 1,...,e. Indeed, d; is the smallest
element of V' = [n]\((U;_:llf(D]))U[m]) while f(D;)\{d;} is the z;th (k—m—1)-
subset of V' \ {d;}. For i € A with g(i) € C, we have D; = [m]|U f(D;) and
(knowing ¢'(D;) = [m] and f(D;)), we can determine H] from r;; then we can
recover the lap corresponding to (i,7) € B as the jth lap of E(H]) \ {[m]},
jell—1].

Likewise, we can reconstruct all information about D; for any i € A with g(i)
being already associated with a lap. As f is cycle-free, all edges are eventually
identified, producing T € Y.

A plain verification shows that we have indeed a bijective correspondence
between Y and Z. 1

It is trivial to check that if a union of K}"-graphs can be formed into a
K}"-built-tree, then the latter is uniquely defined. Hence, the number of vertex
labelled (k,m)-trees equals the number of Kj"-built-trees. Now, [Rgm| = 1,
|Y| = Rgm(e), and we can easily deduce formula (98).

Similarly, k-gon trees are in bijective correspondence with Cp-built-trees.
We have |R¢, | = (k — 2)!, so we obtain that there are

9 B —z' -
(g(k — 1) + )7 (k=207 T [ (Uf 2)(gC - 3+ 1) 1)
=1

rooted k-gon trees with g k-gons, which implies the following result.
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Corollary 78 The number of vertex labelled k-gon trees with g k-gons is

(g(k —2) +2)!(g(k — 1) + 1)972
2(g") ’

20.3 Edge Labelled Trees

k>3.1

Cameron [Cam95] enumerates certain classes of what is called there two-graphs:
reduced, 5-free, and (5, 6)-free and presents their connections to Coxeter groups
of graphs. Please refer to his work for all definitions and details. Also, he
defines, for a given (Cayley) tree T, the equivalence relation = on its edges
which is the smallest one such that two edges are related if they intersect at a
vertex of degree 2 in T'. For example, T is series-reduced (that is, 7" does not
contain a vertex of degree 2) if and only if = is the identity relation.

Cameron had to count the number S, of trees with n edges with labelled

=-classes. He found the following formula ([Cam95, Proposition 3.5(a)]):

n E—1
Sn = ;;1 S(n, k)k—il ;)(—1)9' (k j 1) (k ; 1>j!(k B L)
where S(n, k) is the Stirling number of the second kind: the number of partition
of an n-set into k non-empty parts. The sequence (S,,) starts as 1,1,2,8,52,...
and probably cannot be represented in a simple form but, of course, one can try
to simplify (103).

Cameron [Cam95] asks the following question.

Problem 79 (Cameron) Describe a constructive bijection between edge la-
belled trees and edge Prifer codes, not going via vertex labellings. Describe

the equivalence relation = in terms of this code.

The motivation for the problem was apparently that such a code might
simplify (103). Although we answer here this question, we have not so far been
able to simplify (103) or its proof from [Cam95]. But anyway, let us describe our
construction. Of course, we use Foata’s [Foa71] bijection for cycle-free functions.

Let e1,...,e, be the edges. Suppose e; = {a,b}; this edge will play a
special role. Let A = B = {eg,..., ey}, C = {a,b} and v : B — A be the
identity function. Let us correspond an f € F(A,B,C,v) to a given tree T

Each edge e can be connected to e; by the unique path in 7. If e is incident
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to ey, then let f(e) be equal to their common vertex; otherwise, let f(e) be
the first edge on the path from e to e;. This gives a correspondence between
twice the number of edge-labelled trees (we can label the two vertices of e; by
a and b in two different ways) and F(A, B,C, ). Foata’s bijection shows that
|F(A, B,C,v)| = |C|(|A] +|C|)!41-1, which implies, as desired, that the number
of edge-labelled trees with n edges is (n + 1)"~2.

Of course, the code is rather simple; we describe briefly only one direction.
A code ¢ is a sequence of length n — 1 consisting of elements in {a,b,ez,..., ey}
and staring with a or b. The set Z C {ea,...,e,} of edges which do not occur
in the sequence consists of leaves. (If a or b does not occur, then e; is also a
leaf.) Clearly, an element of § equals either a or b or some previously occurring
element exactly z = |Z| times. Cut 0 before each such element; we have z pieces
d1,...,0,. Append the ith element z; of Z to the end of ¢; to obtain 07, i € [2].

The reversed sequence 0, describes the initial segment P/ of the path P;
from the element z; € Z to e; until it hits e; or some previous path P;, i € [z].
Clearly, this determines some tree.

This bijection corresponds to every edge-labelled tree two codes, one starting
with a and the other—with b. To make this correspondence one-to-one, we
consider only a half of the codes, e.g. those starting with a.

How can we read the =-relation from 67 First, let &' be the minimal equiv-
alence relation on {a,b,es,...,e,} such that e; =' ¢; if ¢; and e; intersect at a
vertex of degree 2,2 < i < j < n, and z = ¢; if z is a degree-2 vertex incident to
ei, ¢ € {a,b}, i € 2,n]. (Informally, we cut e; in its middle and take the usual

~ ~

=-relation on the both created components separately.) Clearly, = is obtained
from 2 by identifying ¢ and b into a single element ej, so let us indicate how
to determine the latter relation.

Take any maximal contiguous subsequence S C § consisting of elements that
occur in 0 exactly once. Clearly, S lies entirely within some ¢; and S U {y} is a
='-equivalence class, where y is the symbol following S in ¢,. Conversely, it is
easy to check that all non-trivial 2’-classes are obtained this way, as required.

This answers Problem 79. Unfortunately, I do not see how this description

can simplify Cameron’s formula (103).

Remark. We do not know any bijection enumerating edge labelled (k, m)-trees
for k£ > 3.
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Part V

Large Degrees in Subgraphs

21 Introduction

All research carried in this part revolves around the following conjecture of
Erdos [Erd81] which is disproved here.

Erdés [Erd81], see also e.g. [Chu97, Erd99], conjectured that for n > 3 any
2n+1) o (n

2 2
with maximum degree less than n. This value arises from the consideration of

graph with ( ) — 1 edges is a union of a bipartite graph and a graph
P, 11, which does not admit the above representation. (P, = K, + E, has
m + n vertices of which m vertices are connected to every other vertex.)

In the arrowing notation the latter statement reads “Pp, 11, — (Kin,Codaa)™:
for any blue-red colouring of the edge-set of P, , we necessarily have either
a blue star K, or a red cycle of odd length. (By C,qq we denote the family of
odd cycles.) Thus the conjecture states that 7(Kj ,,Coqq) = €(Ppt1,,) and, if
true, would give the same value for the size Ramsey number 7#(K ,, K3), since
certainly 7(K,,, K3) > #(K1 pn,Coqa) and in fact Py, — (Kip, K3).

We show, however, that both these size Ramsey numbers grow as n? plus a
term of order n3/2. (Actually, the conjecture fails for all n > 5.) More precisely,

our main result is the following.

Theorem 80
P(K1p, K3) <n?+ V2032 +n, forn>1, (104)
(K1 n, Coaa) > n? + 0.577n%/?, for sufficiently large n.  (105)

In [FRS97, Section 1] it is asked whether the conjecture is true for graphs
with (at most) m vertices. Faudree (for a proof see [ERSS96]) showed this is
the case for m = 2n + 1. Our construction can beat P, 1, on 3n + 1 vertices.
Perhaps Py, 11, is extremal for graphs with 2n plus few more vertices, but even
for 2n + 2 vertices we do not know whether this is true.

Some previous attempts to prove Erdds’ conjecture resulted in new interest-

ing directions of research; here we investigate also some of these questions.
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Erdds and Faudree [EF99] consider the related problem of determination of
the minimal size of a graph G such that if G is a union of two graphs, one
having maximal degree less than n, then the other contains all odd cycles C,
with 3 < m < n — 3. Here we demonstrate a graph G of size (1 + ¢)n?, for any
given constant € > 0, such that, for any blue-red colouring of G without a blue
K 5, we have red cycles of all lengths (odd and even) between 3 and cn, where
¢ = ¢(e) > 0 does not depend on n.

For positive integers n,k,j with k£ > 5, Erdds, Reid, Schelp and Staton
[ERSS96] consider the property M (n, k,7) which is defined as follows. A graph
G belongs to M(n, k, j) if it has n+k vertices and for every (n+7)-set A C V(G)
we have A(G[A]) > n. (That is, the maximal degree of the subgraph of G
spanned by A is at least n.) The problem is to compute

m(n,k,j) = min{e(G) : G € M(n,k,j)}.

Erdds et al [ERSS96, Conjecture 1] conjectured that for any n > k > j > 1 and

n > 3, we have

m(n,k,j):(k—j+1)n+(k_;+1>. (106)

This value arises from the consideration of P,_ ;1 ,LUE;_;. Erdds et al [ERSS96,

Theorem 3] proved that (106) is true if j =1 or if 7 > 2 and
. N (k—j+2
n > max (j(k - ), (F3*)). (107)

In Section 23 we demonstrate a constructive counterexample to (106) if n <

( = 2)(k — 7). On the other hand, we show that the formula (106) is true if
n > max ((j+5) (k= j) + 45, 14)

which is an improvement on (107) for j 5 k/3. This shows that the value j(k—j)
is roughly the threshold on n when the obvious construction suggesting (106)
fails to be extremal. Some other constructions are presented.

Another function whose study was motivated by Erd0s’ conjecture is as
follows. Let B(n,m) consist of all graphs such that, for any partition V(G) =
A U B, either A(G[A]) > n or A(G[B]) > m (or both). We are interested in
the bisplit function b(n,m) = min{e(G) : G € B(n,m)}. Clearly, b(n,n) =
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7(K1n,Coaa) is precisely the function investigated in Erdés’ conjecture, which
was the original motivation for introducing the ‘off-diagonal’ numbers b(n,m).

In Subsection 24.1 we present a simple argument giving a lower bound on
b(n,m), any n,m, and a construction of G € B(n,m) (which obviously gives
an upper bound) which together compute the function asymptotically when

m = min(n,m) is large:
b(n,m) = 2nm — m? + o(m)n. (108)

Concerning small values of m, not much is known. Of course, the bounds
of Subsection 24.1 are applicable here, but the error term is not negligible if
m is bounded. Namely, we obtain that, for any fixed m > 1, the numbers
b(n,m), n € N, lie between two functions linear in n with slopes 2m + 1 and
2m 4+ vV22m + %

We prove that b(n,1) = 4n — 2 for n > 8 (and characterize all extremal
graphs) and that b(n,2) = 6n + O(1). As the reader will see the proofs are
rather lengthy and require consideration of many cases. This indicates that the
computation of lim,,_,+ b(n,m)/n for any fixed m (if the limit exists) is perhaps

a hard task.

22 Triangle-vs-Star Size Ramsey Number

Here we will prove the bounds on (K1 y, K3) stated in the introduction.

22.1 Upper Bound

Proof of (104). We provide an explicit construction of a (K ,, K3)-arrowing
graph G.

Take any representation n = k1 + ...+ k,;, and let G be the disjoint union of
Py, n, i@ € [m], plus a vertex x connected to everything else. Consider any blue-
red colouring of E(G) without a blue K ,. Among n(m+1) edges incident to z
there are at least mn+ 1 red ones. By the pigeon-hole principle, = sends at least
n + 1 red edges to some Py, ,,, say {7, y;}, i € [0,n], of which at least one must
be incident to a vertex of Ky, C Py; n, say yo. But of n edges {yo,yi} € E(G),
i € [n], one is necessarily red and creates a red triangle whose third vertex is .
Hence, G — (K1, K3).
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We have e(G) = (m +n+ L)n + 3 e (k?l) To minimize e(G) we take
the k;’s nearly equal; so they are essentially uniquely determined by m. Any
value of m we choose will give some upper bound for #(K; 5, K3). Choose m so
that n = 2m? + r, where |r| < 2m. So, for example, when n = 2m? — 2m we
could choose either m or m — 1. We believe, though we do not prove, that such
a choice of m is optimal. The verification of (104) is now best split into four
cases. For example, for 0 < r < m we have m — r times k; = 2m and r times

k; = 2m + 1. Routine simplifications show that
2n® — (e(G) —n? —n/2 —r/2)? = 3m?r? + 2r* > 0,

which implies (104). The other cases can be verified similarly. il

One can check that the bound (104) gives strictly better values than (2”; 1) -
(g) for all n > 6. In fact, Erdés’ conjecture fails also for n = 5 when the
representation n = 2 + 3 produces a graph with 44 edges.

We do not know any example beating our construction, which therefore
might be an extremal one, but we do not dare to make any conjecture yet. It is
surprising that a counterexample was not found earlier. An explanation might
be that P, 1, is perhaps extremal among all (K} p,C,qq)-arrowing graphs with
few vertices; as shown by Faudree (for a proof see [ERSS96]) this is the case for

graphs of order 2n + 1. Note that we can beat P, , using 3n + 1 vertices for

n > 5: take m = 2 in our construction.

22.2 Lower Bound

In this section we suppose on the contrary to (105) that there is a (K14, Coaq)-

arrowing graph G with at most n? + 0.577n3/?

edges and try to derive a con-
tradiction for large n.
Instead of 2-colourings of E(G) we find it more convenient to operate with

2-partitions of V(G). Thus our assumption on G states that
max {A(G[A]), A(G[B])} = n

for any partition V(G) = AU B.
The following simple argument, which we call the greedy algorithm, shows
that any A C V(G) spans at least n(n — |A| + 1) edges, where A = V(G) \ A.
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Indeed, inductively let z; be any vertex (if exists) of degree at least m in
G[A\{z1,...,zi—1}]. Let X = {z1,...,x} C A be the set eventually obtained.
By definition, A(G[A\ X]) < n. But then AU X contains at least n + 1 vertices
(to allow a vertex of degree n), that is, & > n — |A| + 1, and the claim follows.

Taking A = V(G) we obtain e(G) > n?4n. We will add an n*/?-term to this
trivial bound by using a probabilistic argument. But before we can apply it, we
have to fiddle a lot with the greedy algorithm in order to gain some structural
information about G.

Let us introduce some notation first. By da(z) = |A N I'(z)| we denote
the number of neighbours of z lying in A, z € V(G), A C V(G). Also let
L={z€V(G) :dz) >n}, 1 =|L —n and e(G) = n® + ¢yn??. Thus we
assume that ¢, < 0.577 and in fact, by adding edges to G, that ¢y = 0.577+0(1).

Lemma 81 [ < ¢,n'/? + O(1).

Proof. Apply a modified greedy algorithm. Set initially A = C = () and
B = V(G). These three sets will always partition V(G).

Repeat the following as long as possible or until |A| = n + 1. Take a vertex
z € B (if exists) with dg(z) > n and move it to A; colour aqua all edges
connecting x to B. Then for every such z do the n-check, that is, move to C'
all vertices in B N L whose B U C-degree is now smaller than n, that is, equals
n—1. (Thus before we proceed with another = we ensure that a vertex z € L\ A
belongs to B if and only if dpyc(z) > n.)

When we stop we have a+c¢ > n+1, where a, b, ¢ are the cardinalities of the
eventual sets A, B, C. Indeed, if a < n+1 then A(G[B]) < nso A(G[AUC]) > n
and the claim follows.

The number of aqua edges is e, > an. Call non-aqua edges incident to C'
cyan. Every vertex in (' is incident to exactly n — 1 cyan edges; hence we have
ec > c(n —1) — () cyan edges.

By applying our usual greedy algorithm to BUC we obtain that there is a set
Y ={y1,.-.,Yn+1-a} C BUC such that each y; has at least n neighbours in the
complement of AU {yi,...,y;—1}. Clearly, Y must be disjoint from C, that is,
Y C B. We have e, > (n+1 —a)n edges between Y and C'U B; colour all these
edges yellow. (Some edges may be yellow and cyan simultaneously.) Finally,

each vertex in R = LN(B\Y) has degree in BUC at least n (otherwise it would
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have been moved to C earlier). Hence R is incident to e, > r(n—|Y | —¢) — (})
edges lying within B \ Y, where r = |R|; call them red edges.

We claim that ¢ = o(n). Suppose not. As e, + e, > n?, the number of cyan-
only edges is o(n?) and the average yellow-degree of z € C is n + o(n); hence
Y| > n+o(n). Now |C| > |Y]| because a+c > n+1 =a+|Y|, so |C| > n+o(n).
But CUY C L and |L| < 2n + o(n) by the handshaking lemma. Therefore
c=mn+o(n), a=o(n), r = o(n) and all but o(n?) edges lie between C' and Y.
But consider partition V(G) = V4 UV, obtained by placing in V; all of AU R,
n/3 vertices from C, n/3 vertices from Y and all (= o(n)) vertices from C (and
resp. from Y') which have in G at least n/6 neighbours outside Y (resp. outside
C). As |Vi| = 2n/3 4+ o(n) some z € V; satisfies dy, () > n. But = necessarily
belongs to Y UC, say x € C, and can have at most |[Y NVa|+n/6 < 5n/6+o(n)
Va-neighbours, which is a contradiction proving ¢ = o(n).

Using the above lower bounds on e, e, e, and the inequality a > n —c+1

we obtain
e(G) = n2+cgn3/2 > eqte.+e —(n—a+l)c
> nf4n— % +ac > n®+n+ 7_302+;(2n_1).
Solving this (quadratic in ¢) inequality we obtain that necessarily ¢ < cgnl/ 2 for

large n as ¢ cannot be bigger than the larger root 2n/3 + o(n).
Writing e(G) > e, +e.+e, — (n—a+1)c+e, and substitutinga > n—c+1

everywhere (as the total coefficient of a is positive) we obtain

cgn3/? > w +cn —2cr +0(n).

The larger root of this quadratic in r inequality is 2n+o(n), but r < n4o(n) since
a=n+o(n) and a+r < |L|. So we conclude that [ —1 = c+r < ¢,n/?2+0(1)

as required. 1

Now let us try to derive a final contradiction.

Proof of (105). Let Zmax be a vertex of maximal degree A(G) = ¢,n*/>.

The greedy algorithm shows that e(G) > n? + A(G), that is, ¢, < 4. Let
d = ((4+c2)"? = ¢y)/2 and ¢; = 1.732.

We apply a version of the greedy algorithm. Set initially A = C = () and
B =V(G).
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At Stage 1 move to A, one by one and as long as possible, a vertex x € B
with dp\,(z) > n — [ and dpuc(r) > n. After z was moved do the n-check,
that is, move to C all vertices y € B N L with dguc(y) < n. We may assume
that we were selecting z € B so that dg(z) was non-increasing. Let A; be the
set of vertices moved to A at Stage 1, F = {z € A; : dg(z) > n + ¢yn'/?} and
ay = |F|/n. By Lemma 81 we have [ < ¢,n'/? + o(1), so the number of edges

incident to F' is at least

gd(x) - éw > apn? + otf%n:’)/2 + o(n3/?).

At Stage 2 move to A, one by one and as long as possible, any vertex © € B
having at least n + ¢n'/2 neighbours in B U C and for every such z do the
n-check as in Stage 1.

At Stage 3 we repeat the following until BNL = (). Take z € BN L. As long
as dpyc(z) > n move to A some z-neighbour y € BN L (note that dguc(y) > n)
and perform the n-check. Such y necessarily exists as x has fewer than n — [
neighbours in B\ L while |C| < [. (The latter inequality is true because if
|C| > | at some moment then continuing with the standard greedy algorithm
applied to BUC we find at least n — |A| 4 1 vertices in BN L which contradicts
|L| =n+1.) Of course, the last n-check moves x itself to C.

Let a;n (resp. ¢;n'/?) be the number of vertices moved to A (resp. to C) at
the ith Stage. As eventually A(G[BUC]) < n we conclude that a; +az+ag > 1.
Also a3 < e as for every z moved to C at Stage 3 we moved at most ¢/n'/?
vertices to A.

Note that the first vertex moved at Stage 1 may be assumed to have degree
A(G) = ¢,,n®? unless A(G) = O(n). So our algorithm produces the following

lower bound on the size of G:

e(G) > n? + (cm +aptS +asd +e3(l—ag) + o(l)) n3/2. (109)

Now using the inequalities a3 < c’c3 (twice) and 0 < ¢3 < ¢4 + o(1) (by
Lemma 81 we have c3 < [C|n~1/2 < ¢, + o(1)) we obtain from (109) that

cg—ap(cr—cg)/2—cpm —c3+ 3

az+a3z < ;

+ ez + o(1)

c
cg—ap(cyr —cg)/2 —cm
cl

+ max (0, 03 + ey — ¢g/c) +0(1).
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But our ¢ satisfies cg + c'cy = ¢4/c so the second term disappears.

Choose a set Y C L by placing each vertex of L into Y independently with
probability p = (c; + 26)n*1/2, where € > 0 denotes a small constant.

The number of Y-neighbours of any x € L has a binomial distribution with
expectation at most pe,n’/? = (¢ 4 2¢)cpn. Hence the probability that say
dy (z) > (c¢fem + 3¢)n is exponentially small in n by Chernoff’s bounds [Che52].

Similarly, the expected value of dy (z) for x € Ay is at least p(n — [) =
(cf + 2¢)nt/? and dy () < (c¢; + £)n'/? with probability at most exp(—cn'/?)
for some constant ¢ > 0.

Hence, there exists Y (in fact, almost every choice would do) such that
dy () < (crem + 3e)n for every © € L and dy(y) > (cf + €)n'/? for every
y € Aj.

Now consider the partition V(G) = V; U Vs, where Vi = (L\ Y) U (41 \ F).
Any = € Ay \ F has at least (¢; + ¢)n'/2 > d(x) — n neighbours in Y, so
dy, (z) < n. But then dy,(z) > n for some z € L NV,. Hence,

n < Vo \Y|+dy(z) <n+1—|A|+|F|+ (cfem + 3¢)n,

or equivalently

as + a3z +ay +cpep > 1+ error term, (110)

where the error term can be made arbitrarily small by choosing the constant e
small.
Chopping off some terms in (109) we obtain that a; lies between 0 and
2(cg — cm)/(cf — ¢g) + 0(1). Hence
cg—ap(cyr —cg)/2 —c
o

< max (Cf,%,fﬂm) +o(1). (111)

c cr—cg

= +ay+o(1)

a2+a3+af S

Using the values of ¢, and ¢y we obtain from (110) and (111) that necessarily
max(0.767 + 0.403 ¢,,, 0.9992 4 0.0004 ¢,,) > 1 4 0(1),

which cannot be satisfied for 0 < ¢, < 0.577. 1

Remark. The constant 0.577 can be improved, even with the present proof.

For example, the optimal choice

¢y = min (@/44-0!2}, cg +1/2(cq — cm)/cm> ,
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should give (with extra algebraic work) c, > 0.591.

Also, after Stage 2 we could apply the algorithm of Lemma 81: we have
identified at least (¢, + a2(c’ — ¢g) + af%)nz’)/2 ‘useless’ (from the point of
view of Lemma 81) edges, which should bring down the bound on [ there. We
do not know how much gain this would have given (the calculations get rather
messy) but we believe that we have reached a good compromise in the sense

that the proof is not too long and the bound is not too bad.

22.3 Cycles of Consecutive Lengths

As we already mentioned, Erdés and Faudree [EF99] study minimum graphs G
such that if G' is a union of two graphs, one having maximal degree less than
n, then the other contains all odd cycles C,, with 3 < m < n — 3. Here we
show, that if we require cycles lengths from 3 to ©(n), then we can present a
construction with only (1 + €)n? edges for any fixed £ > 0.

In the proof below we introduce constants ci, co, and so on. It should not be
hard to check that we can always choose ¢; (depending on ¢y, ..., ¢;—1) satisfying

all conditions set in the proof. We do not try to optimize the constants.

Theorem 82 For any fized € > 0, there is a graph G with at most (1 + €)n?
edges such that if E(G) is coloured blue-red without a blue K ,,, then we have
red cycles of all lengths (even and odd) between 3 and cn for some ¢ = c(e) > 0

which does not depend on n.

Proof. Choose integers

m = /n/2+0(1),

E = (V2+c)vn+0(1),
I = n+an+0(1),

h c1v/n + O(1).

Choose k-sets K1,..., Ky, [-sets Li,..., Ly, and an h-set H (all disjoint). Let
G consist of all edges intersecting H and of all edges intersecting K; and lying
within K; U L;, i € [m], that is, G = K}, + mP; ;. If ¢; > 0 is small, then G has
at most (1 + €)n? edges.
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Consider any blue-red colouring of E(G) without a blue K ,. Let G' C G
be the red subgraph, let d’'(z) be the red degree of x € V(G), and so on.

Define the bipartite graph F' with classes H and [m] as follows; z € H is
connected to i € [m] if and only if = sends at least [ + co4/n red edges to K; U L;,
ca = ¢1/2. Now, the inequality

(m —dp(z))cav/n + dp(xz)k > mk —n + 1,

implies that each z € H has dp(z) > c3y/n neighbours in F'.

First, let us show how to find red cycles of all lengths up to c4y/n. Choose,
any {z,i} € E(F).

In G', we have dy (z) > c2/n and each vertex in Iy (z) has at least c;n +
o(n) neighbours in Iy ,; (). (Because the latter set has size n +cin + O(y/n)
while we do not have a blue K7 ,, in G.) Thus we have ©(n%/?) red edges within
I¢.ur, (7). By the theorem of Erdds and Gallai [EG59], we have a red path of
length c4y/n there, which together with x creates red cycles of all lengths up to
cq\/n.

Next, the graph F' (which, in fact, has positive density) has a cycle of
length 2t = ©(y/n) with 4¢ < c44/n for large n; let it go through vertices
T1,%1,,. .., Tyl Tip1 = 1, where z; € H for j € [t].

To prove the theorem it is clearly enough to show that, for any j € [t], we
can find a red path connecting z; and z;1; through K;, U L;; of any length
between 2 and c5+/n, for some constant cs.

Consider X = (T (z;)UT"(z;11))N(K;;UL;; ). Now, XNK;; has at least c2v/n
elements, each being incident to at least c;n+O(y/n) red edges. It is not hard to
see that we can find a red cycle C' within X of length at least c54/n intersecting
I(z;) NI (xj41). (The latter set has size n+cin+ O(y/n) and it is incident to
almost all red edges lying within X.) It is easy to see that we can additionally
require that C' has a red cord E. Now, by a simple lemma (which is implicit in
Bondy and Simonovits [BS74] and explicit in Verstraéte [Ver99]), C + E contain
paths connecting I'(z;) NV (C) to I''(z;41) N V(C) (two intersecting sets that
cover V(C)) of all lengths from 0 to v(C) — 1, as required. 1

Remark. For each j € [t], we can find a red cycle of any prescribed length
between 3 and cq4+/n lying within K;; UL;; U{z;}. Hence, we can find t = O(y/n)
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such vertex disjoint cycles in G. Of course, one can try to prove many other
similar results about our graph G. For example, what is ¢ = ¢(¢) if ¢ tends to
zero with a given rate as n — oo, say € = ©(1/y/n)? But we do not want to
build a whole theory out of it: our purpose was to demonstrate that if we allow

(1 +€)7(Ki,n,Coqa) edges then we can witness much stronger properties.

23 Removing Vertices

In this section we denote [ = k —j > 0. Thus a graph of order n 4 k£ belongs to
M(n, k,7) if after the removal of any [ vertices the maximal degree is at least

n.

23.1 Some Constructions

Here is our counterexample to the conjecture of Erdos, Reid, Schelp and Sta-
ton [ERSS96, Conjecture 1].

Example 83 The formula (106) is not true if n < (5 — 2)I.

Proof. Write n = lg+7r with 0 < r <. Let A=[l+1],y =1+ 2, and
R =[1+3,l4+r+2], that is, R C X \ (AU{y}) is a set of size r. Our assumption
on n implies that 7 > ¢ + 2, that is,

n+k—-1l—-r—2>(+1)q.

Therefore, in X \ (AU RU {y}) we can choose disjoint g-sets Q1,...,Q+1. Let
our graph G consist of the following edges: {f,h} € A® with |f — k| > 1 (that
is, A spans the complete graph but for a Hamiltonian path), all edges between A
and R, all edges connecting f € A to Qp with h # f and edges {f,y}, f € [2,1].
Thus all vertices in A have degree n + 1 — 1. It is easy to check that the size of
G is by one smaller than the bound given by (106).

We claim that G € M(n,k,j). Suppose on the contrary to our claim that
we can remove some set L of size [ so that the remaining graph has maximal
degree less than n. Let x be any vertex in A\ L which is not empty as |A| > [.
As the degree of = should be less than n now, we conclude that z is connected to

each vertex in L. Therefore, any vertex in A non-incident to some z € A\ L lies
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itself in A\ L. As G[A] is connected (it is a path), we conclude that AN L = ().
But the set of vertices connected (in G) to everything in A is precisely R and it

has r < [ elements, which is a contradiction. 1

Remark. In Example 83 we can win a few more edges if n is yet smaller. As
before, we let A = [[+ 1] and y = [+ 2. Suppose that for some p we can squeeze
into [l + 3,n + k| an r-set R and g-element sets Qq,...,Qp+1 with r < p and
pg + 1 = n. To define G, let G[A] consist of h = U%J vertex-disjoint paths of
length p + 1 each; for every such path (z1,...,2,4+1) we connect z;, i € [p + 1],
to everything in R and in Q;, j # ¢, and we connect z;, i € [2,p], to y. Also, we
add some extra edges so that any vertex of A not on a path has degree n + .

Suppose that G € M(n, k, j), that is, there is an I-set L with A(G—L) < n.
Let zyp € A\ L. It must lie on a path P. (Otherwise dg(z) = n +1.) Like
in Example 83 we argue that P does not intersect L and, in fact, every z € P
is connected to all vertices in L. But the number of vertices connected to the
whole of P is |(L \ P) U R| < [, which is a contradiction.

It is easy to see that we have h edges less than in (106), so it is advantageous

to choose p as small as possible. The condition we have to satisfy is
n+k—1-2>r+(p+1)g

or, equivalently, j — 2 > g = |n/p|. Therefore, we choose p = []%2] Note that

+1
piil-

Erdds et al [ERSS96] observe that (106) is not true ‘when k is very large

our gain compared to (106) is h = |

compared to n.” Here is an example, for any given [ and n, giving only a fraction

of (106) with &k moderately small (starting with & > n +1+ 1).

Example 84 Suppose that n +k > pn + 1+ 1, where p is an integer greater
than 1. Take a representation | +1 =11+ ...+, and let G = Uepp) (K, + Ep).
Then G € M(n,k,k —1).

Proof. Let L C V(G) be any l-set. There must exist ¢ € [p] such that L
intersects the corresponding component C; in less then [; vertices. Hence, at

least one vertex in K, survives and it has at least n neighbours outside L. 1

132



23 REMOVING VERTICES 133

23.2 Improving Condition (107)

We can prove the following (which is an improvement of (107) if j < k/3).

Theorem 85 Let j > 2 and n > 14. Then (106) is true if

1 2]+l
[

Proof. Let G € M(n,k,j). To prove the theorem by induction is it enough to
show that maximal degree of G is at least n 4+ [. (Because removing a vertex
from G we obtain a graph in M(n,k — 1, 7) and clearly m(n, j,j) = n.)

Let H = {x € V(G) : d(z) > n} and h = |H|. Let us show that & is not
large by applying the following procedure to G.

Let A =C =0 and B = V(G). Repeat the following as long as possible
or until |A| = [ + 1. Move to A any vertex x € B (if it exists) having at
least n neighbours in B. For every such x do the n-check, that is, move to C all
y € BNH with dpuc(y) < n. (Infact, for every such y we have dpuc(y) = n—1.)

Suppose we have stopped. Let a, b, ¢ be the sizes of the eventual sets A, B, C'.
Inductively, we find a set Y = {y1,...,yi+1-¢} C B U C such that each y; has
at least n neighbours in C U B\ {y1,...,y;—1}. As each y € C has fewer than
n neighbours in B U C, we conclude that Y C B. Let R = (B\Y)NH and
r = |C UR|. Each z € R has at least n neighbours in C' U B for otherwise it
would belong to C.

Counting the number of edges encountered in our algorithm we obtain that
e(G)>an+|Y|n+r(n—1)— (3) —rlY|.
Using a + |Y| =1+ 1 (and the trivial inequality Y| <) we obtain
(l+1)>r(n—1 —|Y]) >r(n l—%).

To satisfy this quadratic in 7 inequality, r must not lie between the roots ri 2 =
n—l—%:l:R, where

\/4712 dn(20+1) + 1.
The assumption of the theorem implies that

I < 3n/8. (112)
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Using (112), one can check that R > (n — 3)/2. Suppose that r > 3. Observe
that
ro>n—l—3+22=3n-1-2>32n-2 (113)

As before, the inequality e(G) > an + |Y|n + r;1 — r|Y| implies that
("Eh > r(25t ). (114)

Using (112) and (113), we can deduce from (114) that n > 3xn? + 1, which
cannot be satisfied for n > 14.

The above contradiction implies that » < r;; then we have
h=r+l+1<n+4i-R. (115)

Suppose on the contrary that & > j and A(G) < n +1[. For every z € H we
choose a j-set D, C I'(z) and let D = Uzeg Dy. We have |D| < jh and we claim

that this does not exceed n + j. To verify this, it is enough to check by (115)
that jR > jn —n — j/2. Squaring, we obtain that the latter is equivalent to
n(25 — 1) > 2421 + j, which is precisely our assumption.

Complete D to an arbitrary (n+j)-set E. As G € M(n,k,j), some x € ENH
has at least m neighbours in F, which is a contradiction as, by definition, £
contains at least j non-neighbours of z.

Hence, A(G) > n + [ and the theorem follows by induction. il

24 Splitting into Parts

Here we consider b(n,m) = min{e(G) : G € B(n,m)}, where B(n,m) consists
of all graphs G such that, for any partition A U B = V(G), either A(G[A]) > n
or A(G[B]) > m.

Clearly, b(n,m) = b(m,n). Let us assume n > m.

24.1 General Bounds

The following simple argument gives a very good general lower bound on b(n, m).

Let G € B(n,m) be any graph. Set initially A = V(G) and B = 0. As
long as |B| < m, move to B any z € A with d4(z) > n. (Such a vertex exists,
because obviously A(G[B]) < m.)
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When we finish, |B| = m + 1. Swap the sets A and B each with the other.
(So that now |A| = m + 1.) Next, consecutively and as long as possible, move
to A any vertex of G[B] of degree at least m. As eventually A(G[B]) < m, our
assumption on G implies that |A] > n + 1 (to allow a vertex of degree at least
n). Counting the edges encountered in this procedure, we obtain the following

bound valid for any n and m.
b(n,m) > (m+ 1)n+ ((n+1) — (m+1))m = 2mn — m? + n. (116)
Next, we provide a general construction giving an upper bound on b(n,m).

Example 86 Choose representations m = mi +...+my and n —m = ny +
...+ ng. Let G be the disjoint union of P, n, i € [f], and Py m, j € [g], plus

a vertex x© connected to everything else. We claim that G € B(n,m).

Proof. Let V(G) = AU B be any partition.

Case 1 Suppose z € A. Observe that at least m; vertices from each P, ; and
at least m; vertices from each Py, lie in A. (Otherwise A(G[B]) > m.) But
then

da(z) =|A]=1>> mi+ > nj=n.
i€[f] J€lg]

Case 2 If z € B (and A(G[A]) < n), then from each P, , at least m; vertices
go to B and dp(z) > > ;[ ™mi = m, as required. I

Let us compute how many edges we use in Example 86.
b(n,m) < e(G) =n+fn+gm+mn+(n—m)m+ Z (T;Ll> + Z (?), (117)
i€[f] j€lg]
To minimize it, we let the m;’s (and the n;’s) be nearly equal while f and g have
to be around m(2n)~'/2 and (n—m)(2m)~'/? respectively. Putting bounds (116)
and (117) together we obtain the equality (108) claimed in the introduction.

24.2 Small Fixed m
In the extreme case when m is fixed and n tends to infinity, we consider Exam-
ple 86 with f =1 (so my = m) and g = n(2m)~"/? + O(1). Then

Z (n,) < gw < g(\/%+ 1) +O(1),

. 2
Jj€l9]
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and we obtain the following.

Corollary 87 Let m > 1 be fized. Then b(n,m), n € N, lie between two linear

functions, namely
(2m + 1)n + O(1) < b(n,m) < (2m +vV2m + 3)n + O(1). 1

However, for a few particular small instances of m we can be more precise.

Let us provide a construction of G € B(n, 1), n > 2. Represent n = 2k+1+1
and let G be disjoint union of k triangles, [ disjoint edges, plus vertices x,y; « is
connected to every other vertex while y is connected to some n vertices (besides
z). Clearly, e(G) =3k +3k +1+2l+n+1=4n—2.

To show that G € B(n,1), suppose that we have a partition V(G) = AU B
with B being an independent set. If one of = or y belongs to B, then A contains
the other plus their n common neighbours and so A(G[A]) > n. If {z,y} C A,
then at least 2 vertices from each triangle and at least 1 vertex from each edge

must be in A and d(z) > 1+ 2k + [ = n, as required.

Theorem 88 For anyn > 8, b(n,1) = 4n—2 and all extremal graphs are given

by the above construction.

Proof. Let n > 1 and let G be any graph in B(n, 1) of size at most 4n — 2. Let
L be the set of vertices of G of degree at least n. Clearly, |L| > 1.

First, suppose that |L| = 3, say L = {z,y,z}. The partition with B = L
shows that L is not independent in G.
Case 1 G[L] consists of a single edge, say {z,y}. The partition with B =
{z,z} (resp. B = {y,z})) shows that y (resp. ) has at least n neighbours
outside L. Hence, L is incident to at least 3n + 1 edges, and we have at most
(4n — 2) — (3n + 1) = n — 3 edges non-incident to L. Letting A consist of all
vertices of L plus an arbitrary endvertex of each edge outside L, we obtain a
contradiction: A is independent while |A| < n.
Case 2 G[L] consists of two edges, say {z,y} and {z,z}. The partition with
B = {y, z} shows d(x) > n. The partition with B = {x} shows that another
vertex of L has at least n neighbours outside L. Hence, L is incident to at least

3n + 1 edges, and we can derive a contradiction as above.
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Case 3 G[L] is the complete graph. Placing in B a vertex of L, we deduce that
some two vertices in L, say x and y, have at least n + 1 neighbours each. Thus,
we have already found 3n — 1 edges incident to L; so we can have at most one

more such edge.

Case 3.1 Suppose that d(z) = n and d(z) > d(y). (That is, d(y) = n+1.)
Every neighbour u of y is connected to z. (Otherwise consider B = {z,u}.) This
means that |U| = n—1, where U = (I'(z)Ul'(y))\ L. Choose any u € U\I'(2) # (.
The partition with B = {z,u} shows that d(z) = n + 2. By letting A = L and
consecutively moving to A a non-isolated vertex of G[A], we conclude that G[L]
consists of n — 2 disjoint edges. (And e(G) = 4n — 2.) Furthermore, if n > 5,
we can choose an independent 3-set C' C I';(z). If z sends at least one edge to
C, let B = C; otherwise let B = C' U {z}. It is easy to see that in either case

A(G[B]) < n, which is a contradiction.

Case 3.2 Suppose d(z) = d(y) = d(z) = n+ 1. As before, we conclude that
G[L] consists of n — 2 disjoint edges. (And e(G) = 4n — 2.) Let n > 7. Clearly,
V| <2, where V =T'(z) NI'(y) N I'(2). (Otherwise, consider any independent
2-set B C L.) Also, there is no v € (I'(z) N I'(y)) \ I'(2). (Otherwise, let
B = {v,z}.) But then, for n > 5, we can choose non-incident u,v € T'(2)
with v € I'(x) and v € I'(y), and the consideration of B = {u,v,z} yields a

contradiction.

Similarly, but with less effort, we can exclude the case |L| > 4 for n > 6. So,
we conclude that L = {z,y}. Considering the partition with B = {z,y}, we see
that x is connected to y. Considering the partition with B = {z} or B = {y},
we conclude that d(x) >n+ 1 and d(y) > n + 1.

We apply the following procedure. Let A consist of  and y plus all vertices
connected neither to z nor to y; let B = A. At Stage 0 consecutively move to
A a vertex of degree at least 3 in G[B]. Stage 1: one by one and as long as
possible, move to A a vertex of degree 2 in G[B].

Now, G[B] consists of isolated edges. Stage 2: for each edge {a,b} € E(G[B])
with T'(a) N L C T'(b) N L we move a to A but keep b in B.

After this stage each edge in G[B] together with L spans a Cy; let s3 =
e(G[B]). For j € [0,2] let s;; be the number of vertices moved to A at Stage j

which were incident to ¢ vertices in L, ¢ € [2], and let s; = sj1 + 5/ 2.
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Case 4 Suppose that A(G[A]) > n; let da(xz) > n. Then the total number of
edges in G is at least n+1 (edges incident to y) plus 3(n — 1). (Because for each
of n — 1 vertices incident to z which were moved to A we count at least three
edges; for example, for a vertex a moved at Stage 2, we encounter the edges
{a,z}, {a,b} € E(G[B]) and {b,z}.) Hence, e(G) > 4n — 2 as required.

Case 5 Suppose that A(G[A]) < n. As we can make B C V(G) independent
by moving an arbitrary endvertex of each edge to A (and after this we must

have A(G[A]) > n), we conclude that now

2

2n — 1 <s3+da(x)+daly) =s3+2+ Z(sj,l +2s;2). (118)
§=0

On the other hand, we have the following estimate.

e(G) > 4s0,1+5s0,2+3s1,1 + 4512+ max(s; —s2 —53,0) + 3521 + 5522 +3s3+ 1.

(119)
Only the max-term needs some explanation. After Stage 1 G[B] consists of
s3 + s4 isolated edges. Let us move back to B the sy vertices moved at Stage 1.
As the resulting graph has maximal degree 2, we must use at least s; —so—s3 new
vertices. Each of these vertices sends at least one edge to L, which constitutes
the extra term. If we multiply (118) by 2 and substitute this from (119), we
obtain (using e(G) < 4n — 2)

s34+ 20,1 + 80,2 + 51,1 + s2 + max(s; — s2 — s3,0) < 3.
Hence, s1 < 3 (and s3 + s3 < 3). From (118) we deduce that
n < (814 s2) + (s3 +3)/2 < 73

Hence, we have shown that b(n, 1) = 4n—2, for n > 8. Conversely, if a graph
G achieves this bound, then |L| = 2, so = 0, s3 = 0, one vertex of L is connected
to every L-neighbour of the other L-vertex, and every vertex moved at Stage 1
belonged to an isolated triangle of G[B]. Now the required characterization

follows. The details are left to the reader. I

Remark. Perhaps, b(n,1) = 4n—2 for any n > 2 (clearly b(1,1) = 3), but then
there are many other constructions achieving this bound. A direct search is
feasible (note that our proof of Theorem 88 contains some information reducing

this search), but it would be too long to include here.
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Theorem 89 b(n,2) = 6n + O(1).

Proof. A construction of G' € B(n,2) first. Consider [§ ] disjoint 4-cycles and
one triangle, say on X = {z1,z2,z3}. To this we add some further edges: z;
is connected to every other vertex while z9 and x3 are connected to some fixed
m-set C' C I'(z1) \ {z2,z3}.

Let V(G) = AU B be any partition with A(G[B]) < 1. If z; € A, then at
least 2 vertices of each C4 belong to A and d4(z;) = |A| — 1 > n, as required.
If z; € B, then all but at most one vertex in C' U {z3,z3} lie in A and a vertex
in X N A # 0 has at least |C| = n neighbours in A. Hence, G € B(n,2) and
b(n,2) < 6n+ O(1), as required.

We show the lower bound. Let G € B(n,2) be any graph with at most 6n
edges; we have to deduce 6n — e(G) = O(1). Let L = {z € V(G) : d(z) > n}.

If |[L| > 4 then we have at least 4n + O(1) edges incident to L. Let A =L
and B = A. As long as possible, move to A a vertex of G[B] of degree at least
2. Before we stop, we repeat the iteration at least n+ 1 — |L| = n+ O(1) times,
which means that there are 2n+ O(1) edges not incident to L and we are home.

Clearly, |L| > 2. (Otherwise the partition with B = L contradicts G €
B(n,2).) Hence, |L| =3 and the theorem follows from Lemma 90 below. 1

The following related notion is useful. Let B'(n,m,[) be the class of graphs
G with a fixed I-set L C V(G) such that d(z) > n, € L, and for any partition
V(G) = AU B with A(G[B]) < m and L C A some vertex = € L has at least n
neighbours in A. Also, denote V' (n, m,l) = min{e(G) : G € B'(n,m,l)}.

Lemma 90 Forl € [3], V/(n,2,]) > (34 1)n+ O(1).

Proof. Let G € B'(n,2,l) be any graph. We may freely remove any vertex
incident to no vertex of the selected set L = {z1,...,z;}, as this does not

violates the B'(n,2,1)-property. Let
Fy={yeLl:{y,z}cEG) iffic A}, AcC]l].

Case 1 Letl =1. Let A= L and B =V(G) \ L. As long as possible, move
to A any y € B with dp(y) > 3. At the end, G[B] consists of disjoint cycles,

paths and vertices. But we can move to A at most {’#J (resp. Lp—glj) vertices
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from each cycle (resp. path) of length p to ensure A(G[B]) < 2. As the number
of moved vertices must be at least n and we use at least 4 edges per vertex

(including edges incident to z1), the claim follows.

Case 2 Let [ = 2. We apply an inductive on n argument, ensuring that we have
at least 5 edges per every removed vertex, except in O(1) cases. First, whenever
we have y € L with dg(y) > 5, we remove it, obtaining a graph in B'(n— 1,2, 2).
Next, if we have y; € 'y and yo € 'y at distance at least 3, we contract
them without loosing the B'(n,2,2)-property. Suppose we are finally stuck and
suppose |I'1| < |[T9]. As A(G[L]) < 4, we conclude that g = |T4| = O(1).
Removing I'; from G, we obtain a graph in B'(n — g, 2, 2); further, removing z
(and at least n — g edges) we obtain a graph in B’(n — g —1,2,1) which has size
at least 4n + O(1). Hence, V'(n,2,2) > 5n + O(1).

Case 3 Let m = 3. Like in Case 2, we remove a vertex z € L of degree at least
6; also, we contract any y € I'4, z € I'g, at distance at least 3 for AN B = ().
Next, removing O(1) vertices we ensure that all but one of I';, i € [3], are
empty, say 'y = I'y = (). Also, we make either I'i5 or I's empty. If I'i5 = 0,
then I'(z1) C I'(x3); removing z; (and > n + O(1) edges) we obtain a graph in
B'(n+ 0O(1),2,2) of size at least 5n + O(1)—we are home.

So, suppose I's = (). If possible, remove any three vertices in respectively
['19,T13, 093 incident to at least 12 edges to obtain a graph in B'(n — 2,2, 3).
Removing up to O(1) vertices, we can assume that dr(y) = 1 for each y in, for
example, I'15. Let z € L be the neighbour of some y € I'y. If d7(z) = 1, then
we can remove Yy, z from G without violating the B'(n, 2, 3)-property; otherwise,
removing y,z we remove at least 6 edges and obtain a B'(n — 1,2, 3)-graph.
Eventually, we achieve I';o = 0, that is, I'(z1) C ['(z3) and we are home again

by Case 2. 1

Remark. In the next case m = 3 we can only show that

™+ 0(1) <b(n,3) <9In+ O(1).
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()-representation, 96
(%)-representation, 96
(k, m)-tree, vi, 113
H-built-tree, 117
a(n,t, k)-graph, 38
ex-function, 26

k-gon tree, vi, 114, 116
k-graph, i, 2

m-tree, 113

n-check, 125, 133

n X m-matrix, 18
n-set, 14
F-admissible, 2, 10, 19
F-closure, 24

F-free, 1, 2, 19
F-kills, 24
F-saturated, i, 1, 2, 10, 11, 19

acyclic hypergraph, 11

balanced set, 55
bisplit function, viii, 122

C-proof, 50, 63

c-proof, 50, 61

c-prove, 50, 61

centre, 30

chain, iv, 49, 60

chain decomposition, iv, 94
chord, 78

closure, 24

complementary chain, 104
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cone, iv, 51, 85
consecutive partition, 64
count matroid, 58

cycle, 11

cycle-free hypergraph, 11

density, 3

design, 33

directed hypergraph, 11
dumb-bell, 27, 83

edge decomposition, 94, 95
edge partition, 95

exterior algebra, 52

G-proof, 50, 62
g-proof, 49, 61
g-prove, 49, 61
generalized star, ii, 30
generic position, 52
greedy algorithm, 124

gross matroid, 54

Hasse diagram, 95

hyperconnectivity matroid, 54

increasing function, 55
independent set, 7, 11, 15

integral function, 55
join, 90

kill, ii, 24
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lap, 113

layer, 14

layered k-graph, 15
layered set, 14

left interior product, 53
line poset, v, 95

linear function, 56
local density, 3

local sparseness, 48

lower shadow, 8

m-proof, 61
m-prove, 61
m/’-prove, 62

monotonically F-saturated, 2

ordered hypergraph, 14
orientation, 11

oriented n-cube, 96
orthogonal chains, 105
orthogonal partitions, 105

overlap size, 113

proper ordering, 47
proper subset, 55
pyramid, iii, 50, 64

r-proof, 61
r-prove, 61
rooted tree, 114, 117

saturation, i
shift, 101
signature, 14, 15
simple matrix, 19

size Ramsey number, vii
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skipless chain, iv, 95
sparseness, 48

star, 5, 30

strongly F-saturated, 2
sub-design, 5, 33
submatrix, 19
submodular function, 55
support, 53

surplus, 28, 83
symmetric chain, v, 101
symmetric chain order, 101

symmetric matroid, 58, 90

tail, 8

tensor product, 90
transversal matroid, 58
triangle-free hypergraph, 39
triangular family, ii, 39
Turdn function, 26

Turan number, 35

uniform family, iv, 5, 49, 69
uniform matroid, 63

upper shadow, 8, 15

vertex decomposition, 94, 95

vertex partition, 95

weak closure, 47

weak saturation, iii

weakly F-saturated, iii, 1, 47
width, 95



