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Abstract

We conjecture that for any �xed graph F with chromatic number �(F ) � 4 the size

Ramsey number r̂(K1n; F ) is (1 + o(1))�(F )(�(F ) � 2)n2=2 as n!1 and present

some partial results.

1 Introduction

Given two graphs F1 and F2, we say that a graph G arrows the pair (F1; F2),

denoted by G ! (F1; F2), if for any blue-red colouring of the edge set of G

we have either a blue copy of F1 or a red copy of F2 (or both). The size

Ramsey number r̂(F1; F2) is the minimal number of edges of a graph G such

that G! (F1; F2).

Here we study r̂(K1n; F ) for a �xed F as n tends to in�nity. (The star K1n

consists of n edges incident to a common vertex.) We make the following

conjecture.

Conjecture 1 For any �xed graph F of chromatic number �(F ) � 4, we have

r̂(K1n; F ) = (1 + o(1))
�(F )(�(F )� 2)

2
n2: (1)

It is easy to see that if F is a bipartite graph then r̂(K1n; F ) = o(n2). The

author [2] has recently shown that r̂(K1n; F ) = (1 + o(1))n2 for any �xed

3-chromatic graph F . (That is, the case �(F ) = 3 is perhaps exceptional.)

1 Supported by a Senior Rouse Ball Studentship, Trinity College, Cambridge, UK.

Preprint submitted to Elsevier Preprint 27 June 2000



2 Upper Bounds

The following lemma establishes the upper bound in Conjecture 1. Let Kk(t)

denote the complete k-partite graph with each part having t vertices.

Lemma 2 Fix � > 0 and let A and B be two disjoint sets of sizes m =

d(k � 2 + �)ne and n respectively. Let G be the graph on A [ B consisting of

all edges intersecting A.

Then there exists a constant c = c(�; k) > 0 such that, if n is suÆciently large,

any blue-red colouring of E(G) without a red K1n contains a blue Kk(t) with

t > c logn.

PROOF. Given a colouring of E(G) let G0 be the blue subgraph. The set A

spans at most jAjn=2 red edges, so the edge density of G0[A] is strictly greater

than 1 � 1
k�2

. By the Erd}os-Stone theorem [1], G0[A] contains a Kk�1(s)-

subgraph K with s = �(logn).

Each vertex in V = V (K) sends at least (k � 2 + �)n � O(s) blue edges to

(A[B) nV . Let U consist of those vertices of (A[B) nV which send at least

(k � 2 + c1)s blue edges to V , where c1 = c1(�; k) > 0 is a suÆciently small

constant. The inequality

(k�1)s � jU j+(k�2+c1)s � ((k�1+ �)n�jU j) � (k�2+ �)n � (k�1)s�O(s2)

shows that jU j = �(n). Each vertex of U covers at least one Kk�1(s
0)-

subgraph of K, where s0 = dc1se. Hence, some such subgraph appears at

least jU j �
�
s

s0

�
�(k�1)

> s0 times, which gives us a blue Kk(s
0), as required. 2

Of course, we can obtain more precise upper bounds for some speci�c F . For

example, it is easy to see (e.g. by induction on k) that K(k�2)n+1 + Kn !
(K1;n; Kk). Perhaps, this is best possible and we have, for any k � 4 and

n � 3,

r̂(K1n; Kk) =

 
(k � 2)n+ 1

2

!
+ ((k � 2)n+ 1)n:

3 Lower Bounds

Let Bj(n) be the family of all graphs G such that for any partition of V (G)

into j parts some part spans a graph of maximum degree at least n. The
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function bj(n) = minfe(G) j G 2 Bj(n)g is of interest to us because bk�1(n) �
r̂(K1;n; F ) for any graph F with �(F ) = k.

Here we prove an easy lower bound on bj(n). A simple lemma �rst.

Lemma 3 If G 2 Bj(n), then �(G) � jn.

PROOF. Consider a partition V (G) = A1 [ : : : [ Aj which minimizes s =Pj
i=1 e(G[Ai]). For some i 2 [j] there exists x 2 G[Ai] of degree at least n. If

we move x to any other part, then s does not decrease, so x sends at least n

edges to each part. Hence, d(x) � jn, as required. 2

Theorem 4 For any k � 4, we have bk�1(n) �
�
k�1

2

�
n2.

PROOF. Given G 2 Bk�1(n), let A1 = V (G). Repeat the following for i =

1; 2; : : : ; k � 2. Given a set Ai such that G[Ai] 2 Bk�i(n), let Bi � Ai be a

set of size n minimizing e(G[Ai+1]), where Ai+1 = Ai nBi. Clearly, G[Ai+1] 2
Bk�i�1(n). So, if i < k � 2, we can repeat the step with next i.

Let i 2 [k � 2]. By Lemma 3, G[Ai+1] contains a vertex x of degree at least

(k � i � 1)n. Now, every y 2 Bi sends at least (k � i � 1)n edges to Ai+1,

because the exchange of x and y does not decrease e(G[Ai+1]).

Hence, e(G) �
Pk�2

i=1 (k � i� 1)n2 =
�
k�1

2

�
n2, as required. 2

In particular, for k = 4 we have 3n3 � b3(n) � 4n2 + 2n. Working harder on

this simplest open case, the author was able to improve the lower bound to

b3(n) � (3:69+o(1))n2. The proof, built upon Theorem 4, is rather complicated

and we do not have enough space to present it here. Anyway, we believe that

the constant 3:69 can be improved and, hopefully, we will have proved better

lower bounds by the time the conference starts.
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