

Discrete Mathematics 214 (2000) 275–278

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Asymptotic evaluation of the sat-function for r-stars

Oleg Pikhurko¹

Department of Pure Mathematics and Mathematical Statistics, Cambridge University, Cambridge CB2 1SB, UK

Received 29 December 1997; revised 16 April 1998; accepted 21 June 1999

Abstract

Let S_m^r be the *r*-uniform set system on *m* vertices consisting of all *r*-tuples containing a given vertex. We determine the asymptotic behaviour of sat(n, S'_m) for all r and m thus extending a result of Erdős, Füredi and Tuza. © 2000 Elsevier Science B.V. All rights reserved.

An r-graph G is a pair $(V(G), E(G))$ where the *edge set* $E(G)$ is a family of r-subsets of the vertex set $V(G)$. In the usual way, we define the notion of subgraph, isomorphism, complementary graph \overline{G} , size $|G|=|E(G)|$, etc. A graph isomorphic to G is called a G -graph. Given an r-graph H we say that G is monotonically H -saturated (another common name is strongly H-saturated) if the addition of any new r-tuple to $E(G)$ creates at least one new H-subgraph. If, besides, G does not contain H as a subgraph then G is called H-saturated. Next, $sat(n, H)$ (m-sat (n, H)) is defined to be the minimal size of an H -saturated (monotonically H -saturated) graph on n vertices.

The star S_m^r , $m > r \ge 2$, has $[m]$ as the vertex set and $\{E \in [m]^{(r)} : E \ni m\}$ as the edge set. In other words, S'_m has m vertices and its $\binom{m-1}{r-1}$ edges are the r-tuples containing some fixed vertex which is called the *centre*.

The exact values of sat (n, S_m^r) are known only for S_m^2 , any m, (see [2]) and for S_4^3 (see [1]).

The asymptotic behaviour of sat (n, S_{r+1}^r) was found by Erdős et al. [1, Theorem 2]. Exploiting their ideas we extend this result to all stars.

Theorem 1. Let $m > r \geq 2$ and $S = S_m^r$. Then

$$
\frac{m-r}{2}\binom{n}{r-1}\geqslant \text{sat}(n, S)\geqslant \text{m-sat}(n, S)\geqslant \frac{m-r}{2}\binom{n}{r-1}-\text{O}(n^{r-4/3}).\tag{1}
$$

¹ Supported by an External Research Studentship, Cambridge.

E-mail address: oleg@dpmms.cam.ac.uk (O. Pikhurko)

Proof. Let us provide a construction of an S-saturated graph $G = G_{m,n}^r$ proving the upper bound. Partition the vertex set [n] into $n' = \lfloor n/(m - r + 1) \rfloor$ blocks $B_1, \ldots, B_{n'}$ of size $m - r + 1$ each except possibly the last one. The edge set is

$$
E(G) = \{ F \in [n]^{(r)} : |F \cap B_j| \geq 2, \ j = \min\{ i \in [n'] : F \cap B_i \neq \emptyset \} \}.
$$

Thus every edge of G has at least two common points with some B_i and intersects no B_i with $i < j$.

Let us show that $S \not\subset G$. Suppose not and we have an S-subgraph $S' \subset G$ centred at x. Let

$$
j = \min\{i \in [n'] : V(S') \cap B_i \neq \emptyset\}.
$$
\n
$$
(2)
$$

Choose an r-set $F \ni x$ so that it contains one vertex from B_j and some $r - 1$ vertices in $V(S')\backslash B_j$ which is possible since $|V(S')\backslash B_j|\geq r-1$. We obtain a contradiction as on one hand F contains the centre x and must belong to S while on the other hand $F \notin E(G)$ by the definition.

Now, if we add any extra edge F to G then the set $Y = F \cup B_i$ spans a copy of S centred at x where B_i is the first block intersecting F and $\{x\} = F \cap B_i$. Indeed, every $F' \in Y^{(r)}$ containing x either equals F or intersects B_j in at least two points and so belongs to $E(G)$.

Therefore, we conclude that G is S-saturated. To prove the desired upper bound $|G_{m,n}^r| \leqslant \frac{m-r}{2}$ 2 $\begin{pmatrix} n \\ n \end{pmatrix}$ r−1 we observe, for $r = 2$, that each vertex of the 2-graph $G_{m,n}^2$ has degree at most $m - r$ while, for $r \ge 3$, we use induction and the equality $|G'_{m,n+1}| =$ $|G_{m,n}^r|+|G_{m-1,n}^{r-1}|.$

Trivially, $\text{sat}(n, S) \geq m\text{-sat}(n, S)$.

Finally, let G be a minimum monotonically S-saturated graph on $V = [n]$. By the definition, the addition to G of any edge $F \in E(\overline{G})$ creates at least one S-subgraph $S' \subset G + F$. Let $\mathcal{S}(F)$ be the set of all such subgraphs S' created by F.

Let $\mathcal{F}(F)$ denote the set of edges in \overline{G} which intersect $F \in E(G)$ in $r-1$ points and create a copy of S containing F as an edge. Formally,

$$
\mathscr{F}(F) = \{ F' \in E(\overline{G}) : |F \cap F'| = r - 1, \exists S' \in \mathscr{S}(F') \ F \in E(S') \}, \quad F \in E(G).
$$

Also, we define

$$
\mathscr{F}(G') = \bigcup_{F \in E(G')} \mathscr{F}(F), \quad G' \subset G,
$$

$$
\partial F = F^{(r-1)}, \qquad F \in [n]^{(r)},
$$

$$
\partial G' = \bigcup_{F \in E(G')} \partial F, \qquad \text{an } r\text{-graph } G'.
$$

As G is monotonically S-saturated we conclude that

$$
\mathscr{F}(G) = V^{(r)} \backslash E(G). \tag{3}
$$

Choose an integer $k = k(n)$, to be specified later, such that $k \to \infty$ and $k/n \to 0$. On the vertex set V we define two subgraphs $G_0, G_1 \subset G$; G_0 is a maximal subgraph

of G with $|\mathcal{F}(G_0)| \le k |G_0|$ and G_1 consists of the edges of G not in $G_0 : E(G_1) =$ $E(G)\backslash E(G_0)$. By the maximality of G_0 , for every $F \in E(G_1)$ we have

$$
|\mathscr{F}(F)\backslash \mathscr{F}(G_0)| > k. \tag{4}
$$

From (3) and the proved upper bound in (1) we conclude that $|\mathscr{F}(G)| = {n \choose r}$ $|G| = {n \choose r} - O(n^{r-1})$. Taking into the account that $\mathscr{F}(G) = \mathscr{F}(G_0) \cup \mathscr{F}(G_1)$ and $|\mathscr{F}(G_0)| \le k |G_0| = O(kn^{r-1})$ we obtain

$$
|X| = \binom{n}{r} - \mathcal{O}(kn^{r-1}),\tag{5}
$$

where $X = \mathscr{F}(G_1) \backslash \mathscr{F}(G_0)$.

Let $Z = V^{(r-1)} \setminus \partial G_1$. We claim that

$$
|Z| = O(k^{1/2}n^{r-3/2}).
$$
\n(6)

Suppose not. Then the average value of $z(D)=|\{E \in Z: E \supset D\}|$ over all $D \in V^{(r-2)}$ is greater than $O(k^{1/2}n^{1/2})$. For any $E, E' \in Z$ with $|E \cap E'| = r-2$ we have $F = E \cup E' \notin X$, because otherwise at least one of $E, E' \in \partial F$ is covered by an edge of $S' \in \mathcal{S}(F)$ which then is necessarily an edge of G_1 (as it intersects $F \in \mathcal{F}(G_1) \setminus \mathcal{F}(G_0)$ in $r - 1$ vertices). Therefore, we have at least $\binom{r}{2}^{-1} \sum_{D \in V^{(r-2)}} \binom{z(D)}{2}$ *r*-sets not in *X*, which exceeds $\binom{n}{r-2}O(kn)$ by the convexity of $\binom{x}{2}$. This contradicts (5) and proves the claim.

Let

$$
g_1(E) = |\{F \in E(G_1): F \supset E\}|, \quad E \in \partial G_1.
$$

Take any $F \in E(G_1)$. Let $\partial F = \{E_1, \ldots, E_r\}$. We claim that all but at most two of $g_1(E_i)$'s are larger than $k/6$. Suppose not, say $g_1(E_i) \le k/6$, $i = 1, 2, 3$. Take $F' \in \mathscr{F}(F) \backslash \mathscr{F}(G_0)$ and any $S' \in \mathscr{S}(F')$ containing F as an edge. Let $F' = E_i \cup \{x\}$, some $i \in [r]$, $x \in V \backslash F$. The star S' contains $r - 2$ edges of the form $E_i \cup \{x\}$, $j \neq i$. These edges cannot be in G_0 and so contribute at least 1 to $g_1(E_1) + g_1(E_2) + g_1(E_3)$. In total, each $\{x\} \cup E_j \in E(G_1)$ is counted at most twice. (Once it occurs then at most 2 edges of the form $\{x\} \cup E_i$ can belong to $E(G)$.) But this contradicts (4). The claim is proved.

Define

$$
W = \{ E \in \partial G_1 : g_1(E) \le m - r - 1 \},
$$

$$
T = \{ F \in E(G_1) : W \cap \partial F \ne \emptyset \}.
$$

We claim that $|W| = O(k^{1/2}n^{r-3/2})$. Suppose not. Note that for $E, E' \in W$ with $|E \cap E'| = r - 2$ we necessarily have $F = E \cup E' \notin X$ for otherwise in an $S' \in \mathcal{S}(F)$ centred at x, say $x \in E$, there are $m - r$ edges (necessarily in $E(G_1)$) different from F and covering E. Thus there are at least $\binom{r}{2}^{-1} \sum_{D \in V^{(r-2)}} \binom{w(D)}{2}$ edges not in X, where $w(D) = |\{E \in W : E \supset D\}|, D \in V^{(r-2)}$. Using the convexity of the $\binom{x}{2}$ -function as before we can argue that there are more than $O(kn^{r-1})$ edges not in X contradicting (5). The claim is established.

Every $E \in W$ is contained in at most $m - r - 1$ edges $F \in E(G_1)$ so $|T| =$ $O(k^{1/2}n^{r-3/2})$. For every $F \in E(G_1) \setminus T$ we have $\sum_{E \in \partial F} 1/g_1(E) \leq 2/(m-r)+(r-2)6/k$. Note the following easy identity:

$$
|\partial G_1| = \sum_{F \in E(G_1) \setminus T} \left(\sum_{E \in \partial F} \frac{1}{g_1(E)} \right) + \sum_{F \in T} \left(\sum_{E \in \partial F} \frac{1}{g_1(E)} \right)
$$

\$\leqslant \left(\frac{2}{m-r} + O(1/k) \right) |G_1| + r|T|.

We know, see (6), that $|\partial G_1| = {n \choose r-1} - O(k^{1/2} n^{r-3/2})$. Hence,

$$
\frac{m-r}{2}\binom{n}{r-1}-|G|=O(k^{1/2}n^{r-3/2}+|G|/k)=O(k^{1/2}n^{r-3/2}+n^{r-1}/k).
$$

Taking $k = |n^{1/3}|$ we obtain the required. \square

The author is very grateful to Andrew Thomason and to the anonymous referees for helpful comments.

References

- [1] P. Erdős, Z. Füredi, Z. Tuza, Saturated *r*-uniform hypergraphs, Discrete Math. 98 (1991) 95–104.
- [2] L. Kaszonyi, Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203–210.