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Abstract

Let Srm be the r-uniform set system on m vertices consisting of all r-tuples containing a given
vertex. We determine the asymptotic behaviour of sat(n; Srm) for all r and m thus extending a
result of Erdős, F�uredi and Tuza. c© 2000 Elsevier Science B.V. All rights reserved.

An r-graph G is a pair (V (G); E(G)) where the edge set E(G) is a family of
r-subsets of the vertex set V (G). In the usual way, we de�ne the notion of subgraph,
isomorphism, complementary graph G, size |G|= |E(G)|, etc. A graph isomorphic to G
is called a G-graph. Given an r-graph H we say that G is monotonically H-saturated
(another common name is strongly H-saturated) if the addition of any new r-tuple
to E(G) creates at least one new H -subgraph. If, besides, G does not contain H as a
subgraph then G is called H-saturated. Next, sat(n; H) (m-sat(n; H)) is de�ned to be
the minimal size of an H -saturated (monotonically H -saturated) graph on n vertices.
The star Srm; m¿r¿2, has [m] as the vertex set and {E ∈ [m](r): E 3 m} as the

edge set. In other words, Srm has m vertices and its
(m−1
r−1
)
edges are the r-tuples

containing some �xed vertex which is called the centre.
The exact values of sat(n; Srm) are known only for S

2
m, any m, (see [2]) and for S

3
4

(see [1]).
The asymptotic behaviour of sat(n; Srr+1) was found by Erdős et al. [1, Theorem 2].

Exploiting their ideas we extend this result to all stars.

Theorem 1. Let m¿r¿2 and S = Srm. Then

m− r
2

(
n

r − 1
)
¿sat(n; S)¿m-sat(n; S)¿

m− r
2

(
n

r − 1
)
− O(nr−4=3): (1)

1 Supported by an External Research Studentship, Cambridge.
E-mail address: oleg@dpmms.cam.ac.uk (O. Pikhurko)

0012-365X/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(99)00309 -X



276 O. Pikhurko /Discrete Mathematics 214 (2000) 275–278

Proof. Let us provide a construction of an S-saturated graph G = Grm;n proving the
upper bound. Partition the vertex set [n] into n′ = dn=(m − r + 1)e blocks B1; : : : ; Bn′
of size m− r + 1 each except possibly the last one. The edge set is

E(G) = {F ∈ [n](r): |F ∩ Bj|¿2; j =min{i ∈ [n′]: F ∩ Bi 6= ∅}}:
Thus every edge of G has at least two common points with some Bj and intersects no
Bi with i¡ j.
Let us show that S 6⊂G. Suppose not and we have an S-subgraph S ′ ⊂G centred at

x. Let

j =min{i ∈ [n′]: V (S ′) ∩ Bi 6= ∅}: (2)

Choose an r-set F 3 x so that it contains one vertex from Bj and some r − 1 vertices
in V (S ′)\Bj which is possible since |V (S ′)\Bj|¿r − 1. We obtain a contradiction as
on one hand F contains the centre x and must belong to S while on the other hand
F 6∈ E(G) by the de�nition.
Now, if we add any extra edge F to G then the set Y = F ∪ Bj spans a copy of S

centred at x where Bj is the �rst block intersecting F and {x}=F ∩Bj. Indeed, every
F ′ ∈ Y (r) containing x either equals F or intersects Bj in at least two points and so
belongs to E(G).
Therefore, we conclude that G is S-saturated. To prove the desired upper bound

|Grm;n|6
m− r
2

(
n
r−1
)
we observe, for r = 2, that each vertex of the 2-graph G2m;n has

degree at most m − r while, for r¿3, we use induction and the equality |Grm;n+1| =
|Grm;n|+ |Gr−1m−1; n|.
Trivially, sat(n; S)¿m-sat(n; S).
Finally, let G be a minimum monotonically S-saturated graph on V = [n]. By the

de�nition, the addition to G of any edge F ∈ E(G) creates at least one S-subgraph
S ′ ⊂G + F . Let S(F) be the set of all such subgraphs S ′ created by F .
Let F(F) denote the set of edges in G which intersect F ∈ E(G) in r − 1 points

and create a copy of S containing F as an edge. Formally,

F(F) = {F ′ ∈ E(G): |F ∩ F ′|= r − 1; ∃S ′ ∈ S(F ′) F ∈ E(S ′)}; F ∈ E(G):
Also, we de�ne

F(G′) =
⋃

F∈E(G′)

F(F); G′ ⊂G;

@F = F (r−1); F ∈ [n](r);
@G′ =

⋃
F∈E(G′)

@F; an r-graph G′:

As G is monotonically S-saturated we conclude that

F(G) = V (r) \E(G): (3)

Choose an integer k = k(n), to be speci�ed later, such that k → ∞ and k=n → 0.
On the vertex set V we de�ne two subgraphs G0; G1⊂G; G0 is a maximal subgraph
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of G with |F(G0)|6k|G0| and G1 consists of the edges of G not in G0 :E(G1) =
E(G)\E(G0). By the maximality of G0, for every F ∈ E(G1) we have

|F(F)\F(G0)|¿k: (4)

From (3) and the proved upper bound in (1) we conclude that |F(G)| = ( nr ) −
|G| = ( nr ) − O(nr−1). Taking into the account that F(G) = F(G0) ∪ F(G1) and
|F(G0)|6k|G0|=O(knr−1) we obtain

|X |=
(n
r

)
− O(knr−1); (5)

where X =F(G1)\F(G0).
Let Z = V (r−1)\@G1. We claim that

|Z |=O(k1=2nr−3=2): (6)

Suppose not. Then the average value of z(D)= |{E ∈ Z : E⊃D}| over all D ∈ V (r−2) is
greater than O(k1=2n1=2). For any E; E′ ∈ Z with |E∩E′|=r−2 we have F=E∪E′ 6∈ X ,
because otherwise at least one of E; E′ ∈ @F is covered by an edge of S ′ ∈ S(F)
which then is necessarily an edge of G1 (as it intersects F ∈ F(G1)\F(G0) in r − 1
vertices). Therefore, we have at least

( r
2

)−1∑
D∈V (r−2)

( z(D)
2

)
r-sets not in X , which

exceeds
( n
r−2
)
O(kn) by the convexity of

( x
2

)
. This contradicts (5) and proves the

claim.
Let

g1(E) = |{F ∈ E(G1): F ⊃E}|; E ∈ @G1:
Take any F ∈ E(G1). Let @F = {E1; : : : ; Er}. We claim that all but at most
two of g1(Ei)’s are larger than k=6. Suppose not, say g1(Ei)6k=6; i = 1; 2; 3. Take
F ′ ∈ F(F)\F(G0) and any S ′ ∈ S(F ′) containing F as an edge. Let F ′ = Ei ∪ {x},
some i ∈ [r], x ∈ V \F . The star S ′ contains r − 2 edges of the form Ej ∪ {x}, j 6= i.
These edges cannot be in G0 and so contribute at least 1 to g1(E1) + g1(E2) + g1(E3).
In total, each {x}∪Ej ∈ E(G1) is counted at most twice. (Once it occurs then at most
2 edges of the form {x}∪Ei can belong to E(G).) But this contradicts (4). The claim
is proved.
De�ne

W = {E ∈ @G1: g1(E)6m− r − 1};
T = {F ∈ E(G1): W ∩ @F 6= ∅}:

We claim that |W | = O(k1=2nr−3=2). Suppose not. Note that for E; E′ ∈ W with
|E ∩ E′|= r − 2 we necessarily have F = E ∪ E′ 6∈ X for otherwise in an S ′ ∈ S(F)
centred at x, say x ∈ E, there are m− r edges (necessarily in E(G1)) di�erent from F
and covering E. Thus there are at least

( r
2

)−1∑
D∈V (r−2)

(w(D)
2

)
edges not in X , where

w(D) = |{E ∈ W : E⊃D}|, D ∈ V (r−2). Using the convexity of the
( x
2

)
-function as

before we can argue that there are more than O(knr−1) edges not in X contradicting
(5). The claim is established.
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Every E ∈ W is contained in at most m − r − 1 edges F ∈ E(G1) so |T | =
O(k1=2nr−3=2). For every F ∈ E(G1)\T we have

∑
E∈@F 1=g1(E)62=(m−r)+(r−2)6=k.

Note the following easy identity:

|@G1| =
∑

F∈E(G1)\T

(∑
E∈@F

1
g1(E)

)
+
∑
F∈T

(∑
E∈@F

1
g1(E)

)

6
(

2
m− r +O(1=k)

)
|G1|+ r|T |:

We know, see (6), that |@G1|=
( n
r−1
)− O(k1=2nr−3=2). Hence,

m− r
2

(
n

r − 1
)
− |G|=O(k1=2nr−3=2 + |G|=k) = O(k1=2nr−3=2 + nr−1=k):

Taking k = bn1=3c we obtain the required.

The author is very grateful to Andrew Thomason and to the anonymous referees for
helpful comments.
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