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Abstract

Let S,, be the r-uniform set system on m vertices consisting of all r-tuples containing a given
vertex. We determine the asymptotic behaviour of sat(n,S,,) for all » and m thus extending a
result of Erdos, Firedi and Tuza. (© 2000 Elsevier Science B.V. All rights reserved.

An r-graph G is a pair (V(G),E(G)) where the edge set E(G) is a family of
r-subsets of the vertex set V(G). In the usual way, we define the notion of subgraph,
isomorphism, complementary graph G, size |G|=|E(G)|, etc. A graph isomorphic to G
is called a G-graph. Given an r-graph H we say that G is monotonically H-saturated
(another common name is strongly H-saturated) if the addition of any new r-tuple
to E(G) creates at least one new H-subgraph. If, besides, G does not contain H as a
subgraph then G is called H-saturated. Next, sat(n, H) (m-sat(n,H)) is defined to be
the minimal size of an H-saturated (monotonically H-saturated) graph on n vertices.

The star S, m > r>2, has [m] as the vertex set and {E € [m]": E > m} as the
edge set. In other words, S, has m vertices and its (’:’:Il) edges are the r-tuples
containing some fixed vertex which is called the centre.

The exact values of sat(n,S",) are known only for S2, any m, (see [2]) and for Si
(see [1]).

The asymptotic behaviour of sat(n, S, ;) was found by Erdds et al. [1, Theorem 2].
Exploiting their ideas we extend this result to all stars.

Theorem 1. Let m >r>=2 and S =S,,. Then

m-r " >sat(n,S)>m-sat(n,S) > m-r " — O3, (D)
2 r—1 2 r—1
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Proof. Let us provide a construction of an S-saturated graph G = G, , proving the
upper bound. Partition the vertex set [n] into n' = [n/(m —r + 1)] blocks By,...,By
of size m — r 4+ 1 each except possibly the last one. The edge set is

E(G)={F € [n]": |[FNB,|>2, j=min{i € [/']: FNB; # 0}}.

Thus every edge of G has at least two common points with some B; and intersects no
Let us show that S ¢ G. Suppose not and we have an S-subgraph S’ C G centred at
x. Let

j=min{i € [n']: V(S')NB; # 0}. (2)

Choose an r-set £ > x so that it contains one vertex from B; and some r — 1 vertices
in V(S")\ B; which is possible since [V (S")\B;|=>r — 1. We obtain a contradiction as
on one hand F contains the centre x and must belong to S while on the other hand
F ¢ E(G) by the definition.

Now, if we add any extra edge /" to G then the set Y = F U B; spans a copy of S
centred at x where B; is the first block intersecting F' and {x} =F N B;. Indeed, every
F’ € Y containing x either equals F or intersects B; in at least two points and so
belongs to E(G).

Therefore, we conclude that G is S-saturated. To prove the desired upper bound

|Gl < ? ( ! ) we observe, for =2, that each vertex of the 2-graph G, , has

m,n r—1
”

degree at most m — r while, for »>3, we use induction and the equality |G, , | =

|Gl +1G -

Trivially, sat(n,S)>m-sat(n,S).

Finally, let G be a minimum monotonically S-saturated graph on V' = [n]. By the
definition, the addition to G of any edge F € E(G) creates at least one S-subgraph
S"CG+F. Let #(F) be the set of all such subgraphs S’ created by F.

Let Z(F) denote the set of edges in G which intersect F € E(G) in r — 1 points

and create a copy of S containing F as an edge. Formally,
F(F)={F' €EG): |[FNF'|=r—1, 35 ¢ #(F')F €ES")}, F cEQG).
Also, we define

7= |J Z#F). ¢ca

FEE(G")
OF = Fr=1, F e [n]",
0G' = U OF, an r-graph G’
FEE(G")

As G is monotonically S-saturated we conclude that
F(G)=VI\E(G). (3)

Choose an integer k = k(n), to be specified later, such that £ — oo and k/n — 0.
On the vertex set V' we define two subgraphs Gy, G; C G; Gy is a maximal subgraph
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of G with |Z(Gy)|<k|Gy| and G; consists of the edges of G not in Gy:E(G)) =
E(G)\ E(Gy). By the maximality of Gy, for every F € E(G|) we have

|F(F)\F(Go)| > k. (4)

From (3) and the proved upper bound in (1) we conclude that |#(G)| = (") —
|G| = (':) — O(n~"). Taking into the account that Z(G) = Z(Gy) U Z(G,) and
|7 (Go)| <k|Go| = O(kn'~') we obtain

= (") = otk 1), 5)

where X = 7(G)\ 7(Go).
Let Z=VU=D\0G,. We claim that

|Z| = O(k"2n"=3/%). (6)

Suppose not. Then the average value of z(D)=|{E € Z: ED D}| over all D € V=2 is
greater than O(k'/?n'/?). For any E,E' € Z with |[ENE'|=r—2 we have F=EUE’ ¢ X,
because otherwise at least one of E,E’ € JF is covered by an edge of S’ € ¥ (F)
which then is necessarily an edge of G; (as it intersects F € % (G1)\ F(Gy) in r — 1

vertices). Therefore, we have at least (;)71 > pere—n (z(f ) ) r-sets not in X, which
exceeds (rfz)O(kn) by the convexity of ()2‘) This contradicts (5) and proves the
claim.

Let
gi(E)=|{F € E(G,): FDE}|, E €dG.

Take any F € E(Gy). Let 0F = {Ey,...,E.}. We claim that all but at most
two of gi(E;)’s are larger than k/6. Suppose not, say ¢i(E;)<k/6, i =1,2,3. Take
F' € 7(F)\ 7 (Gy) and any S’ € ¥ (F’) containing F as an edge. Let F/ = E; U {x},
some i € [r], x € V\F. The star S’ contains » — 2 edges of the form E; U {x}, j # i.
These edges cannot be in Gy and so contribute at least 1 to g1(E;)+ gi1(E2) + g1(E3).
In total, each {x} UE; € E(G)) is counted at most twice. (Once it occurs then at most
2 edges of the form {x} UE; can belong to E(G).) But this contradicts (4). The claim
is proved.

Define

W:{EE 8G|:g|(E)<m—r— 1},
T = {F € E(G\): W N aF # 0.

We claim that || = O(k'?n"~%?). Suppose not. Note that for E,E’ € W with
|[ENE'| =r —2 we necessarily have F = EUE’ ¢ X for otherwise in an S’ € S (F)
centred at x, say x € E, there are m —r edges (necessarily in £(G))) different from F
and covering E. Thus there are at least (;)71 > pere—» (W(ZD )) edges not in X, where
w(D)=|{E € W:EDD}|, D € V=2, Using the convexity of the (3)-function as
before we can argue that there are more than O(kn"~') edges not in X contradicting

(5). The claim is established.
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Every E € W is contained in at most m — r — 1 edges F € E(G,) so |T| =
O(k'2n"=3/2). For every F € E(Gy)\T we have >_ .o 1/91(E) <2/(m—r)+(r—2)6/k.
Note the following easy identity:

oGil= > (Z gl(lE)> > (Z gl(lE)>

FEE(G))\T \E€EJF FeT \E€dF

2
< ( + O(l/k)) IGy| +7|T.
m—r
We know, see (6), that [0G| = (,",) — O(k"/>n"=3/?). Hence,
m—r

2

(r f | > — |G| = O(k'2n" =31 4+ |G| fk) = Ok 0" =3 4 "~V k).
Taking k = |n'?] we obtain the required. [

The author is very grateful to Andrew Thomason and to the anonymous referees for
helpful comments.
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