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NOTES 
Edited by Jimmie D. Lawson and William Adkins 

On Envy-Free Cake Division 

Oleg Pikhurko 

The old problem introduced by Gamov and Stern [3], to divide a cake among m 
people so that each person thinks that he has at least as much cake as anybody else 
(envy-free division), has been solved by Brams and Taylor [1]. This discovery 
attracted further interest to the area and, a few years later, Robertson and Webb 
[4] found a new construction. Here we present another solution, which is similar in 
spirit to the latter. 

Let each player Pi define a measure Ai on the cake C such that Ai(C) = 1, 
i E [m] - {1, .. ., m}. We assume that Pi can always cut off a piece B cA with 
Ai(B) = c for any A c C and 0 < c < ,ui(A). We want to find a procedure for 
constructing a partition C = W1 u U. U Wm with Ai (W) ? Ai(Wj) for all i, j E [im]. 

We use the following lemma from [4], for which we present an elementary 
proof. 

Lemma 1. For everyA c C, n E NJ and 8 > 0, there is a partitionA = Y1 U ... U Yn 
such that, for every j e [n], we have ,um(Yj) = ium(A)/n (exactly) and 

I ti(Y)-Ai(A)/nI < 8 foralli E [rm-1]. (1) 

In particular, by combining sufficiently small pieces, we can approximate the division of 
a piece of cake into any desired ratio, to any desired closeness. 

Proof: Our proof uses induction on m. Suppose that m > 1 and we are given some 
n and ?. By the induction assumption applied to P1, . . ., Pm-1 with respect to nt 
and 8' (specified later), find an appropriate partition A = Y1 U .. U Ynt. 

We may assume that Pm has ordered Y1,.. ., Ynt in decreasing order of 
measure. Let X = Y1 u .. U Yn, and Xi = Yn+i u Y2n+i U .. U Y(-t1)n+i for each 
i E [n]. 

In Am, among the pieces X1,..., Xn, X1 is the largest and Xn is the smallest. 
Since 

m m(X1) 
- 

Am(Xn) = iLm(Yn+1) 
- 

(iJAm(Y2n) 
- 

iJm(Y2n+i)) - iJmm(Ynt) 

< ILm(Yn+?)X 

there is enough cake in X for Pm to distribute among X1,..., Xn to form equal 
pieces Z1, .. . I Zn 

Since Xi c Zi c Xi u X for each i E [n], we have 

(t - 1)( nt -'f < lKj(Zj) < (t -1 + n) ( n( + l for all j E- [m]. 
nt -nt +' 

Thus, given 8 and n we can choose t sufficiently large, and then 8' sufficiently 
small to satisfy I,Uj(Z) - ,uj(A)/n I < 8. U 
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At each stage of our algorithm we consider a specific piece of cake A, beginning 
with A = C. The players are divided into groups G1, .. .,Gk so that Pi and P 
belong to one group if and only if ,ui(A) = Au(A). (Thus k = 1 initially.) 

During the division of A and C \ A, if all members of each group agree with 
each other on all of the arising pieces, we show that an envy-free division has been 
found. If there is a disagreement within any group, then we find a new piece A for 
which there are more groups. Since there are m players and so at most m groups, 
this procedure must terminate. 

Let us describe the procedure. First assume that the members of each group Gi 
agree with each other on every step; let us denote this common measure by m. 
Suppose Gi has mi members; denote 

ai = qi(A), bi = mi(b - d(l - ai)2), and ci = mi(c - dat) 

for each i E [k], (2) 

where b and c are chosen so that Ek 1 bi = 1k=1ci = 1 and d > 0 is small enough 
to ensure that all bi's and ci's are non-negative. (For example, d = 1/m would do 
as b, c ? 1/m.) 

Suppose (hypothetically) that we can find partitions A = U1 u U Uk and 
C \ A = V1 u * U Vk that divide A and C \ A in the proportions 

bl: b2: ..: bk and Cl: C2: : Ck, (3) 

respectively (in each measure 'ql,..., 'k). Then letting Wi = Ui U Vi, we have, for 
every distinct i, j E [k], 

i('J) W _ (7J') W biai + cj(l - ai) bjai + c1(l - ai) = d(ai - a1)2 > 0. 

Imi M j mi Mj i 

(4) 

Thus, if Gi receives Wi, for each i E [k], then each group considers its share (per 
one member) the largest. It is surprising that this can be achieved by simply 
splitting A and C \ A into certain proportions, namely (3). Once one believes in 
the existence of such proportions, it is not hard to find them, but the whole affair 
seems just a bit of good luck. 

In reality, by Lemma 1, we can ensure only that the partitions we build are 
8-close to (3), that is, satisfy qjy(Ui) - biqm(A)I < e and I Th(Vi) - ciq1(X \ A)I < 8 

for all i, j E [k]. But this is fine, as the left-hand side of (4) is still strictly positive 
provided 8 is sufficiently small. Next, again by Lemma 1, partition Wi = Ui u Vi 
into mi parts that are equal from the point of view of Gi, while the remaining 
groups consider them 'sufficiently equal'; these mri parts are distributed among the 
members of Gi, i E [k]. 

The players cannot envy each other by (4), so to complete the proof we have to 
describe how to handle disagreements within a group about some piece U C C. 
Clearly, at least one of U n A or U \ A is still 'disputable'. Cutting this piece 
further (using Lemma 1, for example), we can find a 'disputable' piece V smaller 
than min, <i < j < kH ki(A) - qj(A)I > 0 in each player's measure. Then replacing A 
by A A V, we obtain more groups, as required. 

Although the number of cuts in the algorithm is always finite, we cannot bound 
it by a function of m only. A pleasant property of our algorithm is that it requires a 
bounded number of cake transfers: if the players live in different cities and send 
each other pieces of cake by post, then the number of dispatches is O(m2). 
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Our construction admits some extensions that we mention without detail. 
For example, the algorithm solves the weighted envy-free problem when we 
are given positive numbers a1,..., am summing up to 1 and we look for a 
partition C = W, u u Wm such that i(Wi)/aai 2 Ai(Wj)/aj; we let bi = 
(b - d(1 - ai)2)EP EG aj, etc. Furthermore, making d small, we can additionally 
ensure that each p414') is arbitrarily close to a.. If each player wants to minimise 
his share, we let bi = mi(b + d(1 - aI)2), ci = mj(c + dat2), etc. 

Our construction can be also reworded into what Even and Paz [2] call a 
protocol: playing 'fair', each player Pi can guarantee that pj(W4) 2 4'i(Wj) for all 
j E [m] even if the other players do not consistently stick to their measures. 
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Calculating Higher Derivatives of Inverses 

Tom M. Apostol 

1. Introduction. Suppose we are given a function y = f(x) having a Taylor expan- 
sion in powers of x convergent in some neighborhood of 0, with f(O) = 0. A 
classical inversion problem is to determine whether or not there exists one and 
only one inverse function x = g(y) expressible as a power series in y that 
converges in some neighborhood of 0 and satisfies f[g(y)] = y in that neighbor- 
hood. 

The answer is well known and remarkably simple. If the first derivative f'(0) 0 0, 
then such a function g exists and is unique. But the proof is not at all obvious. The 
problem is discussed (and completely solved) in Knopp [4; pp. 184-188]. As Knopp 
points out, you can try a power series for g with undetermined coefficients, 
substitute into the equation f[g(y)] = y, and you get a triangular system of linear 
equations for the coefficients that can be solved one at a time in terms of the 
coefficients of the series for f. The difficult part is to show that this new series has 
a positive radius of convergence. 

Lagrange [5] first solved the problem in 1770 and gave an explicit formula for 
the coefficients for g. His result can be stated as follows: 

Lagrange's Inversion Formula. If y = f(x), where f(O) = 0 and f'(0) = 0, then 

00 n dn-i x n 

n=i Tf(x) JXE0 
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