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a b s t r a c t

Let uk(G, p) be the maximum over all k-vertex graphs F of by how
much the number of induced copies of F in G differs from its
expectation in the binomial random graph with the same number
of vertices as G and with edge probability p. This may be viewed as
a measure of how close G is to being p-quasirandom. For a positive
integer n and 0 < p < 1, let D(n, p) be the distance from p

(n
2

)
to the nearest integer. Our main result is that, for fixed k ≥ 4
and for n large, the minimum of uk(G, p) over n-vertex graphs has
order of magnitude Θ

(
max{D(n, p), p(1 − p)}nk−2

)
provided that

p(1 − p)n1/2
→ ∞.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

An important result of Erdős and Spencer [11] states that every graph G of order n contains a set
S ⊆ V (G) such that e(G[S]), the number of edges in the subgraph induced by S, differs from 1

2

(
|S|
2

)
by at least Ω(n3/2); an earlier observation of Erdős [9] shows that this lower bound is tight up to the
constant. More generally, it was shown in [10] that for graphswith density p ∈ ( 2

n−1 , 1−
2

n−1 ), there is
some subsetwhere the number of edges differs from expectation by at least c

√
p(1 − p)n3/2 (see [4–6]

for further results and discussion).
When p is constant, the above results can be equivalently reformulated in the language of graph

limits as that the smallest cut-distance from the constant-p graphon to an order-n graphG isΘ(n−1/2).
Instead of defining all terms here (which can be found in Lovász’ book [21]), we observe that the
cut-distance in this special case is equal, within some multiplicative constant, to the maximum over
S ⊆ V (G) of 1

n2

⏐⏐⏐2e(G[S]) − p|S|2
⏐⏐⏐.
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There are other measures of how close a graph G is to the constant-p graphon, which means
measuring how close G is to being p-quasirandom. Here we consider two possibilities, subgraph
statistics and graph norms, as follows.

For graphs G and H , we denote by N(H,G) the number of induced subgraphs of G that are
isomorphic to H . For example, if v(H) = k ≤ n, then the expected number of H-subgraphs in the
binomial random graph Gn,p (where each pair on the vertex set [n] := {1, . . . , n} is independently
included as an edge with probability p) is

E[N(H,Gn,p)] =
n(n − 1) . . . (n − k + 1)

|Aut(H)|
pe(H)(1 − p)

(
k
2

)
−e(H)

,

where Aut(H) is the group of automorphisms of H .
Let k ≥ 2 be a fixed integer parameter. For any graph G on n vertices and a real 0 < p < 1, let

uk(G, p) := max
{ ⏐⏐N(F ,G) − E[N(F ,Gn,p)]

⏐⏐ : v(F ) = k
}
, (1.1)

where the maximum is taken over all (non-isomorphic) graphs F on k vertices. The quantity uk(G, p)
measures how far the graph G is away from the random graph Gn,p in terms of k-vertex induced
subgraph counts. For example, uk(G, p)/nk is within a constant factor (that depends on k only) from
the total variational distance between Gk,p and a random k-vertex subgraph of G.

We are interested in estimating

uk(n, p) := min{uk(G, p) : v(G) = n}, (1.2)

the minimum value of uk(G, p) that a graph G of order n can have. Informally speaking, we ask how
p-quasirandom a graph of order n can be.

Clearly, u2(n, p) < 1 and u2(n, p) = 0 if p
(n
2

)
is integer. In fact, if we denote by D(n, p) the distance

from p
(n
2

)
to the nearest integer, then u2(n, p) = D(n, p). The problem of constructing pairs (F , p) with

u3(F , p) = 0 (such graphs F were called p-proportional) received some attention because the Central
Limit Theorem fails for the random variable N(F ,Gn,p) for such F , see [2,13,17]. Apart from sporadic
examples, infinitely many such pairs were constructed by Janson and Kratochvil [16] for p = 1/2 and
by Janson and Spencer [18] for every fixed rational p; see Kärrman [19] for a different proof of the last
result.

The main contribution of this paper is the following.

Theorem 1.1. (a) Let k ≥ 3 be fixed and p = p(n) ∈ (0, 1) with 1
p(1−p) = o(n1/2). Then

uk(n, p) = O
(
max{D(n, p), p(1 − p)}nk−2).

(b) Let k ≥ 4 be fixed and p = p(n) ∈ (0, 1). Then

uk(n, p) = Ω
(
max{D(n, p), p(1 − p)}nk−2).

Note that the existence of proportional graphs shows that the lower bound of Theorem 1.1 does
not extend in general to k = 3.

Anothermeasure of graph similarity is the 2kth Shatten norm ∥G−p∥C2k . Lemma8.12 in [21] shows
that the 4th Shatten norm defines the same topology as the cut-norm. Again, we define it only for the
special case when we want to measure how p-quasirandom an n-vertex graph G is, where we allow
loops. Here, we take the (normalised) ℓ2k-norm of the eigenvalues λ1, . . . , λn ofM = A− pJ , where A
is the adjacency matrix of G and J is the all-1 matrix:

∥G − p∥C2k :=
(λ2k

1 + · · · + λ2k
n )1/2k

n
.

Weremark thatwhenGhas a loop, the corresponding diagonal entry in thematrixA is 1. An equivalent
and more combinatorial definition of the 2kth Shatten norm is to take ∥G − p∥C2k = t(C2k,M)1/2k,
where C2k is the 2k-cycle and t(F ,M) denotes the homomorphism density of a graph F , which is the
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expected value of
∏

ij∈E(F )Mf (i),f (j), where f : V (F ) → [n] is a uniformly chosen random function, see
[21, Chapter 5]. In other words,

∥G − p∥C2k =

⎛⎝n−2k
∑

f :Z/2kZ→[n]

∏
i∈Z/2kZ

(Af (i),f (i+1) − p)

⎞⎠1/2k

, (1.3)

where the sum is over alln2k maps f : Z/2kZ → [n], from the integer residuesmodulo 2k to {1, . . . , n}.
We can show the following result.

Theorem 1.2. Let k ≥ 2 be a fixed integer. The minimum of ∥G − p∥C2k over all n-vertex graphs G with
loops allowed is

Θ
(
min

{
p(1 − p), p1/2(1 − p)1/2n−(k−1)/2k}) .

Hatami [12] studied which graphs other than even cycles produce a norm when we use the
appropriate analogue of (1.3). He showed, among other things, that complete bipartite graphs with
both parts of even size do. We also prove a version of Theorem 1.2 for this norm, see Theorem 4.1 of
Section 4.

The rest of this paper is organised as follows. In Section 2 we prove the lower bound from
Theorem 1.1. In Section 3 we prove the upper bound. We consider graph norms in Section 4, in
particular proving Theorem 1.2 there. The final section contains some open questions and concluding
remarks. Throughout the paper, we adopt the convention that k is a fixed constant and all asymptotic
notation symbols (Ω , O, o and Θ) are with respect to the variable n. To simplify the presentation, we
often omit floor and ceiling signs whenever these are not crucial and make no attempts to optimise
the absolute constants involved.

2. Lower bound for uk(n, p) in the range k ≥ 4

The goal of this section is to prove that uk(n, p) = Ω
(
max{D(n, p), p(1− p)}nk−2

)
. More precisely,

we will show that there exists a constant ε = ε(k) > 0 such that uk(G, p) ≥ ε max{D(n, p), p(1 −

p)}nk−2, for all graphs G on n ≥ k vertices and for all 0 < p < 1. The following lemma shows that it is
enough to prove the lower bound for k = 4 only.

Lemma 2.1. For every k ≥ 2 there is ck > 0 such that uk+1(G, p) ≥ ckn · uk(G, p) for every graph G of
order n ≥ k + 1 and for all 0 < p < 1.

Proof. Define

uF (G, p) :=
⏐⏐N(F ,G) − E[N(F ,Gn,p)]

⏐⏐.
Take a graph F of order kwith uF (G, p) = uk(G, p). Let f (G) be the number of pairs (A, x) where a k-set
A induces F in G and x ∈ V (G) \ A. Then f (G) = (n − k)N(F ,G) and E[f (Gn,p)] = (n − k)E[N(F ,Gn,p)];
thus these two parameters differ (in absolute value) by exactly (n−k)uk(G, p). On the other hand, f (G)
can be written as

∑
F ′N(F , F ′)N(F ′,G) where the sum is over non-isomorphic (k + 1)-vertex graphs

F ′. The expectation of f (Gn,p) obeys the same linear identity:

E[f (Gn,p)] =

∑
v(F ′)=k+1

N(F , F ′) E[N(F ′,Gn,p)].

We conclude that
n

k + 1
uk(G, p) ≤ (n − k) uk(G, p) =

⏐⏐ f (G) − E[f (Gn,p)]
⏐⏐

≤

∑
v(F ′)=k+1

N(F , F ′) uF ′ (G, p) ≤ 2
(
k+1
2

)
· (k + 1) · uk+1(G, p).

Thus the lemma holds with ck = 2−

(
k+1
2

)
(k + 1)−2. □
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In the next lemmawe prove one of the bounds for u4(n, p).We remark that it was implicitly proven
in [16, Proposition 3.7].

Lemma 2.2. There exists an absolute constant ε > 0 such that, for every 0 < p < 1 and for all graphs G
on n ≥ 4 vertices, the inequality u4(G, p) ≥ εp(1 − p)n2 holds.

Proof. Let ε > 0 be a sufficiently small constant. Suppose that there is a graph G of order n ≥ 4
satisfyingu4(G, p) < εp(1−p)n2. By applying Lemma2.1 twice,we conclude thatu2(G, p) < ε1p(1−p),
where we set ε1 := ε/(c2c3) with the constants ci given by the lemma. This implies that⏐⏐⏐⏐e(G)2 − E

[
e(Gn,p)

]2⏐⏐⏐⏐ ≤
⏐⏐e(G) − E

[
e(Gn,p)

] ⏐⏐ · (2p(n
2

)
+ ε1p(1 − p)

)
< ε1p(1 − p) · 3p

(
n
2

)
= 3ε1p2(1 − p)

(
n
2

)
. (2.1)

For every graph G, we can write e(G)2 as

e(G)2 =

∑
2≤v(F )≤4

αFN(F ,G), (2.2)

where F in the summation ranges over non-isomorphic graphs satisfying 2 ≤ v(F ) ≤ 4, andαF ≥ 0 is a
constant depending on F only. Indeed, split ordered pairs (e, e′) ∈ E(G)2 according to the isomorphism
type F of G[e∪ e′

]. The number αF of times that a given F-subgraph in G is counted equals the number
of ways to pick an ordered pair of edges from E(F ) whose union is the whole vertex set V (F ). For
example, if F is an edge then αF = 1, and if v(F ) = 4 then αF is the number of ordered pairs of disjoint
edges in F .

Since E
[
e(Gn,p)2

]
− E

[
e(Gn,p)

]2
= Var[e(Gn,p)] = p(1 − p)

( n
2

)
is the variance of e(Gn,p), we have

by (2.1) and the Triangle Inequality that⏐⏐⏐⏐e(G)2 − E
[
e(Gn,p)2

] ⏐⏐⏐⏐ > p(1 − p)
(n
2

)
− 3ε1p2(1 − p)

(
n
2

)
>

p(1 − p)
2

(
n
2

)
. (2.3)

Moreover, the identity (2.2) implies that E
[
e(Gn,p)2

]
=
∑

2≤v(F )≤4αF E[N(F ,Gn,p)]. Thus, by (2.3),

4∑
k=2

∑
v(F )=k

αF uk(G, p) ≥

4∑
k=2

∑
v(F )=k

αF

⏐⏐⏐N(F ,G) − E[N(F ,Gn,p)]
⏐⏐⏐

≥

⏐⏐⏐⏐ 4∑
k=2

∑
v(F )=k

αF

(
N(F ,G) − E[N(F ,Gn,p)]

)⏐⏐⏐⏐
=

⏐⏐⏐⏐e(G)2 − E
[
e(Gn,p)2

] ⏐⏐⏐⏐ >
p(1 − p)

2

(
n
2

)
.

Thus for some k ∈ {2, 3, 4}, we have uk(G, p) ≥ εp(1 − p)n2. Lemma 2.1 implies that u4(G, p) >
εp(1 − p)n2, contradicting our assumption and proving the lemma. □

The previous two lemmas give that uk(n, p) = Ω(p(1 − p)nk−2) for k ≥ 4. Thus, in order to finish
the proof of the lower bound, we need to show that uk(n, p) = Ω(D(n, p)nk−2). The latter bound
is a consequence of u2(n, p) = D(n, p) together with Lemma 2.1, thereby concluding the proof of
Theorem 1.1(b).

3. Upper bound for k ≥ 3

In this section, we prove that uk(n, p) = O(max{D(n, p), p(1 − p)}nk−2) for fixed k ≥ 3 and for all
p = p(n) such that 1

p(1−p) = o(n1/2). We can assume, without loss of generality, that p ≤
1
2 . Indeed, if G

denotes the complement of G then uk(G, p) = uk(G, 1− p), which implies that uk(n, p) = uk(n, 1− p).
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Thus our assumption can bemade because the boundO(max{D(n, p), p(1−p)}nk−2) is symmetricwith
respect to p and 1 − p. (Recall that D(n, p) = u2(n, p) = u2(n, 1 − p) = D(n, 1 − p).) In addition, note
that in the range p ≤

1
2 , it suffices to show that uk(n, p) = O(max{D(n, p), p}nk−2).

To prove the upper bound, we borrow some definitions, results, and proof ideas from [18].
Following their notation, one can count the number of induced subgraphs of G that are isomorphic
to H using the following identity

N(H,G) =

∑
H ′

∏
e∈E(H ′)

IG(e)
∏

e∈E(H ′)

(1 − IG(e)), (3.1)

where we sum over all H ′ isomorphic to H with V (H ′) ⊆ V (G), IG(e) is the indicator function that e
is an edge in G and H ′ denotes the complement of the graph H ′. Observe that the range of H ′ taken
in the outermost sum in (3.1) depends on V (G) but not on E(G); this will be useful when comparing
H-counts in different graphs on the same vertex set. We define a related sum over the same range of
H ′:

S(H,G) = S(p)(H,G) :=

∑
H ′

∏
e∈E(H ′)

(IG(e) − p), (3.2)

where p is as before. Rewriting (3.1) by replacing each factor IG(e) by (IG(e) − p) + p and each
factor 1 − IG(e) by (1 − p) − (IG(e) − p) and expanding, we obtain a linear combination of products∏

e∈X (IG(e) − p), with each X being some subset of unordered pairs of V (G) involving at most v(H)
different vertices. All sets X that are isomorphic to the same graph F get the same coefficient, which
we denote aF ,H (n, p). The coefficient for X = ∅ (i.e. the constant term) is obtained by summing the
same quantity pe(H

′)(1 − p)e(H ′) over all summands H ′; thus it is equal to the expected number of
H-subgraphs in Gn,p. We separate this special term and re-write (3.1) as

N(H,G) = E[N(H,Gn,p)] +

∑
F∈Fk

aF ,H (n, p)S(F ,G), (3.3)

where k = v(H) and Fk denotes the family of all graphs F without isolated vertices satisfying
2 ≤ v(F ) ≤ k. Also, note that aF ,H (n, p) does not depend on G and is bounded from above by
O(nv(H)−v(F )). In fact, one can show that aF ,H (n, p) = O(pe(H)−αnv(H)−v(F )), where α is the maximum
number of edges that a common subgraph of both H and F can have, but we will not need such an
estimate.

Thus, in order to prove that there exists a graphG on n vertices such that uk(G, p) = O(max{D(n, p),
p}nk−2), it suffices to show that there exists G such that

S(F ,G) =

{
O(pnv(F )−2), for all F ∈ Fk \ {K2},

O(D(n, p)), if F = K2.
(3.4)

(Note that one cannot hope for S(K2,G) = O(p) in general; this is why we need two terms in the
asymptotic formula for uk(n, p).) A natural candidate for G in (3.4) is the random graph G ∼ Gn,p.
Unfortunately, G does not work ‘‘out of the box’’; namely, (3.4) typically fails for F ∈ Fk with v(F ) ≤ 3.
However, by changing the adjacencies of carefully chosen pairs we can steer these parameters to have
the desired order of magnitude.

The next lemma yields some bounds for S(F ,Gn,p).

Lemma 3.1. Let G ∼ Gn,p. For all F ∈ Fk, we have

E[S(F ,G)] = 0 and E[S(F ,G)2] ≤ pe(F )nv(F ).

Proof. By (3.2), we have

E[S(F ,G)] =

∑
F ′

E

⎡⎣ ∏
e∈E(F ′)

(IG(e) − p)

⎤⎦ ,
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where the sum is over all F ′ isomorphic to F with V (F ′) ⊆ V (G). Each expectation on the right-hand
side vanishes, by independence and since E[IG(e)] = p. Thus E[S(F ,G)] = 0.

We similarly write

E[S(F ,G)2] =

∑
F ′,F ′′

E

⎡⎣ ∏
e∈E(F ′)

(IG(e) − p)
∏

e∈E(F ′′)

(IG(e) − p)

⎤⎦ .

where the sum is over all pairs (F ′, F ′′) of graphs isomorphic to F with V (F ′) ∪ V (F ′′) ⊆ V (G). The
expectation term in the above sum vanishes when F ′

̸= F ′′ and it is equal to (p − p2)e(F ) ≤ pe(F ) when
F ′

= F ′′. Since the number of possible choices for F ′ is at most
(n
f

)
· f ! ≤ nf , where f = v(F ), we

conclude that E[S(F ,G)2] ≤ pe(F )nv(F ). □

Using Chebyshev’s inequality (see, e.g., [1, Theorem 4.1.1]), we have that, for all λ > 0,

Pr
[ ⏐⏐S(F ,Gn,p)

⏐⏐ ≥ λ · pe(F )/2nv(F )/2 ]
≤ λ−2. (3.5)

By the union bound combined with (3.5), the random graph G ∼ Gn,p satisfies the following property
with probability at least 0.96.

Property A. |S(F ,G)| ≤ 5|Fk|
1/2pe(F )/2nv(F )/2 for all graphs F ∈ Fk.

The inequality pe(F )/2nv(F )/2
≤ pnv(F )−2 holds whenever v(F ) ≥ 4. This is because every graph

on 4 or more vertices in Fk has at least 2 edges, since no vertex is isolated. In order to find a graph
satisfying the conditions expressed in (3.4), we just need to adjust G so that S(K2,G) = O(D(n, p)) and
S(F ,G) = O(pnv(F )−2) when F ∈ F3 \ {K2}. The family F3 \ {K2} consists of two graphs: the triangle
K3 and the 2-path P2, the unique graph on three vertices having exactly two edges. So, we just need
to adjust S(K2,G), S(K3,G) and S(P2,G). This must be performed carefully, to prevent S(F ,G) from
changing too much for graphs F ∈ Fk with v(F ) ≥ 4.

Let us investigate what happens to S(F ,G) when we add or remove an edge. Note that by ‘‘edges’’,
we generally mean edges in the complete graph, i.e., all pairs ijwith i, j ∈ V (G), and not only the pairs
that happen to be selected as the edges of G. For each pair ij with i, j ∈ V (G), let

Sij(F ,G) := S(F ,G ∪ {ij}) − S(F ,G \ {ij}), (3.6)

where G ∪ {ij} and G \ {ij} represent the graphs obtained from G by adding and removing the edge ij,
respectively. By expanding each of the two terms in (3.6) using (3.2), we can write Sij(F ,G) as the sum
of
∏

e∈E(F ′)(IG∪{ij}(e) − p) −
∏

e∈E(F ′)(IG\{ij}(e) − p) over all F-subgraphs F ′ inside V (G). If E(F ′) does not
contain ij, then both products are identical. Thus we have that

Sij(F ,G) =

∑
F ′

(
(1 − p) − (−p)

) ∏
e∈E(F ′)\{ij}

(IG(e) − p) =

∑
F ′

∏
e∈E(F ′)\{ij}

(IG(e) − p), (3.7)

where we sum over all F ′ isomorphic to F with V (F ′) ⊆ V (G) and ij ∈ E(F ′).
The next lemma gives a bound for the expectation and the variance of Sij(F ,Gn,p).

Lemma 3.2. Let G ∼ Gn,p. For all F ∈ Fk with v(F ) ≥ 3 and all pairs 1 ≤ i < j ≤ n, we have

E[Sij(F ,G)] = 0 and E[Sij(F ,G)2] ≤ k2pe(F )−1nv(F )−2.

Proof. The proof is similar to that of Lemma 3.1.
We have E[Sij(F ,G)] = 0 by (3.7), the independence of the random variables IG(e) and the linearity

of expectation.
For the second part of the lemma, we write

E[Sij(F ,G)2] =

∑
F ′,F ′′

E

⎡⎣ ∏
e∈E(F ′)\{ij}

(IG(e) − p)
∏

e∈E(F ′′)\{ij}

(IG(e) − p)

⎤⎦ .
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where the sum is over all pairs (F ′, F ′′) of graphs isomorphic to F with V (F ′) ∪ V (F ′′) ⊆ V (G) and
{i, j} ∈ E(F ′) ∩ E(F ′′). The expectation term in the above sum vanishes when F ′

̸= F ′′ and it is upper
bounded by pe(F )−1 when F ′

= F ′′. Since the number of possible choices for F ′ is at most k2nv(F )−2, we
conclude that E[Sij(F ,G)2] ≤ k2pe(F )−1nv(F )−2, as desired. □

Take a pair ij of vertices. For 0 ≤ s ≤ 2, let Zs = Zs(ij) denote the number of vertices z ∈ V (G)\{i, j}
such that exactly s of the pairs iz and jz belong to E(G). Let us express

Y1 = Y1(ij) := Sij(P2,G),
Y2 = Y2(ij) := Sij(K3,G),

in terms of the random variables Z0 and Z2. When we compute Y1 using (3.7), we have to sum over all
2-paths containing the edge ij. Denoting the third vertex of the path by z, we get

Y1 =

∑
z∈V\{i,j}

(IG(iz) + IG(jz) − 2p) = 2(1 − p)Z2 + (1 − 2p)Z1 − 2pZ0.

Using that E[Z0] = (1 − p)2(n − 2) and E[Z2] = p2(n − 2) (or that E[Y1] = 0), we derive that

Y1 = 2(1 − p)Z2 + (1 − 2p)(n − 2 − Z0 − Z2) − 2pZ0
= (Z2 − E[Z2]) − (Z0 − E[Z0]). (3.8)

Likewise, we obtain

Y2 =

∑
z∈V\{i,j}

(IG(iz) − p)(IG(jz) − p) = (1 − p)2Z2 − p(1 − p)Z1 + p2Z0

= (1 − p)(Z2 − E[Z2]) + p(Z0 − E[Z0]). (3.9)

The triple (Z0, Z1, Z2) has a multinomial distribution for G ∼ Gn,p. In the next lemmawe show that
for any fixed rectangle R ⊆ R2 of positive area, there exists η = η(R) > 0 such that

(
Y1√
pn ,

Y2
p
√
n

)
∈ R

with probability at least η. Recall that we have assumed that p ≤ 1/2 and p2n → ∞.

Lemma 3.3. For fixed reals α1 < α2 and β1 < β2 there exists η = η(α1, α2, β1, β2) > 0 such that, for
all large n, the probability of

α1 ≤
Y1

√
pn

≤ α2 and β1 ≤
Y2

p
√
n

≤ β2 (3.10)

is at least η.

Proof. Define

c :=
1
2

min{ α2 − α1, β2 − β1 },

C := 2max
{
|α1|, |α2|, |β1|, |β2|

}
,

δ :=
c
8π

e−2C2
> 0.

Let us show that η := δ2 works in the lemma. Consider the following 2 × 2-matrix and its inverse:

A :=

[
−1

√
p

√
p 1 − p

]
with A−1

=

[
−1 + p

√
p

√
p 1

]
.

Note that each entry of A and A−1 has absolute value at most 1, so the linear maps given by these
matrices are 2-Lipschitz in the ℓ∞-distance. Thus if we let S = S(n) be the square of side length c
with centre (α0, β0)T := A−1( α1+α2

2 ,
β1+β2

2 )T , then the image of S under A lies inside the rectangle
R := [α1, α2] × [β1, β2] while S itself is a subset of A−1R ⊆ [−C, C]

2. (Here (α, β)T means the column
vector with entries (α, β).)



H. Naves et al. / European Journal of Combinatorics 73 (2018) 138–152 145

Thematrix Awas chosen to encode the linear relations (3.8) and (3.9) between (Y1, Y2) and (Z0, Z2),
with an appropriate normalisation applied to each random variable. Specifically, it holds that

A
(
Z0 − E[Z0]

√
pn

,
Z2 − E[Z2]

p
√
n

)T

=

(
Y1

√
pn

,
Y2

p
√
n

)T

. (3.11)

By (3.11) it is enough to show, that with probability at least η, we have

α0 −
c
2

≤
Z0 − E[Z0]

√
pn

≤ α0 +
c
2
, (3.12)

β0 −
c
2

≤
Z2 − E[Z2]

p
√
n

≤ β0 +
c
2
. (3.13)

A version of de Moivre–Laplace theorem (see e.g. [3, Theorem 1.6(i)]) states that, for any function
p = p(n) ∈ (0, 1) with p(1 − p)n → ∞ and any reals a < b, if Xn has the binomial distribution with
parameters (n, p), then

lim
n→∞

Pr
[
a ≤

Xn − np
√
np(1 − p)

≤ b
]

=
1
2π

∫ b

a
e−x2/2dx. (3.14)

Let n be large. We begin by sampling Z2. We know that Z2 is distributed according to the binomial
distribution: Z2 ∼ Bin(n − 2, p2). Its variance is Var[Z2] = p2(1 − p2)(n − 2). Let Z∗

2 := (Z2 −

E[Z2])/
√
Var[Z2] be the normalised version of Z2. Note that the constraint (3.13) is satisfied if and

only if Z∗

2 belongs to γn · [β0 −
c
2 , β0 +

c
2 ], where γn := p

√
n/

√
Var[Z2] and y · X := {y · x : x ∈ X}

denotes the dilation of a set X by a scalar y. De Moivre–Laplace theorem (3.14) applies to Z2 since we
assumed that p2n → ∞ and p ≤ 1/2. Using p ≤ 1/2 again, we have that γn is between, for example,
1 and 2. Note that the normal distribution assigns probability at least 2δ to every interval of length c
inside [−2C, 2C] by the definition of δ.

Let us show that the probability of (3.13) is at least δ. If this is false, then bypassing to a subsequence
of counterexamples n we can further assume that γn and β0 = β0(n) converge to some γ and β

respectively (with γ ∈ [1, 2] and |β| ≤ C − c/2). Let I = [a, b] be the interval with centre at
a+b
2 = γ β such that de Moivre–Laplace theorem predicts the limiting probability 3

2 δ for it. Its length
a−b is strictly smaller than γ c because, as we have already observed, the probability that the normal
variable hits γ · [β −

c
2 , β +

c
2 ] is at least 2δ. Thus, for all large n from our subsequence, I is a subset of

γn · [β0(n)− c
2 , β0(n)+ c

2 ]. However, our assumption states that each of the latter intervals is hit with
probability less than δ by Z∗

2 , contradicting de Moivre–Laplace theoremwhen applied to the constant
interval I .

Let α ∈ {0, . . . , n−2} be such that |β−β0| ≤ c/2, wherewe set β := (α−(n−2)p2)/(p
√
n). Let Xα

be Z0 conditioned on Z2 = α. The random variable Xα has the binomial distribution with parameters
(1 − p2)(n − 2) − βp

√
n and (1−p)2

1−p2
=

1−p
1+p . By our assumption p2n → ∞, the term βp

√
n = O(p

√
n)

is negligible when compared to p2n. We have

E[Xα] = (1 − p)2(n − 2) −
1 − p
1 + p

· βp
√
n,

Var[Xα] = (1 + o(1))
1 − p
1 + p

·
2p

1 + p
· (1 − p2)n = (2 + o(1))

p(1 − p)2n
1 + p

.

We see that Var[Xα] lies between, for example, np/4 and 4np. As before, a compactness argument
based on de Moivre–Laplace theorem shows that the infimum over all intervals I ⊆ [−2C, 2C] of
length c/2 of the probability that (Xα − E[Xα])/

√
Var[Xα] belongs to I is at least δ for all large n.

We see that, when conditioned on any value α of Z2 that satisfies (3.13), the probability that (3.12)
holds is at least δ. Therefore, the probability that (3.12) and (3.13) hold simultaneously is at least
η = δ2, which concludes the proof. □
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Next, we put a pair e ⊆ V (G) in at most one of sets E1, . . . , E5 as follows:

E1 := {e : e ∈ E(G),
√
pn < Y1(e) and p

√
n < Y2(e)},

E2 := {e : e ∈ E(G),
√
pn < Y1(e) and Y2(e) < −p

√
n},

E3 := {e : e ∈ E(G), Y1(e) < −
√
pn and p

√
n < Y2(e)},

E4 := {e : e ∈ E(G), Y1(e) < −
√
pn and Y2(e) < −p

√
n},

E5 := {e : e ̸∈ E(G), |Y1(e)| < 0.1
√
pn and |Y2(e)| < 0.1p

√
n}.

Also, let E∗ denote the set of pairs ij, where i, j ∈ V (G) are distinct vertices such that

|Sij(F ,G)| > 4k · ε−1/2
|Fk|

1/2p(e(F )−1)/2nv(F )/2−1 (3.15)

for at least one F ∈ Fk.
Informally speaking, the rest of the proof proceeds as follows. First, by using Lemma 3.3 we show

that, with reasonably high probability, the set Ei \ E∗ is ‘‘large’’ for each i ∈ [5]. Then, by applying a
simple greedy algorithm, Corollary 3.5 gives a bounded degree graphH ′ consisting ofΩ(n) edges from
each Ei \ E∗. We will modify the random graph G to satisfy (3.4) by flipping some pairs, all restricted
to H ′. First, by flipping the appropriate number of pairs inside either E1 or E5, we can make |S(K2,G)|
to be equal to D(n, p), the smallest possible value, thus satisfying one of the constraints in (3.4). Next,
by adding an edge from E5 to E(G) and removing an edge in Ei from E(G), we do not change S(K2,G)
while we can steer each of S(K3,G) and S(P2,G) in the right direction by having the freedom to choose
i ∈ [4]. The latter claim can be justified using the fact that all flipped pairs come from a bounded
degree graph H ′, so the updated values of Y1(e) and Y2(e) stay close to the initial values for every
pair e ⊆ V (G). Furthermore, since H ′ is disjoint from E∗, the effect on S(F ,G) of every H ′-flip is small
for each F ∈ Fk. Thus we make (3.4) hold for F ∈ F3 without violating it for the graphs in Fk \ F3.

Let us provide all the details. Let ε > 0 be sufficiently small, in particular so that η = ε satisfies
Lemma 3.3 for any choice of α1 < α2 and β1 < β2 from { ±0.1, ±1, ±2 }.

First, let us show that |E1| ≥ εpn2/4 asymptotically almost surely. Recall that E1 consists of those
pairs e ⊆ V (G) for which

e ∈ E(G),
√
pn < Y1(e) and p

√
n < Y2(e). (3.16)

Let I1(e) be the indicator random variable for E1. For the random graph G ∼ Gn,p, the first condition
e ∈ E(G) for e to be in E1 is independent of the other two conditions. Thus, by the choice of ε, we can
assume that E[I1(e)] ≥ εp. We have |E1| =

∑
eI1(e), hence E[ |E1| ] ≥ εp

(n
2

)
. We re-write the variance

of |E1| as the sum of pairwise covariances of its components: with Cov[X, Y ] := E[XY ]−E[X] E[Y ] we
have

Var[ |E1| ] =

∑
e∩e′=∅

Cov[I1(e), I1(e′)] +

∑
e∩e′ ̸=∅

Cov[I1(e), I1(e′)], (3.17)

Take any pairs e = xy and e′
= x′y′ that have no common vertices. Let us show that

Cov[I1(e), I1(e′)] = o(p2). Informally speaking, I1(e) can only influence I1(e′) through the four edges
that connect e to e′, while the probability that Y1 or Y2 is so close to the cut-off values in (3.16) as to
be affected by these four edges is o(1) by de Moivre–Laplace theorem. A bit more formally, we first
expose all edges between the set A := e∪ e′ and its complement V (G) \ A, and compute the ‘‘current’’
values Y ′

1 and Y ′

2 on e and e′ where, for example,

Y ′

1(e) :=

∑
z∈V (G)\A

(IG(xz) + IG(yz) − 2p)

takes into account those 2-paths on V (G) that contain e = xy as an edge but are vertex–disjoint from
the other pair e′. The values of Y1 and Y2 on e and e′ can be computed from Y ′

1 and Y ′

2 by adding
the contribution from the four edges connecting e to e′. By (3.8) and (3.9), each of these increments
is at most 8. If Y ′

1(e), Y
′

1(e
′) ̸∈

√
pn ± 8 and Y ′

2(e), Y
′

2(e
′) ̸∈ p

√
n ± 8, then the validity of the

requirements on Y1 and Y2 in (3.16) does not depend on the four edges between e and e′; thus the
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corresponding contribution to Cov[I1(e), I1(e′)] is zero. The complementary event, that at least one of
Y ′

1 and Y ′

2 is within additive constant 8 from the corresponding cut-off value, has probability o(1) by
an application of de Moivre–Laplace theorem. Furthermore, the constraints e, e′

∈ E(G) in (3.16), that
are independent of everything else, contribute O(p2) to the covariance of I1(e) and I1(e′). Thus indeed
Cov[I1(e), I1(e′)] = o(p2).

We see that the first sum in (3.17) has O(n4) terms, each o(p2). Since the second sum has O(n3)
terms, each at most p2 and

(n
2

)
terms, each at most p, the variance of |E1| is o(n4p2). By Chebyshev’s

inequality,

Pr[ |E1| < εpn2/4 ] ≤ Pr[ |E1 − E[E1]| > εpn2/5 ] = o(1),

proving the required.
The argument above implies that asymptotically almost surely |Ei| ≥ εpn2/4 for all i = 1, . . . , 4.

Similarly, one can show that |E5| ≥ εn2/4 asymptotically almost surely. (Note that E5 might be
much ‘‘denser’’ than the other sets because we dropped the requirement e ∈ E(G).) Finally, using
the standard Chernoff estimates one can show that asymptotically almost surely ∆(G) ≤ 2np for
G ∼ Gn,p. In particular, the following property is satisfied with probability at least 0.99 when n is
large.

Property B. |Ei| ≥ εpn2/4 for i = 1, . . . , 4. Moreover, |E5| ≥ εn2/4 and ∆(G) ≤ 2pn.

Next, we would like to show that the set E∗ that was defined by (3.15) is small. Chebyshev’s
inequality together with Lemma 3.2 implies that Pr[ij ∈ E∗

] ≤ ε/16. Hence E[ |E∗
| ] ≤ εn2/32. By

Markov’s inequality, Pr[ |E∗
| > εn2/8 ] < 1

4 . Similarly, Pr[ |E∗
∩ E(G)| > εpn2/8 ] < 1

4 . Thus by the
union bound, G ∼ Gn,p satisfies the following property with probability at least 0.5.

Property C. E∗ has size at most εn2/8. Moreover, |E∗
∩ E(G)| ≤ εpn2/8.

Also, we state and prove the following simple result that asserts the existence of large matchings
in relatively dense graphs.

Proposition 3.4. Let H be a graph and let ∆ := ∆(H). There exists a matching in H of size at least e(H)
2∆ . In

particular, if m < ∆ thenH contains a subgraphH ′ withmaximal degree∆(H ′) ≤ mand e(H ′) ≥
m
4∆ e(H).

Proof. Let M be a maximal matching in H , and assume M has k <
e(H)
2∆ pairs. All the edges of H have

at least one endpoint in V (M). Hence

e(H) ≤ |V (M)| · ∆ = 2k · ∆ < e(H),

a contradiction. We remark that the bound e(H)
2∆ is not tight but it suffices for our purposes.

To construct H ′, we start with the empty graph. At each step of the construction, we apply the first
assertion of the proposition to the graph H \H ′, in order to obtain a matchingM having exactly

⌈ e(H)
4∆

⌉
edges. We then add all the edges fromM to H ′. We repeat this step exactlym times. Since we always
have e(H ′) ≤ m ·

⌈ e(H)
4∆

⌉
<

e(H)
2 , and thus e(H \ H ′) >

e(H)
2 , it is always possible to find such M , in all

the steps of the process. □

An important corollary of Proposition 3.4 is as follows.

Corollary 3.5. Let C > 0 be fixed. If Properties B and C simultaneously hold for a graph G and n is
sufficiently large, then there exists a graph H ′ having at least Cn edges from each Ei \E∗, i = 1, . . . , 5, such
that ∆(H ′) ≤ 320C/ε.

Proof. Because of Property C, we have |E∗
∩ E(G)| ≤ εpn2/8 and |E∗

| ≤ εn2/8, which, together with
Property B, implies that |Ei \ E∗

| ≥ εpn2/8 for i = 1, . . . , 4, and |E5 \ E∗
| ≥ εn2/8. Let Hi be the

graph on V (G) having edge set Ei \ E∗. We have ∆(Hi) ≤ ∆(G) ≤ 2np for i = 1, . . . , 4 and ∆(H5) ≤ n.
Hence e(Hi)

∆(Hi)
≥

εn
16 for all i = 1, . . . , 5. By Proposition 3.4 applied with m = 64C/ε < min{∆(Hi) : i =

1, . . ., 5}, each Hi contains a subgraph H ′

i having at least m
4 ·

e(Hi)
∆(Hi)

≥ Cn edges such that ∆(H ′

i ) ≤ m.
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Let H ′
=
⋃5

i=1H
′

i . Clearly ∆(H ′) ≤ 5m = 320C/ε and H ′ contains at least Cn edges from each Ei \ E∗,
thereby proving the corollary. □

Proof of the upper bound in Theorem 1.1. Given p ∈ (0, 1/2] and k ≥ 3, choose small ε > 0
and then sufficiently large C . Let n → ∞. By the union bound, G ∼ Gn,p satisfies Properties A–C
with probability at least 0.4. Hence there exists a graph G on n vertices satisfying the three properties
simultaneously. Fix such G.

From Corollary 3.5, there exists a graph H ′ having at least Cn edges from each Ei \ E∗, such that
∆ := ∆(H ′) ≤ 320C/ε. Let E ′

= E(H ′).
In what follows, we change E(G) on pairs, all of which will belong to E ′. Note that at any

intermediate step, the effect of (for instance) removing an edge ij ∈ E ′
∩ E1 from E(G) on S(P2,G)

and S(K3,G) is not quite given by the initial values of Y1(ij) and Y2(ij), since certain edges iw, jw might
have been changed. But E ′ was defined in such a way that there are most 2∆ = o(

√
pn) changed

edges which affect either Y1 or Y2. So, the removal of ij ∈ E1 \ E∗ from E(G) at any intermediate stage,
still decreases S(P2,G) by an amount between

√
pn − 2∆ and 4kε−1/2

|Fk|
1/2√pn + 2∆ < ε−1√pn.

Similarly, because ∆ = o(p
√
n), the same operation decreases S(K3,G) by an amount between

p
√
n − 2∆ and 4kε−1/2

|Fk|
1/2p

√
n + 2∆ < ε−1p

√
n.

By Property A, we know that

|S(K2,G)| ≤ 5|Fk|
1/2p1/2n =: τ .

If S(K2,G) ≥ 1, we can pick an e ∈ E ′
\E5 and remove it from G. This has the effect of reducing S(K2,G)

by 1. If S(K2,G) ≤ −1, thenwe can pick an e ∈ E ′
∩E5 and add it toG. This new edge increases the value

of S(K2,G) by 1. Iterate this process at most τ times to obtain a graph G such that |S(K2,G)| = D(n, p),
always using a different edge e. This is possible because there are at least Cn edges from E ′

∩ Ei, for
each i.

Since we have flipped at most τ edges, all belonging to H ′, and each flip changes S(K3,G)
(reps. S(P2,G)) by at most ε−1p

√
n (resp. ε−1√pn) in absolute value, the current graph satisfies

|S(K3,G)| ≤ pS0 and |S(P2,G)| ≤ p1/2S0, where

S0 = 5|Fk|
1/2p1/2n3/2

+ τ · ε−1√n.

Our next goal is to make both |S(K3,G)| and |S(P2,G)| small without changing S(K2,G). We repeat
the following step Cp1/2n − τ times. Consider the current graph G. There are four cases depending
on whether each of S(K3,G) and S(P2,G) is positive or not. First suppose that they are both positive.
Pick previously unused edges e ∈ E ′

∩ E1 and e′
∈ E ′

∩ E5, and replace e with e′ in G. This operation
preserves the value of S(K2,G), and has the effect of reducing both S(K3,G) and S(P2,G). It reduces
S(K3,G) by an amount between (1 − 0.1)p

√
n − 4∆ ≥ 0.8p

√
n and 2ε−1p

√
n < pn. Thus if (initially)

S(K3,G) ≥ pn, then this value is lowered by at least 0.8p
√
n. Regarding S(P2,G), the operation reduces

it by between 0.8
√
pn and 2ε−1√pn < pn. Likewise, if S(K3,G) < 0 and S(P2,G) > 0, we replace an

e ∈ E ′
∩ E2 by an e′

∈ E ′
∩ E5, and similarly in the other two cases. We iterate this process, always

using edges e and e′ that have not been used before. This is possible since E ′ contains at least Cn edges
from each Ei. Also, once one of |S(K3,G)| or |S(P2,G)| becomes less than pn, it stays so for the rest of
the process. Since (Cp1/2n− τ ) · 0.8

√
n > S0, we have that max{|S(K3,G)|, |S(P2,G)|} < pn at the end.

The iterative process might change the value of S(F ,G) for F ∈ Fk with at least 4 vertices.
Take any such F and let f = v(F ). Initially, |S(F ,G)| was at most 5|Fk|

1/2pe(F )/2nf /2 by Prop-
erty A. If we add to it Cp1/2n, an upper bound on the number of the changed edges, multiplied by
4kε−1/2

|Fk|
1/2p(e(F )−1)/2nf /2−1, then this accounts for every copy of F inside the vertex set V (G) except

perhaps those that contain at least two of the changed edges. (This estimate used the fact that none of
the changed edges is in E∗.) A pair of two disjoint changed edges is trivially in at most f 4nf−4 copies of
F . It remains to consider the case when xy and xz are two changed intersecting edges. Note that there
are at most Cp1/2n · 2∆ choices of (xy, xz). Consider a copy F ′ of F with vertex set X ⊇ {x, y, z}. If none
of the pairs e ⊆ X with e ̸⊆ {x, y, z} is an element of E(G) or a changed edge, then this F ′ contributes at
most p in absolute value to the sum in (3.2) that defines S(F ,G). (Indeed, as F has at least 4 non-isolated
vertices, at least one edge of F ′ has to intersect X \ {x, y, z}; thus the F ′-term in (3.2) contains at least
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one factor −p.) Otherwise, X has to contain a changed edge or an edge from E(G) that is not inside
{x, y, z}. The number of such subgraphs for any given triple {x, y, z} can be bounded by

3(∆ + 2pn)f 4nf−4
+ (Cp1/2n + pn2)f 5nf−5

≤ 2f 5pnf−3.

Putting all together we obtain that, at the end of the process,

|S(F ,G)| ≤ 5|Fk|
1/2pe(F )/2nf /2

+ Cp1/2n · 4kε−1/2
|Fk|

1/2p(e(F )−1)/2nf /2−1

+ (Cp1/2n)2f 4nf−4
+ Cp1/2n · 2∆ · (p · f 3nf−3

+ 2f 5pnf−3).

This is O(pnf−2) since F has f ≥ 4 vertices and e(F ) ≥ 2 edges.
We conclude that the final graphG satisfies S(F ,G) = O(pnv(F )−2) for all F ∈ Fk\{K2} and S(K2,G) =

O(D(n, p)). That is, we satisfied (3.4), which implies the required upper bound on uk(G, p). □

4. Shatten norms and other related norms

Note that the graphs in this section are allowed to have loops. When we define the complement G
of a graph G, loopless vertices are mapped to loops and vice versa. For a graph G on [n] and a function
p = p(n), let M = A − pJ denote the shifted adjacency matrix of G, that is,

Mij =

{
1 − p, if ij ∈ E(G),
−p, otherwise, 1 ≤ i, j ≤ n. (4.1)

In order to make some forthcoming formulas shorter, we define ϵ(G) :=
∑n

i=1
∑n

j=1Aij. In other
words, ϵ(G) is the number of loops plus twice the number of non-loop edges in G. For example,
ϵ(G) + ϵ(G) = n2.

Let us prove Theorem 1.2.

Proof of Theorem 1.2. Let s = 2k and let G be a graph (possibly with loops) on [n], where n → ∞.
Without loss of generality we may assume that p ≤

1
2 . This is because ∥G − p∥s

Cs = ∥G − (1 − p)∥
s
Cs

and the expression in the statement we have to prove is symmetric with respect to p and 1 − p.
The matrix M in (4.1) is a symmetric real matrix so it has real eigenvalues λ1 ≥ · · · ≥ λn. For an

even integer s ≥ 4, we have

ns
∥G − p∥s

Cs =

n∑
i=1

λs
i = tr(Ms) =

n∑
i=1

(Ms)ii,

where tr denotes the trace of a matrix.
From now on we split the analysis of the lower bound for ∥G − p∥s

Cs into two cases.
In the first case, we assume that ϵ(G) ≥

p
2 n2. This (together with p ≤

1
2 ) implies that

n∑
i=1

λ2
i =

n∑
i,j=1

M2
ij = (1 − p)2ϵ(G) + p2ϵ(G) ≥

(
(1 − p)2

p
2

+ p2
(
1 −

p
2

))
n2

=
p
2
n2. (4.2)

By the inequality between the arithmetic and kth power means for k ≥ 2 applied to non-negative
numbers λ2

1, . . . , λ
2
n (or just by the convexity of x ↦→ xk for x ≥ 0), we conclude that(

λ2k
1 + · · · + λ2k

n

n

)1/k

≥
λ2
1 + · · · + λ2

n

n
≥

pn
2

.

Thus n2k
∥p − G∥

2k
C2k =

∑n
i=1λ

2k
i = Ω(pknk+1), giving the required lower bound in the first case.

In the second case, we assume that ϵ(G) <
p
2 n2. Since λn is the smallest eigenvalue ofM , we have

λn = min{⟨Mv, v⟩ : ∥v∥2 = 1}. So if we choose v =

(
1

√
n , . . . ,

1
√
n

)
∈ Rn, we obtain

λn ≤ ⟨Mv, v⟩ =
(1 − p)ϵ(G) − pϵ(G)

n
≤

(
(1 − p)

p
2

− p(1 −
p
2
)
)
n = −

pn
2

. (4.3)
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This implies that
∑n

i=1λ
2k
i ≥ λ2k

n = Ω(p2kn2k), thereby proving the lower bound in the second case.
On the other hand, for the upper bound we have two constructions. Again we assume that p ≤

1
2 .

The first construction is very simple: the empty graph. If G is empty, a straightforward computation
shows that ∥G − p∥C2k = p, and this proves the upper bound whenever p ≤ n−(k−1)/k. For the second
construction, we consider G ∼ Gloop

n,p to be a random graph with loops, where every possible pair
or loop belongs to E(G) independently with probability p. Here we assume that p > n−(k−1)/k. Let
X = n2k

∥G − p∥2k
C2k . By (1.3), we have X =

∑
f :Z/2kZ→V (G)Xf , where Xf =

∏
i∈Z/2kZMf (i),f (i+1) and

M = A − pJ is as before. Then the expectation of Xf is 0 unless for every i there is j ̸= i with
{f (j), f (j + 1)} = {f (i), f (i + 1)}, that is, every edge of C2k is glued with some other edge. If f is a
map with E[Xf ] ̸= 0 then the image under f of the edge set of C2k is a connected multi-graph where
every edge (or loop) appears with even multiplicity, so it contains at most k + 1 vertices. Since the
number of maps f for which the image of C2k contains at most e distinct edges (ignoring multiplicity)
is O(ne+1), we have

E[X] = O

(
k∑

e=1

ne+1pe
)

= O(nk+1pk),

since p > n−1. Now take an outcome G such that the value of X is at most its expected value. This
finishes the proof of the theorem. □

A related result of Hatami [12] shows that a complete bipartite graph F = K2k,2m, with even part
sizes 2k and 2m, also gives a norm by a version of (1.3). If G is a graph on [n], then this norm, for G− p,
is

∥G − p∥F := t(F ,M)1/(2k+2m)
= n−1X1/(2k+2m),

where M is as in (4.1),

X :=

∑
f :A∪B→V (G)

∏
a∈A

∏
b∈B

Mf (a),f (b),

and A, B are fixed disjoint sets of sizes 2k and 2m respectively.

Theorem 4.1. Let F = K2k,2m with 1 ≤ k ≤ m. The minimum of ∥G − p∥F over n-vertex graphs G with
loops allowed is

Θ

(
min

{
p4km(1 − p)4km, p2km(1 − p)2kmn−k}1/(2m+2k)

)
.

Proof. For the same reasons stated in the beginning of the proof of Theorem 1.2 we may assume,
without loss of generality, that p ≤

1
2 . We begin with the lower bound. We rewrite X by grouping all

maps f : A ∪ B → V (G) by the restriction of f to A. For every fixed h : A → V (G), we have

∑
g:B→V (G)

∏
a∈A

∏
b∈B

Mh(a),g(b) =

⎛⎝ ∑
u∈V (G)

∏
a∈A

Mh(a),u

⎞⎠2m

≥ 0.

As in the proof of Theorem 1.2, we divide the analysis into two cases.
In the first case, we assume that ϵ(G) ≥

p
2 n2. Let H be the set of all h : A → V (G) such that

h(2i − 1) = h(2i) for all i ∈ [k], where we assumed that A = [2k]. Note that |H| = nk. If h ∈ H we
have ∑

u∈V (G)

∏
a∈A

Mh(a),u =

∑
u∈V (G)

∏
i∈[k]

M2
h(2i),u.

Thus by the convexity of x ↦→ x2m for x ∈ R, the convexity of x ↦→ xk for x ≥ 0, and the calculation
in (4.2), we have that

X =

∑
h:A→V (G)

⎛⎝ ∑
u∈V (G)

∏
a∈A

Mh(a),u

⎞⎠2m

≥

∑
h∈H

⎛⎝ ∑
u∈V (G)

∏
i∈[k]

M2
h(2i),u

⎞⎠2m
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≥ nk

⎛⎝ 1
nk

∑
h∈H

∑
u∈V (G)

∏
i∈[k]

M2
h(2i),u

⎞⎠2m

= nk

⎛⎜⎝ 1
nk

∑
u∈V (G)

⎡⎣ ∑
v∈V (G)

M2
v,u

⎤⎦k
⎞⎟⎠

2m

≥ nk

⎛⎜⎝ 1
nk−1

⎡⎣1
n

∑
u∈V (G)

∑
v∈V (G)

M2
v,u

⎤⎦k
⎞⎟⎠

2m

= nk

⎛⎝ 1
nk−1

[
(1 − p)2ϵ(G) + p2ϵ(G)

n

]k
⎞⎠2m

≥ nk
(

1
nk−1

[pn
2

]k)2m

= Ω
(
p2kmnk+2m) ,

which proves the lower bound in the first case.
In the second case, we assume that ϵ(G) <

p
2 n2. By the convexity of x ↦→ x2m and x ↦→ x2k for all

x ∈ R and by the calculation in (4.3), we have that

X =

∑
h:A→V (G)

⎛⎝ ∑
u∈V (G)

∏
a∈A

Mh(a),u

⎞⎠2m

≥ n2k

⎛⎝ 1
n2k

∑
h:A→V (G)

∑
u∈V (G)

∏
i∈[2k]

Mh(i),u

⎞⎠2m

= n2k

⎛⎜⎝ 1
n2k

∑
u∈V (G)

⎡⎣ ∑
v∈V (G)

Mv,u

⎤⎦2k
⎞⎟⎠

2m

≥ n2k

⎛⎜⎝ 1
n2k−1

⎡⎣1
n

∑
u∈V (G)

∑
v∈V (G)

Mv,u

⎤⎦2k
⎞⎟⎠

2m

= n2k

⎛⎝ 1
n2k−1

[
(1 − p)ϵ(G) − pϵ(G)

n

]2k
⎞⎠2m

= Ω
(
p4kmn2k+2m) ,

which proves the lower bound in the second case.
We turn to the upper bound. We need two constructions. The first one is again the empty graph. If

G is empty then

∥G − p∥F = p2km/(k+m),

and this proves the upper boundwhenever p ≤ n−1/(2m). The second construction is the random graph
G ∼ Gloop

n,p . Write X as the sum of Xf over f : A ∪ B → V (G). Each f with E[Xf ] ̸= 0 maps E(K2k,2m) into
a connected multi-graph where every edge appears with even multiplicity. Consider the equivalence
relation on A∪ B given by one such f , where two vertices in A∪ B are equivalent if their images under
f coincide. If non-trivial classes (i.e., those containing more than one vertex) miss some a ∈ A and
some b ∈ B, then {f (a), f (b)} is a singly-covered edge, a contradiction. Thus, non-trivial classes have
to cover at least one of A or B entirely, so the number of identifications is at least min{|A|, |B|}/2 = k.
It follows that the image of F under f has at most k + 2m vertices. In fact, if the image of F under f
contains exactly 2k+2m− t vertices (where t ≥ k), the number of distinct edges in the image of F by
f is at least 4km − 2mt . This is because every ‘‘identification’’ of vertices under the same equivalence
class of f can ‘‘destroy’’ at most 2m edges. Therefore

E[X] = O

(
2k+2m−1∑

t=k

n2k+2m−tp4km−2mt

)
= O(nk+2mp2km),

since p > n−1/(2m). Now take an outcome G such that the value of X is at most its expected value. This
finishes the proof of the theorem. □

5. Concluding remarks and open questions

Observe that the result of Chung, Graham, Wilson [7] implies that there cannot be a graph G with
t(K2, A) = p and t(C4, A) = p4 where 0 < p < 1 and A is the adjacency matrix of G. (Indeed,
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otherwise the uniform blow-ups of Gwould form a quasirandom sequence, which is a contradiction.)
This argument does not work with the subgraph count function N(F ,G). We do not know if the fact
that uk(n, p) can be zero infinitely often for k = 3 (when p is rational) but not for k = 4 can directly
be related to the fact that quasirandomness is forced by 4-vertex densities.

Let Gn,m be the random graph on [n] with m edges, where all
((n2)

m

)
outcomes are equally likely.

Janson [14] completely classified the cases when the random variable N(F ,Gn,m) satisfies the Central
Limit Theoremwhere n → ∞ andm = ⌊p

( n
2

)
⌋. He showed that the exceptional F are precisely those

graphs for which S(p)(H, F ) = 0 for every H from the following set: connected graphs with 5 vertices
and graphswithout isolated vertices with 3 or 4 vertices. It is an open question if at least one such pair
(F , p) with p ̸= 0, 1 exists, see, e.g., [14, Page 65] and [15, Page 350]. Note that nothing is stipulated
about S(p)(K2, F ). In fact, it has to be non-zero e.g. by Theorem 1.1; moreover, [14, Theorem 4] shows
that, for given v(F ) and p, the number of edges in such hypothetical F is uniquely determined. This
indicates that the problem of understanding possible joint behaviour of the S-statistics is difficult
already for very small graphs.

It would be interesting to extend Theorem 1.1 to a wider range of p, or to other structures
such as, for example, r-uniform hypergraphs with respect to different notions of quasirandomness
(see [8,20,22]).
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