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Abstract

Let the k-graph Fank consist of k edges that pairwise intersect exactly in one vertex x, plus one more
edge intersecting each of these edges in a vertex different from x. We prove that, for n sufficiently large,
the maximum number of edges in an n-vertex k-graph containing no copy of Fank is

∏k
i=1�n+i−1

k
�, which

equals the number of edges in a complete k-partite k-graph with almost equal parts. This is the only extremal
example. This result is a special case of our more general theorem that applies to a larger class of excluded
configurations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The first theorem in extremal graph theory is Mantel’s 1907 result, which determines the max-
imum number of edges in a triangle-free graph on n vertices (cf. Turán [22]). There are several
possible generalizations of this problem to k-uniform hypergraphs (k-graphs for short). One was
suggested by Katona [9] and Bollobás [1] (see Frankl–Füredi [4,5], de Caen [2], Sidorenko [20],
Shearer [19], Keevash–Mubayi [10], Pikhurko [16]). Another extension, the so-called expanded
triangle, was studied by Frankl [3] and Keevash–Sudakov [11]. In this paper we provide yet
another generalization.
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Let Fank be the k-graph comprising k + 1 edges E1, . . . ,Ek,E, with Ei ∩ Ej = {x} for all
i �= j , where x /∈ E, and |Ei ∩ E| = 1 for all i. In other words, k edges share a single common
vertex x and the last edge intersects each of the other edges in a single vertex different from x.
Please note that Fan2 is simply a triangle, and in this sense Fank generalizes the definition of K3.
There is another, perhaps more subtle way that Fank is an extension of K3.

Call a hypergraph simple if every two edges share at most one vertex. One of the formulations
of the celebrated Erdős–Faber–Lovász conjecture states that the minimum number of edges in
a simple k-graph that is not k-partite is k + 1. Kahn [8] proved this with k + 1 replaced by
(1 + o(1))k, but the question of the exact value remains open. If the conjecture is true, then Fank

is a simple k-graph that is not k-partite with the minimum number of edges, and in this sense it
generalizes a 2-graph triangle.

For l � k, let T k
l (n) be the complete l-partite k-graph with part sizes �n/l� or �n/l�: every

edge of T k
l (n) has at most one vertex in each of the l parts, and all edges subject to this restriction

are present. Let

tkl (n) = ∣∣T k
l (n)

∣∣.
(We identify a k-graph with its edge set.) It is convenient to agree that T k

l (n) = ∅ and tkl (n) = 0
if l < k. Given a k-graph F , we write ex(n,F ) for the maximum number of edges in an n-vertex
k-graph containing no copy of F . Mantel proved that ex(n,Fan2) = t2

2 (n) for all positive n. Here
we generalize this to k > 2, for large n.

Theorem 1. Let k � 3. Then, for all sufficiently large n, the maximum number of edges in an n-
vertex k-graph containing no copy of Fank is tkk (n) = ∏k

i=1�n+i−1
k

�. The only k-graph for which
equality holds is T k

k (n).

Our approach to proving Theorem 1 comes from two recent papers by the current authors
[13,15]. Although the paper [15] has been accepted by the Journal of Combinatorial Theory, Se-
ries B, its publication is suspended for an indefinite period of time because of a disagreement
over the copyright between the author and the publisher. We feel that the approach is quite ver-
satile and may be applicable to other hypergraph Turán problems. Therefore, we give a complete
description of the method and provide self-contained proofs for any claims from [15].

So suppose that we wish to prove that ex(n,F ) = tkl (n) for a given F . The method has four
steps:

Step 1. Define an appropriately chosen family F of k-graphs such that F ∈ F . There is no
general recipe for F . A particular property that F should possess is that any F -free k-graph of
order n can be made F -free by removing o(nk) edges. Then ex(n,F ) = ex(n,F) + o(nk) but,
hopefully, ex(n,F) is easier to analyze.

Step 2. Prove that F is stable with respect to T k
l (n). Loosely speaking, this means that every F -

free k-graph G on n vertices with close to ex(n,F) edges can be transformed to T k
l (n) without

changing too many edges.

Step 3. From the stability of F , deduce the stability of F . (We use the property of F from Step 1,
whose proof is combined with Step 3 in this article.)
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Step 4. Using the stability of F , deduce the exact result ex(n,F ) = tkl (n). This technique was
first employed by Simonovits [21] to determine ex(n,F ) exactly for color-critical 2-graphs F .
Recently, stability has been used to determine exact results for several hypergraph Turán prob-
lems [6,10–12,15,16].

The next three sections give the details of Steps 2–4, culminating in a proof of Theorem 1.
Actually, our main result, Theorem 3 proved in Section 4, determines the exact extremal function
for a more general configuration which includes Fank as a special case. We next define the family
used in Step 1.

Fix l � k � 2. Let Fk
l be the set of all minimal k-graphs F such that there is an l-set C, called

the core, such that at least one edge D ∈ F lies entirely in C and every pair of vertices of C

is covered by an edge of F . (Of course, it suffices to consider only pairs not inside D.) Let Fk
l

be the k-graph with edges: [k] and Eij ∪ {i, j} over all pairs {i, j} ∈ ([l]
2

) \ ([k]
2

)
, where Eij are

pairwise disjoint (k − 2)-sets disjoint from [l]. Clearly, Fk
l ∈Fk

l . Note that

• Fk
k = {Fk

k } and Fk
k is the k-graph of one edge,

• F2
l = {K2

l },
• Fk

k+1 = Fank .

For l � k � 2 a particular Fk
l+1-free k-graph is T k

l (n). It is easy to see this, since if T k
l (n)

contains a copy of F ∈ Fk
l+1, then the vertex set in T k

l (n) playing the role of C must have at
most one point in each part of T k

l (n) but there are not enough parts to accommodate these l + 1
vertices. Consequently, the maximum size of an n-vertex Fk

l+1-free k-graph is at least tkl (n). In
fact, we have an equality:

Theorem 2. Let n � l � k � 2, and let G be an n-vertex Fk
l+1-free k-graph. Then |G| � tkl (n),

and if equality holds then G = T k
l (n).

This result can be proved by a straightforward modification of the proof of Theorem 1 in [13].
Also, one can obtain it as a by-product of our proof of Theorem 4 below (see the remark following
the inequality (4)).

The main theorem of the current paper is the following extension of Theorem 1.

Theorem 3. Let l � k � 2. Then, for all sufficiently large n, we have ex(n,F k
l+1) = tkl (n) and

T k
l (n) is the unique maximum Fk

l+1-free k-graph of order n.

Let us specify here the notation we are going to use. We write V (G) for the vertex set of a
k-graph G. Given a vertex x ∈ V (G), the link of x is the (k − 1)-graph

LG(x) = {
S \ {x}: S ∈ G, S � x

}
,

and the degree is degG(x) = |LG(x)|. The codegree of x and y, written codegG(x, y), is the
number of edges in G containing both x and y, and the neighborhood of x is

NG(x) = {
y: codeg(x, y) > 0, y �= x

}
.

Given X ⊂ V (G), let eG(X) be the number of edges in G that contain at least two vertices
from X. In all cases above, we omit the subscript G if the k-graph G is obvious from context.
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For S ⊂ V (G), we write G[S] for the hypergraph induced by G on S. Two k-graphs F and G

of the same order are m-close if we can add or remove at most m edges from the first graph
and make it isomorphic to the second; in other words, for some bijection σ :V (F) → V (G) the
symmetric difference between σ(F ) = {σ(D): D ∈ F } and G has at most m edges.

The notation a ± b means a number between a − b and a + b.

2. Step 2: Fk
l+1Fk
l+1Fk
l+1 is stable

Our goal in this section is to prove the following stability result.

Theorem 4. For any l � k � 2 and δ > 0 there exist ε > 0 and M such that the following holds
for all n > M : If G is an n-vertex Fk

l+1-free k-graph with at least tkl (n) − εnk edges, then G is

δnk-close to T k
l (n).

The proof of Theorem 4 has many similarities to that in [13, Theorem 3]. Thus we will refer
to [13] for proofs of some claims, when the arguments are identical. In particular, we use the
following facts shown in [13].

Equation (1) in [13]. For any l � k � 2 and 0 � s � n we have

tkl−1(n − s) + s · tk−1
l−1 (n − s) � tkl (n). (1)

Hint. The left-hand side of (1) is the number of edges in the complete l-partite k-graph with one
part of size s and other part sizes being �n−s

l−1 � and �n−s
l−1 �.

Claim 1 in [13]. For any l � k � 2 and δ > 0 there are ε > 0 and M such that, for any l-partite
k-graph of order n � M and size at least tkl (n) − εnk , the number of vertices in each part is(

1

l
± δ

)
n. (2)

Proof of Theorem 4. Our proof uses induction on k + l. It is convenient to start with the trivial
base case l = k − 1 which formally satisfies the conclusion of the theorem: Fk

k is the k-graph of
one edge, and T k

k−1(n) has no edges. The other base case k = 2 is the content of the Simonovits
stability theorem [21], so we further assume that l � k > 2.

Let δ = δl > 0 be given. Our goal is to obtain ε = εl and M = Ml satisfying the theorem. We
choose the constants in this order:

δl � δl−1 � εl−1 � εl � 1

Ml−1
� 1

Ml

,

where a � b means that b > 0 is sufficiently small depending on a (and k, l). In particular, we
assume that εl−1,Ml−1 demonstrate the validity of the theorem for l−1, k−1, and δl−1. Suppose
that n > Ml . Let G be an Fk

l+1-free k-graph on n vertices with

|G| � tkl (n) − εln
k. (3)

Pick a vertex x ∈ V (G) of maximum degree Δ. Let N = N(x) be the neighborhood of x, that
is, the set of vertices y �= x for which codegG(x, y) > 0. Consider the k-graph G[N ] induced
by N , and suppose that it contains a copy H of a member of Fk . Let C ⊂ V (H) be the core
l
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of H , and D ⊂ C for some D ∈ G. Form H ′ from H by adding the vertex x and edges containing
each pair {x, v} with v ∈ C. These edges exist by the definition of N . Therefore H ′ contains a
member of Fk

l+1 with core C ∪ {x}, which is a contradiction. Consequently, G[N ] is Fk
l -free.

Next consider the (k − 1)-graph L, where L = L(x) is the link of x. Suppose that L contains
a copy H of a member of Fk−1

l . Enlarge every edge of H to contain x. The resulting k-graph
contains a copy of some H ′ ∈Fk

l+1 with core C ∪{x}, a contradiction. Therefore L is Fk−1
l -free.

Set s = n − |N | and let X = V (G) \ N . Note that x ∈ X. Since G[N ] is Fk
l -free and L is

Fk−1
l -free, Theorem 2 implies that |G[N ]| � tkl−1(n − s) and Δ = |L| � tk−1

l−1 (n − s). This gives

|G| � ∣∣G[N ]∣∣ + s · Δ − eG(X)

� tkl−1(n − s) + s · tk−1
l−1 (n − s) − eG(X)

� tkl (n) − eG(X), (4)

where the last inequality follows from (1). (Recall that eG(X) is the number of edges of G that
intersect X in at least two vertices.) At this stage, one can deduce the upper bound in Theorem 2
by induction on k + l since, obviously, eG(X) � 0. (A further routine analysis will also show that
T k

l (n) is the unique extremal configuration for ex(n,Fk
l+1).)

The inequalities (3) and (4) imply that

tkl (n) − εln
k � tkl−1(n − s) + s · tk−1

l−1 (n − s).

Note that the right-hand side is the size of the l-partite k-graph with n vertices such that one part
has size s and the other l − 1 parts are almost equal. From (2), we conclude that

s =
(

1

l
± δl−1

)
n. (5)

Moreover, routine calculations show (alternatively, see Claim 2 in [13, Theorem 3]) that (3)
and (4) imply that

Δ = |L| > tk−1
l−1 (n − s) − εl−1(n − s)k−1. (6)

Now consider L. This (k − 1)-graph has n − s vertices. Since n � Ml � Ml−1, we have
n − s � Ml−1 by (5). Because of (6) we may apply the induction hypothesis to the Fk−1

l -free
(k − 1)-graph L. We conclude that there exists a Turán hypergraph Tl−1 ∼= T k−1

l−1 (n − s) with
vertex partition N = W1 ∪ · · · ∪ Wl−1 such that

|Tl−1 � L| � δl−1(n − s)k−1. (7)

By (5) we conclude that for each i ∈ [l − 1] we have

|Wi | = n − s

l − 1
± 1 =

(
1

l
± δl−1

)
n. (8)

Let Wl = X and let Tl be the complete l-partite k-graph with the vertex partition W1 ∪· · ·∪Wl .
By (5) and (8) Tl is δl

2 nk-close to a T k
l (n) because we can transform one to the other by moving

at most δl−1n× l vertices between parts, thus changing at most δl−1ln× (
n−1
k−1

)
< (δl/2)nk edges.

We will show that

|G \ Tl | � δl
nk. (9)
5
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This implies, in view of (3) and the inequality |Tl | � tkl (n), that

|G � Tl | = |Tl | − |G| + 2|G \ Tl | � εln
k + 2δl

5
nk <

δl

2
nk,

and the desired bound |G � T k
l (n)| � δln

k follows from the triangle inequality.
From (4) we conclude that eG(X) � εln

k . Suppose on the contrary to (9) that we have more
than δl

5 nk − εln
k >

δl

6 nk edges of G intersecting some part of N in at least two vertices. By

averaging there is an i ∈ [l − 1] such that |B| � δl

6l
n2, where B consists of all 2-subsets of Wi

covered by at least one edge of G. Assume that i = l − 1 without loss of generality.
Let w = ( 1

l
− δl−1)n. Recall that w is a lower bound on each |Wi | by (5) and (8). For every

choice of x1 ∈ W1, . . . , xl−2 ∈ Wl−2 and {xl−1, xl} ∈ B , at least wl−2 × δl

6l
n2 choices in total,

we consider a potential copy of Fk
l+1 with core C = {x, x1, . . . , xl}. (Recall that x is the chosen

vertex of maximum degree.) As G is Fk
l+1-free, at least one of the following must hold:

1. K /∈ G, where K = {x, x1, . . . , xk−1}.
2. A pair {x, xi} with i ∈ [l] is not covered by an edge of G.
3. A pair {xi, xj } with {i, j} �= {l − 1, l} is not covered by an edge of G.

One of these three alternatives holds for at least one third of the choices of xi ’s. If it is Alter-
native 1, then for each such K we have K \ {x} ∈ Tl−1 \ L. Any fixed set K is counted at most
nl−k+1 times. Now, since δl−1 � δl , we obtain a contradiction to (7):

|Tl−1 \ L| � 1

3
× wl−2 × δl

6l
n2 × n−l+k−1 > δl−1(n − s)k−1.

If it is Alternative 2, then we obtain a contradiction as follows. For every uncovered pair {x, xi},
the vertex xi belongs to at least wk−2 edges of the (k − 1)-graph Tl−1. None of these edges
belongs to L, for otherwise the pair {x, xi} would be covered by an edge of G. On the other
hand, every edge D ∈ Tl−1 \ L appears this way for at most (k − 1)nl−1 choices of the sequence
(x1, . . . , xl): we have to choose xi ∈ D and then the other l − 1 vertices xj . Thus we have

|Tl−1 \ L| � 1

3
× wl−2 × δl

6l
n2 × wk−2 × 1

(k − 1)nl−1
> δl−1(n − s)k−1,

again a contradiction to (7). Finally, suppose that Alternative 3 appears frequently. Each pair
{xi, xj } belongs to at least wk−3 edges of Tl−1 \ L. However, each such edge is counted at most(
k−1

2

)
nl−2 times. Hence,

|Tl−1 \ L| � 1

3
× wl−2 × δl

6l
n2 × wk−3 ×

(
k − 1

2

)−1

n−l+2 > δl−1(n − s)k−1.

Again we obtain a contradiction to (7). This completes the proof of Theorem 4. �
3. Step 3: Fk

l+1 is stable

Please note that Theorem 5 below is formally stronger than Theorem 4. However, it follows
from Theorem 4 by an application of Lemma 4 from [15]. The last result indirectly relies on
the recent Hypergraph Regularity Lemma of Gowers [7] or Nagle–Rödl–Schacht–Skokan [14,
17,18]. For our particular hypergraph Fk , the recourse to such a complicated technique is not
l+1
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really necessary and we present a short and self-contained proof, similar to the proof of Lemma 3
in [15].

Theorem 5. For any l � k � 2 and δ > 0 there exist ε > 0 and M such that the following holds
for all n > M : Any n-vertex Fk

l+1-free k-graph G with at least tkl (n) − εnk edges is δnk-close

to T k
l (n).

Proof. Given δ > 0, let δ � ε � 1/M .
Suppose that n > M and G is an n-vertex Fk

l+1-free k-graph with at least tkl (n) − εnk edges.
Let G′ be obtained from G by deleting all edges that contain a pair of vertices whose codegree
is at most l3

(
n

k−3

)
. Since the number of pairs of vertices is

(
n
2

)
, we have

|G \ G′| � l3
(

n

k − 3

)
×

(
n

2

)
< εnk <

δ

2
nk. (10)

Now we argue that G′ is Fk
l+1-free. Suppose on the contrary that G′ contains a copy of some

F ∈ Fk
l+1 with core C and edge D ⊂ C. Since every pair of vertices x, y ∈ C is contained in an

edge of G′, we have, by l � k � 2,

codegG(x, y) � l3
(

n

k − 3

)
>

((
l + 1

2

)
(k − 2) + l + 1

)(
n

k − 3

)
.

Hence we can greedily choose edges of G containing all pairs in
(
C
2

) \ (
D
2

)
, so that these edges

intersect C in precisely two vertices and are pairwise disjoint outside C. The resulting set of(
l+1

2

) − (
k
2

)
edges, together with D, forms a copy of Fk

l+1 in G, a contradiction.
We have

|G′| > |G| − εnk �
(
tkl (n) − εnk

) − εnk = tkl (n) − 2εnk.

We apply Theorem 4 to G′ and conclude that G′ is δ
2nk-close to T k

l (n). By (10), G and T k
l (n)

are δnk-close. The proof is complete. �
4. Step 4: Proof of Theorem 3

If k = 2, then Theorem 3 is precisely the Turán theorem [22]. Thus let us assume that
l � k � 3. Choose small c � c′ � δ > 0. Let n be large.

Let G be an Fk
l+1-free k-graph on [n] with |G| = tkl (n). We will show that G is l-partite. This

implies the theorem because T k
l (n) is the unique l-partite k-graph on n vertices with tkl (n) edges,

and the addition of any edge to T k
l (n) yields a copy of Fk

l+1.
Let W1 ∪ · · · ∪ Wl be a partition of [n] such that

f =
∑
D∈G

∣∣{i ∈ [l]: D ∩ Wi �= ∅}∣∣
is maximum possible. Let T be the complete l-partite k-graph on W1 ∪ · · · ∪ Wl . Let us call the
edges in T \ G missing and the edges in G \ T bad. As |T | � tkl (n) = |G|, the number of bad
edges is at least the number of missing edges.

By Theorem 5, there is an l-partite k-graph which is δnk-close to G. Consequently,
f � k(|G| − δnk). On the other hand,

f � k|G ∩ T | + (k − 1)|G \ T | = k|G| − |G \ T |.
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This implies that |G \ T | � kδnk and, in view of |T | � |G|,
|T \ G| � kδnk. (11)

Thus we have |T | � |G∩T | � tkl (n)− kδnk . From (2) we conclude that for each i ∈ [l] we have,
for example, ||Wi | − n

l
| � n

2l
.

If G ⊂ T , then we are done. Thus, let us assume that B is non-empty, where the 2-graph B

consists of all bad pairs, that is, pairs of vertices which come from the same part Wi and are
covered by an edge of G.

For distinct vertices x, y call the pair {x, y} sparse if G has at most (
(
l+1

2

)
(k−2)+ l +1)

(
n

k−3

)
edges containing both x and y; otherwise {x, y} is called dense. It is easy to see that if we have a
fixed (l + 1)-set C ⊂ V (G) containing at least one edge D ∈ G, then at least one pair of vertices
{x, y} from

(
C
2

) \ (
D
2

)
is sparse. (For otherwise we can greedily build a copy of Fk

l+1 in G with
the core C.)

Let A consist of those z ∈ V (G) which are incident to at least cnk−1 missing edges.

Claim 1. Any bad pair {x0, x1} intersects A.

Proof. Assume without loss of generality that x0, x1 ∈ W1 are covered by D ∈ G.
It is easy to see that for any choice of xi ∈ Wi \ D for i ∈ [2, l] (at least ( n

2l
− k)l−1 > ( n

3l
)l−1

choices), at least one pair {xi, xj } with {i, j} �= {0,1} is sparse or the k-tuple {x1, x2, . . . , xk} is
missing for otherwise we obtain a copy of Fk

l+1. (In fact, we can make stronger claims but this
one suffices.)

If the second alternative occurs at least a half of the time, then x1 ∈ A. Indeed, any k-tuple
D � x1 is counted at most nl−k times (the number of ways to choose xk+1, . . . , xl), so x1 belongs
to at least 1

2 ( n
3l

)l−1/nl−k � cnk−1 missing edges, as required.
So, suppose that for at least half of the choices, the first alternative holds, i.e., there is a

sparse pair. Each such pair {xi, xj } appears, very roughly, at most nl−3 times unless {xi, xj } ∩
{x0, x1} �= ∅ when the pair is counted at most nl−2 times. There are two further alternatives to
consider.

If at least a quarter of the time, the found sparse pair is disjoint from {x0, x1}, then we obtain
at least 1

4 ( n
3l

)l−1/nl−3 � cn2 sparse pairs, each intersecting two parts Wi . But this leads to a
contradiction to (11): each such sparse pair in contained in at least, say, ( n

3l
)k−2 missing edges

while each missing edge contains at most
(
k
2

)
sparse pairs. Hence, at least a quarter of the time,

the sparse pair intersects {x0, x1}, so one of these vertices, say x0, is in at least 1
8 ( n

3l
)l−1/nl−2

sparse pairs, which implies that x0 ∈ A. The claim has been proved. �
Considering vertices from A, we obtain at least |A| × cnk−1/k missing edges and, con-

sequently, at least |A| × cnk−1/k bad edges. Let B consist of the pairs (D, {x, y}), where
{x, y} ∈ B , D ∈ G and x, y ∈ D. (Thus D is a bad edge.) As each bad edge contains at least one
bad pair, we conclude that |B| � |A|× cnk−1/k. For any (D, {x, y}) ∈ B, we have {x, y}∩A �= ∅
by Claim 1. If we fix x and D, then, obviously, there are at most k − 1 ways to choose a bad pair
{x, y} ⊂ D. By Claim 1, some vertex x ∈ A, say x ∈ W1, belongs to at least

|B|
(k − 1)|A| � c

k(k − 1)
nk−1

bad edges, each intersecting W1 in another vertex y.
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Let Y1 ⊂ W1 be the neighborhood of x in the 2-graph B . Let Z1 ⊂ Y1 be the set of those
vertices z for which {x, z} is dense. The number of edges containing x and some vertex of Y1 \Z1
is at most l3nk−2 < c

2k(k−1)
nk−1. Consequently, the number of bad edges containing x and some

vertex of Z1 is at least c
2k(k−1)

nk−1. Therefore |Z1| � c
2k(k−1)

n � c′n.
Let Zj consist of those z ∈ Wj for which {x, z} is dense, j ∈ [2, l]. If |Zj | � c′n for each

j ∈ [2, l], then every l-tuple (x1, x2, . . . , xl) with xj ∈ Zj (at least (c′n)l choices) generates
a sparse pair not containing x or the edge {x1, . . . , xk} is missing. The latter alternative cannot
happen, say, at least half of the time because otherwise we obtain more than 1

2 (c′n)l/nl−k > kδnk

missing edges, a contradiction to (11). Thus at least half of the time, we obtain a sparse pair
disjoint from x. This gives at least 1

2 (c′n)l/nl−2 sparse pairs, each intersecting some two parts,
which leads to a contradiction to (11).

Hence, assume that, for example, |Z2| < c′n. This means that all but at most c′n pairs {x, z}
with z ∈ W2 are sparse, that is, there are at most l3nk−2 + c′nk−1 < 2c′nk−1 G-edges containing
x and intersecting W2. Let us contemplate moving x from W1 to W2. Some edges of G may
decrease their contribution to f . But each such edge must contain x and intersect W2 so the
corresponding decrease is at most 2c′nk−1. On the other hand, the number of edges of G con-
taining x, intersecting W1 \ {x}, and disjoint from W2 is at least ( c

k(k−1)
− 2c′)nk−1 > 2c′nk−1.

Hence, by moving x from W1 to W2 we strictly increase f , a contradiction to the choice of the
parts Wi . The theorem is proved.
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