

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 97 (2007) 669–678

www.elsevier.com/locate/jctb

A new generalization of Mantel's theorem to *k*-graphs

Dhruv Mubayi ^a*,*¹ , Oleg Pikhurko ^b*,*²

^a *Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA*

^b *Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA*

Received 8 November 2005

Available online 8 January 2007

Abstract

Let the k -graph Fan^{k} consist of k edges that pairwise intersect exactly in one vertex x , plus one more edge intersecting each of these edges in a vertex different from *x*. We prove that, for *n* sufficiently large, the maximum number of edges in an *n*-vertex *k*-graph containing no copy of Fan^{*k*} is $\prod_{i=1}^{k} \lfloor \frac{n+i-1}{k} \rfloor$, which equals the number of edges in a complete *k*-partite *k*-graph with almost equal parts. This is the only extremal example. This result is a special case of our more general theorem that applies to a larger class of excluded configurations.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Mantel's theorem; Turán problem; Uniform hypergraph

1. Introduction

The first theorem in extremal graph theory is Mantel's 1907 result, which determines the maximum number of edges in a triangle-free graph on *n* vertices (cf. Turán [22]). There are several possible generalizations of this problem to *k*-uniform hypergraphs (*k-graphs* for short). One was suggested by Katona [9] and Bollobás [1] (see Frankl–Füredi [4,5], de Caen [2], Sidorenko [20], Shearer [19], Keevash–Mubayi [10], Pikhurko [16]). Another extension, the so-called *expanded triangle*, was studied by Frankl [3] and Keevash–Sudakov [11]. In this paper we provide yet another generalization.

0095-8956/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2006.11.003

URL: http://www.math.cmu.edu/~pikhurko (O. Pikhurko).

¹ Partially supported by NSF Grant DMS-0400812, and an Alfred P. Sloan Research Fellowship.

² Partially supported by NSF Grant DMS-0457512.

Let Fan^k be the *k*-graph comprising $k + 1$ edges E_1, \ldots, E_k, E , with $E_i \cap E_j = \{x\}$ for all *i* ≠ *j*, where *x* ∉ *E*, and $|E_i \cap E| = 1$ for all *i*. In other words, *k* edges share a single common vertex *x* and the last edge intersects each of the other edges in a single vertex different from *x*. Please note that Fan² is simply a triangle, and in this sense Fan^k generalizes the definition of K_3 . There is another, perhaps more subtle way that Fan^k is an extension of K_3 .

Call a hypergraph *simple* if every two edges share at most one vertex. One of the formulations of the celebrated Erdős–Faber–Lovász conjecture states that the minimum number of edges in a simple *k*-graph that is not *k*-partite is $k + 1$. Kahn [8] proved this with $k + 1$ replaced by $(1 + o(1))k$, but the question of the exact value remains open. If the conjecture is true, then Fan^k is a simple *k*-graph that is not *k*-partite with the minimum number of edges, and in this sense it generalizes a 2-graph triangle.

For $l \ge k$, let $T_l^k(n)$ be the complete *l*-partite *k*-graph with part sizes $\lfloor n/l \rfloor$ or $\lceil n/l \rceil$: every edge of $T_l^k(n)$ has at most one vertex in each of the *l* parts, and all edges subject to this restriction are present. Let

 $t_l^k(n) = |T_l^k(n)|$.

(We identify a *k*-graph with its edge set.) It is convenient to agree that $T_l^k(n) = \emptyset$ and $t_l^k(n) = 0$ if $l < k$. Given a *k*-graph *F*, we write $ex(n, F)$ for the maximum number of edges in an *n*-vertex *k*-graph containing no copy of *F*. Mantel proved that $ex(n, Fan^2) = t_2^2(n)$ for all positive *n*. Here we generalize this to $k > 2$, for large *n*.

Theorem 1. Let $k \geqslant 3$. Then, for all sufficiently large n, the maximum number of edges in an n*vertex k*-graph containing no copy of Fan^k is $t_k^k(n) = \prod_{i=1}^k \lfloor \frac{n+i-1}{k} \rfloor$. The only *k*-graph for which *equality holds is* $T_k^k(n)$ *.*

Our approach to proving Theorem 1 comes from two recent papers by the current authors [13,15]. Although the paper [15] has been accepted by the Journal of Combinatorial Theory, Series B, its publication is suspended for an indefinite period of time because of a disagreement over the copyright between the author and the publisher. We feel that the approach is quite versatile and may be applicable to other hypergraph Turán problems. Therefore, we give a complete description of the method and provide self-contained proofs for any claims from [15].

So suppose that we wish to prove that $ex(n, F) = t_l^k(n)$ for a given *F*. The method has four steps:

Step 1. Define an appropriately chosen family $\mathcal F$ of *k*-graphs such that $F \in \mathcal F$. There is no general recipe for F. A particular property that F should possess is that any F-free *k*-graph of order *n* can be made *F*-free by removing $o(n^k)$ edges. Then $ex(n, F) = ex(n, F) + o(n^k)$ but, hopefully, $ex(n, \mathcal{F})$ is easier to analyze.

Step 2. Prove that F is *stable* with respect to $T_l^k(n)$. Loosely speaking, this means that every Ffree *k*-graph *G* on *n* vertices with close to ex (n, F) edges can be transformed to $T_l^k(n)$ without changing too many edges.

Step 3. From the stability of \mathcal{F} , deduce the stability of F . (We use the property of \mathcal{F} from Step 1, whose proof is combined with Step 3 in this article.)

Step 4. Using the stability of *F*, deduce the exact result $ex(n, F) = t_l^k(n)$. This technique was first employed by Simonovits [21] to determine $ex(n, F)$ exactly for color-critical 2-graphs F . Recently, stability has been used to determine exact results for several hypergraph Turán problems [6,10–12,15,16].

The next three sections give the details of Steps 2–4, culminating in a proof of Theorem 1. Actually, our main result, Theorem 3 proved in Section 4, determines the exact extremal function for a more general configuration which includes Fan*^k* as a special case. We next define the family used in Step 1.

Fix $l \ge k \ge 2$. Let \mathcal{F}_l^k be the set of all minimal *k*-graphs *F* such that there is an *l*-set *C*, called the *core*, such that at least one edge $D \in F$ lies entirely in *C* and every pair of vertices of *C* is covered by an edge of *F*. (Of course, it suffices to consider only pairs not inside *D*.) Let F_i^k be the *k*-graph with edges: [*k*] and $E_{ij} \cup \{i, j\}$ over all pairs $\{i, j\} \in \binom{[l]}{2} \setminus \binom{[k]}{2}$, where E_{ij} are pairwise disjoint $(k - 2)$ -sets disjoint from [*l*]. Clearly, $F_l^k \in \mathcal{F}_l^k$. Note that

- $\mathcal{F}_k^k = \{F_k^k\}$ and F_k^k is the *k*-graph of one edge,
- $\mathcal{F}_{l}^{2} = \{K_{l}^{2}\},\$
- $F_{k+1}^k = \text{Fan}^k$.

For $l \ge k \ge 2$ a particular \mathcal{F}_{l+1}^k -free *k*-graph is $T_l^k(n)$. It is easy to see this, since if $T_l^k(n)$ contains a copy of $F \in \mathcal{F}_{l+1}^k$, then the vertex set in $T_l^k(n)$ playing the role of *C* must have at most one point in each part of $T_l^k(n)$ but there are not enough parts to accommodate these $l + 1$ vertices. Consequently, the maximum size of an *n*-vertex \mathcal{F}_{l+1}^k -free *k*-graph is at least $t_l^k(n)$. In fact, we have an equality:

Theorem 2. Let $n \ge l \ge k \ge 2$, and let G be an n-vertex \mathcal{F}_{l+1}^k -free k-graph. Then $|G| \le t_l^k(n)$, *and if equality holds then* $G = T_l^k(n)$ *.*

This result can be proved by a straightforward modification of the proof of Theorem 1 in [13]. Also, one can obtain it as a by-product of our proof of Theorem 4 below (see the remark following the inequality (4)).

The main theorem of the current paper is the following extension of Theorem 1.

Theorem 3. Let $l \ge k \ge 2$. Then, for all sufficiently large *n*, we have $ex(n, F_{l+1}^k) = t_l^k(n)$ and $T_l^k(n)$ *is the unique maximum* F_{l+1}^k *-free k-graph of order n.*

Let us specify here the notation we are going to use. We write $V(G)$ for the vertex set of a *k*-graph *G*. Given a vertex $x \in V(G)$, the *link* of *x* is the $(k - 1)$ -graph

$$
L_G(x) = \{ S \setminus \{x\} : S \in G, S \ni x \},\
$$

and the *degree* is deg_{*G*}(*x*) = $|L_G(x)|$. The *codegree* of *x* and *y*, written codeg_{*G*}(*x, y*), is the number of edges in *G* containing both *x* and *y*, and the *neighborhood* of *x* is

 $N_G(x) = \{y: \text{codeg}(x, y) > 0, y \neq x\}.$

Given $X \subset V(G)$, let $e_G(X)$ be the number of edges in G that contain at least two vertices from *X*. In all cases above, we omit the subscript *G* if the *k*-graph *G* is obvious from context.

For $S \subset V(G)$, we write $G[S]$ for the hypergraph induced by G on S. Two k-graphs F and G of the same order are *m-close* if we can add or remove at most *m* edges from the first graph and make it isomorphic to the second; in other words, for some bijection $\sigma: V(F) \to V(G)$ the symmetric difference between $\sigma(F) = \{\sigma(D): D \in F\}$ and *G* has at most *m* edges.

The notation $a \pm b$ means a number between $a - b$ and $a + b$.

2. Step 2: \mathcal{F}_{l+1}^k is stable

Our goal in this section is to prove the following stability result.

Theorem 4. *For any* $l \geq k \geq 2$ *and* $\delta > 0$ *there exist* $\varepsilon > 0$ *and M such that the following holds* for all $n > M$: If G is an n-vertex \mathcal{F}_{l+1}^k -free k-graph with at least $t_l^k(n) - \varepsilon n^k$ edges, then G is δn^k *-close to* $T^k_l(n)$ *.*

The proof of Theorem 4 has many similarities to that in [13, Theorem 3]. Thus we will refer to [13] for proofs of some claims, when the arguments are identical. In particular, we use the following facts shown in [13].

Equation (1) in [13]. For any $l \ge k \ge 2$ and $0 \le s \le n$ we have

$$
t_{l-1}^k(n-s) + s \cdot t_{l-1}^{k-1}(n-s) \leq t_l^k(n). \tag{1}
$$

Hint. The left-hand side of (1) is the number of edges in the complete *l*-partite *k*-graph with one part of size *s* and other part sizes being $\lfloor \frac{n-s}{l-1} \rfloor$ and $\lceil \frac{n-s}{l-1} \rceil$.

Claim 1 in [13]. For any $l \ge k \ge 2$ and $\delta > 0$ there are $\varepsilon > 0$ and *M* such that, for any *l*-partite *k*-graph of order $n \ge M$ and size at least $t_l^k(n) - \varepsilon n^k$, the number of vertices in each part is

$$
\left(\frac{1}{l} \pm \delta\right) n. \tag{2}
$$

Proof of Theorem 4. Our proof uses induction on $k + l$. It is convenient to start with the trivial base case $l = k - 1$ which formally satisfies the conclusion of the theorem: F_k^k is the *k*-graph of one edge, and $T_{k-1}^k(n)$ has no edges. The other base case $k = 2$ is the content of the Simonovits stability theorem [21], so we further assume that $l \geq k > 2$.

Let $\delta = \delta_l > 0$ be given. Our goal is to obtain $\varepsilon = \varepsilon_l$ and $M = M_l$ satisfying the theorem. We choose the constants in this order:

$$
\delta_l \gg \delta_{l-1} \gg \varepsilon_{l-1} \gg \varepsilon_l \gg \frac{1}{M_{l-1}} \gg \frac{1}{M_l},
$$

where $a \gg b$ means that $b > 0$ is sufficiently small depending on *a* (and *k, l*). In particular, we assume that ε_{l-1} , M_{l-1} demonstrate the validity of the theorem for $l-1$, $k-1$, and δ_{l-1} . Suppose that $n > M_l$. Let *G* be an \mathcal{F}_{l+1}^k -free *k*-graph on *n* vertices with

$$
|G| \geq t_l^k(n) - \varepsilon_l n^k. \tag{3}
$$

Pick a vertex $x \in V(G)$ of maximum degree Δ . Let $N = N(x)$ be the neighborhood of x, that is, the set of vertices $y \neq x$ for which codeg_{*G*}(*x, y*) > 0. Consider the *k*-graph *G*[*N*] induced by *N*, and suppose that it contains a copy *H* of a member of \mathcal{F}_l^k . Let $C \subset V(H)$ be the core

of *H*, and $D \subset C$ for some $D \in G$. Form *H'* from *H* by adding the vertex *x* and edges containing each pair $\{x, v\}$ with $v \in C$. These edges exist by the definition of *N*. Therefore *H'* contains a member of \mathcal{F}_{l+1}^k with core $C \cup \{x\}$, which is a contradiction. Consequently, $G[N]$ is \mathcal{F}_l^k -free.

Next consider the $(k - 1)$ -graph *L*, where $L = L(x)$ is the link of *x*. Suppose that *L* contains a copy *H* of a member of \mathcal{F}_l^{k-1} . Enlarge every edge of *H* to contain *x*. The resulting *k*-graph contains a copy of some $H' \in \mathcal{F}_{l+1}^k$ with core $C \cup \{x\}$, a contradiction. Therefore *L* is \mathcal{F}_l^{k-1} -free.

Set $s = n - |N|$ and let $X = V(G) \setminus N$. Note that $x \in X$. Since $G[N]$ is \mathcal{F}_l^k -free and *L* is \mathcal{F}_l^{k-1} -free, Theorem 2 implies that $|G[N]| \leq t_{l-1}^k (n-s)$ and $\Delta = |L| \leq t_{l-1}^{k-1} (n-s)$. This gives

$$
|G| \leq |G[N]| + s \cdot \Delta - e_G(X)
$$

\n
$$
\leq t_{l-1}^{k}(n-s) + s \cdot t_{l-1}^{k-1}(n-s) - e_G(X)
$$

\n
$$
\leq t_l^{k}(n) - e_G(X),
$$
\n(4)

where the last inequality follows from (1). (Recall that $e_G(X)$ is the number of edges of *G* that intersect *X* in at least two vertices.) At this stage, one can deduce the upper bound in Theorem 2 by induction on $k+l$ since, obviously, $e_G(X) \geq 0$. (A further routine analysis will also show that $T_l^k(n)$ is the unique extremal configuration for ex (n, \mathcal{F}_{l+1}^k) .)

The inequalities (3) and (4) imply that

$$
t_l^k(n) - \varepsilon_l n^k \leq t_{l-1}^k(n-s) + s \cdot t_{l-1}^{k-1}(n-s).
$$

Note that the right-hand side is the size of the *l*-partite *k*-graph with *n* vertices such that one part has size *s* and the other *l* − 1 parts are almost equal. From (2), we conclude that

$$
s = \left(\frac{1}{l} \pm \delta_{l-1}\right) n. \tag{5}
$$

Moreover, routine calculations show (alternatively, see Claim 2 in [13, Theorem 3]) that (3) and (4) imply that

$$
\Delta = |L| > t_{l-1}^{k-1} (n - s) - \varepsilon_{l-1} (n - s)^{k-1}.
$$
\n⁽⁶⁾

Now consider *L*. This $(k - 1)$ -graph has $n - s$ vertices. Since $n \ge M_l \gg M_{l-1}$, we have $n - s \ge M_{l-1}$ by (5). Because of (6) we may apply the induction hypothesis to the \mathcal{F}_l^{k-1} -free *(k* − 1)-graph *L*. We conclude that there exists a Turán hypergraph $T_{l-1} \cong T_{l-1}^{k-1}$ (*n* − *s*) with vertex partition $N = W_1 \cup \cdots \cup W_{l-1}$ such that

$$
|T_{l-1} \Delta L| \leq \delta_{l-1} (n-s)^{k-1}.\tag{7}
$$

By (5) we conclude that for each $i \in [l-1]$ we have

$$
|W_i| = \frac{n-s}{l-1} \pm 1 = \left(\frac{1}{l} \pm \delta_{l-1}\right) n.
$$
\n(8)

Let *W*_l = *X* and let *T*_l be the complete *l*-partite *k*-graph with the vertex partition $W_1 \cup \cdots \cup W_l$. By (5) and (8) T_l is $\frac{\delta_l}{2} n^k$ -close to a $T_l^k(n)$ because we can transform one to the other by moving at most $\delta_{l-1}n \times l$ vertices between parts, thus changing at most $\delta_{l-1}l n \times {n-1 \choose k-1} < (\delta_l/2)n^k$ edges.

We will show that

$$
|G \setminus T_l| \leqslant \frac{\delta_l}{5} n^k. \tag{9}
$$

This implies, in view of (3) and the inequality $|T_l| \leq t_l^k(n)$, that

$$
|G \bigtriangleup T_l| = |T_l| - |G| + 2|G \setminus T_l| \leqslant \varepsilon_l n^k + \frac{2\delta_l}{5} n^k < \frac{\delta_l}{2} n^k,
$$

and the desired bound $|G \Delta T_l^k(n)| \leq \delta_l n^k$ follows from the triangle inequality.

From (4) we conclude that $e_G(X) \le \varepsilon_l n^k$. Suppose on the contrary to (9) that we have more than $\frac{\delta_l}{5}n^k - \varepsilon_l n^k > \frac{\delta_l}{6}n^k$ edges of *G* intersecting some part of *N* in at least two vertices. By averaging there is an $i \in [l-1]$ such that $|B| \ge \frac{\delta_l}{6l} n^2$, where *B* consists of all 2-subsets of W_i covered by at least one edge of *G*. Assume that $i = l - 1$ without loss of generality.

Let $w = (\frac{1}{l} - \delta_{l-1})n$. Recall that *w* is a lower bound on each |*W_i*| by (5) and (8). For every choice of $x_1 \in W_1, \ldots, x_{l-2} \in W_{l-2}$ and $\{x_{l-1}, x_l\} \in B$, at least $w^{l-2} \times \frac{\delta_l}{6l} n^2$ choices in total, we consider a potential copy of \mathcal{F}_{l+1}^k with core $C = \{x, x_1, \ldots, x_l\}$. (Recall that *x* is the chosen vertex of maximum degree.) As *G* is \mathcal{F}_{l+1}^k -free, at least one of the following must hold:

- 1. *K* $\notin G$, where *K* = {*x*, *x*₁, ..., *x*_{*k*-1}}.
- 2. A pair $\{x, x_i\}$ with $i \in [l]$ is not covered by an edge of *G*.
- 3. A pair $\{x_i, x_j\}$ with $\{i, j\} \neq \{l 1, l\}$ is not covered by an edge of *G*.

One of these three alternatives holds for at least one third of the choices of x_i 's. If it is Alternative 1, then for each such *K* we have $K \setminus \{x\} \in T_{l-1} \setminus L$. Any fixed set *K* is counted at most n^{l-k+1} times. Now, since $\delta_{l-1} \ll \delta_l$, we obtain a contradiction to (7):

$$
|T_{l-1} \setminus L| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_l}{6l} n^2 \times n^{-l+k-1} > \delta_{l-1} (n-s)^{k-1}.
$$

If it is Alternative 2, then we obtain a contradiction as follows. For every uncovered pair $\{x, x_i\}$, the vertex x_i belongs to at least w^{k-2} edges of the $(k-1)$ -graph T_{l-1} . None of these edges belongs to *L*, for otherwise the pair $\{x, x_i\}$ would be covered by an edge of *G*. On the other hand, every edge *D* ∈ *T*_{*l*−1} \ *L* appears this way for at most $(k - 1)n^{l-1}$ choices of the sequence (x_1, \ldots, x_l) : we have to choose $x_i \in D$ and then the other $l - 1$ vertices x_j . Thus we have

$$
|T_{l-1} \setminus L| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_l}{6l} n^2 \times w^{k-2} \times \frac{1}{(k-1)n^{l-1}} > \delta_{l-1} (n-s)^{k-1},
$$

again a contradiction to (7). Finally, suppose that Alternative 3 appears frequently. Each pair ${x_i, x_j}$ belongs to at least w^{k-3} edges of $T_{l-1} \setminus L$. However, each such edge is counted at most $\binom{k-1}{2}n^{l-2}$ times. Hence,

$$
|T_{l-1} \setminus L| \geq \frac{1}{3} \times w^{l-2} \times \frac{\delta_l}{6l} n^2 \times w^{k-3} \times {k-1 \choose 2}^{-1} n^{-l+2} > \delta_{l-1} (n-s)^{k-1}.
$$

Again we obtain a contradiction to (7). This completes the proof of Theorem 4. \Box

3. Step 3: F_{l+1}^k is stable

Please note that Theorem 5 below is formally stronger than Theorem 4. However, it follows from Theorem 4 by an application of Lemma 4 from [15]. The last result indirectly relies on the recent Hypergraph Regularity Lemma of Gowers [7] or Nagle–Rödl–Schacht–Skokan [14, 17,18]. For our particular hypergraph F_{l+1}^k , the recourse to such a complicated technique is not

really necessary and we present a short and self-contained proof, similar to the proof of Lemma 3 in [15].

Theorem 5. For any $l \geq k \geq 2$ and $\delta > 0$ there exist $\varepsilon > 0$ and M such that the following holds for all $n > M$: Any n-vertex F_{l+1}^k -free k-graph G with at least $t_l^k(n) - \varepsilon n^k$ edges is δn^k -close *to* $T_l^k(n)$ *.*

Proof. Given $\delta > 0$, let $\delta \gg \varepsilon \gg 1/M$.

Suppose that $n > M$ and *G* is an *n*-vertex F_{l+1}^k -free *k*-graph with at least $t_l^k(n) - \varepsilon n^k$ edges. Let *G'* be obtained from *G* by deleting all edges that contain a pair of vertices whose codegree is at most $l^3 \binom{n}{k-3}$. Since the number of pairs of vertices is $\binom{n}{2}$, we have

$$
|G \setminus G'| \leq l^3 \binom{n}{k-3} \times \binom{n}{2} < \varepsilon n^k < \frac{\delta}{2} n^k. \tag{10}
$$

Now we argue that *G'* is \mathcal{F}_{l+1}^k -free. Suppose on the contrary that *G'* contains a copy of some $F \in \mathcal{F}_{l+1}^k$ with core *C* and edge $D \subset C$. Since every pair of vertices *x*, *y* $\in C$ is contained in an edge of G' , we have, by $l \ge k \ge 2$,

$$
\operatorname{codeg}_G(x, y) \ge l^3 \binom{n}{k-3} > \binom{l+1}{2}(k-2) + l + 1 \binom{n}{k-3}.
$$

Hence we can greedily choose edges of *G* containing all pairs in ${C \choose 2} \setminus {D \choose 2}$, so that these edges intersect *C* in precisely two vertices and are pairwise disjoint outside *C*. The resulting set of $\binom{l+1}{2} - \binom{k}{2}$ edges, together with *D*, forms a copy of F_{l+1}^k in *G*, a contradiction.

We have

$$
|G'| > |G| - \varepsilon n^k \geq (t_l^k(n) - \varepsilon n^k) - \varepsilon n^k = t_l^k(n) - 2\varepsilon n^k.
$$

We apply Theorem 4 to *G'* and conclude that *G'* is $\frac{\delta}{2}n^k$ -close to $T_l^k(n)$. By (10), *G* and $T_l^k(n)$ are δn^k -close. The proof is complete. \Box

4. Step 4: Proof of Theorem 3

If $k = 2$, then Theorem 3 is precisely the Turán theorem [22]. Thus let us assume that $l \ge k \ge 3$. Choose small $c \gg c' \gg \delta > 0$. Let *n* be large.

Let *G* be an F_{l+1}^k -free *k*-graph on [*n*] with $|G| = t_l^k(n)$. We will show that *G* is *l*-partite. This implies the theorem because $T_l^k(n)$ is the unique *l*-partite *k*-graph on *n* vertices with $t_l^k(n)$ edges, and the addition of any edge to $T_l^k(n)$ yields a copy of F_{l+1}^k .

Let W_1 ∪ \cdots ∪ W_l be a partition of [*n*] such that

$$
f = \sum_{D \in G} |\{i \in [l]: D \cap W_i \neq \emptyset\}\}|
$$

is maximum possible. Let *T* be the complete *l*-partite *k*-graph on $W_1 \cup \cdots \cup W_l$. Let us call the edges in $T \setminus G$ *missing* and the edges in $G \setminus T$ *bad*. As $|T| \leq t_i^k(n) = |G|$, the number of bad edges is at least the number of missing edges.

By Theorem 5, there is an *l*-partite *k*-graph which is *δn^k* -close to *G*. Consequently, $f \ge k(|G| - \delta n^k)$. On the other hand,

$$
f \leq k|G \cap T| + (k-1)|G \setminus T| = k|G| - |G \setminus T|.
$$

This implies that $|G \setminus T| \le k\delta n^k$ and, in view of $|T| \le |G|$,

$$
|T \setminus G| \leqslant k \delta n^k. \tag{11}
$$

Thus we have $|T| \geq |G \cap T| \geq t_l^k(n) - k \delta n^k$. From (2) we conclude that for each $i \in [l]$ we have, for example, $||W_i| - \frac{n}{l} \le \frac{n}{2l}$.

If $G \subset T$, then we are done. Thus, let us assume that *B* is non-empty, where the 2-graph *B* consists of all *bad* pairs, that is, pairs of vertices which come from the same part W_i and are covered by an edge of *G*.

For distinct vertices *x*, *y* call the pair {*x*, *y*} *sparse* if *G* has at most $\left(\binom{l+1}{2}(k-2)+l+1\right)\binom{n}{k-3}$ edges containing both *x* and *y*; otherwise {*x,y*} is called *dense*. It is easy to see that if we have a fixed $(l + 1)$ -set $C \subset V(G)$ containing at least one edge $D \in G$, then at least one pair of vertices $\{x, y\}$ from $\binom{C}{2} \setminus \binom{D}{2}$ is sparse. (For otherwise we can greedily build a copy of F_{l+1}^k in *G* with the core *C*.)

Let *A* consist of those $z \in V(G)$ which are incident to at least cn^{k-1} missing edges.

Claim 1. Any bad pair $\{x_0, x_1\}$ intersects A.

Proof. Assume without loss of generality that $x_0, x_1 \in W_1$ are covered by $D \in G$.

It is easy to see that for any choice of $x_i \in W_i \setminus D$ for $i \in [2, l]$ (at least $(\frac{n}{2l} - k)^{l-1} > (\frac{n}{3l})^{l-1}$ choices), at least one pair $\{x_i, x_j\}$ with $\{i, j\} \neq \{0, 1\}$ is sparse or the *k*-tuple $\{x_1, x_2, \ldots, x_k\}$ is missing for otherwise we obtain a copy of F_{l+1}^k . (In fact, we can make stronger claims but this one suffices.)

If the second alternative occurs at least a half of the time, then $x_1 \in A$. Indeed, any *k*-tuple *D* \ni *x*₁ is counted at most *n*^{*l*−*k*} times (the number of ways to choose *x_{k+1},...,x_l</sub>)*, so *x*₁ belongs to at least $\frac{1}{2}(\frac{n}{3l})^{l-1}/n^{l-k} \geq cn^{k-1}$ missing edges, as required.

So, suppose that for at least half of the choices, the first alternative holds, i.e., there is a sparse pair. Each such pair $\{x_i, x_j\}$ appears, very roughly, at most n^{l-3} times unless $\{x_i, x_j\}$ ∩ ${x_0, x_1} \neq \emptyset$ when the pair is counted at most n^{l-2} times. There are two further alternatives to consider.

If at least a quarter of the time, the found sparse pair is disjoint from $\{x_0, x_1\}$, then we obtain at least $\frac{1}{4}(\frac{n}{3l})^{l-1}/n^{l-3} \geq cn^2$ sparse pairs, each intersecting two parts W_i . But this leads to a contradiction to (11): each such sparse pair in contained in at least, say, $(\frac{n}{3l})^{k-2}$ missing edges while each missing edge contains at most $\binom{k}{2}$ sparse pairs. Hence, at least a quarter of the time, the sparse pair intersects $\{x_0, x_1\}$, so one of these vertices, say x_0 , is in at least $\frac{1}{8}(\frac{n}{3l})^{l-1}/n^{l-2}$ sparse pairs, which implies that $x_0 \in A$. The claim has been proved. \Box

Considering vertices from *A*, we obtain at least $|A| \times cn^{k-1}/k$ missing edges and, consequently, at least $|A| \times cn^{k-1}/k$ bad edges. Let B consist of the pairs $(D, \{x, y\})$, where $\{x, y\} \in B$, $D \in G$ and $x, y \in D$. (Thus *D* is a bad edge.) As each bad edge contains at least one bad pair, we conclude that $|\mathcal{B}| \geq |A| \times cn^{k-1}/k$. For any $(D, \{x, y\}) \in \mathcal{B}$, we have $\{x, y\} \cap A \neq \emptyset$ by Claim 1. If we fix *x* and *D*, then, obviously, there are at most *k* − 1 ways to choose a bad pair ${x, y}$ ⊂ *D*. By Claim 1, some vertex $x \in A$, say $x \in W_1$, belongs to at least

$$
\frac{|\mathcal{B}|}{(k-1)|A|} \geqslant \frac{c}{k(k-1)} n^{k-1}
$$

bad edges, each intersecting *W*¹ in another vertex *y*.

Let *Y*₁ ⊂ *W*₁ be the neighborhood of *x* in the 2-graph *B*. Let *Z*₁ ⊂ *Y*₁ be the set of those vertices *z* for which {*x*, *z*} is dense. The number of edges containing *x* and some vertex of $Y_1 \setminus Z_1$ is at most $l^3 n^{k-2} < \frac{c}{2k(k-1)} n^{k-1}$. Consequently, the number of bad edges containing *x* and some vertex of *Z*₁ is at least $\frac{c}{2k(k-1)}n^{k-1}$. Therefore $|Z_1| \geq \frac{c}{2k(k-1)}n \geq c'n$.

Let Z_j consist of those $z \in W_j$ for which $\{x, z\}$ is dense, $j \in [2, l]$. If $|Z_j| \geq c'n$ for each $j \in [2, l]$, then every *l*-tuple $(x_1, x_2, ..., x_l)$ with $x_j \in Z_j$ (at least $(c'n)^l$ choices) generates a sparse pair not containing *x* or the edge $\{x_1, \ldots, x_k\}$ is missing. The latter alternative cannot happen, say, at least half of the time because otherwise we obtain more than $\frac{1}{2} (c'n)^l / n^{l-k} > k \delta n^k$ missing edges, a contradiction to (11). Thus at least half of the time, we obtain a sparse pair disjoint from *x*. This gives at least $\frac{1}{2} (c'n)^l / n^{l-2}$ sparse pairs, each intersecting some two parts, which leads to a contradiction to (11) .

Hence, assume that, for example, $|Z_2| < c'n$. This means that all but at most $c'n$ pairs $\{x, z\}$ with $z \in W_2$ are sparse, that is, there are at most $l^3 n^{k-2} + c'n^{k-1} < 2c'n^{k-1}$ *G*-edges containing *x* and intersecting W_2 . Let us contemplate moving *x* from W_1 to W_2 . Some edges of *G* may decrease their contribution to f . But each such edge must contain x and intersect W_2 so the corresponding decrease is at most $2c'n^{k-1}$. On the other hand, the number of edges of *G* containing *x*, intersecting $W_1 \setminus \{x\}$, and disjoint from W_2 is at least $(\frac{c}{k(k-1)} - 2c')n^{k-1} > 2c'n^{k-1}$. Hence, by moving x from W_1 to W_2 we strictly increase f , a contradiction to the choice of the parts *Wi*. The theorem is proved.

Acknowledgments

We thank the referees for their careful reading of the manuscript.

References

- [1] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8 (1974) 21–24.
- [2] D. de Caen, Uniform hypergraphs with no block containing the symmetric difference of any two other blocks, Congr. Numer. 47 (1985) 249–253.
- [3] P. Frankl, Asymptotic solution of a Turán-type problem, Graphs Combin. 6 (1990) 223–227.
- [4] P. Frankl, Z. Füredi, A new generalization of the Erdős–Ko–Rado theorem, Combinatorica 3 (1983) 341–349.
- [5] P. Frankl, Z. Füredi, Extremal problems whose solutions are the blowups of the small Witt-designs, J. Combin. Theory Ser. A 52 (1989) 129–147.
- [6] Z. Füredi, M. Simonovits, Triple systems not containing a Fano configuration, Combin. Probab. Comput. 14 (2005) 467–488.
- [7] W.T. Gowers, Hypergraph regularity and the multidimensional Szemerédi's theorem, manuscript, 2005.
- [8] J. Kahn, Coloring nearly-disjoint hypergraphs with *n* + *o(n)* colors, J. Combin. Theory Ser. A 59 (1992) 31–39.
- [9] G.O.H. Katona, Extremal problems for hypergraphs, in: Combinatorics, in: Math. Cent. Tracts, vol. 56, 1974, pp. 13–42.
- [10] P. Keevash, D. Mubayi, Stability results for cancellative hypergraphs, J. Combin. Theory Ser. B 92 (2004) 163–175.
- [11] P. Keevash, B. Sudakov, On a hypergraph Turán problem of Frankl, Combinatorica 25 (2005) 673–706.
- [12] P. Keevash, B. Sudakov, The exact Turán number of the Fano plane, Combinatorica 25 (2005) 561–574.
- [13] D. Mubayi, A hypergraph extension of Turán's theorem, J. Combin. Theory Ser. B 96 (2006) 122–134.
- [14] B. Nagle, V. Rödl, M. Schacht, The counting lemma for regular *k*-uniform hypergraphs, Random Structures Algorithms 28 (2006) 113–179.
- [15] O. Pikhurko, Exact computation of the hypergraph Turán function for expanded complete 2-graphs, arXiv: math.CO/0510227, 2005, this paper was accepted by J. Combin. Theory Ser. B, but its publication is suspended, because of disagreement over copyright, see http://www.math.cmu.edu/~pikhurko/Copyright.html.
- [16] O. Pikhurko, An exact Turán result for the generalized triangle, submitted for publication, 2005.
- [17] V. Rödl, J. Skokan, Regularity lemma for *k*-uniform hypergraphs, Random Structures Algorithms 25 (2004) 1–42.
- [18] V. Rödl, J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random Structures Algorithms 28 (2006) 180–194.
- [19] J.B. Shearer, A new construction for cancellative families of sets, Electron. J. Combin. 3 (1996) 3.
- [20] A.F. Sidorenko, The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs, Math. Notes 41 (1987) 247–259, translated from Mat. Zametki.
- [21] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, Academic Press, 1968, pp. 279–319.
- [22] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452 (in Hungarian).