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Tarski’s Circle Squaring Problem from 1925 asks whether
it is possible to partition a disk in the plane into finitely
many pieces and reassemble them via isometries to yield a
partition of a square of the same area. It was finally resolved
by Laczkovich in 1990 in the affirmative. Recently, several
new proofs have emerged which achieve circle squaring with
better structured pieces: namely, pieces which are Lebesgue
measurable and have the property of Baire (Grabowski—
Méthé—Pikhurko) or even are Borel (Marks—Unger).

In this paper, we show that circle squaring is possible with
Borel pieces of positive Lebesgue measure whose boundaries
have upper Minkowski dimension less than 2 (in particular,
each piece is Jordan measurable). We also improve the Borel
complexity of the pieces: namely, we show that each piece can
be taken to be a Boolean combination of F, sets. This is a
consequence of our more general result that applies to any
two bounded subsets of R*, k > 1, of equal positive measure
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whose boundaries have upper Minkowski dimension smaller
than k.
© 2025 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Tarski’s Circle Squaring Problem [34] from 1925 asks if a circle (i.e., a circular disk)
and a square of the same area in R? are equidecomposable, that is, whether we can
partition the circle into finitely many pieces and apply some isometry to each piece to
get a partition of the square. This question was answered affirmatively some 65 years
later by Laczkovich who showed in a deep and groundbreaking paper [22] that, in fact,
it is possible to square a circle using translations only.

The Axiom of Choice plays a crucial role in his proof and, consequently, the pieces of
his circle squaring could not be guaranteed to have any discernible regularity properties.
A notable problem (mentioned by e.g., Wagon [37, Appendix C] or Laczkovich [22,
Section 10]) has been to determine whether there exist circle squarings using “better”
structured pieces. Recently, Grabowski, Mathé and Pikhurko [15] proved that the pieces
of a circle squaring can simultaneously be Lebesgue measurable and have the property
of Baire. Then, Marks and Unger [28] proved that the pieces can be made Borel. (Let
us assume in this paper that the disk and the square are closed and thus Borel sets.)
In fact, Marks and Unger [28, Section 7] showed that the pieces of a circle squaring can
be chosen to be in B(XY), where X? is the i-th additive class of the standard Borel
hierarchy (see e.g., [18, Section 11.B]) and B(F) denotes the algebra generated by a set
family F (that is, the family of all Boolean combinations of elements from F). For some
generalisations and simplifications of the above results, we refer the reader to Ciesla and
Sabok [6] and Bowen, Kun and Sabok [3,4].

Shortly after his circle-squaring paper, Laczkovich [23,24] proved a far-reaching gen-
eralisation. Before stating it, let us set up some notation. Fix k > 1. Let A denote the
Lebesgue measure on R* and let 9X denote the (topological) boundary of X C R*.
Recall that the upper Minkowski dimension, sometimes called box or grid dimension, of
X CRFis

: o log(N5s(X))
(1.1) dimp(X) := h;i%]ip Tog(@-1)

where Ns(X) is the number of boxes from the regular grid in R* of side-length & that
intersect X.

Theorem 1.1 (Laczkovich [23,24]). If k > 1 and A, B C R* are bounded sets such that
A(A) = A(B) > 0, dimg(0A) < k and dimg(dB) < k, then A and B are equidecompos-
able by translations.
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The subsequent papers [15,28] on circle squaring in fact prove appropriate “construc-
tive” versions of Theorem 1.1 and derive the corresponding circle squaring results as
special cases. The aim of this paper is to extend this line of research. In the context of
circle squaring, we prove the following result which decreases the Borel complexity of
the pieces by two hierarchy levels and ensures that the boundary of each piece is “small”
in a strong sense.

Theorem 1.2. In R?, a closed disk and a closed square of the same area can be equidecom-
posed using translations so that every piece has boundary of upper Minkowski dimension
at most 1.987, belongs to B(XY) (i.e., is a Boolean combination of F, sets), and has
positive Lebesgue measure.

Recall that a subset X C R is Jordan measurable if its indicator function is Riemann
integrable. An equivalent definition is that X is bounded and A\(0X) = 0. It easily follows
that any bounded set X C RF with dimg(0X) < k is Jordan measurable. Therefore,
Theorem 1.2 implies that circle squaring is possible with Jordan measurable pieces, which
addresses questions by Laczkovich [27] and Mathé [29, Question 6.2]. An advantage of
a Jordan measurable circle squaring is that an arbitrarily large portion of it can be
described in an error-free way with finitely many bits of information. Namely, for every
e > 0, if n is large enough, then at most en? boxes of the regular n x n grid on the
equidecomposed unit square can intersect more than one piece and thus O(n?) bits are
enough to describe our equidecomposition up to a set of measure at most . (Furthermore,
the dimension estimate of Theorem 1.2 shows that ¢, as a function of n — oo, can be
taken to be n~0:013+0(1) )

We will obtain Theorem 1.2 as a special case of the following general result. For a set
A CRF let Ty := {A+t:tc RF} consist of all its translations. For a family F of
sets, let 3(F) be the collection of all countable unions of sets in F. Also, recall that X
stands for the collection of open sets in RF.

Theorem 1.3. If k > 1 and A, B C R* are bounded sets such that \(A) = A\(B) > 0,
dimp(0A) < k and dimp(0B) < k, then A and B are equidecomposable by translations
so that all the following statements hold simultaneously:

(a) for some ¢ > 0 that depends on k, dimg(0A) and dimg(OB) only, the topological
boundary of each piece has upper Minkowski dimension at most k — (,

(b) each piece belongs to B(E(B(Z)UTaUTz))),

(c) if

(1.2) AM{teRF:(A+t)NB#0 and A((A+t)NB)=0}) =0

(that is, the set of vectors t € R¥ such that (A+t)NB is non-empty and Lebesgue-null
has measure 0), then each piece has positive Lebesgue measure.
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In fact, an explicit expression for a possible parameter ¢ > 0 in Part (a) as a function
of k, dimg(0A) and dimg(9B) is given in (7.11). For circle squaring, the bound in (7.11)
states that any ¢ < 1/73 suffices. Interestingly, by Part (a), each non-null piece of the
equidecomposition individually satisfies the hypothesis of the theorem and is therefore
equidecomposable to a ball or a cube of the same measure. Moreover, each non-null piece
automatically has non-empty interior. (Note that a Jordan measurable subset of R¥ is
null if and only if it has empty interior.)

If the sets A and B in Theorem 1.3 are Borel, then, by Part (b), all pieces of the
equidecomposition can be taken to be Borel with a good control over their Borel com-
plexity (that improves upon the analogous result in [28] by two hierarchy levels). For
example, if each of A and B is simultaneously a Gs set and an F, set, that is, belongs
to AY :={X € 2y : R*\ X € 29} (in particular, if each of A and B is open or closed),
then every piece in the equidecomposition is a Boolean combination of F, sets, which
follows from

B(S(B(AY))) = B(S(A))) € B(X(%)) = B(%)),

where we use the easy facts that AY is closed under Boolean combinations and X9 is
closed under countable unions.

Regarding Part (c) of Theorem 1.3, note that it is impossible to guarantee that all
pieces in Theorem 1.3 have positive measure in general. For example, if A contains a
point x such that the distance from @ to A\ {x} is greater than the diameter of B, then
every equidecomposition of A to B must include the set {x} as a single piece. However,
the extra assumption of Part (c) applies in many natural cases: for example, it holds for
a ball and a cube in any dimension (with arbitrary subsets of their boundaries removed),
or for any open sets A and B.

It seems difficult to weaken the assumptions of Theorem 1.3 in some substantial way.
Laczkovich [25, Corollary 3.5] showed that, for every k& > 1, there is a bounded subset
A C RF which is a countable union of pairwise disjoint convergent cubes but which is not
equidecomposable to a single cube by translations. In particular, even in Theorem 1.1,
one cannot replace the assumption that dimp(9A), dimg(9B) < k by requiring that, for
example, the Hausdorff dimension of the boundaries is at most & — 1. Another family
that refutes various extensions of Theorem 1.1 (and thus of Theorem 1.3) comes from
the work of Laczkovich [26, Theorem 3] who showed that for every k > 2 there are
continuum many Jordan domains (i.e. homeomorphic images of the closed ball), each of
volume 1 with everywhere differentiable boundary, so that no two are equidecomposable
using any amenable subgroup of isometries. (In particular, this applies to the group R*
of translations for any k and the full group of isometries of R?, which are amenable.)

On the other hand, if £ > 3 and one allows all orientation-preserving isometries of
RF, then the obvious necessary conditions for a set to be equidecomposable to a cube
using Lebesgue (resp. Baire) measurable pieces turn out to be sufficient, see Grabowski,
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Mathé and Pikhurko [16, Corollary 1.10]. However, nothing like this is known for Borel
and Jordan measurable equidecompositions.

1.1. Historical background

Tarski’s Circle Squaring Problem has its roots in the theory of paradoxical decompo-
sitions. The most famous result in this area is undoubtedly the theorem of Banach and
Tarski [2] that, if & > 3 and A, B C R* are bounded and have non-empty interior, then A
and B are equidecomposable. As a special case, one obtains the striking Banach—Tarski
Paradox that a solid ball in R? admits an equidecomposition to two disjoint copies of
itself.

The assumption k > 3 is necessary in the Banach-Tarski Theorem, as Banach [1]
proved that the Lebesgue measure on R or R? can be extended to a finitely additive
measure on all subsets which is invariant under isometries. Thus, in R?, there cannot exist
equidecomposable sets of different Lebesgue measure. The theory of amenable groups,
pioneered by von Neumann [30], originated as an attempt to obtain a deeper group-
theoretic understanding of the change in behaviour between dimensions two and three;
the key difference turns out to be that the group of isometries of R* is amenable for
k € {1,2} but not for k > 3. Generally, if A and B are Lebesgue measurable subsets
of R* which are equidecomposable using an amenable subgroup of isometries, then they
must have the same measure. Note that the group of translations of R* is amenable for
all k > 1, and so the condition that A(A) = A(B) is necessary in Theorem 1.1 in general.

Decades before Laczkovich squared the circle, Dubins, Hirsch and Karush [11] proved
that a disk is not scissor-congruent to a square, meaning that there does not exist
a squaring of the circle with pieces that are interior-disjoint Jordan domains, even if
boundaries are ignored. This is in strong contrast to the case of polygons: the classical
Wallace-Bolyai-Gerwein Theorem states that it is possible to dissect a polygon into
finitely many pieces using straight lines and, ignoring boundaries, reassemble them to
form any polygon of the same area; see e.g., [36, pp. 34-35]. Another related result,
by Gardner [14], asserts that there is no solution to the Circle Squaring Problem using
isometries from a locally discrete subgroup of isometries.

For more background, we refer the reader to the monograph of Tomkowicz and Wa-
gon [36], whose Chapter 9 is dedicated to circle squaring.

1.2. Some ideas behind the proof of Theorem 1.3

Let us give a very high-level outline of the proof of Theorem 1.3; all formal definitions
will appear later in the paper. A more detailed sketch of the partial result that all pieces
can be made Jordan measurable is given in Section 3.

Like in the previous work, we assume that A and B are subsets of the torus T* :=
R*/Z* and do all translations modulo 1. We pick a suitable (somewhat large) integer
d and vectors x1,...,zq € TF satisfying certain conditions (that are satisfied with
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positive probability by random vectors). Let G4 be the graph on T* where we connect u
to u+ Z?:l n;x; for each non-zero (ny,...,ng) € {—1,0,1}%. Assuming that x1,..., x4
do not satisfy any linear dependencies with rational coefficients, each component of G4
is a (3% — 1)-regular graph on a copy of Z9.

Our aim is to “construct” a bijection from A to B such that, for some constant r, each
element of A is moved by the bijection by distance at most r within the graph G4. Such
a bijection naturally gives an equidecomposition between A and B that uses at most
(2r +1)? pieces. As was observed by Marks and Unger [28], the problem of finding such
a bijection can be reduced to finding a uniformly bounded integer-valued flow within the
graph G4, where the demand is 1 on A, —1 on B and 0 elsewhere (see Lemma 2.16 here).

As one of the first steps of their proof, Marks and Unger [28] constructed a real-valued
(i.e. not necessarily integer-valued) flow f,, which satisfies this demand; see Lemma 3.1.
The flow f. is defined to be a pointwise limit of a sequence of flows f,, that are locally
constructed from A and B. Since the collection of subsets of T* with boundary of upper
Minkowski dimension at most & — { is not a o-algebra, we should not use the values of
foo if we want to produce pieces with this structure. Instead, we work with the locally
defined approximations fi,.

For flow rounding (that is, making all flow values integral), we construct Jordan
measurable subsets Ji, Jo, ... of T® such that their union Ufil J; is co-null in T* and
(J;)$2, is a toast sequence (see Definition 2.14), roughly meaning that each J; induces
only finite (in fact, uniformly bounded) components in G4 and the graph boundaries of
all components arising this way are well separated from each other. In fact, each set J; is a
finite union of strips, i.e., sets of the form [a, b) x [0, 1)*~!; in particular, it is Borel and its
boundary is (k—1)-dimensional. The idea of using toast sequences to construct satisfying
assignments was previously applied to many problems in descriptive combinatorics (with
the exact definition of “toast sequence” often being problem-specific). For a systematic
treatment of this idea for general actions of Z<¢, we refer the reader to Grebik and
Rozhon [17].

We can view the toast sequence (Jp, Ja2,...) as a process where, at time i, vertices of
the set J; arrive and our algorithm has to decide the value of the final integer flow f on
every edge with at least one vertex in this set. We are not allowed to look into the future
nor modify any already defined values of the flow f. We prove that, if all things are set
up carefully, then this is indeed possible to do and, in fact, there are some constants m;
and R; such that the value of f on any edge zy € E(Gy) intersecting J; can be computed
only from the current picture in the R;-neighbourhood of {z,y} in G4 and the values
of the approximation f,,, of f. there. Here, a key challenge is that, when we round
the flow on J;, we have only incomplete information (namely, the flow f,,,, which meets
the demands only within some small error). The idea that allows us to overcome this
difficulty is that, if the cumulative error of f,,, on each component of J; is small, then
whenever our algorithm encounters some inconsistency, it can round it to the nearest
integer and produce values that are in fact perfectly compatible with all past and future
choices of the algorithm.
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The proof coming from the above arguments, with a careful choice of how the size of
the components of J; can grow with 4, produces a partial equidecomposition between A
and B so that the topological boundaries of the pieces as well as the unmatched part
of A and of B have upper Minkowski dimension less than k. Thus if we can extend this
equidecomposition to all of A and B (even by using the Axiom of Choice), then we can
achieve Part (a) of Theorem 1.3.

However, these ideas do not seem to be enough to yield pieces which satisfy Parts (a)
and (b) of the theorem simultaneously. If A and B are Borel, then all pieces in the
partial equidecomposition are Borel, but we did not see a way to match the remaining
parts of A and B in a Borel way by using the results of Marks and Unger [28] as a
“black box”. So, in order to achieve Part (b) of Theorem 1.3, we essentially run the proof
from [28] on the complement of |J;-, J;, making sure that, when we define the sets J; in
the first place, we leave enough remaining “wiggle” space. Running the Borel proof on
the remaining set is probably the most technical part of this paper. This extra work is
worth the effort though, since our modification of both the construction and analysis of
Marks and Unger [28] also allows to reduce the Borel complexity of the obtained pieces.

For Part (c), we choose @1, ..., x4 € T* so that, additionally, for every vector ¢ which
is an integer linear combination of them, the intersection (A + ¢) N B is null only if it
is empty. Recall that our equidecomposition translates each u € A by a vector of the
form 2?21 n;x; where ny,ns,...,ng are integers between —r and r, for some r. Denote
by t1,...,tn the vectors ¢ of this form for which (A + ¢) N B is non-empty (and thus
non-null). To achieve Part (c), for each 1 < i < N, we pre-select a small non-null subset
A, of (B —1t;) N A to be a part of the piece of the equidecomposition that is translated
according to t;. This is done in such a way that the sets Ay, + t1,..., A, + ty are
pairwise disjoint and our proof of Parts (a) and (b) still applies to the remaining sets
A\ Ul]il Ag, and B\ UlN:l(Ati +1;), using the same translation vectors t1,. .., ty. Thus,
all pieces are non-null by construction.

1.8. Organisation

As Theorem 1.2 is a direct consequence of Theorem 1.3 and the bound on ¢ in (7.11),
all our focus will be on proving Theorem 1.3.

In Section 2, we present some notation, introduce a few of the tools used in the paper
and prove some auxiliary results. In particular, we present the reduction of Marks and
Unger [28] that it is enough to construct a bounded integer-valued flow f from A to B in
G4 with appropriate properties (Lemma 2.16). This lemma will also take care of Part (c)
of the theorem.

Given these preliminaries, we can give a more detailed outline of the proof of Theo-
rem 1.3 in Section 3. There, we will mostly concentrate on the (less technical) special case
of making the pieces just Jordan measurable. We will conclude that section by discussing
some of the additional ideas which allow us to control the dimension of the boundaries
and the Borel complexity of the pieces.
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Then we turn our attention to proving Theorem 1.3 in earnest. In Section 4, we
describe the procedure from [28] for constructing a real-valued flow from A to B in the
graph G4. In Section 5, we construct the toast sequences that are needed in the proof.
In Section 6 we show how to transform a converging sequence of real-valued flows into
a bounded integer-valued flow using a toast sequence. In Section 7, we define our final
flow f (that produces the required equidecomposition via Lemma 2.16) and analyse the
upper Minkowski dimension of the boundaries of the pieces (in Section 7.1) as well as
the Borel complexity of the pieces (in Section 7.2).

Even though many of our auxiliary results can be strengthened or generalised in
various ways, we try to present just the simplest versions that suffice for proving The-
orem 1.3, since its proof is already very intricate and delicate. In fact, we sometimes
present a separate (sketch) proof of a special case before giving the general proof, when
we believe that this improves readability.

2. Preliminaries

We denote by R and 7Z the sets of reals and integers, respectively. For z € R, we
define its nearest integer [z] to be equal to |z| if z — |x] < 1/2 and [z] otherwise. The
set of all values assumed by a function f is denoted by range(f). When we write e.g.,
(@i, b;)$2, we mean the sequence (ai, by, az, bs,...). The indicator function of a set X is
denoted by 1x. By log we mean the natural logarithm.

2.1. Discrepancy bounds for the torus

The k-torus T* is the quotient group of (R¥,+) modulo Z*. When we write the sum
of u,v € T*, we take it modulo 1 and thus w + v is an element of T*. In particular, the
translation of Y C T* by a vector t € T*,

Y+t:={y+t:yecY}CTF

is done modulo 1. Similarly, scalar multiples of vectors in T* are also taken modulo 1.

For notational convenience, we may occasionally identify T* with [0,1)*. While this
identification is not a topological homeomorphism, it does preserve the set families that
are of interest to us, namely, sets that are Borel, are Jordan measurable, have boundary
of upper Minkowski dimension at most k—(, etc. The restriction of the Lebesgue measure
on R* to the torus will be denoted by the same symbol \. We have \(T*) = 1.

Given a finite set ' C T* and a Lebesgue measurable set X C T*, the discrepancy
of F relative to X is defined to be

(2.1) D(F,X):=||FNX|—|F|-XX)]|.

In other words, D(F, X) is the deviation between |F N X| and the expected size of this
intersection if F' were a uniformly random subset of T* of cardinality |F|.
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A key tool used in this paper, as well as in [15,28], is the following discrepancy lemma
of Laczkovich [23], whose proof sketch can be found in Appendix A.

Lemma 2.1 (Laczkovich [23, Proof of Theorem 3J; see also [15, Lemma 2.4]). Let X be
a measurable subset of TF such that k — 1 < dimp(0X) < k, let d be a positive integer
such that

k

4> = dmo(0X)

and let € € R be such that

d(k — dimn(0X)) — k

D<e<
c k

Ifxy,...,xq are chosen uniformly at random from T* and independently of one another
then, with probability 1, there exists ¢ > 0 such that, for every uw € T* and every integer
n > 0, we have

D (N,J[[u],X) <c-(n+ 1)d7175’

where we define

d
(2.2) N u] := {u—&—Znixi :(n1,...,nq) € {O,...,n}d} ,

calling it a discrete (n + 1)-cube (or just a discrete cube).

Essentially, this lemma says that, if a set X C T* has “small” topological boundary,
then, for d sufficiently large, the discrepancy of any large discrete cube given by typical
vectors 1, ...,xq € T with respect to X is significantly smaller than the number of
points on the combinatorial boundary of the cube.

2.2. Graph-theoretic definitions

A (simple undirected) graph is a pair G = (V, E') where the elements of V' are called
vertices and F is a collection of unordered pairs {u, v} of vertices called edges. For brevity,
an edge {u,v} € E is written uv or, equivalently, vu. The vertex set and edge set of a
graph G are denoted by V(G) and E(G), respectively.

A vertex u is said to be adjacent to (or a neighbour of) a vertex v if uv € E(G). Given
a set S C V(G), the subgraph of G induced by S, denoted as G | S, is the graph with
vertex set S and edge set {uv € E(G) : u,v € S}.

Given a graph G and u,v € V(G), we let distg(u,v) denote the graph distance from
u to v in G, i.e., the fewest number of edges in a path from « to v in G. If no such path
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exists, then distg(u,v) := 0o. Also, note that distg(u,u) = 0 for every vertex u. For sets
S, T CV(Q), we let

distg(S,T) := min{distg(u,v) : w € S and v € T}

and, for w € V(G), we write distg(w,T') to mean distg({w},T). Given u € V(G), the
connected component of G containing u is the set

[ulg :=={v € V(G) : distg(u,v) < co}.
We say that G is connected if [u]g = V(G) for every (equivalently, some) vertex u €

V(G).
Given a graph G and u € V(G), let

N¢glu] = {v € V(Q) : distg(u,v) < 1}

denote the (closed) neighbourhood of uw in G. Also, for a set S C V(G), let Ng[S] :=
Uues Nalu] be the (closed) neighbourhood of S in G. The degree of a vertex u € V(G)
is defined to be

deg(u) = |Nofu] \ {u}| = | Ne[u]| - 1.

We say that G is locally finite if degy(u) is finite for every u € V(G). For d € N, we say
that G is d-regular if degy(u) = d for all u € V(G).
The edge boundary of S C V(G) in G is the set

(2.3) oS :={w € E(G):ue Sandv e V(G)\ S}
2.8. Network flows
A flow in a graph G is a function f : V(G) x V(G) — R such that

fu,v) = —f(v,u) for all u,v € V(G), and
flu,v) =0if uwv ¢ E(G).

The quantity f(u,v) is called the flow from u to v under f. Given a finite set S C V(G),
the flow out of S under f is defined to be

oS = > flu).
uea(e(g)\s

Note that, in this paper, we will deal with locally finite graphs only, and so the flow out
of a finite set will always be well-defined. For a vertex u € V(G), the flow out of u under
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fis fout(u) := fout({u}). The following is an easy consequence of the definition of a
flow.

Observation 2.2. Given a locally finite graph G, a flow f in G and a finite set S C V(G),
it holds that fo"(S) =" ,cq fO"(u). O

When it is clear from the context, we may view f°U' just as a function V(G) — RR; for
example, when we write || f°*" — g||» for some g : V(G) — R, we mean the supremum
of | fo" (u) — g(u)| over u € V(G).

Given a function x : V(G) — R, which we call a demand function, a x-flow in G is a
flow f such that fo"*(u) = x(u) for every u € V(G). For S,T C V(QG), a flow from S to
T inGisa (lsg— 1p)-flow in G.

It is well-known that, if x is an integer-valued demand function for a finite graph G,
then a real-valued x-flow in G can be converted into an integer-valued x-flow in G by
changing the flow along each edge by less than 1. This is known as the Integral Flow
Theorem. It seems to have been first observed by Dantzig and Fulkerson [9] using ideas
of Dantzig [8]; see [33, Corollary 10.3a] and the discussion in [33, p. 64]. The following
version can be derived from the finite case via a standard compactness (i.e., Axiom of
Choice) argument; for a proof see e.g., [28, Corollary 5.2].

Theorem 2.3 (Integral Flow Theorem). Let G be a locally finite graph and let x : V(G) —
Z be an integer-valued demand function. Then, for every x-flow g in G, there exists an
integer-valued x-flow f in G with |f(u,v) — g(u,v)| <1 for allu,v € V(G). O

2.4. The setting

At this point, we are ready to make some key definitions and assumptions that will
apply throughout the rest of the paper.

Let & > 1 be integer, and let A and B be sets that satisfy the assumptions of Theo-
rem 1.3. Thus A, B C R” are bounded sets that have the same positive Lebesgue measure
(i.e., AM(A) = A(B) > 0) and boundary of the upper Minkowski dimension less than &
(i.e., dimg(0A) < k and dimg(9B) < k).

By scaling A and B by the same factor, we can assume that each of them has diameter
less than 1/2 in the £ -norm. Furthermore, by translating them, we can assume that A
and B are disjoint subsets of [0, 1)*. If A and B are equidecomposable using translations
inside T*, then they are also equidecomposable using translations in R¥ with exactly
the same pieces (by the diameter assumption). From now on, we always assume that we
are working in the setting of the k-torus.

In order to satisfy Lemma 2.1 and to optimise the bound on the upper Minkowski
dimension of the boundaries of the final pieces, we make the following assignments. First,
fix € so that

(2.4) 0 < € < k — max {dimg(9A),dimg(9B)},
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where we should choose € close to the upper bound for optimality. Then we set

(2.5)

d:=|k/e|] +1,

that is, d is the smallest integer greater than k/e. We also define

(2.6)

€:= (de — k)/k.

Note that, if the boundaries of A and B have upper Minkowski dimension k — 1, as is

the case for most simple “geometric” sets like balls and cubes, then we can take d = k+1

and let € and ¢ be close to 1 and 1/k, respectively.

For each integer 7 > 0, define

(2.7)

rli=100*"" "1

and, for each integer i > 1, define

(2.8)

T = 100272,

Next, we recursively define ¢) < ¢1 < ¢} < g2 < ...and t; < t] <t <th <...by
setting ¢f, := 0 and, for each i > 1,

(2.9)

~+

i =2r +4q_, +4,
¢ =t +2q_1 +4,
t; = 4r; /5 + 2q;,

4 =t +2qi +4.

We fix, for the rest of the paper, some vectors 1, ..., xq € T* that satisfy all of the

following properties:

(2.10)
(2.11)

(2.12)

(2.13)

the conclusion of Lemma 2.1, with respect to the above d and ¢, holds for some
¢ > 0 (which is also fixed throughout the paper) for both X := A and X := B;
the projections of @1, ..., x4 on the first coordinate are linearly independent over
the rationals;

if the extra assumption of Part (c¢) of Theorem 1.3 (that is, (1.2)) holds, then no
integer combination of @1, ..., x4 belongs to the “bad” set

{t € T : (A +t) N B is non-empty and A-null};

the conclusion of Lemma 7.5 (to be stated in Section 7.1) holds.
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This is possible since, if @1,..., x4 are chosen uniformly at random from T* indepen-
dently of one another, then each of Properties (2.10)—(2.12) holds with probability 1,
while Lemma 7.5 is satisfied with positive probability. For example, Property (2.12)
holds almost surely since, for each non-zero (ny,...,nq) € Z%, the vector Z?Zl n;T; is a
uniform element of T* while the “bad” set has measure 0 by (1.2); also, the zero vector
is “good” by our assumption that AN B = (.

Remark 2.4. If the reader is interested only in a version of Theorem 1.3 where the
conclusion of Part (a) is weakened to requiring that the pieces are just Jordan measurable,
then we could have chosen an arbitrary sufficiently fast growing sequence r) < r <
r] € r9 < ... and ignored Property (2.13), which would not be needed. This is why the
(somewhat technical) statement of Lemma 7.5 is postponed to Section 7.1, where the
dimension of the boundaries of the obtained pieces is analysed.

We denote elements of Z? as vectors accented by an arrow, e.g., @i, to distinguish
them from vectors in T* which are typeset in boldface. For 7 € Z¢ and 1 < i < d, let n;
denote the i-th coordinate of 7. Consider the action a : Z?~T* defined by

d
Mg U= u—i—Znimi, for i € Z¢ and u € T*.
i=1

This action is continuous and preserves the measure .

Next, we recall the definition of the graph G4 from Subsection 1.2. Namely, the vertex
set of Gg is T and the neighbours of w € T* are exactly the vectors u + Zle n;T;
for non-zero # € {—1,0,1}?. Equivalently, G4 is the (3¢ — 1)-regular Schreier graph
associated to the action a with respect to the symmetric set {7 € Z? : ||fi]|oc = 1}. The
edge set of G4, when viewed as a symmetric binary relation on the (standard Borel) space
T*, is a closed and thus Borel set. This means that G is a Borel graph, a fundamental
object of study in descriptive graph combinatorics (see e.g., the survey of this field by
Kechris and Marks [19]). Note that the action a is free by our choice of the vectors
x;, namely by (2.11). Therefore, the subgraph of G4 induced by any component of Gg4
is nothing else than a copy of Z¢ in which two elements are adjacent if they are at
{-distance 1.

We pause to remind the reader of the role of the graph G4 in the equidecomposition.

Remark 2.5. The translation vectors used in the constructed equidecomposition will be of
the form Z‘Z:l n;x; where 77 € Z% and |7, is bounded by a large constant r depending
only on A and B (which we do not attempt to estimate). Then an equidecomposition
is equivalent to a bijection from A to B where each element of A is matched to an
element of B at distance at most r from it in G4. Given such a matching, each piece of
the equidecomposition is indexed by an integer vector in {—r,...,r}% where the piece
corresponding to 7i is the set of all w € A such that w is matched to u + 25:1 n;x; € B.



14 A. Mdthé et al. / Advances in Mathematics 484 (2026) 110685

2.5. Some auziliary structures in Gy

Here we present some useful building blocks and definitions. Note that, once d and
x1,...,xq are fixed, the definitions and constructions in this section do not depend on
the sets A and B.

At certain points during the construction, we have to make arbitrary “tie-breaking”
choices in a consistent manner. In doing so, it is useful to endow T* with a partial order
in which each component of G is totally ordered. We will use the lexicographic ordering
where, for distinct u,v € T*, we write u <jex v to mean [u]g, = [v]g, and the first
non-zero entry of 7 is positive, where 7 is the (unique) element of Z<¢ with

d
vV—u= E n;x;.
i=1

This naturally extends to a partial order on (Tk)t for any ¢t > 1 where (uq,...,ut) <jox
(v1,...,v;) if there exists 1 < ¢ < ¢ such that u; <jex v; and u; = v; forall 1 < j <i—1.

Given u € T*, we write Ng, [u] simply as N[u]. For n > 1, define the n-neighbourhood
of u to be

Np[u] := {v € T" : distg, (u,v) < n}.

Note that N,[u] = N, [v], where v := u — n(z1 + ... + x4) and N, [v] is defined as
n (2.2). Thus, N,[u] (resp. N,F[u]) is the set of vertices which can be reached from wu by
taking at most n steps in any (resp. “completely non-negative”) directions in G4. Given
a set S C TF and an integer n > 1, let

No[S] == | Nu[u] and NS := | N, [ul.
ues ues

We say that a set Y C T* r-locally depends on (or is an r-local function of)
X1,...,X,, C T* if the inclusion of w € T* in Y depends only on the intersection
of Xi,..., X, with N,[u], by which we mean that it depends only on the sequence

({ﬁ c 7. 17l <7 u+nix1 + ...+ Ngxg € Xj});ll.

This is equivalent to Y being some Boolean combination of the sets of form X; +nix; +
oot ngeg for 1 < j < m and 7 € Z?% with ||7i]|oo < r. When the specific value of r is
unimportant or clear from context, we simply say that Y locally depends on (or is a local
function of) Xi,..., X,,. Here is a trivial but very useful observation.

Observation 2.6. If Y locally depends on some finite sequence of sets from an algebra A
on TF which is invariant under the action a (that is, A+ x; € A for every A € A and
i€{l,...,d}), then'Y also belongs to A. O
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Note that the families of subsets of T* that are Jordan measurable or have boundary
of upper Minkowski dimension at most some given constant are both examples of a-
invariant algebras.

If f is a real-valued flow in Gy, then for ¥ € Z? with ||7||cc = 1 and £ € R, we define

(2.14) zL, ={veTr: f(v.5..v)=1}.

Observation 2.7. Given a flow f in Gq and 7 € Z with ||7| = 1, the sets Z%ce for
¢ € R with |¢] < ||flleo partition TF. If the flow f assumes finitely many possible values,
then only finitely many of these sets are non-empty. O

A flow f with finite range will be identified with the finite sequence of sets Z f;,e for
all possible choices of 4 and ¢. Thus we will say that a flow f is an r-local function of
X1,...,X,, to mean that each set Z%E is an r-local function of X4, ..., X,,. In the other
direction, r-local dependence of a set Y on a flow f means r-local dependence on the
sequence of the sets Z %c , (that is, the membership condition for u € T* to be an element
of Y can be determined from the flow values on the edges intersecting N,.[u]).

Definition 2.8. Define a strip to be a subset of T* of the form [a, b) x [0,1)*~! for some
0 < a < b < 1. The width of the strip [a,b) x [0,1)¥~1 is defined to be b — a.

Note that any translation of a strip by a vector can be written as a union of at most
two strips and that any Boolean combination of strips can be written as a union of
finitely many disjoint strips. For these reasons, strips are particularly convenient to work
with.

Definition 2.9. A set X C T* is said to be r-discrete (in Gg) if distg,(x,y) > r for any
distinct @,y € X and mazimally r-discrete (in G4) if it is maximal under set inclusion
with respect to this property.

Of course, the above properties are not affected when we replace X by any translate.
The following fact is a consequence of (2.11), one of our assumptions on @, ..., &q.

Observation 2.10. For any r > 1 there exists § > 0 such that every set X C T whose
projection onto the first coordinate has diameter at most § is r-discrete. O

We will also need the following lemma (whose main proof idea goes back to Kechris,
Solecki and Todorcevic [21, Proposition 4.2]).

Lemma 2.11. Forr >0, let Cy,...,C,, be subsets of T* such that every C; is r-discrete
in Ggq and U:’;l C; = T*. Then there exists a mazimally r-discrete set X which is an

r(m — 1)-local function of Cy,...,Cp,.
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Proof. Let C] := C} and, for 2 < i < m, define

i—1
c;=C\N, [ Jc

Jj=1

Let X := C{U...UC! . By construction, and because the sets C1,. .., C,, are r-discrete
in Gy, the set X is also r-discrete in G. Since the sets C1, ..., C), cover T, it follows
that X is maximally r-discrete in G4.

Since X = C{U...UC

m?

it is enough to show that each CY is an r(i — 1)-local
function of C1,...,C;. We use induction on ¢ = 1,...,m. This is true for ¢ = 1 since the
set C1 = C is a 0-local function of Cy. For each 2 < ¢ < m, the set C} is a Boolean
combination of C; and the sets C1,...,C/_, translated by vectors of the form 2;1:1 n;x;
where ||7i||oc < 7. So, by induction, C is an r(i — 1)-local function of Ci,...,C;, as
desired. O

The following corollary is easily derived from Observation 2.10 and Lemma 2.11.

Corollary 2.12. For any r > 0 there exists a set X C T* which is mazimally r-discrete
in Gq and can be expressed as a union of finitely many disjoint strips in TF. O

Definition 2.13. For S C T, let comp(S) be the collection of all components of G4 | S.

The following definition describes the types of structures that we will use to round a
sequence of real-valued flows to an integer-valued one. We use the word “toast” which
seems to be the standard term for structures of this type now.

Definition 2.14. We say that a sequence (D1, Ds, . ..) of subsets of T* is a toast sequence
(in G4) if the following three conditions are satisfied for all ¢ > 1:

(2.15) the elements of comp(D;) are finite and have uniformly bounded cardinality,

(2.16) any two distinct elements of comp(D;) are at distance at least 3 in G4, and

(2.17) for 1 < j < i, every S € comp(D,) satisfies that either N[S] C D; or
diStGd(S, Di) > 3.

Let us make a brief contextual remark. A concept which is ubiquitous in descriptive
graph combinatorics is the notion of hyperfiniteness. Namely, a Borel graph G is said to be
hyperfinite if its edge set can be written as an increasing union of edge sets of Borel graphs
with finite components; see, e.g., [12, Section 7.2] or [20, Section IL.6]. In this context,
a Borel toast sequence (Dy, Da,...) gives a specific type of a hyperfiniteness certificate
(D1,D1 U Do, ...) (or, more precisely, the corresponding sequence of the induced edge
sets) for the graph G4 | U2, D;; see, e.g., [7,13].
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Remark 2.15. Note that our definition of a toast sequence allows holes in D;, that is, finite
components of G4 | (T*\ D;). (In fact, it even allows D; to have two holes at distance 2
in G4, even though this can be shown not occur in the toasts constructed in Section 5.)
While it should be possible to get rid of all holes by modifying our constructions in
Section 5.2 (as in the approach taken by Marks and Unger [28]), we found it easier
instead to write our proofs so that they apply to toast sequences with holes.

2.6. The setting (continuation)

Here we define two sequences of sets, with these definitions applying throughout the
paper. Namely, for each i > 1, we fix two sets X; and Yj;, each of which is a union of
finitely many disjoint strips, so that X; is maximally r;-discrete and Y; is maximally
r}-discrete. This is possible by Corollary 2.12.

For Part (b) of Theorem 1.3, we will need the additional assumption that

(2.18) distg, (0Y;,0Y;) = oo, for all i # j,

that is, each component of G4 can intersect the topological boundary of Y; for at most one
value of . Since each Y; is a finite union of strips, the projection on the first coordinate
of the union of all components of G4 that intersect the topological boundary 9Y; is a
countable set. Thus, if Y7, Ya, ... are translated by uniformly random vectors in T* which
are independent of one another and of xy,..., x4, then, almost surely, the translated
countable sets inside T are pairwise disjoint and (2.18) holds.

To achieve Part (a) of Theorem 1.3 with good quantitative bounds on the dimension

of the boundaries, we additionally require by our assumption (2.13) that the sets X;
satisfy Lemma 7.6, which basically requires that X; is an rf+1+o(1)—local function of a
single strip. This extra assumption directly gives an upper bound on the number of strips
that make up Xj;; also, it will allow us to analyse the boundary of sets which are local

functions depending on some sets Xj.
2.7. Equidecompositions from integer-valued flows

We will need the following lemma, whose main idea is inspired by the proof sketch
in [28, Remark 6.2]. In the context of Theorem 1.3, this lemma shows that it is enough to
find a bounded integer-valued flow f from A to B with the desired regularity properties.

Lemma 2.16. Let f be a bounded integer-valued flow from A to B in Gy. Then there
is an integer R and an equidecomposition between A and B such that each piece is an
R-local function of f, A, B and finitely many strips. Moreover, if (1.2) (that is, the extra
assumption of Part (¢) of Theorem 1.3) holds, then we can additionally require that each
piece contains a Lebesgue measurable subset of positive measure.
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Proof. Using Corollary 2.12, let W,., for each integer r > 1, be a maximally r-discrete
subset which is a finite union of strips. For each v € T*, let 1, (v) be the vertex u € W,
such that distg,(v,u) is minimised and, among all vertices of W, at the minimum
distance from v, the vertex u comes earliest under <. For each r > 1 and u € W,., let

V() == {v € T" : 5, (v) = u}.

The sets V;.(u) for u € W, clearly partition T*. They can be thought of as “Voronoi

cells” generated by W, with respect to the graph distance in G4, where ties are broken

using <jex. Since W, is a maximal r-discrete set, every element of V,.(u) is at distance

at most r from uw € W, and thus the diameter of every Voronoi cell is at most 2r.
Since W, is r-discrete, we have

Nipj2ylu] C Vi (u)
for every u € W,.. Combining this with Lemma 2.1, we see that

min min { |V, (u) N A|, |V;(u) N B|} = Q(r9)

ueW,
as r — oo. It is not hard to argue (see, e.g., the proof of Lemma 5.13) that |0gV,(u)| =
O(r%=1) as r — oo where the implicit constant depends on d only. (Recall that Og
denotes the edge boundary of a set, as defined in (2.3).) Thus, if r is sufficiently large
with respect to || f]|s0, then

(2.19) min {|V,(w) N AL V() B} = > [f(v.w)

vw€edg V. (u)

for every u € W,.. We fix r large enough so that (2.19) holds for every w € W,.; to achieve
the “moreover” part of the lemma, we will need the slightly stronger inequality (2.20)
stated later.

For each pair u,u’ € W,., define

Fuu)= 3 fow),
veV,(u)
weV,.(u')

that is, F(u,u’) is the total flow sent by f from the Voronoi cell of u to that of w'.
Define A(u,u’) := ) for every pair of distinct uw,u’ € W, with F(u,u’) = 0. Given
u € W,, there are finitely many v’ € W, \ {u} for which F(u,u') # 0. For every
such «’, one by one in order prescribed by <oy, we define A(u, ') to be the set of
those max{0, F(u,u’)} elements of V,.(u) N A that have not already been assigned to
A(u,u”) for some u” <jex ' and, subject to that, are minimal under <jex. Note that,
by (2.19), this is always possible. Similarly, we define B(u, ') to be the set of those
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P

Fig. 1. An illustration of the construction of the equidecomposition from an integer-valued flow f in
Lemma 2.16 in the simplified setting d = 2. White nodes are elements of a maximally 19-discrete set
and the boundaries of the induced Voronoi cells are in bold. Elements of A and B correspond to black
round and square nodes, respectively. The total flow from the central Voronoi cell to the bottom-left cell
is 2; hence the first two elements of A in the lexicographic order in the central Voronoi cell are associated
to that cell. After distributing elements of A and B to the neighbouring cells, the two remaining (lexico-
graphically latest) elements of A and of B in the central cell are mapped to one another.

max {0, —F(u,u’)} <jex-minimal elements of V,.(u) N B that have not already been
assigned to B(u,u”) for some u” <jox v'. Finally, for each u € W,., define A(u,u) to
be the set of those vertices in V,.(u) N A that have not been assigned to A(u,u’) for any
u' € W, \ {u} and define B(u,u) similarly. We have by construction that

|A(u,u’)| = |B(u/,u)|, for all distinct u,u’ € W,,

and this holds also for u = u’ since f is a flow from A to B. The final equidecomposition
assigns, for all u,u’ € W,, the vertices of A(u,u’) to those of B(u',u) in the order
prescribed by <ex; see Fig. 1 for an illustration.

Since each cell has diameter at most 2r, this yields an equidecomposition by transla-
tions in which the translation vectors are of the form Z?:l n;x; with [|7]|eo < 4r + 1.
Thus the total number of pieces is finite. Furthermore, the vector by which we translate
any v € V;.(u) N A depends only on the situation inside V;.(u), its adjacent Voronoi cells
and their adjacent Voronoi cells, and the values of f at their boundary edges. All these
cells are contained entirely inside Ng,12[v], and so the statement holds with R := 6r + 2.

The “moreover” part of the lemma is only needed for Part (c) of Theorem 1.3. Its
proof may be skipped by the reader interested only in the other parts of Theorem 1.3. In
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brief, the new idea is to arrange that the piece corresponding to each translation vector
t € T* that is used in the equidecomposition is pre-assigned a small non-null subset
Ag C A. Of course, this is possible only if (A + ¢) N B has positive measure, so we have
to exclude all vectors violating this.

Let us provide the details. For each integer r > 1, let W,., 1. and V,. be as in the proof
of the first part. Now, fix an integer r such that, for every w € W, it holds that

(2.20) min { [V (w) NA[ Vi(w) 0B} > ) (If(v,w)[+1),
vweEIg Vr(u)

that is, we require a slightly stronger bound than the one in (2.19).

Let T be the set of all vectors of the form ¢ = 2?21 n;x; such that @7 € Z¢ with
I7]lcc < 107 and (A +t) N B # (. Since (1.2) holds, we have by (2.12) that, for every
t € T, the set (A+t)N B has positive measure. (Recall that the sets A and B satisfying
the assumptions of Theorem 1.3 are necessarily Lebesgue measurable.)

Claim 2.16.1. There exists a sequence (A¢)ier of pairwise disjoint measurable non-null
subsets of A such that the union Jycp At is (100r)-discrete in Gq and, for allt € T,
A+t C B.

Proof. We use a simple greedy argument. By Observation 2.10, we can choose  suffi-
ciently small so that every strip of width at most v is (100r)-discrete. Assume further
that v is chosen small enough so that

7(200r + DT < A((A+t)NB) = A(AN (B —t))

for every t € T. Label the elements of T' by 1, ..., %7 in an arbitrary fashion.
Start by taking Si, to be a strip of width vy such that the intersection

Ay, == AN (B —t1)N Sy,

1
is non-null. Clearly, the measure of As, is at most the measure of S, , which is ~.

Now, let 2 < ¢ < |T'| and assume that each of the sets Ag,,..., A¢,_, has measure at
most . Then, by our choice of ~, the set

i—1

(AN B —=t))\ | | Moor [Ae,]

j=1

has positive measure. Take any strip St, of width + that has non-null intersection with
the above set and let A¢, be this intersection.

The collection {A¢, : 1 < @ < |T'|} has all of the desired properties, simply by con-
struction, finishing the proof of the claim. O
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Let (Ag)ter be the sequence returned by the claim. Observe that, for any distinct
t,t' € T, the sets Ay +t and Ay + t' are disjoint; otherwise, by the definition of T,
the sets Ay and Ay would be at distance at most 20r in G4, contradicting the fact that
Uger A¢ is (1007)-discrete in Gg. Thus, the sets Ag for ¢ € T form an equidecomposition
of the subset

A= A

teT

of A to the subset

teT

of B using translations in 7T'.

Now, for each t € T' and each vertex v € Ay, take a shortest path from v to v + ¢ in
G, chosen to be <jex-minimal among all such paths, and let f,, be the (unique) {0, £1}-
valued flow in G4 from {v} to {v + t} supported on the pairs which form edges of this
path. Since the set | J ., A¢ is (1007)-discrete, any two such paths are edge disjoint; in
fact they are at least 80r apart in G4. Thus the flow

= Y e

veUtET Ay

satisfies || f*||co < 1. Also, letting f/ := f — f*, we see that (2.20) implies that, for every
ueW,,

min { [V, (w) N A [Vo(w)N B} > > [f(v,w)],
vweIp V- (u)

since at most one path in the support of f* can intersect dgV,-(u). Clearly, f’ is a flow
from A\ A* to B\ B* in G4. By the proof of the first part of the lemma with f’ in the
place of f, we see that there is an equidecomposition from A\ A* to B\ B* in which
each v € A\ A* is associated to a point in B\ B* which is either in the same Voronoi
cell as v or one which neighbours it. In particular, all of the translation vectors used
in the equidecomposition are contained in 7. Moreover, by making the <j.c-smallest
choices inside each Voronoi cell, we can assume that each piece is an O(r)-local function
of f,W,, A, B, Ag,, ..., At - In turn, each set Ay, is a O(r)-local function of A, B and
the strips St,, ..., St

Taking, for each t € T, the union of A¢ and the (possibly empty) piece of the equide-
composition from A\ A* to B\ B* corresponding to ¢ yields an equidecomposition of A
to B using translation vectors in T such that every piece is non-null, as required. O
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3. Proof outline

With some preliminaries covered by Section 2, we can now provide a more detailed
outline of the proof of Theorem 1.3 than the one given in Section 1.2. In order to
illustrate how the various arguments fit together, we will first sketch the construction of
an equidecomposition with Jordan measurable pieces (which are not necessarily Borel)
and then outline how to build upon it to get the full result. Our approach mostly follows
the general recipe established by Marks and Unger [28], some aspects of which can be
traced back to the ideas of Laczkovich [22-24] and Grabowski, M4thé and Pikhurko [15].
A major challenge here is that the family of Jordan measurable subsets of T* is not
a o-algebra (although it is an algebra). Therefore, there are a few key differences in
our implementation and analysis of this strategy which are necessary to achieve Jordan
measurable pieces.

3.1. Real-valued flows

Following Marks and Unger [28, Section 4], we construct a sequence f1, fa,... of
bounded real-valued flows in G4 which converge uniformly to a bounded real-valued flow
foo from A to B. The following lemma summarises the key properties of f1, fs,... that
we will need. Recall that ¢ and ¢ are fixed quantities which were defined in Section 2.4.

Lemma 3.1 (Marks and Unger [28]). There exist flows fi, fa,... in Gq such that for all
m 2= 1 the following statements hold with fo := 0 being the flow which is identically zero:

1) 22dmf, s integer-valued,

2) If3 = 1a+ 18l < gmitess

3) ||fm - fm—lHoo < ﬁ; and

4) fim is a (2™ — 1)-local function of A and B.

The proof of the lemma follows that of a similar result in [28, Section 4]; we include the
proof in Section 4 for completeness. The rough idea is as follows. Suppose that we have
fixed a partition of [u]g, = Z? into discrete 2™-cubes. Within each cube @, we define the
flow f,, so that it cancels as much as possible between the positive demand 1 4 and the
negative demand —1 g, and spreads the rest uniformly over @. A bit more formally, the
restriction of f,, to @ is an (14 —1p+£(Q))-flow, where £(Q) := (JANQ|—|BNQ|)/|Q|.
Also, f,, is zero on all edges between distinct cubes of the partition. Assuming that
the fixed dyadic partitions are aligned for different values of m, we can construct such
fm incrementally from f,,_1. As long as we do this increment in a “reasonable” way,
the discrepancy bound of Lemma 2.1 gives a good upper bound on || fi — fi—1/loo-
Unfortunately, one cannot take a perfect dyadic decomposition of each component of
G4 in a constructive way for a generic choice of x4, ..., xs. However, the convenience
of working with flows (versus graph matchings) is that we can always take their convex
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combinations. So, in order to make the construction of each f,, local, one can simply
take the average over all 2% possible partitions of each component (a copy of Z%) into
a grid of discrete 2"-cubes.

Each flow f,,, assumes finitely many values by (3.1) and is a local function of the
Jordan measurable sets A and B. Since the right hand side of (3.3) is summable, the
sequence f1, fa, ... converges uniformly to a bounded flow in G4, which we denote by f.
By (3.2), the limit f is a flow from A to B.

With Lemma 3.1 in hand, the goal of the next two steps is to transform the sequence
f1, f2, ... into a bounded integer-valued flow f from A to B in G4. Notice that, if we were
indifferent about the structure of the pieces of the final equidecomposition, then we could
just apply the Integral Flow Theorem to f. to obtain such a flow f and then feed it into
Lemma 2.16. In particular, this approach is sufficient for proving Theorem 1.1. However,
this would use the Axiom of Choice and yield virtually no structural guarantees on the
pieces of the equidecomposition. The main purpose of the next two steps, therefore, is
to obtain an integer-valued flow from A to B in a more careful manner which allows us
to analyse the obtained pieces.

3.2. Toast sequences

Recall that the notion of a toast sequence was defined in Definition 2.14. Informally,
if (J;)$2, is a toast sequence, then one can view J; as a collection of bounded and well
separated connected subgraphs of G4 that arrive at time ¢ so that every component S
of vertices that arrived in an earlier stage is either entirely inside J; or entirely outside
J;, including some “padding”.

The following lemma provides a simple construction of a toast sequence which covers
T* up to a null set. (This will be sufficient for our sketch of the construction of an
equidecomposition with Jordan measurable pieces.)

Lemma 3.2. There exists a toast sequence (Jyi,J2,...) in Gq such that A (U;=; Ji) = 1
and, for each i > 1, the set J; is a union of finitely many disjoint strips.

Proof Sketch. The construction is slightly more complicated than is necessary, in order
for the sets J; to be defined in the same way as they will be in the proof of Theorem 1.3.

Recall that r{ < r; < 7] < re <rh < ...is a rapidly increasing sequence of integers
and X; C T* is a maximally r;-discrete set which is a union of finitely many strips.
Define I; to be the set of all v € T* for which there exists w € X; such that

distg, (v,u') > distg, (v,u) + 5r;_;, for every v’ € X; \ {u}.

Informally speaking, the components of I; are the Voronoi cells of X; C V(Gy), as defined
in the proof of Lemma 2.16, except we retract somewhat from their graph boundaries. It
is not hard to show that the diameter of each component of I; is at most 2r; and every
two components are at distance at least 5r;_; (see Lemma 5.4).
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We use induction on ¢ to define J;. Fix ¢ > 1 and assume that the sets Jj, for all
j < 1, have already been defined. We obtain J; as the result of the following procedure.
Initialise J; := I;. Then, while there exist j < ¢ and a component S of J; such that
distg, (S, Ji) < qj_1 +4 and Ny, 14[S] € J;, we add to J; all elements of Ny, 14[5].
(Recall that ¢} was defined by (2.9), being slightly larger than 4r;/5.)

Since the sequence r), < r; < r{ < ... increases sufficiently rapidly, this procedure
eventually terminates and in fact stays within the ¢;_;-neighbourhood of I; (Lemma 5.6).
Thus, when we construct J; from I;, the original components of I; do not merge and stay
well separated, being at distance at least 5r;_; — 2¢,_; from each other. (This stronger
separation property is not needed here, but will be useful in the general proof.) The
other properties of a toast sequence from Definition 2.14 hold because, whenever some
earlier component S’ (that is, S’ € comp(J;) with j < i) comes too close to a currently
defined component S of J;, we add S” with some padding to S (with the new enlarged
set S still being connected).

We trivially have A(J;) > A(I;). On the other hand, the measure of I; can be shown
to be least 1 — O(ri_,/r;) (see Lemma 5.13), which approaches 1 as i — oo.

Whether or not a vertex u € T* is contained in J; can be determined by the structure
of the sets Xi,...,X; at bounded distance (say, 4r;) from w in G4 (see Lemma 5.11);
thus, J; is a local function of X1,..., X;. So, it can be written as a union of finitely many
disjoint strips by Observation 2.6 (since such sets form an a-invariant algebra), finishing
our proof sketch. O

3.8. Integer-valued flow

The last remaining step is to use the flows (f,,)%°_; from Lemma 3.1 and the toast
sequence (J;)$2, from Lemma 3.2 to construct an integer-valued bounded flow f from A
to B that will be used as input to Lemma 2.16 to equidecompose A and B. Unfortunately,
the construction of f is somewhat involved, even in the context of Jordan measurable
pieces.

Although this is not strictly necessary, we keep the perspective that a new set of
vertices J; arrives at time ¢ and we have to fix for good the value of f on every new edge
intersecting J;, being compatible with all previous choices. It is enough to concentrate
on constructing the final values of f on the edges in dgJ;, that is, on all new boundary
edges. Indeed, since every component S of J; is finite, there are only finitely many
possible extensions of f to a uniformly bounded integer flow inside S and, if at least one
exists, then the lexicographically smallest extension is a local function of the boundary
flow values, Ji,...,J;, A and B whose radius is at most the diameter of S. A bit later,
we will address the problem of certifying the existence of such an extension.

So, take any S € comp(J;), i.e., a component of Gy [ J; which must be finite by the
definition of a toast sequence. Initially let f be f,,, on OgS, where m; is sufficiently large
integer depending on the maximum diameter of the components of J;. We repeat the
following for every “connected” part P C 9gS of the edge boundary of S. Let S” consist
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of the vertices “enclosed” by P; thus, S’ is either a hole of S or the set S with all its holes
filled. By adjusting the value of f on one edge of P, we make the total flow out of S’ to be
|ANS'|—|BNS|. Since fo* is a very good approximation to 14 — 1, we need to adjust
the flow by less than 1/2. Using Lemma 6.4, we find a sequence (u1v1,...,%;—10¢—1) in
P so that each edge in P appears at least once but at most constant number of times
while u;v; and w;1v;41 are in a triangle in G4 for each 1 < j <t — 2. Make f to be
integer on u1v; by adding a 0-flow (i.e., a flow ¢ such that ¢°** : V(G4) — R is the zero
function) on the unique triangle containing both w;v; and ugvs. (Note that the third
edge of this triangle is not in dgS and thus we do not care about the flow through it
being integral at this stage.) By adding a 0-flow along the triangle containing both usvs
and uzvsz, we make the flow value on usvs integer, and so on. We repeat this procedure
t — 2 times in total, ensuring that the final flow f is integer-valued on all edges of P
except perhaps w;_j1v;_1. Note that this part of the process does not change the flow
out of any vertex under f. So f°U(S’) keeps its (integer) value and thus the final flow
has to be integer also on u;_jv; 1. Clearly, the definition of f can be made local by
fixing a consistent rule for choosing the adjustment, the edge sequence and the values of
the added 0-flows.

If we had used f as the initial values of f on P, then the initial adjustment step would
not be necessary, and the obtained rounding algorithm would be essentially the same
as used by Marks and Unger [28]. Unfortunately, if we wish to have Jordan measurable
pieces, then we should (and, in fact, we do) avoid using the values of fo, (which is
the pointwise limit of f1, fa,...) when defining f on |J;-, O J;. However, we can freely
use foo to define, in a way that parallels the construction of f from f,,, a real-valued
flow which certifies via the Integral Flow Theorem (Theorem 2.3) that the constructed
integer flow values on |J:, dgJ;, can be extended to a bounded integer (14 — 1p)-
flow on all edges of G4 (see Lemma 6.9 for details). As mentioned above, given that
such an extension exists, we can choose the lexicographically minimal one on each finite
component of the remaining graph; this includes all edges inside |J;-, J;. Here, crucially,
the choice of the extension is independent of f..

Now, during the construction, each of the (finitely many) sets Z,’;l N (Uj-:l Jj) that
describe the flow f on edges incident to the vertices which have arrived by time ¢ (where
Z,{[ is as in (2.14)), only grows in time, since the values of f fixed at time j are never
overwritten later. These sets are Jordan measurable (as local functions of fr.,,..., fm,
and Ji, ..., J;) and their union over all values of i and ¢ covers the co-null subset |J;-, J;

of T*. Thus, for every ¢, the set Z ,J; N (Ujoil Jj) is Jordan measurable by the following
lemma (applied with Z := T*).

Lemma 3.3. Let Z1, ..., Zn be pairwise disjoint subsets of a Jordan measurable set Z C
T*. If, for every real ¢ > 0, there are Jordan measurable subsets ZJ’- C Z; such that
AMZ\ Ujvzl Z}) < e, then all of the sets Z1,...,Zn are Jordan measurable.
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Proof. By adding T* \ Z as an extra set and increasing N by 1, we can assume that
Z = T*. For each integer i > 1,1et Z1; C Z1,...,Zn: C Zn be Jordan measurable sets
such that A\(Z\ Ujvzl Zj;) < 1/iand, for 1 < j < N, we let U;; be the interior of Z; ;.
Also, define U; := |J;=, U; ;. Since Z;; is Jordan measurable, we have that U;; has the
same Lebesgue measure as Z;;. Thus, the sets Uj,...,Un are pairwise disjoint, open
and cover T* up to a null set. For any 1 < j < N, since Uj is open and contained in Zj,
the boundary of Z; is disjoint from Uj;. Also, for any j # j, since the set Uj: is open
and disjoint from Z;, we see that the boundary of Z; is also disjoint from Uj/. Therefore,
for each 1 < j < N, the boundary of Z; is contained in the complement of Ufil U; and
therefore has measure zero. Thus the set Z; is Jordan measurable. O

It also follows from the above lemma that the remaining set T* \ | J:2, J; is Jordan
measurable and, being also a null set, has null closure. Thus, without destroying Jordan
measurability, we can use the Axiom of Choice to define a suitable integer-valued flow
on all edges inside this set, using f., in the same way as above to certify the existence
via the Integral Flow Theorem.

Finally, we apply Lemma 2.16 to f to get an equidecomposition between A and B as
an R-local function of f (that is, the sets Zf?ié) and finitely many strips; thus, the pieces
are Jordan measurable.

Remark 3.4. We could have slightly restructured the proof so that whenever the partial
integer-valued flow f is defined in the whole R-neighbourhood of some u € A, where
R is the constant returned by Lemma 2.16, then we assign w to the appropriate part
of the final equidecomposition. Then the obtained Jordan measurable pieces will be
incrementally growing as we process Ji,Ja,... one by one, exhausting the set A up
to measure zero. Thus, we could have applied Lemma 3.3 directly to the pieces (with
Z :=A).

3.4. Making the pieces Borel

Let us now discuss how the approach to obtaining a Jordan measurable equidecompo-
sition described above can be built upon to obtain the stronger conditions of Theorem 1.3.

The main issue to address is the use of the Axiom of Choice in the final step, which
must be avoided in order to yield Part (b) of the theorem. If A and B are Borel, then
a natural idea for obtaining simultaneously Jordan and Borel pieces is to try to use the
existence of a Jordan measurable equidecomposition together with the equidecomposition
of Marks and Unger [28]; however, we did not see a way of doing this directly. Instead,
we follow essentially the same proof as outlined above (with all locally defined structures
being Borel if the sets A and B are) except that we use a version of Marks and Unger’s
proof in [28] to round the flow values inside T* \ | J;Z, J; in a way that preserves Borel
structure. The Jordan measurability of the final pieces is preserved since, in this extra
stage, we do not change any flow value on any edge intersecting | J;~, J;.
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Our extra steps can be summarised as follows. With sets J; defined as above and fixed
for good (where the role of the parameter 7}_, is to provide enough “wiggle space” be-
tween the components of .J;), we interleave the sequence (Ji, Ja, . ..) with sets K1, Ks, . ..
to create an augmented toast sequence (J;, K;)2,. (Recall that (J;, K;)$2, is a short-
hand for (Ji, K1, Ja, Ko, ...).) Simultaneously, we will construct sets L1, Lo, ... so that
(K, L;)2, is also a toast sequence. The purpose of the sets Ly, Lo, ... will be to cover
all of the points of T* that are “left behind” by the construction of Ji, Js, ... in a Borel
way, while the purpose of K; is to provide some extra “cushioning” around J; to pro-
tect the flow values on edges intersecting .J; from being influenced by L;. The sequence

(Ki, Ks,...) can be seen as a mediator between the competing goals of Ji,Ja,... (to
keep the boundaries of the final pieces small) and Ly, Lo,... (to cover all of T* in a
Borel way).

We build K; by initialising K; := N3[J;] and then iteratively adding (with an appro-
priate padding) all components of J;, K; or L; with j < i that come too close. As before,
this process when started at any S € comp(J;) goes only a small distance away from
S and the obtained component S of K; satisfies S" C Ny 2[S] (Lemma 5.7) while,
trivially, S’ D N3[S]. Thus every component S of .J; is “mimicked” by a component S’
of K;. When we construct L;, we start with L; := N, /51Yi] (where Y; is maximally
ri-discrete) and keep adding (with some padding) components of K for j < i and L; for
J < i that come too close. Note that each component S of J; with j < ¢ is “protected”
in this process by the component S’ of Kj; that mimics it: if L; comes too close to S
then S’ D S with some extra padding is added to L;. What we have achieved is that
the toast sequence (Kj, L;)72, covers all vertices in ;2 Li 2 s, Ny /5[Yi]. Using a
compactness argument, we will show that, by applying this construction with a modi-
fied version of Y;, we can ensure that all vertices of T* are covered; see the discussion
following Lemma 5.14.

Unfortunately, (J;, K, L;)$2, is not, in general, a toast sequence. Also, we do not
want any S € comp(K;)Ucomp(L;) to “interfere” with what happens inside J; for some
i > j. Our solution is, essentially, to remove all such conflicting components S, obtaining
sets K and L The new sequence (Jz,KZ,L )2, is then a toast sequence that does
not break up any finite components coming from the toast sequence (J;)$24; also, it still
covers every vertex of |J;2, L; (see Lemma 5.10). The proofs of these claims rely on the
fact that the components of K; “mimic” the components of J;.

We define the desired integer-valued Borel flow f by using the same construction as
in Section 3.3, except that we replace the toast sequence (J;)52; by (Jz,Kz, L; )2

3.5. Reducing/analysing the complexity of the pieces

The idea to use f,, instead of fo in the construction of the integer-valued flow f is,
essentially by itself, enough to save one level of the Borel hierarchy when compared to
the proof of Marks and Unger [28]. There are a couple of places where we change their
construction or its analysis in order to drop down by another level of Borel complexity.
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(In particular, we have to use a different toast sequence (J;, IAQ, Ei);’il, some modification
of (J;, Ky, L;)?,, for the final rounding.) These changes are incorporated in the main
construction, while the Borel complexity analysis is postponed until Section 7.2 for the
clarity of presentation.

Our approach to bounding the upper Minkowski dimension (defined in (1.1)) of the
boundaries of the pieces is, for given § > 0, to choose some index i = i(d) and run our
algorithm to process Ji,...,J;. Although we do not know the final equidecomposition
at this moment, we may nonetheless determine for some elements of A to which final
piece they will belong. This defines the current partial pieces Ay,..., Ay (that give an
equidecomposition of some subset of A to a subset of B). Now, we estimate the number
of boxes of a regular grid with side length ¢ that intersect the currently unassigned part
of A or the boundary of any current piece A;. (Thus, our dimension estimates depend
only on Ji, Jo,... and not on how Kj, Ly, Ko, Lo, ... are built around them.) Recall by
Lemma 3.2 that each set J; is a finite union of strips, whose number we can estimate
if the sets X; are carefully chosen (namely, as in Lemma 7.6). Also, we can estimate
a radius R so that the current pieces Aj,..., Ay can be R-locally determined from A,
B and Ji,...,J;. Thus each A; is a Boolean combination of (2R + 1)? translates of
each of these sets, and the number of boxes that intersect its boundary dA; can be
bounded above by the number of boxes intersecting the boundary of at least one of these
translates. Furthermore, every other box that may potentially intersect the boundary
of a final piece has to be a subset of A" := A\ (Uj.\]:1 A;) and their number can be
upper bounded by A(A’)/§* by the trivial volume argument. Thus we have to control
our parameters carefully to get a good balance between the minimal distance between
the components of J; (in order to control the measure of the leftover part A’ of A) and
their maximum diameter (as our local rule processing J; has to use radius at least as
large as this diameter).

4. Proof of Lemma 3.1

Our goal in this section is to present, for the sake of completeness, the (somewhat
rephrased) construction of Marks and Unger [28] of a sequence f1, fo, ... of real-valued
flows in G4 which converge uniformly to a bounded flow f, from A to B in G4. For the
reader’s convenience, let us repeat the statement of the result that we will use.

Lemma 3.1 (Marks and Unger [28]). There exist flows fi, fa,... in Gq such that for all
m = 1 the following statements hold with fo := 0 being the flow which is identically zero:

1) 224m f  is integer-valued,

2) (I =14+ 1plloc < gty

3) N fm = fin—1lloo € grro%—y, and

4) fm is a (2™ — 1)-local function of A and B.
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Proof of Lemma 3.1. First, we need to introduce a few definitions (that apply only in
this section). Given a discrete cube @ in G4 (as defined in (2.2)), define

_l@nAl-1QnB|

In other words, £(Q) measures the difference between the number of vertices of A and B
in @ normalised by the number of vertices in ). In particular, if ) is a discrete 1-cube,
i.e., Q = {u} for some u € T*, then £(Q) = 1a(u) — 1p(u).

By our assumption (2.10), it holds for every discrete 2™-cube @ that

QC(Qm)dflfa B 2¢
(4.1) €O < ——dm— = gmase-

Given u € T*, 7 € {-1,0,1}¢ and n € Z, let ¢, 5 be the unique {—1,0, 1}-valued
(Il{u} - ]1{(n,y).u})—ﬂow in G4 supported on the edges of the path

u, y-u, (29)-u, ..., (ny) - u.

In other words, ¢, 5 sends a unit of flow from w to (n7) - u along the straight-line path
(whose direction is 4 and graph length is |n|). In particular, if n is the zero vector, then
the flow ¢, 5 is identically zero. Also, for an integer m > 0 and a discrete 2™ *!-cube
Q containing u € T*, let

1
¢u,Q = 2_d Z ¢u,2m'7-

Fe{-1,0,1}¢
(2™9)ueQ

Note that the above sum contains exactly 2¢ terms. Informally speaking, @u,q spreads
one unit of demand from w uniformly among Q N ((2™Z<) -, u), the set of all 2¢ points
of Q that, when we view Q as a subset of Z%, are congruent to w modulo 2™. For every
discrete 2™+ 1-cube Q, let P(Q) be the unique partition of @ into 2¢ discrete 2™-cubes.
Given u € T*, let Q,,(u) denote the set of all discrete n-cubes that contain u. See Fig. 2
for an illustration of some of these definitions.

We are now ready to define the flows f,,. We use induction on m and start by defining
fo := 0 to be the identically zero flow. For m > 1, we define f,, := fyn—1 + 0, where

(4.2) Oy = Q%m DD D3 (e) > Pu.Q-

ueTk CEQym—1(u) discrete 2™-cube Q
P(Q)>C

Let us provide a probabilistic interpretation that motivates the definition in (4.2) and
relates it to the proof outline of Section 3.1. Suppose that we wish to compute 6,, and
fm inside the component [v]g, of some vertex v € T*. Take a random partition G,, of
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Fig. 2. An example, for d = 2, of a 4-cube Q, its dyadic partition P(Q) into 2-subcubes and the flow ¢ ¢
for a vertex u € Q (where each arrow represents a flow of value 1/4 in that direction).

the orbit [v]g,, which is a copy of Z?, into a 2"-grid (that is, a regular grid of discrete
2™_cubes), where all 29™ choices of G,,, are equally likely. By defining

= U{P@Q): Q€ Gt}

inductively for i = m — 1,...,0, we get the dyadic refinements of G,, down to the
(deterministic) partition Gy into discrete l-cubes (i.e., singletons). Note that we work
inside one component only since, for generic @1, ..., x4, there cannot exist a measurable
choice of a 2™-grid inside each orbit by ergodicity considerations.

Starting with fg, := 0 being the zero flow, obtain inductively for ¢ = 1,2,...,m, the
flow fg, from fg, , by adding

(4.3) b, = > > (La(w) - 1p(w) - 5", (w)) bu:

QeG; ueQ

Note that fg, and fg, do not depend on m (for m > ). Inside each 2'-cube Q € G;, the
increment flow 6g, spreads the current demand error 14 — 1p — f"“t1 uniformly inside
each congruence class modulo 2¢=1. Of course, if the error 14 — 1 — f"“t is constant
on each cube in P(Q) for some @Q € G; then fg, spreads this error evenly inside Q. Thus
an easy inductionon¢=1,2,...,m shows that 14— 15— f‘g)ft is constant on every cube
Q € G;. Moreover, since fg, is zero on the edge boundary of ) € G; (and thus sends no
flow out of @), this constant is £(Q), that is,

(4.4) 1a(u) — 1p(u) — " (u) =£(Q), forallQ € G; and u € Q.

Thus we have

(4.5) Z Z £ Z Pu,@, forevery1<i<m

QeG; CeP(Q ueC

(and for ¢ = m we arrive at the definition in (4.2)).
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It follows from (4.2) and (4.5) that, inside the component [v]g,, the flow 6; for each
1 <@ < m is the expectation of g, over a uniformly random 2™-grid G,,, since G; =
Pm=4(G,,) is a uniformly random 2i-grid. Note that, by the linearity of expectation, f,,
inside [v]g, is the expectation of fg .

Now we are ready to verify all four conclusions, (3.1)—(3.4), of Lemma 3.1.

Conclusion (3.1) states that 229™f, is integer-valued. Indeed, the only non-integer
factors in (4.2) in addition to 279 are 2=4™=1) (from the definition of £(C')) and 2~¢
(from the definition of ¢, ), proving (3.1).

out

Next, let estimate how close f* is from the desired demand 14 — 1. By taking the
expectation over G,, of (4.4) for i := m, we get that

(16) Law) — 1(w) ~ [ = 5 S0 €(Q)
QEQam (u)

for all m > 0 and u € [v]g,. As v € T was arbitrary, (4.6) holds for every u € T*.
Now, (4.6) and (4.1) imply that, for every u € T¥,

’f;:lut(u) _ ]lA(’U,) + ILB(’U,)’ — Z 5(@) < 2dm . L 1 . 2c

dm om(1l+e) ’ 2d—m - om(l+e)’
QEQom (u)

which is exactly the bound of Conclusion (3.2).
For (3.3), we need to compute the maximum flow along any given edge under 6,,. Let
us re-write the right-hand side of (4.2) using only straight-line paths:

(4.7) Om = Qd% Z Z £(C) Z ol{iyi=0}| %

UETk CEQym—1(u) 7€{-1,0,1}*
F2(0,1.0)

(Note that, for a discrete 2™~ '-cube C, the quantity 2{#7=0} is exactly the number of
discrete 2™-cubes @ such that P(Q) contains both Q and (2™~15) -, Q.) For any given
edge vw, there is a unique 7 € {—1,0, 1} such that w = 7 - v. The number of vertices
u such that either ¢, om-15 Or ¢y, _om-15 are non-zero on the pair (v, w) is precisely
2.2m=1 = 2™ Since 7 is non-zero, we have 21{#:=0} < 2d=1 So by (4.1) and (4.7), we

have

2¢ 21 2
"9(m-1)(1te)  9d  dte(m-1)°

|0 (v, w)| < 274 2m . 2lm=1d

Thus indeed, as stated by Conclusion (3.3), we have || f, — fm—1lloc < e
Finally, let us prove (3.4) which states that f,, is a (2™ — 1)-local function of A
and B. Since this is trivially true for the zero flow fy, it is enough to prove that, for
every m > 1, the flow 6, is a (2" — 1)-local function of A and B. Since every discrete
2™-cube containing a vertex v lies inside the (2™ — 1)-neighbourhood of v, it follows
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from (4.2) that the values of the flow 6,, on the edges incident to v depend only on
intersections of A and B with Nam_1[v]. Thus f,, = 61 + ...+ 0, is indeed a (2™ — 1)-
local function of A and B, as required.

This completes the proof of Lemma 3.1. O

Note that the sequence fi, fa,... is clearly convergent as the expression on the right
side of the inequality (3.3) is summable as a function of m. We can therefore define f
to be the pointwise limit of f;, fa,... . The following corollary is immediate by applying
the triangle inequality and summing the bound in (3.3).

Observation 4.1. For any m > 0,

Nt = 2 c2lte

5. Toast sequences

Our next goal is to formally describe the construction of the toast sequence (J1, Ja, . . .)
from the proof of Lemma 3.2 as well as some other toast sequences built around it.

5.1. Some preliminaries

Let us say that a set A cuts a set B if both B\ A and BN A are non-empty. The
following definition is key to describing our constructions.

Definition 5.1. For i > 1, let D = (Dy, Do, ..., D;) be a sequence of subsets of T* and
let b > 0. Define Cy(D) C T* to be the set constructed as follows:

(5.1) initialise Cy(D) := D;,
(5.2) while there exist 1 < j <i—1and S € comp(D;) such that C,(D) cuts N,[S], add
all vertices of Ny[S] to Cp(D).

It may help the reader to have the following informal description of the step in (5.2)
in mind: the current set Cy(D) iteratively swallows each set N,[S] that it intersects
(unless the whole set Np[S] is already inside it). Note that the order in which we perform
the operations in (5.2) does not affect the final set Cp(D). Intuitively, Definition 5.1
is designed so that the boundaries of the components of the final set Cy(D) are well
separated from D U --- U D, 1. Unfortunately, neither some separation between the
components of the new set Cp(D) nor their boundedness holds automatically (as two
distinct components of D; may grow too close to each other, or even merge); this will
require proofs based on various extra properties of the input sets D;.

The next lemma will be used to demonstrate that if the diameter of each component
of G4 | D; is not too large and the distance between them is not too small, then the
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obtained set C,(D) can be added without violating Properties (2.15) and (2.16) from the
definition of a toast sequence. Note that the lemma holds without assuming any bound
on the distance between distinct components of G4 | D;.

Lemma 5.2. Let D = (Dy, Do, ..., D;) be a sequence of subsets of TF, let b > 0, and let
(a1,az2,...,a;-1) and (bg,by,...,b;—1) be sequences of non-negative integers such that

(53) bj > aj + 2bj—1 + 2b, fOT’ alll < j<t—1.

If, for every 1 < j < i —1, every component of Gq | D; has diameter at most a; in Gq
and the distance in G4 between any two components of Gq | D; is greater than bj_1 + 20,
then Cb(D) g ij_l [Dz]

Proof. Take any vertex w € C,(D) \ D;. By definition of C,(D), there exists a sequence
S1,89,...,8, of distinct subsets of T* such that

(5.4) for each 1 < £ < n, there exists 1 < j < ¢ — 1 such that Sy is a component of
Ga | Dy,

(55) diStGd (Sl,Di) < b,

(5.6) distg,(Se, Ser1) <2bfor 1 < <n,and

(5.7) distg, (Sp,w) < b.

Given such a vertex w and sets Sy, ..., Sy, let u € D; be such that distg, (u, S1) < b. Our
aim is to prove, by induction on ¢, that, for every such w and u, we have distg, (u, w) <
b;—1. In the base case i = 1, the statement is true vacuously as Cp(D) = D; (and so no
such w can exist).

So, suppose that ¢ > 2. If none of the sets Si,...,S, is a component of G4 [ D;_1,
then the sequence S, ...,S, actually certifies that w € Cy(D1,D3,...,D;—o,{u}) and
we have that distg, (u, w) < b;—2 < b;—1 by induction on i.

Next, suppose that there is a unique index ¢ such that Sy is a component of G4 |
D;_1. Let y be a vertex of S; at distance at most 2b from Sy,_; (or, at distance at
most b from w in the case £ = 1) and let z be a vertex of S, at distance at most
2b from Spq1 (or at distance at most b from w in the case £ = n). The sequences
S¢—1,50—2,...51 and S¢y1, Seta, ..., Sy certify that w € Cp(D1, D2, ..., D;—a, Np[y]) and
w € Cp(D1,Da, ..., D;_a, Ny[2z]) respectively. So, by the inductive hypothesis and (5.3),

distg, (u, w) < distg, (u,y) + distg, (y, 2) + distg, (z, w)
< (dista, (u, No[y]) +b) + a;—1 + (diste, (Np[2], w) +b)
< (bi—2 +b) +ai—1+ (bi—2+b) < bi_1,

as desired.
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Finally, we consider the remaining case that there are two indices 1 < £ < £ < n such
that Sy, and Sy are distinct components of Gy | D;_1. Choose these indices so that £/ —£ is
minimised. Let y be a vertex of Np[S] which is at distance at most b from Sy and let z
be a vertex of Np[Sy] at distance at most b from Sy 1. The sequence Sy 1, Spt2, ..., Se—1
certifies that z is in Cy(Ds, ..., D;—2, {y}). By the inductive hypothesis,

diStGd(Sg, Sg/) < diStGd (y, Z) +2b < b;_o + 20,
which contradicts the hypotheses of the lemma. This completes the proof. O
5.2. Constructions of toast sequences

We now construct some toast sequences that we use in the proof of Theorem 1.3. We
remark that, as constructed, they will not immediately cover all of T*. However, at the
end of the section, we will give a compactness argument of Boykin and Jackson [5] (see
also Marks and Unger [28, Lemma A.2]) which allows us to produce one toast sequence
that covers all of the vertices (see Lemma 5.15).

We will use the global parameters r;, %, ¢;, ¢}, t;, t; that were defined in Section 2.4.
For the reader’s convenience, we repeat these definitions here. Namely, we set

(2.7) r=1002"""1,

WV

0,
(2.8) ri =100 72 > 1.

Thus 7 = 100 while r; = (r;_;)? and r, = 100r; for each i > 1. Then we defined gf, := 0
and, for ¢ > 1,

ti =2 +4q;_; +4,

i i=ti +2q;_; +4,

t; = 4r. /5 + 2q;,

(2.9) q; =t 4+ 2q; + 4.

Note that, within additive O(,/r;) as i — oo, the last four values are 2r;, 2r;, 84r; and
88r; respectively. It is tedious, but not hard, to verify that, with the specific definitions

above (or for the sufficiently fast-growing sequences as in Remark 2.4, with r; divisible
by 5), the following inequalities hold for all ¢ > 1:

(5.8) rh—=2>q, >t >q >t;>r; >5r_q,
(5.9) 7l > 15¢; + 25,
(5.10) Qip1 = 2rip1 + 6g; + 4.
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These are some key inequalities that will be used when establishing various properties
of the constructed sets in Section 5.3.

Recall that, for each ¢ > 1, X; is maximally r;-discrete and Y; is maximally r-discrete
such that both these sets are the unions of finitely many disjoint strips. For each i > 1,
define

L= J 1*

ueX;

where I* denotes the set of all v € T* such that
distg, (v,u') > distg, (v,u) + 5r,_, for every v’ € X; \ {u}.

The set I?* can be viewed as the “partial Voronoi cell” of u € X;.
Now, inductively for i = 1,2,..., define

(511) Jz = CQ(Nq6+2[J1], ey Nq£72+2[Ji,1], Il),
(512) Kl = CQ(Kl,Ll,...,Ki_l,Li_l,NQ[Ji]),
(5.13) Li:=Co(Ky, Ly,..., K1, Li—1, Ki, Noyw s5[Yi]).

We will show that (Jy, K1, Jo, Ka,...) and (K1, L1, K2, Lo, ...) are toast sequences.
In particular, this implies that (Jy,Js,...) is a toast sequence. Along the way, we will
also prove some key properties of these sequences of sets which will be applied later in
the paper to prove Theorem 1.3.

5.8. Properties of the constructed sequences

We begin with the following statement, which simply follows by construction.
Lemma 5.3. For every i > 1, we have I; C J;, No[J;] C K; and N2T2/5[Y;] CL;. O
Next, we prove a lemma regarding the structure of I;.

Lemma 5.4. The sets I}* for u € X; are exactly the components of G4 | I; and the
distance in Gy between any two of these sets is at least 5r;_,. Also, for each u € X;, the
diameter of Gq | I* is at most 2r; and I* N X; = {u}. Furthermore, I; is a 2r;-local
function of X;.

Proof. Take any u € X; and v € I**. It holds by r; > 5r/_; that u € I}*. Every vertex
on a shortest path from v to uw in G4 is contained in I}* so this set is connected. Since
X; is maximally r;-discrete and u is the element of X; at minimum distance from v, we
have that distg, (u,v) < r;. Thus, the diameter of G4 | I* is at most 2r;.
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Now, for distinct w,w € X; in the same component of Gg4, let vgvy...v, be the
shortest path in G4 from I* to I?”. Then we have by definition that

distg, (vo,u) + 2n > distg, (vn, u) + n > distg, (v, w) + 57 +n

> distg, (vo, w) + 5r;_, = distg, (vo, w) + 107]_,

and so n > 5r}_,. Therefore, the sets I*, for u € X;, are the components of G4 | I; and
the distance in G4 between any two such components is at least 5r]_;.

Finally, in order to decide if some v € T* belongs to I;, it is enough to compute the
distance d from v to X; in G4 and then check if the (d + 57}_; — 1)-neighbourhood of
v contain a unique element of X;. Since d < r;, the set I; is a local function of X; of
radius r; + 5r_, < 2ry, finishing the proof of the lemma. 0O

The following lemma holds because Y; is maximally r-discrete; we omit its easy proof.

Lemma 5.5. Every component of Gq | Na,r/5[Yi] has diameter at most 4r}/5 and contains
exactly one vertex of Y;. Also, the distance in Gg between any two such components is
at least /5. O

The proofs of the next two lemmas are the main applications of Lemma 5.2.

Lemma 5.6. For i > 1, we have that J; C Ny | [I;], the distance in G4 between any two
distinct components of G4 | J; is least 5ri_, — 2q;_,, and every component of G4 | J;
has diameter at most 2r; + 2q,_, and contains exactly one vertex of X;.

Proof. We proceed by induction on i. The base case i = 1 follows from Lemma 5.4 as
Ji1 =1 and ¢ = 0. Let i > 2. We would like to apply Lemma 5.2 with b := 2 to the
sequences

(5.14) (Ngy42lJ1ls -+ Nyt y2lJizal, L), (t),...,ti_y) and (g0, ..., q}_1)-

Let us check the assumptions of Lemma 5.2. By induction, for every 1 < j < i—1, every
component of Gq [ Nys_ 2[J;] has diameter at most (2r;+2q;_1)+2(¢j_, +2) =t; <]
and the distance in G4 between any two such components is at least (57_; —2qj_) —
2(gj_q + 2), which is strictly larger than ¢;_; +4 by (5.8). Also, the distance between
any two components of Gq | I; is at least 5r_; > ¢}_; + 4 while the inequality in (5.3)
for 1 < j < i —1 (which states that ¢; > t. + 2¢)_; + 4) holds by ¢; > ¢;_;. Thus
Lemma 5.2 applies to the sequences in (5.14) and gives that J; C Ny, [I;], proving the
first stated property.

This routinely implies all other claims about J;. Indeed, it follows from Lemma 5.4
that the distance in G4 between different components of G4 [ J; is at least 57}_; —2¢;_;
(note that 5r;_; — 2¢}_; > 2) and each component has diameter at most 2r; + 2¢,_,.
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Finally, each component S € comp(J;) is built from I* for some v € X; and, by the
separation bounds proved above, u is the unique vertex in SN X;. O

Lemma 5.7. For each i > 1, it holds that

(5.15) K;i C Ny 4o[Ji], the distance in Ggq between any two distinct components of
Ga | K; is least 5r}_, —4q;_, — 4, and every component of G4 | K; has diameter
at most t; and contains exactly one vertex of X;.

(5.16) Li € Ny ys4q,[Yil, the distance in Gy between any two distinct components of
Ga I L; is least v} /5 — 2q;, and every component of Gq | L; has diameter at most
t. and contains exactly one vertex of Y;.

Proof. We use induction on i. The base case i = 1 holds for K; by Lemma 5.6 since
Ky = N[Ji] and ¢, = 0. Let ¢ > 2. In the i-th step of induction, we prove the claims
about L;_1 and K;. Analogously to the proof of Lemma 5.6, we will apply the inductive
hypotheses and Lemma 5.2 with b := 2 to respectively

d (KlaLla .. '7K7l—1,N27‘§71/5D/i—1])7 (tlat/h .. 'at;;—Qati—l) and (qéaqh .. '7q@/‘—27Qi—1)a
L] (KlyLla"'aLi—lyNQ[Ji])7 (tl,tll,. .. 7ti—17t271) and (q/Oa(ha"'aQi—h(éfl)'

Let us check the assumptions of Lemma 5.2 for the first triple of sequences. By in-
duction, for every 1 < j < ¢ — 1, every component of G4 [ K; has diameter at most ¢;
and the distance in G4 between any two such components is at least 57;_1 — 4(1;-_1 — 4,
which is strictly more than ¢}_; + 4 by (5.8). Similarly, for each 1 < j < i — 2, every
component of G4 [ L; has diameter at most t;» and the distance in G4 between any two
such components is at least r;/5 — 2¢;, which is strictly larger than g; +4 by (5.9). Also,
the inequalities in (5.3) are routine to verify.

So, Lemma 5.2 applies and gives that L; 1 € Ny,_,[Ng,s_ /5[Yi—1]]. This implies all
other stated properties of L; ;. Indeed, by Lemma 5.5, the distance between any two
components of Gy | L;_1, is at least r;_, /5—2¢;_1, and each component has diameter at
most 4r;_, /54 2g;—1 = t;_, and contains exactly one vertex from Y;, proving all claims
about L;_1.

By 7_1/5 — 2¢i—1 > qi—1 + 4, we can apply Lemma 5.2 also to the second triple of
sequences to derive that K; C Ny yo[Ji]. It follows from Lemma 5.6 that the distance
between any two components of G4 | K; is at least (5r_; — 2¢;_1) — 2(¢i_; +2) =
5rf_,—4q}_, —4, while each component has diameter at most 2r;+2¢;_,+2(¢;_1+2) = t;
and contains exactly one element of X;. O

We will need to refer a few times to the following, not entirely trivial result so we
state it as a separate lemma.
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Lemma 5.8. Let ¢ > j > 1. If S’ € comp(K;) and T € comp(J;) are at distance at most
2 in Gq, then No[S'| C T.

Proof. Observe that, by Lemma 5.7, we have S C K; C Nq;71+2[Jj}. Take a component
S of G4 | J; such that S := Nq3_71+2[5] intersects S’. Let us show that, in fact, S’ C S”.
Suppose on the contrary that we have some u € S\ S”. Again by Lemma 5.7, w is within
distance ¢j_; +2 to some component X € comp(J;) that has to be different from S. But
then the distance between X and S is, by the triangle inequality when we go via S’, at
most 2(q;_; +2) +t; < 5r’_; —2q;_;, contradicting Lemma 5.6.

By the definition of J;, every component of Ny 4»[J;] that is within distance 2 of
T € comp(J;) is included with its 2-neighbourhood into T'. Since S” € Nys 4o[J;], the
set N3[S”] is included into T. Thus T contains No[S’] C N2[S”], as desired. O

We are now in position to prove the following lemma.
Lemma 5.9. Both of (J1, K1, J2, Ko, ...) and (K1, L1, Ka, La,...) are toast sequences.

Proof. The fact that the components of the subgraphs of G; induced by each of J;,
K; and L; are of uniformly bounded cardinality and are pairwise separated by distance
at least three follows from Lemmas 5.6 and 5.7. So, Properties (2.15) and (2.16) of
Definition 2.14 hold for each of the two sequences.

Let us check Property (2.17) for the sequence (J;, K;)$2;. Note some asymmetry in
(2.17), which states that if two components from two different times are at distance at
most 2 then the 2-neighbourhood of the earlier one is contained in the later one. There
are some cases to consider. First, take any S € comp(J;). Suppose on the contrary to
(2.17) that S is at distance at most 2 from X = J; for j > ¢ or X = K for j > i but
N3 [S] is a not a subset of X. Let T' € comp(X) satisfy diste,(S,T) < 2. By construction,
T does not cut N3[S] as otherwise this set would be added into T (since T was built
after S). Hence we have that T C N»[S]. This is impossible for j > i because the diameter
of S is at most 2r;+2¢;_; by Lemma 5.6 while T' contains a ball of radius | (r; —5r,_;)/2]
centred at the unique point of X; N T by the definition of I; C J; C K;. Also, the case
X = K; leads to a contradiction. Indeed, when constructing T € comp(K;) we started
with No[T”] for some 1" € comp(J;), By Lemmas 5.4, 5.6 and 5.7, we must have T = S.
Thus K; O T D N3[T"] contains Na[S], a contradiction. Second, take any S € comp(K;).
No set J; with j > 4 can violate (2.17) by Lemma 5.8. Also, any T' € comp(K) with
j >4 and distg,(S,T) < 2 contains Ny[S] (again since T C N[S] is impossible by the
diameter argument). Thus (2.17) holds for (J;, K;)32,.

Likewise, Property (2.17) can be verified for the sequence (K;, L;)2,, using addition-
ally the fact that each component of G4 [ L; contains a ball of radius 2r}/5.

Thus each of (J;, K;)$2, and (K, L;)$2, is a toast sequence. O
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For each i > 1, define K; from K; (resp. L; from L;) by removing the vertex sets of
all components S such that there is j > ¢ with J; (resp. K;) being at distance at most
2 from S in the graph G4. By Lemma 5.8, it holds that, in fact,

(5.17) Ki=r\| | 74|,
j=i+1

that is, we could have equivalently defined K ; from K; by removing all individual vertices
that belong to some J; with j > 4. Likewise (with the claim following trivially from our
definitions), we have

(5.18) Li=L\| | K;
j=i+1

The following lemma records some properties of these sets, in particular showing that
they together with .J;’s form a toast sequence without losing any single vertex of | J;=, L;.
Moreover, the structure of the toast sequence (Jp, Jo,...) is preserved in a very strong
way.

Lemma 5.10. The following properties hold.

(5.19) For every i > 1, we have comp(K;) C comp(K;) and comp(L;) C comp(L;).

(5.20) U2, (J; UK; U L) D2, Li.

(5.21) For every integers i,j > 1, if T € comp(.J;) and S € comp(L;) are at distance at
most 2, then i > j and No[T] € S.

(5.22) The sequence (Jl,Kl,Ll, JQ,KQ,LQ, ...) s a toast sequence.

Proof. Conclusion (5.19) is a trivial consequence of the definition of K; and L;.

For (5.20), take any u € L; \ L;. We have to show that u € U;‘;l(Jj UIN(j). By (5.18),
there is j > ¢ with u € K;. If u € I~(j then we are done; otherwise the vertex u lies
inside some J;, with h > j by (5.17), proving (5.20) in either case.

For (5.21), note that i > j for otherwise the component S of L; (recall that comp(L;) C
comp(L;) by (5.19)) would be removed when constructing L; from L;. By the definition
of K;, we have that K; D Ny[J;]. Thus K, contains every vertex of the connected set
Ny [T] which in turn intersects S. Thus by the construction of the set L;, its component
S must contain N3[T] as a subset, proving (5.21).

For (5.22), note by (5.19) that no new components (and thus no new boundaries)
are created when we construct K from K; and L from L;. Since (Ji, K1, J2, Ko, ...)
and (K7, L1, Ka, Lo, . . .) are toast sequences by Lemma 5.9, the only remaining case that
requires some checking is that no conflict to the definition of a toast sequence (namely,
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Property (2.17) of Definition 2.14) can come from S € comp(L;) and C' € comp(J;).
This has already been taken care of by (5.21). O

5.4. Some structure of the constructed sets

The next two lemmas will be useful in analysing the structure of the pieces in the
final equidecomposition.

Lemma 5.11. For each integer i > 1, the set J; is a 4r;-local function of X1,...,X;.

Proof. We use induction on ¢ with the base case ¢ = 1 following from J; = I; being in fact
an (71 +5rg)-local function of X;. Let i > 2. In order to decide if some v € T* is included
into J;, it is enough to know all elements u € X; at distance at most r; + ¢,_; from v
and the component of G4 [ J; containing each such w. By Lemma 5.6, the component
S € comp(J;) containing u € X; has diameter at most 2r; + 2¢;_; and contains no
other elements of X;. So to build S for given u € X;, we need to know only the sets
Ngyy2l 1], Ny, 42[Ji—1] inside Ny, 1oq  [u]. By induction, each of these sets is a
4r;_1-local function of X7, ..., X;_1. The lemma follows since (r;+¢}_;)+ (2r; +2q¢,_,)+
4r;_1 <d4r;. O

Lemma 5.12. Fach of the sets J;, K; and L; for i > 1 can be expressed as a union of
finitely many disjoint strips.

Proof. Observe that each of the sets J;, K; and L; is a local function of X1,Y7,..., X;,Y;.
Lemma 5.11 proves this for J; and its argument can be easily adapted to K; and L; using
the uniform diameter bounds of Lemma 5.7. Since every set X; and Y} is in turn a finite
union of disjoint strips (by our choices in Section 2.6) and such unions form an invariant
algebra, the lemma holds by Observation 2.6. O

Let us remark that the sets INQ and Zl need not satisfy Lemma 5.12, that is, they are
not in general finite unions of strips.

Lemma 5.13. We have
ML) =1=0(ri_y/r)
as i — 00, where the constant factor is bounded by a function of d only.
Proof. Note that I; is a union of finitely many disjoint strips and, therefore, it is mea-
surable. For any pair of distinct vertices u,u’ € X;, let W;(u,u’) be the set of all v € T*

such that

max {distg, (u, v),distg, (v, v)} < r; + 5r._; and
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|distg, (u,v) — distg, (v, v)| < 5ri_;.

Define W; to be the union of W;(u,u’) over all pairs of distinct vertices u,u’ € X;.
The set W; can be written as a Boolean combination of translates of X;, and so it is
measurable. By the definition of I; and the fact that X; is maximally r;-discrete, we have
that T% \ I; C W;. So, it suffices to prove that A\(W;) = O(ri_, /r;).

First, for each u € X;, let us bound the number of w’' € X; such that W;(u,u’) is
non-empty. Given any such u’, we have

distg, (u,u') < 2r; + 107} _;.
Therefore,

Nir, /2] [u'] C Novy1ri/2) 4100, [u].

Since the set X; is ry-discrete, the sets N|,., /o)[u'] are disjoint for different ' € X;. So
the number of such u’ is at most

(4rs +2[r/2] + 207, +1)°
(2[ri/2] + 1)

which can be upper bounded above by a constant that depends on d only.
Now, given a pair of distinct u,u’ € X; in the same component of Gy, let 77 € Z? be
such that ' = 7 -, w. Note that ||7i||o > 7; + 1 since X; is r;-discrete. Then W;(u,u’)

is the set of all v € T* of the form v = 1 -, u where

o 1ifloo < ri 4577y,

o |7 —Mi||co < 7+ 57_q, and

o lFilloe — 117 = o] < 577
For fixed d, the number of vectors 7 of this type is O (r{ 'r/_,). Indeed, there are
d? ways to choose the indices ji,jo € {1,...,d} such that |mj,| and |nj, — m;,| are
maximum. In the case that j; = jo, it holds that |m;, — (n;, —my, )| < 5ri_; so there are
O(r}_y) choices for mj, and O(r;) choices for m; for each j € {1,...,d} \ {j1}. On the
other hand, if j; # j2, then the number of choices of m;, is O(r;) and, given this choice,
the number of choices for nj, —m;, (and thus for m;,) is O(r;_,) and, again, there are
O(r;) choices for m; for each j € {1,...,d}\ {j1,J2}

Suppose now that we split T* into Voronoi cells with the points in X; as the centres,
similarly to the proof of Lemma 2.16. Each Voronoi cell contains Q(r¢) elements and, by
the arguments above, O(rfflrg_l) of these points are in W;. It follows that the measure
of W; is O(ri_y/r;). O
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5.5. Covering the whole torus

Finally, we apply a compactness argument of Boykin and Jackson [5] to get a toast
sequence that covers the whole torus T*. For each p' € {0,...,5}% and i > 1, define

d
Yiﬁ =Y, — |r}/3] Z(pj —3)x;.

Note that Yf is simply a shifted version of Y; and so it inherits the property of being

(3,3,...,3)

a maximally r}-discrete union of finitely many strips. Also, Y; is simply Y;. We

define, for each ¢ > 1,

(5.24) KP = Cy(KP LP ... KP | LF | N,[J;]), and
(5.25) Lf = CQ(K:{)’L?’ SRR Kf—l? L?—l’Kf’ N2r§/5[yz'pDv

as well as K iﬁ c Kiﬁ and Eff - Lf by removing whole components that are at distance
at most 2 from respectively J; and K f for some j > i. Note that these definitions are
exactly the shifted versions of the previous definitions, namely of (5.12), (5.13) and so
on, except the same (unshifted) sets J; are used. (Thus, for example, it is not true in
general that e.g., K f is just a shifted copy of Kj;.) Therefore, all of the lemmas proved
in Section 5.3 apply equally well to the sets

Ji, KP KP 1P IP J, KE KP I2 IE, ...,

as they apply to the sets Jl,Kl,f(l,Ll,zl, JQ,KQ,IN(Q,LQ,Eg, e
The above definitions are motivated by the following result which implies that every
vertex of T* belongs to LY for at least one (in fact infinitely many) pairs (i, p).

Lemma 5.14. Every element of T* is covered by infinitely many of the sets N2r§/5[Yf]
for € {0,...,5}¢ and integeri > 1.

Proof. For each vertex v € TF, let
Ri(v) := {ii/r} : i -qv € Y;} CR%

Note that, since Y; is maximally ri-discrete, we have that R;(v) contains a point in
[~1,1]? for all 4 > 1. Thus, by compactness of [~1,1]¢, the set R*(v) of accumulation
points of the sequence R;(v), Ra(v),... in [—1,1]¢ is non-empty.

If v and v’ are in the same component of Gy, then R;(v) is the same as R;(v’) shifted
by le-distance distg,(v,v’)/r! in R%. Since the sequence 7,75, ... is increasing, this
distance tends to zero. Thus the sequences (R;(v))$2; and (R;(v'))$2, have the same set
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of accumulation points in R?; in particular, we have R*(v) = R*(v’). Thus the function
R* is invariant under the action a : Z¢~T*.
Define

d
[ k. p* Ds — 3 Ps — 2 o d
T; = {vGT ‘R (v)ﬂsll{ T3 ] %@}, for pe {0,...,5}%
These sets cover the whole torus T, since R*(v) is non-empty for every v. For each
p€{0,...,5}9 we let

(5.26) Tp=Tp\ | 7Tz

7e{0,...,5}¢
G=1exD

consist of those v for which p'is the lexicographically smallest vector with R*(v) having

non-empty intersection with ngl [psgg, ng].

Since the (set-valued) function R* is constant on each component of G4, we have that

each set T]['7 (and thus each set Tj) is a union of components of G4, that is, is invariant
under the action a. Also, the sets Ty, for € {0,...,5}¢, partition T*.

Now, for any v € Tj, we have by the definition of R*(v) that there are infinitely many
indices i for which there is a vertex u € Y; of the form w = 7 -, v for some 7 such that

P — 1 -2 1
r;-<pﬂ 5 _ )gnjgrg-(pj + ) forall 1 <j<d

3 100 3 100

Thus, for all such ¢ with r} sufficiently large, it holds that

3r} - 2r]
3 100 5"

d
distg, (v, YP) < distg, | v,u — [r]/3] Z(pj —3)z; | <
j=1

We see that every element of T} is covered by Ny, /5[Yf ] for infinitely many integers 4,
proving the lemma. 0O

Finally, we are ready to construct the toast sequence that will be enough for proving
all statements of Theorem 1.3. Namely, for 7 > 1, define

(5.27) K= | (R7nTy), and
pe{0,...,5}¢

(5.28) L= U ().
pe{0,...,5}¢

Since each set T} consists of whole components of G4 and the sets Tj; form a partition
of the torus T*, Lemma 5.10 implies the following.
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Lemma 5.15. (Jq, IAQ, El, J1, I?g, Eg, ...) is a toast sequence that completely covers Tk O
6. Using toast sequences to round flows

Here we show how one can use a toast sequence to obtain an integer-valued (14 —15)-
flow from a sequence of real-valued flows. The key new challenge is that the used real-
valued flows f; need not meet the demand 14 — 15 exactly (only when we pass to the
limit as ¢ — oco) while we are not allowed to access the whole sequence when rounding.

6.1. Dealing with finite connected sets

Here, we present one of the main subroutines, which perturbs a flow along the bound-
ary of a finite set of vertices, attaining the desired properties on all edges except possibly
one. Many of the ideas appearing here are borrowed from [28, Section 5].

Definition 6.1. A ¢riangle in a graph G is a set {u,v,w} of three distinct vertices of G,
every pair of which are adjacent in G.

Definition 6.2. Given a graph G and a set F' C E(G), let A be the graph with vertex
set F' where two elements uv and yz of F' are adjacent in Ay if they are contained in a
common triangle of G.

Definition 6.3. An Fulerian circuit in a finite graph G is a sequence (vq,vs,...,v;) of
vertices of G such that v; = vy and the sequence (vyvg, Vov3, . . ., vi—1v¢) is an enumeration
of the edge set of G.

In the language of graph theory, an Eulerian circuit is a closed walk in a graph which
traverses every edge exactly once. Perhaps the most classical result in graph theory is
Euler’s Theorem from 1736 which says that a finite graph G has an Eulerian circuit if and
only if it is connected and all of its vertices have even degree; see e.g. [10, Theorem 1.8.1].
The following lemma highlights a small technical advantage of defining the graph G4 in
terms of the set {7 € Z? : ||7]l« = 1} of generators of Z? as opposed to the standard
basis (although one can also work in the latter graph, see e.g. [6, Section 6]). Recall that
the edge-boundary 0gS of S C T* consists of the edges of G4 with exactly one vertex
in S.

Lemma 6.4 (Marks and Unger [28, Proof of Lemma 5.6]). If S C T*, then every finite
component of Na,s has an Eulerian circuit.

Proof. By Euler’s Theorem, it suffices to show that every vertex of Ap,s has even
degree. Let uv € S with u € S and v ¢ S. Note that, for any triangle {u, v, w} in G4
containing u and v, exactly one of the edges uw or vw is in dgS. Also, for any pair of
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edges of G4 which are adjacent in Ay, g, there is a unique triangle which contains them.
So, it suffices to prove that uw is contained in an even number of triangles of G .

Let i be the unique element of Z? such that ||7i]|o = 1 and v = u + Z?:l n;x;. Let
To:={i:1<i<dandn; =0} and Ty := {1,2,...,d} \ Tp. Note that the number of
triangles containing uwv is exactly

3lTol . olTil _ o

Indeed, the number of choices of 7’ = (n},...,n/;) € Z¢ such that w = u + Zle nix;
forms a triangle with w and v in Gy or satisfies w € {u, v} is exactly 37| (each n/ for
i € Ty can assume any value in {—1,0,1}) times 2/Tt| (there are exactly two possible
values for nj for each i € T1).

Since |T1| > 1, the number of triangles is even, finishing the proof. O

Recall that by a hole of S C T* we mean a finite component of Gq | (T*\ S). Marks
and Unger [28, Proof of Lemma 5.6] use a result of Timér [35] to show that, if S is a
finite subset of T* with no holes such that G4 | S is connected, then ANp,s is connected.
Combining this with Lemma 6.4 and Euler’s Theorem, we get the following.

Lemma 6.5 (Marks and Unger [28, Lemma 5.6]). If S is a finite subset of T with no
holes and G4 | S is connected, then Np,s has an Eulerian circuit. O

The following definition is helpful for explaining the way in which we perturb flow
values on triangles in G4.

Definition 6.6. Given a graph G and an ordered triple (u,v,w) € V(G)? such that
{u,v,w} is a triangle in G, define Oy 4, to be the flow in G such that, for z,y € V(G),

1, if (z,y) € {(u,v), (v,w), (w,u)},
Oupww (@,y) =< =1, if (z,y) € {(v,u), (w,v), (u,w)},
0, otherwise.

Given a flow ¢ in G4 and a finite subset S of T* with no holes such that G4 [ S is
connected, the operation of rounding ¢ along the boundary of S is defined as follows.
Using Lemma 6.5, we let wyv1,...,uv: be an Eulerian circuit in Ay, s where, for each
1< s <t, wehave us € S and vs ¢ S. Moreover, among all Eulerian circuits, we choose
the <jex-minimal one (that is, one such that (w1, v1,...,us, v¢) is minimal under <jex).
Note that u; = w; and vy = vy. First, we do the adjustment step, where we redefine
d(us_1,v¢1) by adding [¢°"(S)] — ¢°**(S) to it and change ¢(v;_1,us—1) accordingly.
The flow out of S is now an integer. Then, for each s = 1,...,t — 2, one by one, we let
wg be the (unique) vertex of {wsy1,vsy1} such that {us,v,, ws} is a triangle in G4 and
redefine ¢ to be
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—-1.0 —1.0 —-0.8
— <~ ~
NS0 |1 HINE2 |t HN\0
—-0.7 2.5 —-1.0 2.5 -1.0 2.7
0.1 —0.2 —0.8

Fig. 3. Two steps of the operation of rounding a flow ¢ along the boundary of a set S. The vertices within
the grey region are in S. The edge usvs currently being rounded is depicted by a bold black line and the
other two edges of the triangle containing us;vs and us41vs41 are depicted by a bold grey line. Some edges
are labelled with numbers which represent their current flow value in the direction indicated by the arrow.

(6.1) ¢ = ¢+ ([p(us, vs5)] — d(us,vs)) Ougyvs,w, -

(See Fig. 3 for an illustration.) Each of the steps in (6.1) preserves the flow out of
every vertex. After all ¢ — 2 steps have been completed, every edge u;v; of OgS, except
possibly w;_qv¢_1, is assigned to an integer flow value by ¢ (because the last triangle
update affecting ¢(u;v;) makes it integer). However, the total flow out of S is an integer,
and so ¢(ui—1,v:—1) must be an integer as well.

For future reference, we also define the flow Og (where ¢ in this notation will refer
to the initial flow ¢ before any modifications took place), which is the sum of all ¢ — 2
increments in (6.1). Thus, (’)g is a O-flow (i.e., the flow out of every vertex is 0) and,
with ¢ referring to its initial value, the flow ¢ + Og assumes integer values on all edges
of OgS except possibly u;_1v;_1.

More generally, given a flow ¢ in G4 and a set D C T* such that every set in comp(D)
is finite, the operation of rounding ¢ along the boundary of D is defined as follows. First,
for every S € comp(D) and every hole S’ of S, we round ¢ along the boundary of S’.
Then, for each S € comp(D), we round ¢ along the boundary of the union of S and all
of its holes. All of these operations are well-defined and the order in which we perform
them does not affect the result. Note that, for every finite connected S, the edge sets
OgS’, for S’ being a hole in S or being S with all its holes filled, partition the edge
boundary of S. Indeed, every pair in 0gS has exactly one point outside of S, lying in a
(unique) component S’ of G4 [ (T*\ S). If S’ is not a hole of S, then S’ is infinite while
S”, the complement of S’ in the component of Gy containing S, is finite. Trivially, S”
cannot have any holes, so S is exactly S with all its holes filled, as desired.

We define

05— Y Yo,

Secomp(D) S’

where S’ in the inner sum is a hole of S, or S with all its holes filled.
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Next, we show that if, additionally, any two distinct components of G4 [ D are at
distance at least three* in Gy, then rounding along the boundary of such a set D cannot
displace the flow values by an arbitrary amount.

Lemma 6.7. Let ¢ be a flow in Gg and D be a subset of T* such that each component
of G4 I D 1is finite and any two distinct components of Gq [ D are at distance at least
three in Gy4. Then, the sum of the absolute values of flow changes on each uv € E(Gy)
when we round ¢ on the boundary of D is at most (3% — 2)/2. (In particular, this also
upper bounds the total change on each edge, that is, ||(9%Hoo <(34-2)/2.)

Proof. By construction, the flow from u to v changes only if there exists S € comp(D)
such that either

e uv € 98,
o u,v e N[S]\S, or
e u,v € N[T*F\ S|NS.

Since any two components of D are separated by a distance of at least three in Gg4, we
see that the choice of the component S is unique.

In the first two cases, we let T be the unique component of G4 | (T*\ S) which
contains {u, v} \ S. While rounding ¢ on the boundary of T' (in the case that T is finite),
or on the boundary of the union of S and all of its holes (in the case that T is infinite),
the value of ¢(u,v) is changed at most once for every triangle containing u and v, where
we view the last triangle of the Eulerian tour (the one that we have not used for any
flow updates) as “responsible” for the initial adjustment of the flow on the second to last
edge. The number of such triangles is at most the number of neighbours of w different
from v, which is at most 3% — 2. Also, each time that the flow value of an edge changes,
it is displaced by at most 1/2 (since we round to a nearest integer). The flow from u to
v is not changed at any other stage, giving the required.

In the third case, for each w ¢ S such that {u,v,w} is a triangle in Gy, there is a
unique component 7" of G4 | (Tk \ S) containing w. This triangle is used at most once
when rounding ¢ along the boundary of T (in the case that T is finite) or the union of S
and all of its holes (in the case that T is infinite). Thus, each triangle containing w and
v contributes at most 1/2 to the amount by which ¢(u,v) changes; there are at most
3¢ — 2 such triangles, and so the proof is complete. O

Next, given a flow ¢ in Gy and a subset S of T* such that Gy | S is connected, the

operation of completing ¢ within S is defined as follows. Consider all integer-valued flows
¢’ in Gy | S such that

4 This assumption, while convenient, is actually not necessary.
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(6.2) Z ¢ (u,v) + Z d(u,v) =1a(u) — 1p(u), foreveryue S,

veS veTk\S

and, given this, ||¢'||o is as small as possible. (It will be the case that, whenever we
apply this operation, at least one such ¢’ exists.) If S is finite then we choose ¢’ so
that the sequence (¢'(u,v) : (u,v) € S?) is lexicographically minimised, where the pairs
in S are viewed as being ordered according to <jex. If S is infinite then we choose ¢’
arbitrarily, using Theorem 2.3 (i.e., using the Axiom of Choice). Change ¢(u,v) to be
equal to ¢'(u,v) for all u,v € S.

6.2. Rounding a sequence of flows on a toast sequence

The following key definition will allow us to round flows.

Definition 6.8. The rounding of a sequence (g1, ga,...) of real-valued flows in G4 on a
toast sequence (D1, Da,...) is the flow f obtained via the following steps.

(i) Initially, let f be the identically zero flow except for each i > 1, S € comp(D;), and
(u,v) € OgS we define f(u,v) := g;(u,v) and f(v,u) := g;(v,u) (that is, we copy
the values of g; on dgD;).

(ii) For each ¢ > 1, round f along the boundary of D;.

(iii) For each component S of the graph G’ := (T*, E(Gq) \ U;~, OrD;), which is ob-
tained from G4 by removing the edge boundaries of all sets D;, complete f within
S, as specified after (6.2). (If at least one completion step fails, then the whole
procedure fails and f is undefined.)

Observe that, since (D1, Da,...) is a toast sequence, the first two steps in the above
definition are well-defined; also, the second step does not depend on the order in which

we round the boundaries.

Lemma 6.9. In the notation of Definition 6.8, suppose that there are a constant C' and

a sequence di < do < ... of integers such that
(6.3) lim g;(u) = 1a(u) — 1g(u), for each u € T*,
71— 00

l91llce < C and, for each i > 1, we have that

oo

(6.4) (3 =1)  (di+ 1)) llgjer — gjlleo < 1/2,

Jj=i

and every component S of G4 | D; has diameter at most d;.
Then the following statements hold:
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5) all completion steps succeed,

6) the obtained function f is an integer-valued flow from A to B,

1) 1 fllee C+ (31 +2)/2,

8) the restriction of f to the edges intersecting D; is a (d; + 1)-local function of
g1,---,3i anle,...,Di.

Proof. By combining the fact that ||g1/lcc < C with the bound in (6.4) in the case
i = 1, we see that the sequence g1, g2, ... converges uniformly to a bounded function.
Let f. denote the pointwise limit of this sequence. By (6.3), the function f. is an
(]lA — ]lB>—ﬂOW.

Let us show (6.5), that is, that all completion steps succeed. For this, we introduce one
more operation. Given two flows ¢ and v in G4 and a finite subset S of T* with no holes
such that G4 [ S is connected, the operation of equalising ¢ to v along the boundary of
S is defined as follows. Let (u1v1, ..., uv:) with uy, ..., u; € S be the lexicographically
minimal Eulerian circuit in Agg (which exists by Lemma 6.5). For each s = 1,...,t —2,
one by one, we let wy € {usy1,vs41} be such that {us,vs, ws} is a triangle in G4 and
redefine ¢ to be

(6~9) ¢:=¢+ (w(us,vs) - ¢(us7v5)) Ousyvsws -

Note that this operation makes the new value of ¢ on (us, vs) to be equal to ¥ (us, vs).
Also, we define S?w (where ¢ stands for its initial value) as the difference between the
final and initial flows ¢ during this process, that is, €g’w is the sum of all ¢ —2 increments
in (6.9). Thus 5?111 is a O-flow such that ¢+€g’w is equal to 1) on every pair in 0.5 except
possibly the pair u;_jv;_;. More generally, for a set D C T* such that every component
of G4 | D is finite, equalising ¢ to ¢ along the boundary of D is defined as follows. First,
for each component S of G4 | D and each hole S’ of S, we equalise ¢ to ¢ along the
boundary of S’. Then, for every component S of G4 | D, we equalise ¢ to 9 along the
boundary of the union of S and all of its holes. Also, define

Sg’w = Z Z E(Sb}w,

S€comp(D) S’

where S’ in the inner sum is a hole of S, or S with all holes filled.
The proof of the following claim follows similar lines as that of Lemma 6.7, so we give
only a very brief proof sketch.

Claim 6.9.1. Let ¢ and ¢ be flows in G4, M be a non-negative integer and D be a subset
of T* such that |0rS| < M for every component S of G4 | D and any two components
of Gq | D are at distance at least three in Gq. Then €5 |lso < M||¢ — | oo

Sketch of Proof. Note that, before the s-th step as in (6.9), the current value of ¢ on
Us1Vs41 18 still the original value. Thus, during the step, its absolute value increases by
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at most |¢(us, vs) — d(us, vs)|, which in turn is at most s||¢ —¥||e by an easy induction
on s. The claim now follows since we do at most M — 1 steps. O

This claim gives that, for every S € comp(D;), if S is a hole of S or S will all holes
filled then

(6.10) €89 loo < 1/2.
Indeed, |S'| < (d;+1)9 since the projection of S’, when viewed as a subset of Z?, on each
coordinate is at most d; + 1 by the diameter assumption. Thus |[0gS’| < (3¢ —1)(d; +1)<.

Also,

1/2
4 1)(d; + 1)

(6.11) R ) e
Jj=t

by (6.4). Therefore, (6.10) follows from Claim 6.9.1.
Now, consider the real-valued flow

012 i Sl 30,
i=1 i=1

which will be used to certify that all completion steps succeed. This function h is a
flow from A to B since it is obtained from the (14 — 1g)-flow f. by adding a 0-flow.
Take any S which is, for some T" € comp(D;), either T" with all holes filled or a hole

of T. By Lemma 6.5, the graph Ag,_s has an Eulerian circuit; let (uqv1, ..., uvy) with
u,...,u; €S be the <jex-minimal one. By the definition of E{,T’gi, the flows

f/ = foo +g£oiovgi

and g; coincide on all pairs in OgS except possibly u;—1v;—1. Also, we have by (6.11)
that

g (S) ~ [AN S|+ 1B S| | = | g2 (8) = F24(9) | < 10881 - 1 foe = gilloc < 1/2

Recall that, initially, f was set to be g; on 0gS. Thus the adjustment step of making
fout(S) integer by adjusting its value on u;—1v;—1 by at most 1/2 makes f°"*(S) to be
equal to |[AN S| — |BN S|, which in turn is equal to the flow out of S by f’ since it is
obtained from the (14 — 15)-flow fo by adding a 0-flow. Thus f after the adjustment is
equal to f/ on the edge u;_1v:—1 (as they are already equal on every other edge in dgS).
Thus when we round f along the boundary of S, we add the same ¢ — 2 increments
as we would do for f’, that is, (’)g = O%. Hence, the flows (’)gi and (’)%: coincide
on JgS. We do not modify the values of f on OgS during any other steps, so they
are the same as the values of f' + (’)gi (which are in turn the same as the values of h
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on JgS). Thus the final flow f coincides with h on OgD; (for every i) and the Integral
Flow Theorem (Theorem 2.3) shows that each completion step works, that is, (6.2) can
always be satisfied. Thus Conclusion (6.5) holds.

Conclusion (6.6) is a direct consequence of the previous conclusion since the comple-
tion step is applied to every component obtained by removing | J;-, 9 D; from E(Gy).

For (6.7), recall that the Integral Flow Theorem (Theorem 2.3) guarantees that the
produced integer-valued flow differs from the given real-valued flow by at most 1 on every
edge. Thus, by Lemma 6.7 and by (6.10), we have

34 _2 1 1 3441 3¢ 42
o 1< a = )
5 t5+ C+2+ 5 C+ 5

[flloo < llAlloe +1 < [ foolloo +

as desired.

For (6.8), take any u € D;. Its component S € comp(D;) has diameter at most d; and
thus entirely lies inside the d;-neighbourhood of u. Since u has access to every vertex of
S, it also has access to the flow values on all edges in 0gS (because, by our conventions,
the flow value on an edge is encoded in each of its endpoints). Since (D;)$°, is a toast
sequence, the choices of how the flow f is modified on S during the rounding along dgS
or any completion inside S are well-defined functions of the restrictions of g1, ..., g; and
Dy,...,D;—1 to S. Thus the restriction of the final flow f to the edges intersecting .S is
indeed a (d; 4 1)-local function of ¢1,...,¢; and Dy,..., D;. (Note that we add 1 to d; so
that each endpoint of an affected edge, which includes points in N1[S]\ S, can compute
the new flow value on the edge.) O

7. Proof of Theorem 1.3

We are now ready to prove our main result, Theorem 1.3.
For each i > 1, let m; and m/ be the minimal non-negative integers such that

c 1+e

(7.1) (3% 1) (t; +1)%- (m) < 1/2, and
c21+e

(7.2) (B3 —1)- (t,+1)*- (W) <1/2.

The main purpose of these bounds is to certify inequalities of the type given by (6.4).

Let f = f,z7 be the rounding of the sequence (fi,; fm,, fm:)i2; of flows on the toast
sequence (.J;, IAQ, Ez);’il (Recall that the sets IAQ and El were defined before Lemma 5.15
and (Ji,l?i,zi);?il is a toast sequence by the lemma; also, f,, for m > 0 is the flow
returned by Lemma 3.1.) We will use this flow f to obtain the desired equidecomposition
between A and B.

Remark 7.1. If the reader is interested only in Parts (a) and (c) of Theorem 1.3 then
it suffices to take for f the flow f;, which we define to be the rounding of the se-
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quence (fpm,, fmsy,---) on the toast sequence (Ji, Ja,...). By construction (or, formally,
by Lemma 7.3), f and f; are the same except on the set T% \ Ui2, Ji which is small in
many respects (e.g., its closure is null).

For reader’s convenience, let us summarise some key properties of the flow f = f ;7
in Lemma 7.2 below. This lemma is stated in a more general form so that it also applies
to some other auxiliary flows (in particular to f; when we take (J;,0,0)°, for the
toast sequence (J, K/, L})?°,). Recall that, for each 5 € {0,...,5}%, the set Tj (defined
n (5.26)) is a union of whole components of G 4; moreover, these sets partition T*.

Lemma 7.2. Fiz any p € {0,. 5}d Suppose that for each i > 1, J!, K| and L are
obtained from respectively J;, Kp and Lp by removing the vertex sets of some compo-
nents so that (J!, K], L})2, is a toast sequence. Let f' be the rounding of the flows
(fmis fmis fmt)321 on (J], K[, L})2,. Then the following statements hold:

(7.3) the function f' is an integer-valued flow in Gg4 from A to B,

(74) [1'lloo < 58y + 552,

(7.5) there is a (2™ +t;)- local function of Ji,..., J,K{,..., K], A and B that coincides
with f' on all edges of Gq intersecting Ty N (Ui-,l K’

(7.6) there is a (2™ + t)-local function of J|,...,J,, K}, ..., K/,L},...,L;, A and B

that coincides with f' on all edges of Gq intersecting Ty N (U;Z1 L;)

Moreover, if for every C' € comp(J]) and S € comp(K})Ucomp(L’) at distance at most
2 we have that j > i and N,[C] C S, then

/

(7.7) the flow f' coincides with g on every edge intersecting | J;-, J!, where g is the flow
obtained by rounding (fm,)s2, on (J))2,,
(7.8) there is a (2™ + 2r; + 2q}_4)-local function of Ji,...,J, A and B that coincides

IR

with f" on all edges of Gq intersecting Ty N (U;Zl j).

Proof. We just apply Lemma 6.9 to the flows (fin,, fm., fm!)i2; and the toast sequence
(JI, K/, L})22, that were used to define f’. Lemmas 5.6 and 5.7 show that we can take

(7.9) (27 + 2q; 1, ti, t5)52

for the sequence (d;)$2; that upper bounds the diameters of finite components in our
toast sequence.
By (3.3), we have for all m > 0 that

m

710 o = - 2¢ o c21+e
( : ) ”fm”oo X HfOHOO JFZ ||f1 - fi—1||oo = Z gd+e(i—1) 2d(25 _ 1)

=1 =1
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that is, the flows f,, have their {..-norm uniformly bounded. Furthermore, Assump-
tion (6.3) of Lemma 6.9 holds by (3.2) while Assumption (6.4) holds (with respect to
the sequence in (7.9)) by our choice of m; and m} in (7.1) and (7.2).

Thus Lemma 6.9 applies to the flow f’ with C being the expression in the right-hand
side of (7.10).

The claims in (7.3) and (7.4) follow from respectively Conclusions (6.6) and (6.7) of
Lemma 6.9.

Recall that f,,, is a (2™ — 1)-local function of A and B by Conclusion (3.4) of
Lemma 3.1. Thus we can replace a local function of f,,, by a local function of A and B,
with just increasing the locality radius by 2™ — 1. Thus (7.5) holds by Conclusion (6.8)
of Lemma 6.9, according to which it is enough to increase the locality radius by the
diameter bound plus 1. The same argument applied to f,,; shows that (7.6) holds.

It remains to show that the last two claims of the lemma hold, under the additional
assumption. For (7.7), take any edge uv intersecting some J/. Suppose first that uv €
OrJ!. Let S be the (unique) component of G | J! such that uv € dgS. The value of g (as
well as the value of f) on uw is the one which is assigned during the rounding of f,,, along
the boundary of S. Thus g and f’ assume the same value on uwv, as desired. So suppose
that both w and v are in J]. Let S be the component of G | J/ containing u and v.
Consider any 7' € comp(K7}) U comp(L’;) which is at distance at most 2 from S. By the
extra assumption, we have that j > i and N3[S] C T. Thus 0gS separates uwv from 9gT.
This means that when we remove the boundary edge set |, (9pJ; U0 K;UdE L)) from
E(G4), the component containing uv will be the same when we remove only Ujoil orJ;.
Thus, indeed f’ assumes the same value as g on uwwv. This proves (7.7).

Finally, (7.8) follows from (7.7) by Conclusion (6.8) of Lemma 6.9 applied directly to
the flow g. O

Observe that, for every 5 € {0,...,5}%, Lemma 7.2 (when we take the toast sequence
(Ji, KP LYo, for (J!, K], L)%2)) apphes to the restriction of the flow f = f & to
the set Ty (Whlch consists of whole components of G4). Indeed, KN Ty = K N Ty and
L; NIy = Lp N1} while K P and Lp are obtained from respectively K’ P and Lp by removing
whole components. We conclude by Conclusions (7.3) and (7.4) of Lemma 7.2 that f is
a bounded integer flow from A to B. Also, the extra assumption of Lemma 7.2 holds
by Lemma 5.8 and (5.21); in particular, the following (obvious from the construction)
result is formally proved by Conclusion (7.7).

Lemma 7.3. The flows f and f; coincide on every edge intersecting | J;=, J;. O

Lemma 2.16 can be applied to the integer (14 — 1g)-flow f, producing an equidecom-
position between A and B. We claim that this equidecomposition satisfies all claims of
Theorem 1.3. Since Part (c¢) of Theorem 1.3 is already taken care of by the second claim
of Lemma 2.16, it remains to prove the remaining two parts.
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Recall that each piece returned by Lemma 2.16 is a local function of A, B, finitely
many strips and the flow f. Since the corresponding target families in Parts (a) and (b)
of Theorem 1.3 form a-invariant algebras (that contain all strips as well as our sets A and
B), it is enough by Observation 2.6 to prove that each set of the form Z,i; , (as defined
in (2.14)) for 7 € {—1,0,1}¢ and integer ¢ with |¢| < || f|l~ belongs to the corresponding
algebra.

7.1. Dimension of boundaries

Here we prove Part (a) of Theorem 1.3 that the upper Minkowski dimension of the
boundary of the obtained pieces is strictly smaller than k. Specifically, we show that, for
every 7 € {—1,0,1}% and |¢| < ||f||c0, the upper Minkowski dimension of the boundary
of Zj;’é is at most k — (, where

(7.11) ¢ ‘

"~ ddmax{d/e, d+ 1} + 1 >0

(Recall that €, d and € were defined in (2.4), (2.5) and (2.6), respectively.) One can show
that d/fe > d+1if k > 2.

Let us pause for a moment to discuss the quantitative bound on the boundary dimen-
sion that we get when k& > 2 and dimg(0A) = dimg(0B) = k— 1. In this special case, we
can choose € to be arbitrarily close to 1, take d to be k+ 1 and ¢ close to 1/k. Thus we
get that any ( < Wll)z-‘rl
have upper Minkowski dimension arbitrarily close to k — m. In particular, if

works here, and so we can obtain pieces whose boundaries

k = 2, as in the case that A is a disk and B is a square, then this quantity evaluates to
145/73 < 1.987. Thus, this is sufficient for proving Theorem 1.2.

Here we need to use the specific choices 1} := 1002 ! and rii= 1002 2 as defined
in (2.7) and (2.8) respectively.

Let us provide some auxiliary results first. A box in T is a set of the form Hle [a;,b;)
where 0 < a; < b; <1lforall 1 <i<k.

Lemma 7.4 (Laczkovich [23, Lemma 2]; see also Schmidt [32, p. 517]). For almost every
choice of ¢1,...,xq in T* and for every t > 0 there exists C > 0 such that

(7.12) D (N,M[u],I) < Clogt¥t(r)
for every element u € T*, integer r > 2 and box I in TF.

This result is needed to prove the following lemma, whose conclusion was one of the
assumptions (namely, Property (2.13)) made about 1, ..., 24 in Section 2.4.

Lemma 7.5. There exist positive constants ¢y and Co such that the following holds. If,

fori > 1, we define v; := clr{dlogﬁ(ri), R; == Cyr; log(k+d+3)/d(ri) and
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(7'13) Qi = [07%) X [0’1)k—1’

then, with positive probability with respect to uniform independent x1,...,xq € TF, it
holds for every integer i > 1 that the strip Q; is ri-discrete in Gq while Ng,[Q;] = T*.

Proof. Let C; be a constant satisfying Lemma 7.4 with ¢ = 1 for at least half (in measure)
of the choices of (z1,...,24) € (T¥)%. One way to see its existence (without checking
whether the proof of Lemma 7.4 gives some effective bounds on Cy) is as follows. For
every real C, the set Xo of sequences (x1,...,x4) € (T*)? for which Lemma 7.4 holds
for this C' (with ¢ = 1) is an analytic subset, since it is the projection of the Borel
subset of (T*)? x Q of points satisfying (7.12), where Q C T* x {2,3,...} x T? is
the subspace encoding all suitable triples (u,r, I) equipped with the standard (Polish)
topology. As every analytic subset is universally measurable (see e.g. [18, Theorem 21.10])
and the countable nested union Ufil X; C T* has Lebesgue measure 1, by the countable
additivity there is an index 4 such that the measure of X is at least 1/2 and we can take
C1 to be equal to this i.

We will use the following estimates that hold by choosing the constants ¢; > 0 and
C5 > (' suitably: for every integer i > 1,

o0

(7.14) > @ri+ 1)y < 1/12
=1
and
(7.15) (2R; +1)%v; > Cy logh T+ (2R,).

Let us briefly check that suitable ¢; and C5 exist. The i-th summand in the left-hand
side of (7.14) is at most (37;)? - c1r; P log™2(r;) < O(¢1272). This is summable, so (7.14)
can be satisfied by choosing ¢; sufficiently small. Also, the left-hand size of (7.15) is at
least Rdy; = C4 - ¢, ologk+d+1(ri). As the exponent at the logarithm matches that in the
right-hand side of (7.15), this constraint can be satisfied by taking Cy sufficiently large.
We start by applying a simple union bound argument to estimate the probability that
Q; fails to be r;-discrete for some ¢ > 1. For 1 < j < d, let ©; = (2j,1,...,x;,4) with
each z;; € [0,1). Of course, only the first coordinates x;; matter for the lemma.
Clearly, @; fails to be r;-discrete if and only if there exists a non-zero vector 7 €

{~ri,...,0,...,7;}¢ such that the sum Z;l:l n;xj1 viewed in R (i.e., not modulo 1)
is at distance less than 7; from an integer. Fix a non-zero vector # = (nq,...,nq). By
symmetry, assume that ng # 0 and, in fact, ng > 0. Suppose that x,...,x4_; € T*

have already been sampled. Then, since 0 < ngz;1 < ng, there are at most ng + 1
different possible integers that the sum Z?:l n;x;1 can be within ~; of and, for each
of them, the probability of this event is at most 2+;/ng and thus the probability of at
least one happening is at most 27v;(ng + 1)/ng < 4;. By the Union Bound over 7, the
probability that Q; is not r;-discrete is at most 4(2r; + 1)%~;.
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Thus the probability that the set @Q; is not r;-discrete for some i > 1 is at most
oo, 4(2r; + 1)y;, which is at most 1/3 by (7.14).

Now, for the other assertion, take an arbitrary element w € T*. By the definition
of C1, with probability at least 1/2 it holds for every integer 7 that the discrepancy of
N, [u] with respect to any strip is at most C; log" ™™ (2R;). In particular, for the strip
Q;, we have

INg, [u] N Qi| > (2R; + 1)%y; — C1log" T (2Ry),

which is strictly positive by (7.15). From the point of view of Q;, this states that its
translates by integer vectors of /.-norm at most R; under the action a : Z¢~T* cover
the whole torus, as required.

Thus the probability that a uniform (z1,...,x4) € (T*)? satisfies the lemma is at
least 1/2 —1/3 > 0, as desired. O

Let us remark that the existence of C7 in the proof of Lemma 7.5 can be argued
without referring to the theory of analytic sets. Informally speaking, to compute the
smallest possible C;(x1, ..., z4) for given x1,...,x4 € TF, it is enough to consider only
those boxes that have at least one integer combination of &1, . .., x4 on each side, plus 22¢
choices whether to include that side or not (realisable by making the box infinitesimally
larger or smaller in that direction). There are countably many choices here and thus
the best possible Cy : (T*)? — [0, 00] is in fact a Borel function, as the supremum of

countably many Borel functions.

Lemma 7.6. If x1,...,xq satisfy the conclusion of Lemma 7.5, then, as i — oo, there is
a mazimally r;-discrete set X; which is an rg”l logo(l)(ri)—local function of the strip Q;
that was defined in (7.13).

Proof. Let ¢; and Cs satisfy Lemma 7.5 and let R; be defined as in the lemma. Thus the
set Q of translates of (); by vectors of the form 2?21 n;z; with 7 € Z% and ||7i||c < R;
covers T, Lemma 2.11, when applied to this covering, yields a maximally r;-discrete
set X; which is an 7;(2R; + 1)%local function of the sets in Q. Every such translate is
an R;-local function of Q; itself. Thus, since R; = r; 1ogo(1)(ri), we get that X; is an
rf‘H logo(l)(ri)-local function of Q;. O

Recall that our final flow f = f ;7 was defined at the beginning of Section 7. Since
our forthcoming argument will only use the values of f on edges intersecting Ufil I; C
U?; J;, the reader may equivalently use f; instead of f here.

Lemma 7.7. For any ¥ € {—1,0,1}¢, ¢ € range(f) and i > 1, the set Z£,£ N I; can be

written as a Boolean combination of at most rf max{d/e, d+1}+o() 4o slates of A, B and

Q1. -, Q.



A. Mdthé et al. / Advances in Mathematics 484 (2026) 110685 57

Proof. By (7.1) it holds that 2™ = ©(r d/s) By Conclusion (7.8) of Lemma 7.2 (applied
to f), each set Zq (Niisa O(r; /E) local function of A, B and Ji, ..., J;. By Lemmas 5.4
and 5.11, the sets I; and J; are both O(r;)-local functions of Xy, ..., X; which in turn,
by Lemma 7.6, are rdHJrO(l) local functions of @1, ..., Q;. By adding the locality radii,

we see that Zq ¢ N1 is a local function of A, B and Q1,Q2,...,Q; of radius at most

’/’maX{d/E d+1}+0(1 , implying the lemma. O

We are now in position to prove the following result.

Lemma 7.8. For every 7 € {—1,0,1}¢ and ¢ € range(f), the boundary of Zf;e has upper
Minkowski dimension at most k — (.

Proof. By the definition of € in (2.4), the upper Minkowski dimension of each of 9A and
OB is less than k — €. Thus we can choose dg > 0 to be sufficiently small so that, for all
0<o< 507

(7.16) max { A ({z : distoo (z,04) < 6}), A ({ : distoo(z,0B) < 6}) } < 69,

where dist,, denotes the £, ,-distance on the torus. Moreover, we also assume that §y is
small enough so that

(7.17) r < 6y 4.
Let 0 < § < dg be arbitrary and let i be the unique index so that
(718) r; < §4¢ < Tig1-

Note that such an index 7 is guaranteed to exist by (7.17). Let P be a collection of boxes
in T* of side-length § such that each point of T* is contained in at least one and at
most 2¥ sets in P. (For example, let P be the product of such 1-dimensional coverings.)
Define

Z .= {Zfe 5 e {-1,0,1}¢ andéerange(f)}

Since f is integer-valued, the set Z is finite, having at most 3¢(2|| f||oo +1) < 00 elements.
Since we can choose &y arbitrarily small, let us view § as tending to 0 (and i — o)
using the asymptotic notation accordingly. Thus, for example, |Z| = O(1).
Our goal is to show that at most (1/6)k_<+0(1)
This will be enough for bounding the upper Minkowski dimension of this set, since each

boxes in P can intersect | J, .z 0Z.

box in P can intersect at most 2¥ boxes of a regular §-grid.

Let B be the collection of boxes in P which intersect the topological boundary of ZN1I;
for some Z € Z. Recall that ¢ was chosen to satisfy (7.18) while the set I; was defined in
Section 5.2. Let T be the collection of sets in P which are not in B and intersect T* \ I;.
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By construction, BUZ contains every set in P which intersects the topological boundary
of a set in Z. So, it suffices to bound |B| and |Z|.

By Lemma 7.7, any set of the form Z N I; for Z € Z can be written as a Boolean

. . d max{d/e,d+1}4o0(1) .

combination of at most r; translates of A, B and Q1, ..., Q;. The union
of all boxes in B lies within dist..-distance at most § from the boundary of at least one of
these translates. Thus, using the volume bound, the estimate in (7.16) and that, trivially,
the measure of {x : disto(x,0Q;) < §} is at most 46, we get that

§F|B] < 28\ ( U {z: distec(z,0(Z2 N 1)) < 5})

zZez

< ok 12| (Td max{d/a,d+1}+o(1)(55 +z’-46)).

By the definitions of ¢ and ¢ (that is, by (7.11) and (7.18)) and since i = O(log(log(r;))),
we have that id = o(d¢) and

6k|B| < (6—4C)d max{d/e,d+1}+o0(1) _5e—o(1) < 6C_0(1)

So, indeed, |B| < (1/8)k—¢+o1),

Since none of the boxes in Z are contained in B, and |, Z = T*, all sets in Z must
all be contained in the interior of T%\ I;. Thus, by Lemma 5.13 combined with (2.7) and
(2.8), we have that

OT] < 2N(TH\ 1) = Oy fri) = O (r2{*) = 0 ((1/8)7°) .
This completes the proof of Lemma 7.8. O

Proof of Theorem 1.3(a). Recall that the final equidecomposition is obtained by apply-
ing the local function of Lemma 2.16 to f (i.e., to the sets Z?]:,Z)' Clearly, the family
of subsets of T* whose boundary has upper Minkowski dimension at most k — ¢ is a
translation-invariant algebra. Since this algebra contains each set Z §,£ by Lemma 7.8, it
also contains all pieces of the equidecomposition by Observation 2.6. O

7.2. Borel complexity

This part of the proof heavily relies on the properties of various toast sequences
that we constructed earlier. First, let us briefly recall some key related definitions and
properties. The toast sequence (J;, KZ, L )l 1, as defined before Lemma 5.15, is obtained
by taking the toast sequence (.J;, K P Lp i | inside each (a-invariant) set Tj, and then
taking the union over all p. In turn, (J“KZP , Lf )22, (whose properties are summarised
in Lemma 5.10) is obtained from (.J;, Kf ; Lf )2, by removing those components from
sets Kiﬁ and Lf that “conflict with later sets”. Finally, the sets Kiﬁ and Lf are defined
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by (5.24) and (5.25) (which are the same as the definitions in (5.12) and (5.13), except
we take the “p-shifted” sets Y;).

Recall that we have to show that all pieces of the constructed equidecomposition
belong to B(E(B(XY U Ta U Tz))), that is, each piece can be obtained from open sets
and translations of the sets A and B by taking Boolean combinations, then countable
unions and then Boolean combinations. (In fact, our proof gives a slightly stronger version
where open sets can be replaced by strips.)

For € {0,...,5}%, let the flow f, ;75 be obtained by rounding the sequence of
flows (fim,, fin,s fm: )21 on the toast sequence (J;, K7, LY)52,. Since the toast sequences
(Ji, K;, L;)2, and (J;, f(f, I}g)fil coincide inside T}, we have for all 7 and £ that

(7.19) Zi,= U (mnzire).

So, it suffices to show that Tj and Zg‘,’fﬁiﬁ for 5 € {0,...,5}¢ are all in the set family
B(E(B(ZYUTaUTg))). We start with the former.

Lemma 7.9. Each of the sets Ty constructed in the proof of Lemma 5.1/ can be written
as a Boolean combination of G sets.

Proof. Here we are going to use the assumption in (2.18) which states that each com-
ponent of G4 intersects the topological boundary of at most one set Y;. Thus, if the sets
R;(v) for i > 1 in the proof of Lemma 5.14 are re-defined in terms of the interior of Y;
instead of Y; itself, then, for each v € T, the sets R;(v), Ra(v),... remain unchanged,
except for possibly one index ¢ > 1. In particular, the set R*(v) of their accumulation
points is unchanged. So, assuming that R;(v) is defined in terms of the interior of Y;, we
have that for any b,i > 1 and p € {0,...,5}¢ the set

d
- pa—3 1p.—2 1
{veT .Rz(v)ﬂH( 3 53 +b>7é®}

s=1

is open as well. So, for each p,

& ps—3 ps—2
Ti{vGTk:R*(v)ﬂH[ps?) 7]953 ]#@}
A S pe—3 1 p,—2 1

is a G5 set. Recall that, by definition (namely by (5.26)), Tj7 consists of those v for which
p'is the lexicographically smallest vector with v € ng. Thus T} is Boolean combination
of these sets. O
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Next, let us consider the sets of the form Z:;"fﬁ Le
Lemma 7.10. There exists a collection W of subsets of T* such that

(7.20) every set in W is a countable union of Boolean combinations of strips and trans-
lates of A and B;

(7.21) for every i € {—1,0,1}¢, ¢ € range(f) and p € {0,...,5}¢, the set ng[ﬁiﬁ can
be written as a Boolean combination of some sets in W.

Proof. Recall that the flow f; is obtained by rounding ( ;)52 on (J;)$2,. For the proof,
we need to define two further flows:

)2, and
o fgrps is the rounding of (fy,,, fm;)72, on the toast sequence (K7, L7)2,

o fyk# is the rounding of (fm,, fm;)2;, on the toast sequence (J,-,KE

K2

Recall that each of (J;, KP)2°, and (K?, LF)> is a toast sequence by Lemma 5.9. Also
Lemma 7.2 (Wlth the used toast sequence (J/, K, L), being respectively (J; Kf , (Z))Oo
and (0, K?, L7)>2 ) applies to each of these two new flows.

For every i € {—1,0,1}¢, ¢ € range(f), p € {0,...,5}4 and i > 1, define

Wi,=qu: fr(uiiqu)="Land {u,ii-qu}n | [ JJ; | #0p,

j=1

~.

Wijf’f:: u: frps (U, Mg u) =20 and {u,7qu}N U f

;{fZiLﬁ =R u: frrps (U, g u) =L and {u,i -, u}nN U KpULp £ 0

In other words, these sets are obtained by restricting f, fyxs and fgsrs to all edges
intersecting respectively U;Zl Jj, U;Zl K J’? and U§:1 (K f UL? ) and encoding the obtained
partially defined flows by sequences of sets of vertices similarly as in (2.14). Recall that
J; CK f for every j. By Lemma 7.2, each of these newly defined sets is a local function
of A, B and finitely many of sets J;, Kiﬁ, Lf while, in turn, each of the sets .J;, K?, Lf is a
finite union of strips by Lemma 5.12. So each set defined above is a Boolean combination
of strips and translates of A and B.
Now, for all 77 and ¢, define

JKP . JKP K”Lp KPLF
e*U ézv : U e and U i
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We define W to be the collection of all sets of the form VVF{J7 T:L’fﬁ and Wf{f’:i for any
7, ¢ and p. By above, the family W satisfies (7.20).

By construction (i.e. by Conclusion (7.7) of Lemma 7.2), the flows f, 77, and f;
coincide on every pair intersecting | J;=, J;. Also, if an edge wv intersects Kf then,
by (5.17), the value of f,z;7, on this edge equals the value of f; s unless there exists
i > j such that wv intersects J; when we use the value of f; (which may happen to
coincide with the value of f;xs on wv). Furthermore, we can drop the restriction that
i > j here, since our rounding procedures for any J; and J;; produce the same value
on each edge intersecting J; N J. Similarly, if an edge intersects Lf , then the value of
frrsrs on this edge is retained b}: [ 7esis» unless it is overwritten (to a different value
or the same one) due to J; or K¥ with ¢ > j intersecting this edge; again we can drop
the restriction that ¢ > j here.

Thus, informally speaking, our flow values are partitioned into the following three
types: J-values, K-values not overwritten by J, and L-values not overwritten by J nor K,
that is, the order of precedence is J, K, L. Formally, we can express the above partition
as

gliRPEr _ W, u T%Ié(ﬁ\ U W,

7,0 7,
serange(f)
KPLP J JK?
U e\ U Wi | U U Wi )
se€range(fs) serange(f; )

for every non-zero flow value £. Note that each union is over a finite set (since the involved
flows are integer-valued and uniformly bounded), thus satisfying (7.21). The case £ = 0
is somewhat special since the union (J;=,(J; U K¥ U L¥) need not cover the whole torus.

However, this case also satisfies (7.21) since Zj;’of“? L7 is the complement of the union of

the sets Zj;’fﬁ L¥ gver all possible (finitely many) non-zero flow values £. This completes
the proof of the lemma. O

Proof of Theorem 1.3(b). Since every strip is the difference of two open sets, Part (b)
of Theorem 1.3 now follows by combining (7.19) with Lemmas 7.9 and 7.10. O

Acknowledgments

The authors are very grateful to the anonymous referee for the extremely careful
reading of the manuscript and many very useful comments.

For the purpose of open access, the authors have applied a Creative Commons Attri-
bution (CC-BY) licence to any Author Accepted Manuscript version arising from this
submission.



62 A. Mdthé et al. / Advances in Mathematics 484 (2026) 110685

Appendix A. Laczkovich’s discrepancy bound

The purpose of this appendix is to sketch a proof of Lemma 2.1. This result is implicit
in [23, Proof of Theorem 3] and its proof sketch is given in [15, pp. 677-678]. Since the
dependence of d on k and dimp(0X) (which is crucial for our estimates in Section 7.1)
is not explicitly calculated there, we present a slightly expanded proof sketch.

Let X C T* be a measurable set such that & — 1 < dimg(0X) < k. The first step is
to use the upper Minkowski dimension of the boundary to reduce the proof to bounding
discrepancy of N, [u] relative to boxes in T*. This argument is due to Niederreiter and
Wills [31, Kollorar 4]. Recall that d is an integer such that d > k/(k — dimp(9X)) and
¢ is a real number satisfying 0 < € < (d(k — dimg(0X)) — k)/k. Define

(1+¢e)k
—

=

By the definition of upper Minkowski dimension and the fact that a < k — dimg(9X),
there exists g € (0,1) such that

(A1) A({z : distos (z, 0X) < 8}) < 6%

for all 0 < 6 < dp. Now, for r € N, choose ¢ € (0, dp) small with respect to r, where the
dependence is clarified below. For convenience, let us assume that ! is an integer.

Let P be the partition of T* into a grid of =% boxes, each with side-length J. Let B
be the elements of P which intersect 0X. We have

SF1Bl < XA ({z : distoo (,0X) < 6}) < 6

by (A.1) and so |B| < §~k+,

Let Z be the elements of P contained in the interior of X. We then let Z* be the
collection of boxes obtained by starting with Z and iteratively merging two boxes if
they have the same projection onto the first £ — 1 coordinates and their closures share a
(k—1)-dimensional face. For any two distinct boxes in Z* which have the same projection
onto the first K — 1 coordinates, there must be at least one element in B “between” them
which prevents them from merging. Conversely, each element of B prevents at most one
potential merging. Therefore,

|I*| < 67k+1 + |B| < 57k+1 +57k+a < 2571€+a7

since a < 1 by our assumption that dimg(0X) > k — 1. Thus, Z* U B is a covering of X
with at most 36 %% boxes such that each of the boxes in B has measure at most 6*.

Now, given any finite set F' C T*, by the triangle inequality applied to the partition
X = (Urez+I) U (Urep(I N X)), the discrepancy of F relative to X can be bounded as
follows:
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(A.2) D(F,X)< Y D(F,I)+>» D(F,InX)
IeZ~ IeB

We apply Lemma 7.4 to the first sum on the right side of (A.2), say with ¢ := 1, and
obtain that

Z D (N [ul],I) < C'logh T+ (r) |T¥| < 2C Tog" T4 (1) 5k +e,
IeT~

The contribution of I € B to the second sum is at most
max { [N [u] 0 (10 X)], [N full (X 11) } < max {|N; fu] (1 2], (r + 1)%(D)}

and each term can be bounded from above by (r + 1)%6% 4+ C'log"***(r). Thus, by
|B| < 5%+ we have

> D (N[l 1) < ((r+ 1) + Clogh+ 4 (r) ) 574+,
IeB

So, if we set § := (r + 1)~ for r — oo, then we get

D (N [u], X) < (r + 1)dmed/kre) = (p 4 1yd=i=sto@),

T

The extra o(1) term in the exponent can clearly be taken care of by choosing e sufficiently

d(k—dimp(8X))—k
k

close to in the beginning. Thus, Lemma 2.1 follows from Lemma 7.4.
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