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Tarski’s Circle Squaring Problem from 1925 asks whether 
it is possible to partition a disk in the plane into finitely 
many pieces and reassemble them via isometries to yield a 
partition of a square of the same area. It was finally resolved 
by Laczkovich in 1990 in the affirmative. Recently, several 
new proofs have emerged which achieve circle squaring with 
better structured pieces: namely, pieces which are Lebesgue 
measurable and have the property of Baire (Grabowski--
Máthé--Pikhurko) or even are Borel (Marks–Unger).
In this paper, we show that circle squaring is possible with 
Borel pieces of positive Lebesgue measure whose boundaries 
have upper Minkowski dimension less than 2 (in particular, 
each piece is Jordan measurable). We also improve the Borel 
complexity of the pieces: namely, we show that each piece can 
be taken to be a Boolean combination of Fσ sets. This is a 
consequence of our more general result that applies to any 
two bounded subsets of Rk, k ⩾ 1, of equal positive measure 
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whose boundaries have upper Minkowski dimension smaller 
than k.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction

Tarski’s Circle Squaring Problem [34] from 1925 asks if a circle (i.e., a circular disk) 
and a square of the same area in R2 are equidecomposable, that is, whether we can 
partition the circle into finitely many pieces and apply some isometry to each piece to 
get a partition of the square. This question was answered affirmatively some 65 years 
later by Laczkovich who showed in a deep and groundbreaking paper [22] that, in fact, 
it is possible to square a circle using translations only.

The Axiom of Choice plays a crucial role in his proof and, consequently, the pieces of 
his circle squaring could not be guaranteed to have any discernible regularity properties. 
A notable problem (mentioned by e.g., Wagon [37, Appendix C] or Laczkovich [22, 
Section 10]) has been to determine whether there exist circle squarings using ``better'' 
structured pieces. Recently, Grabowski, Máthé and Pikhurko [15] proved that the pieces 
of a circle squaring can simultaneously be Lebesgue measurable and have the property 
of Baire. Then, Marks and Unger [28] proved that the pieces can be made Borel. (Let 
us assume in this paper that the disk and the square are closed and thus Borel sets.) 
In fact, Marks and Unger [28, Section 7] showed that the pieces of a circle squaring can 
be chosen to be in 𝓑(Σ0

4), where Σ0
i is the i-th additive class of the standard Borel 

hierarchy (see e.g., [18, Section 11.B]) and 𝓑(ℱ) denotes the algebra generated by a set 
family ℱ (that is, the family of all Boolean combinations of elements from ℱ). For some 
generalisations and simplifications of the above results, we refer the reader to Cieśla and 
Sabok [6] and Bowen, Kun and Sabok [3,4].

Shortly after his circle-squaring paper, Laczkovich [23,24] proved a far-reaching gen
eralisation. Before stating it, let us set up some notation. Fix k ⩾ 1. Let λ denote the 
Lebesgue measure on Rk and let ∂X denote the (topological) boundary of X ⊆ Rk. 
Recall that the upper Minkowski dimension, sometimes called box or grid dimension, of 
X ⊆ Rk is

(1.1) dim□(X) := lim sup
δ→0+

log(Nδ(X))
log(δ−1) ,

where Nδ(X) is the number of boxes from the regular grid in Rk of side-length δ that 
intersect X.

Theorem 1.1 (Laczkovich   [23,24]). If k ⩾ 1 and A,B ⊆ Rk are bounded sets such that 
λ(A) = λ(B) > 0, dim□(∂A) < k and dim□(∂B) < k, then A and B are equidecompos
able by translations.

http://creativecommons.org/licenses/by/4.0/
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The subsequent papers [15,28] on circle squaring in fact prove appropriate ``construc
tive'' versions of Theorem 1.1 and derive the corresponding circle squaring results as 
special cases. The aim of this paper is to extend this line of research. In the context of 
circle squaring, we prove the following result which decreases the Borel complexity of 
the pieces by two hierarchy levels and ensures that the boundary of each piece is ``small'' 
in a strong sense.

Theorem 1.2. In R2, a closed disk and a closed square of the same area can be equidecom
posed using translations so that every piece has boundary of upper Minkowski dimension 
at most 1.987, belongs to 𝓑(Σ0

2) (i.e., is a Boolean combination of Fσ sets), and has 
positive Lebesgue measure.

Recall that a subset X ⊆ Rk is Jordan measurable if its indicator function is Riemann 
integrable. An equivalent definition is that X is bounded and λ(∂X) = 0. It easily follows 
that any bounded set X ⊆ Rk with dim□(∂X) < k is Jordan measurable. Therefore, 
Theorem 1.2 implies that circle squaring is possible with Jordan measurable pieces, which 
addresses questions by Laczkovich [27] and Máthé [29, Question 6.2]. An advantage of 
a Jordan measurable circle squaring is that an arbitrarily large portion of it can be 
described in an error-free way with finitely many bits of information. Namely, for every 
ε > 0, if n is large enough, then at most εn2 boxes of the regular n × n grid on the 
equidecomposed unit square can intersect more than one piece and thus O(n2) bits are 
enough to describe our equidecomposition up to a set of measure at most ε. (Furthermore, 
the dimension estimate of Theorem 1.2 shows that ε, as a function of n → ∞, can be 
taken to be n−0.013+o(1).)

We will obtain Theorem 1.2 as a special case of the following general result. For a set 
A ⊆ Rk, let 𝒯A := {A + 𝒕 : 𝒕 ∈ Rk} consist of all its translations. For a family ℱ of 
sets, let Σ(ℱ) be the collection of all countable unions of sets in ℱ . Also, recall that Σ0

1
stands for the collection of open sets in Rk.

Theorem 1.3. If k ⩾ 1 and A,B ⊆ Rk are bounded sets such that λ(A) = λ(B) > 0, 
dim□(∂A) < k and dim□(∂B) < k, then A and B are equidecomposable by translations 
so that all the following statements hold simultaneously: 

(a) for some ζ > 0 that depends on k, dim□(∂A) and dim□(∂B) only, the topological 
boundary of each piece has upper Minkowski dimension at most k − ζ,

(b) each piece belongs to 𝓑(Σ(𝓑(Σ0
1 ∪ 𝒯A ∪ 𝒯B))),

(c) if

(1.2) λ
(︁{︁

𝒕 ∈ Rk : (A + 𝒕) ∩B ̸= ∅ and λ ((A + 𝒕) ∩B) = 0
}︁)︁

= 0

(that is, the set of vectors 𝒕 ∈ Rk such that (A+𝒕)∩B is non-empty and Lebesgue-null 
has measure 0), then each piece has positive Lebesgue measure.
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In fact, an explicit expression for a possible parameter ζ > 0 in Part (a) as a function 
of k, dim□(∂A) and dim□(∂B) is given in (7.11). For circle squaring, the bound in (7.11)
states that any ζ < 1/73 suffices. Interestingly, by Part (a), each non-null piece of the 
equidecomposition individually satisfies the hypothesis of the theorem and is therefore 
equidecomposable to a ball or a cube of the same measure. Moreover, each non-null piece 
automatically has non-empty interior. (Note that a Jordan measurable subset of Rk is 
null if and only if it has empty interior.)

If the sets A and B in Theorem 1.3 are Borel, then, by Part (b), all pieces of the 
equidecomposition can be taken to be Borel with a good control over their Borel com
plexity (that improves upon the analogous result in [28] by two hierarchy levels). For 
example, if each of A and B is simultaneously a Gδ set and an Fσ set, that is, belongs 
to Δ0

2 := {X ∈ Σ0
2 : Rk \X ∈ Σ0

2} (in particular, if each of A and B is open or closed), 
then every piece in the equidecomposition is a Boolean combination of Fσ sets, which 
follows from

𝓑(Σ(𝓑(Δ0
2))) = 𝓑(Σ(Δ0

2)) ⊆ 𝓑(Σ(Σ0
2)) = 𝓑(Σ0

2),

where we use the easy facts that Δ0
2 is closed under Boolean combinations and Σ0

2 is 
closed under countable unions.

Regarding Part (c) of Theorem 1.3, note that it is impossible to guarantee that all 
pieces in Theorem 1.3 have positive measure in general. For example, if A contains a 
point 𝒙 such that the distance from 𝒙 to A\{𝒙} is greater than the diameter of B, then 
every equidecomposition of A to B must include the set {𝒙} as a single piece. However, 
the extra assumption of Part (c) applies in many natural cases: for example, it holds for 
a ball and a cube in any dimension (with arbitrary subsets of their boundaries removed), 
or for any open sets A and B.

It seems difficult to weaken the assumptions of Theorem 1.3 in some substantial way. 
Laczkovich [25, Corollary 3.5] showed that, for every k ⩾ 1, there is a bounded subset 
A ⊆ Rk which is a countable union of pairwise disjoint convergent cubes but which is not 
equidecomposable to a single cube by translations. In particular, even in Theorem 1.1, 
one cannot replace the assumption that dim□(∂A),dim□(∂B) < k by requiring that, for 
example, the Hausdorff dimension of the boundaries is at most k − 1. Another family 
that refutes various extensions of Theorem 1.1 (and thus of Theorem 1.3) comes from 
the work of Laczkovich [26, Theorem 3] who showed that for every k ⩾ 2 there are 
continuum many Jordan domains (i.e. homeomorphic images of the closed ball), each of 
volume 1 with everywhere differentiable boundary, so that no two are equidecomposable 
using any amenable subgroup of isometries. (In particular, this applies to the group Rk

of translations for any k and the full group of isometries of R2, which are amenable.)
On the other hand, if k ⩾ 3 and one allows all orientation-preserving isometries of 

Rk, then the obvious necessary conditions for a set to be equidecomposable to a cube 
using Lebesgue (resp. Baire) measurable pieces turn out to be sufficient, see Grabowski, 
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Máthé and Pikhurko [16, Corollary 1.10]. However, nothing like this is known for Borel 
and Jordan measurable equidecompositions.

1.1. Historical background

Tarski’s Circle Squaring Problem has its roots in the theory of paradoxical decompo
sitions. The most famous result in this area is undoubtedly the theorem of Banach and 
Tarski [2] that, if k ⩾ 3 and A,B ⊆ Rk are bounded and have non-empty interior, then A
and B are equidecomposable. As a special case, one obtains the striking Banach–Tarski 
Paradox that a solid ball in R3 admits an equidecomposition to two disjoint copies of 
itself.

The assumption k ⩾ 3 is necessary in the Banach–Tarski Theorem, as Banach [1] 
proved that the Lebesgue measure on R or R2 can be extended to a finitely additive 
measure on all subsets which is invariant under isometries. Thus, in R2, there cannot exist 
equidecomposable sets of different Lebesgue measure. The theory of amenable groups, 
pioneered by von Neumann [30], originated as an attempt to obtain a deeper group
theoretic understanding of the change in behaviour between dimensions two and three; 
the key difference turns out to be that the group of isometries of Rk is amenable for 
k ∈ {1, 2} but not for k ⩾ 3. Generally, if A and B are Lebesgue measurable subsets 
of Rk which are equidecomposable using an amenable subgroup of isometries, then they 
must have the same measure. Note that the group of translations of Rk is amenable for 
all k ⩾ 1, and so the condition that λ(A) = λ(B) is necessary in Theorem 1.1 in general.

Decades before Laczkovich squared the circle, Dubins, Hirsch and Karush [11] proved 
that a disk is not scissor-congruent to a square, meaning that there does not exist 
a squaring of the circle with pieces that are interior-disjoint Jordan domains, even if 
boundaries are ignored. This is in strong contrast to the case of polygons: the classical 
Wallace–Bolyai--Gerwein Theorem states that it is possible to dissect a polygon into 
finitely many pieces using straight lines and, ignoring boundaries, reassemble them to 
form any polygon of the same area; see e.g., [36, pp. 34--35]. Another related result, 
by Gardner [14], asserts that there is no solution to the Circle Squaring Problem using 
isometries from a locally discrete subgroup of isometries.

For more background, we refer the reader to the monograph of Tomkowicz and Wa
gon [36], whose Chapter 9 is dedicated to circle squaring.

1.2. Some ideas behind the proof of Theorem 1.3

Let us give a very high-level outline of the proof of Theorem 1.3; all formal definitions 
will appear later in the paper. A more detailed sketch of the partial result that all pieces 
can be made Jordan measurable is given in Section 3.

Like in the previous work, we assume that A and B are subsets of the torus Tk :=
Rk/Zk and do all translations modulo 1. We pick a suitable (somewhat large) integer 
d and vectors 𝒙1, . . . ,𝒙d ∈ Tk satisfying certain conditions (that are satisfied with 
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positive probability by random vectors). Let Gd be the graph on Tk where we connect 𝒖
to 𝒖+

∑︁d
i=1 ni𝒙i for each non-zero (n1, . . . , nd) ∈ {−1, 0, 1}d. Assuming that 𝒙1, . . . ,𝒙d

do not satisfy any linear dependencies with rational coefficients, each component of Gd

is a (3d − 1)-regular graph on a copy of Zd.
Our aim is to ``construct'' a bijection from A to B such that, for some constant r, each 

element of A is moved by the bijection by distance at most r within the graph Gd. Such 
a bijection naturally gives an equidecomposition between A and B that uses at most 
(2r + 1)d pieces. As was observed by Marks and Unger [28], the problem of finding such 
a bijection can be reduced to finding a uniformly bounded integer-valued flow within the 
graph Gd, where the demand is 1 on A, −1 on B and 0 elsewhere (see Lemma 2.16 here).

As one of the first steps of their proof, Marks and Unger [28] constructed a real-valued 
(i.e. not necessarily integer-valued) flow f∞ which satisfies this demand; see Lemma 3.1. 
The flow f∞ is defined to be a pointwise limit of a sequence of flows fm that are locally 
constructed from A and B. Since the collection of subsets of Tk with boundary of upper 
Minkowski dimension at most k − ζ is not a σ-algebra, we should not use the values of 
f∞ if we want to produce pieces with this structure. Instead, we work with the locally 
defined approximations fm.

For flow rounding (that is, making all flow values integral), we construct Jordan 
measurable subsets J1, J2, . . . of Tk such that their union 

⋃︁∞
i=1 Ji is co-null in Tk and 

(Ji)∞i=1 is a toast sequence (see Definition 2.14), roughly meaning that each Ji induces 
only finite (in fact, uniformly bounded) components in Gd and the graph boundaries of 
all components arising this way are well separated from each other. In fact, each set Ji is a 
finite union of strips, i.e., sets of the form [a, b)×[0, 1)k−1; in particular, it is Borel and its 
boundary is (k−1)-dimensional. The idea of using toast sequences to construct satisfying 
assignments was previously applied to many problems in descriptive combinatorics (with 
the exact definition of ``toast sequence'' often being problem-specific). For a systematic 
treatment of this idea for general actions of Zd, we refer the reader to Grebík and 
Rozhoň [17].

We can view the toast sequence (J1, J2, . . .) as a process where, at time i, vertices of 
the set Ji arrive and our algorithm has to decide the value of the final integer flow f on 
every edge with at least one vertex in this set. We are not allowed to look into the future 
nor modify any already defined values of the flow f . We prove that, if all things are set 
up carefully, then this is indeed possible to do and, in fact, there are some constants mi

and Ri such that the value of f on any edge xy ∈ E(Gd) intersecting Ji can be computed 
only from the current picture in the Ri-neighbourhood of {x, y} in Gd and the values 
of the approximation fmi

of f∞ there. Here, a key challenge is that, when we round 
the flow on Ji, we have only incomplete information (namely, the flow fmi

which meets 
the demands only within some small error). The idea that allows us to overcome this 
difficulty is that, if the cumulative error of fmi

on each component of Ji is small, then 
whenever our algorithm encounters some inconsistency, it can round it to the nearest 
integer and produce values that are in fact perfectly compatible with all past and future 
choices of the algorithm.
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The proof coming from the above arguments, with a careful choice of how the size of 
the components of Ji can grow with i, produces a partial equidecomposition between A
and B so that the topological boundaries of the pieces as well as the unmatched part 
of A and of B have upper Minkowski dimension less than k. Thus if we can extend this 
equidecomposition to all of A and B (even by using the Axiom of Choice), then we can 
achieve Part (a) of Theorem 1.3.

However, these ideas do not seem to be enough to yield pieces which satisfy Parts (a) 
and (b) of the theorem simultaneously. If A and B are Borel, then all pieces in the 
partial equidecomposition are Borel, but we did not see a way to match the remaining 
parts of A and B in a Borel way by using the results of Marks and Unger [28] as a 
“black box''. So, in order to achieve Part (b) of Theorem 1.3, we essentially run the proof 
from [28] on the complement of 

⋃︁∞
i=1 Ji, making sure that, when we define the sets Ji in 

the first place, we leave enough remaining ``wiggle'' space. Running the Borel proof on 
the remaining set is probably the most technical part of this paper. This extra work is 
worth the effort though, since our modification of both the construction and analysis of 
Marks and Unger [28] also allows to reduce the Borel complexity of the obtained pieces.

For Part (c), we choose 𝒙1, . . . ,𝒙d ∈ Tk so that, additionally, for every vector 𝒕 which 
is an integer linear combination of them, the intersection (A + 𝒕) ∩ B is null only if it 
is empty. Recall that our equidecomposition translates each 𝒖 ∈ A by a vector of the 
form 

∑︁d
i=1 ni𝒙i where n1, n2, . . . , nd are integers between −r and r, for some r. Denote 

by 𝒕1, . . . , 𝒕N the vectors 𝒕 of this form for which (A + 𝒕) ∩ B is non-empty (and thus 
non-null). To achieve Part (c), for each 1 ⩽ i ⩽ N , we pre-select a small non-null subset 
A𝒕i of (B − 𝒕i) ∩A to be a part of the piece of the equidecomposition that is translated 
according to 𝒕i. This is done in such a way that the sets A𝒕1 + 𝒕1, . . . , A𝒕N + 𝒕N are 
pairwise disjoint and our proof of Parts (a) and (b) still applies to the remaining sets 
A\⋃︁N

i=1 A𝒕i and B \⋃︁N
i=1(A𝒕i + 𝒕i), using the same translation vectors 𝒕1, . . . , 𝒕N . Thus, 

all pieces are non-null by construction.

1.3. Organisation

As Theorem 1.2 is a direct consequence of Theorem 1.3 and the bound on ζ in (7.11), 
all our focus will be on proving Theorem 1.3.

In Section 2, we present some notation, introduce a few of the tools used in the paper 
and prove some auxiliary results. In particular, we present the reduction of Marks and 
Unger [28] that it is enough to construct a bounded integer-valued flow f from A to B in 
Gd with appropriate properties (Lemma 2.16). This lemma will also take care of Part (c) 
of the theorem.

Given these preliminaries, we can give a more detailed outline of the proof of Theo
rem 1.3 in Section 3. There, we will mostly concentrate on the (less technical) special case 
of making the pieces just Jordan measurable. We will conclude that section by discussing 
some of the additional ideas which allow us to control the dimension of the boundaries 
and the Borel complexity of the pieces.
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Then we turn our attention to proving Theorem 1.3 in earnest. In Section 4, we 
describe the procedure from [28] for constructing a real-valued flow from A to B in the 
graph Gd. In Section 5, we construct the toast sequences that are needed in the proof. 
In Section 6 we show how to transform a converging sequence of real-valued flows into 
a bounded integer-valued flow using a toast sequence. In Section 7, we define our final 
flow f (that produces the required equidecomposition via Lemma 2.16) and analyse the 
upper Minkowski dimension of the boundaries of the pieces (in Section 7.1) as well as 
the Borel complexity of the pieces (in Section 7.2).

Even though many of our auxiliary results can be strengthened or generalised in 
various ways, we try to present just the simplest versions that suffice for proving The
orem 1.3, since its proof is already very intricate and delicate. In fact, we sometimes 
present a separate (sketch) proof of a special case before giving the general proof, when 
we believe that this improves readability.

2. Preliminaries

We denote by R and Z the sets of reals and integers, respectively. For x ∈ R, we 
define its nearest integer [x] to be equal to ⌊x⌋ if x− ⌊x⌋ < 1/2 and ⌈x⌉ otherwise. The 
set of all values assumed by a function f is denoted by range(f). When we write e.g., 
(ai, bi)∞i=1, we mean the sequence (a1, b1, a2, b2, . . .). The indicator function of a set X is 
denoted by 1X . By log we mean the natural logarithm.

2.1. Discrepancy bounds for the torus

The k-torus Tk is the quotient group of (Rk,+) modulo Zk. When we write the sum 
of 𝒖,𝒗 ∈ Tk, we take it modulo 1 and thus 𝒖+ 𝒗 is an element of Tk. In particular, the 
translation of Y ⊆ Tk by a vector 𝒕 ∈ Tk,

Y + 𝒕 := {𝒚 + 𝒕 : 𝒚 ∈ Y } ⊆ Tk,

is done modulo 1. Similarly, scalar multiples of vectors in Tk are also taken modulo 1.
For notational convenience, we may occasionally identify Tk with [0, 1)k. While this 

identification is not a topological homeomorphism, it does preserve the set families that 
are of interest to us, namely, sets that are Borel, are Jordan measurable, have boundary 
of upper Minkowski dimension at most k−ζ, etc. The restriction of the Lebesgue measure 
on Rk to the torus will be denoted by the same symbol λ. We have λ(Tk) = 1.

Given a finite set F ⊆ Tk and a Lebesgue measurable set X ⊆ Tk, the discrepancy 
of F relative to X is defined to be

(2.1) D(F,X) :=
⃓⃓ |F ∩X| − |F | · λ(X) ⃓⃓ .

In other words, D(F,X) is the deviation between |F ∩X| and the expected size of this 
intersection if F were a uniformly random subset of Tk of cardinality |F |.
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A key tool used in this paper, as well as in [15,28], is the following discrepancy lemma 
of Laczkovich [23], whose proof sketch can be found in Appendix A.

Lemma 2.1 (Laczkovich   [23, Proof of Theorem   3]; see also   [15, Lemma   2.4]). Let X be 
a measurable subset of Tk such that k − 1 ⩽ dim□(∂X) < k, let d be a positive integer 
such that

d >
k

k − dim□(∂X)

and let ε ∈ R be such that

0 < ε <
d(k − dim□(∂X))− k

k
.

If 𝒙1, . . . ,𝒙d are chosen uniformly at random from Tk and independently of one another 
then, with probability 1, there exists c > 0 such that, for every 𝒖 ∈ Tk and every integer 
n ⩾ 0, we have

D
(︁
N+

n [𝒖], X
)︁
⩽ c · (n + 1)d−1−ε,

where we define

(2.2) N+
n [𝒖] :=

{︄
𝒖 +

d ∑︂
i=1 

ni𝒙i : (n1, . . . , nd) ∈ {0, . . . , n}d
}︄
,

calling it a discrete (n + 1)-cube (or just a discrete cube).

Essentially, this lemma says that, if a set X ⊆ Tk has ``small'' topological boundary, 
then, for d sufficiently large, the discrepancy of any large discrete cube given by typical 
vectors 𝒙1, . . . ,𝒙d ∈ Tk with respect to X is significantly smaller than the number of 
points on the combinatorial boundary of the cube.

2.2. Graph-theoretic definitions

A (simple undirected) graph is a pair G = (V,E) where the elements of V are called 
vertices and E is a collection of unordered pairs {u, v} of vertices called edges. For brevity, 
an edge {u, v} ∈ E is written uv or, equivalently, vu. The vertex set and edge set of a 
graph G are denoted by V (G) and E(G), respectively.

A vertex u is said to be adjacent to (or a neighbour of ) a vertex v if uv ∈ E(G). Given 
a set S ⊆ V (G), the subgraph of G induced by S, denoted as G ↾ S, is the graph with 
vertex set S and edge set {uv ∈ E(G) : u, v ∈ S}.

Given a graph G and u, v ∈ V (G), we let distG(u, v) denote the graph distance from 
u to v in G, i.e., the fewest number of edges in a path from u to v in G. If no such path 
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exists, then distG(u, v) := ∞. Also, note that distG(u, u) = 0 for every vertex u. For sets 
S, T ⊆ V (G), we let

distG(S, T ) := min{distG(u, v) : u ∈ S and v ∈ T}

and, for w ∈ V (G), we write distG(w, T ) to mean distG({w}, T ). Given u ∈ V (G), the 
connected component of G containing u is the set

[u]G := {v ∈ V (G) : distG(u, v) <∞}.

We say that G is connected if [u]G = V (G) for every (equivalently, some) vertex u ∈
V (G).

Given a graph G and u ∈ V (G), let

NG[u] := {v ∈ V (G) : distG(u, v) ⩽ 1}

denote the (closed) neighbourhood of u in G. Also, for a set S ⊆ V (G), let NG[S] :=⋃︁
u∈S NG[u] be the (closed) neighbourhood of S in G. The degree of a vertex u ∈ V (G)

is defined to be

degG(u) := |NG[u] \ {u}| = |NG[u]| − 1.

We say that G is locally finite if degG(u) is finite for every u ∈ V (G). For d ∈ N, we say 
that G is d-regular if degG(u) = d for all u ∈ V (G).

The edge boundary of S ⊆ V (G) in G is the set

(2.3) ∂ES := {uv ∈ E(G) : u ∈ S and v ∈ V (G) \ S}.

2.3. Network flows

A flow in a graph G is a function f : V (G)× V (G) → R such that

f(u, v) = −f(v, u) for all u, v ∈ V (G), and

f(u, v) = 0 if uv / ∈ E(G).

The quantity f(u, v) is called the flow from u to v under f . Given a finite set S ⊆ V (G), 
the flow out of S under f is defined to be

fout(S) :=
∑︂
u∈S

v∈V (G)\S

f(u, v).

Note that, in this paper, we will deal with locally finite graphs only, and so the flow out 
of a finite set will always be well-defined. For a vertex u ∈ V (G), the flow out of u under 
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f is fout(u) := fout({u}). The following is an easy consequence of the definition of a 
flow.

Observation 2.2. Given a locally finite graph G, a flow f in G and a finite set S ⊆ V (G), 
it holds that fout(S) =

∑︁
u∈S fout(u). □

When it is clear from the context, we may view fout just as a function V (G) → R; for 
example, when we write ∥fout − g∥∞ for some g : V (G) → R, we mean the supremum 
of |fout(u)− g(u)| over u ∈ V (G).

Given a function χ : V (G) → R, which we call a demand function, a χflow in G is a 
flow f such that fout(u) = χ(u) for every u ∈ V (G). For S, T ⊆ V (G), a flow from S to 
T in G is a (1S − 1T )flow in G.

It is well-known that, if χ is an integer-valued demand function for a finite graph G, 
then a real-valued χflow in G can be converted into an integer-valued χflow in G by 
changing the flow along each edge by less than 1. This is known as the Integral Flow 
Theorem. It seems to have been first observed by Dantzig and Fulkerson [9] using ideas 
of Dantzig [8]; see [33, Corollary 10.3a] and the discussion in [33, p. 64]. The following 
version can be derived from the finite case via a standard compactness (i.e., Axiom of 
Choice) argument; for a proof see e.g., [28, Corollary 5.2].

Theorem 2.3 (Integral Flow Theorem). Let G be a locally finite graph and let χ : V (G) →
Z be an integer-valued demand function. Then, for every χflow g in G, there exists an 
integer-valued χflow f in G with |f(u, v)− g(u, v)| < 1 for all u, v ∈ V (G). □
2.4. The setting

At this point, we are ready to make some key definitions and assumptions that will 
apply throughout the rest of the paper.

Let k ⩾ 1 be integer, and let A and B be sets that satisfy the assumptions of Theo
rem 1.3. Thus A,B ⊆ Rk are bounded sets that have the same positive Lebesgue measure 
(i.e., λ(A) = λ(B) > 0) and boundary of the upper Minkowski dimension less than k
(i.e., dim□(∂A) < k and dim□(∂B) < k).

By scaling A and B by the same factor, we can assume that each of them has diameter 
less than 1/2 in the ℓ∞-norm. Furthermore, by translating them, we can assume that A
and B are disjoint subsets of [0, 1)k. If A and B are equidecomposable using translations 
inside Tk, then they are also equidecomposable using translations in Rk with exactly 
the same pieces (by the diameter assumption). From now on, we always assume that we 
are working in the setting of the k-torus.

In order to satisfy Lemma 2.1 and to optimise the bound on the upper Minkowski 
dimension of the boundaries of the final pieces, we make the following assignments. First, 
fix ϵ so that

(2.4) 0 < ϵ < k −max {dim□(∂A),dim□(∂B)} ,
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where we should choose ϵ close to the upper bound for optimality. Then we set

(2.5) d := ⌊k/ϵ⌋+ 1,

that is, d is the smallest integer greater than k/ϵ. We also define

(2.6) ε := (dϵ− k)/k.

Note that, if the boundaries of A and B have upper Minkowski dimension k− 1, as is 
the case for most simple ``geometric'' sets like balls and cubes, then we can take d = k+1
and let ϵ and ε be close to 1 and 1/k, respectively.

For each integer i ⩾ 0, define

(2.7) r′i := 1002i+1−1

and, for each integer i ⩾ 1, define

(2.8) ri := 1002i+1−2.

Next, we recursively define q′0 < q1 < q′1 < q2 < . . . and t1 < t′1 < t2 < t′2 < . . . by 
setting q′0 := 0 and, for each i ⩾ 1,

ti := 2ri + 4q′i−1 + 4,

qi := ti + 2q′i−1 + 4,

t′i := 4r′i/5 + 2qi,

q′i := t′i + 2qi + 4.(2.9)

We fix, for the rest of the paper, some vectors 𝒙1, . . . ,𝒙d ∈ Tk that satisfy all of the 
following properties: 

(2.10) the conclusion of Lemma 2.1, with respect to the above d and ε, holds for some 
c > 0 (which is also fixed throughout the paper) for both X := A and X := B;

(2.11) the projections of 𝒙1, . . . ,𝒙d on the first coordinate are linearly independent over 
the rationals;

(2.12) if the extra assumption of Part (c) of Theorem 1.3 (that is, (1.2)) holds, then no 
integer combination of 𝒙1, . . . ,𝒙d belongs to the ``bad'' set

{𝒕 ∈ Tk : (A + 𝒕) ∩B is non-empty and λ-null};

(2.13) the conclusion of Lemma 7.5 (to be stated in Section 7.1) holds.



A. Máthé et al. / Advances in Mathematics 484 (2026) 110685 13

This is possible since, if 𝒙1, . . . ,𝒙d are chosen uniformly at random from Tk indepen
dently of one another, then each of Properties (2.10)--(2.12) holds with probability 1, 
while Lemma 7.5 is satisfied with positive probability. For example, Property (2.12) 
holds almost surely since, for each non-zero (n1, . . . , nd) ∈ Zd, the vector 

∑︁d
i=1 ni𝒙i is a 

uniform element of Tk while the ``bad'' set has measure 0 by (1.2); also, the zero vector 
is ``good'' by our assumption that A ∩B = ∅.

Remark 2.4. If the reader is interested only in a version of Theorem 1.3 where the 
conclusion of Part (a) is weakened to requiring that the pieces are just Jordan measurable, 
then we could have chosen an arbitrary sufficiently fast growing sequence r′0 ≪ r1 ≪
r′1 ≪ r2 ≪ . . . and ignored Property (2.13), which would not be needed. This is why the 
(somewhat technical) statement of Lemma 7.5 is postponed to Section 7.1, where the 
dimension of the boundaries of the obtained pieces is analysed.

We denote elements of Zd as vectors accented by an arrow, e.g., n⃗, to distinguish 
them from vectors in Tk which are typeset in boldface. For n⃗ ∈ Zd and 1 ⩽ i ⩽ d, let ni

denote the i-th coordinate of n⃗. Consider the action a : Zd
↷Tk defined by

n⃗ ·a 𝒖 := 𝒖 +
d ∑︂

i=1 
ni𝒙i, for n⃗ ∈ Zd and 𝒖 ∈ Tk.

This action is continuous and preserves the measure λ.
Next, we recall the definition of the graph Gd from Subsection 1.2. Namely, the vertex 

set of Gd is Tk and the neighbours of 𝒖 ∈ Tk are exactly the vectors 𝒖 +
∑︁d

i=1 ni𝒙i

for non-zero n⃗ ∈ {−1, 0, 1}d. Equivalently, Gd is the (3d − 1)-regular Schreier graph 
associated to the action a with respect to the symmetric set {n⃗ ∈ Zd : ∥n⃗∥∞ = 1}. The 
edge set of Gd, when viewed as a symmetric binary relation on the (standard Borel) space 
Tk, is a closed and thus Borel set. This means that Gd is a Borel graph, a fundamental 
object of study in descriptive graph combinatorics (see e.g., the survey of this field by 
Kechris and Marks [19]). Note that the action a is free by our choice of the vectors 
𝒙i, namely by (2.11). Therefore, the subgraph of Gd induced by any component of Gd

is nothing else than a copy of Zd in which two elements are adjacent if they are at 
ℓ∞-distance 1.

We pause to remind the reader of the role of the graph Gd in the equidecomposition.

Remark 2.5. The translation vectors used in the constructed equidecomposition will be of 
the form 

∑︁d
i=1 ni𝒙i where n⃗ ∈ Zd and ∥n⃗∥∞ is bounded by a large constant r depending 

only on A and B (which we do not attempt to estimate). Then an equidecomposition 
is equivalent to a bijection from A to B where each element of A is matched to an 
element of B at distance at most r from it in Gd. Given such a matching, each piece of 
the equidecomposition is indexed by an integer vector in {−r, . . . , r}d, where the piece 
corresponding to n⃗ is the set of all 𝒖 ∈ A such that 𝒖 is matched to 𝒖+

∑︁d
i=1 ni𝒙i ∈ B.
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2.5. Some auxiliary structures in Gd

Here we present some useful building blocks and definitions. Note that, once d and 
𝒙1, . . . ,𝒙d are fixed, the definitions and constructions in this section do not depend on 
the sets A and B.

At certain points during the construction, we have to make arbitrary ``tie-breaking'' 
choices in a consistent manner. In doing so, it is useful to endow Tk with a partial order 
in which each component of Gd is totally ordered. We will use the lexicographic ordering 
where, for distinct 𝒖,𝒗 ∈ Tk, we write 𝒖 ≺lex 𝒗 to mean [𝒖]Gd

= [𝒗]Gd
and the first 

non-zero entry of n⃗ is positive, where n⃗ is the (unique) element of Zd with

𝒗 − 𝒖 =
d ∑︂

i=1 
ni𝒙i.

This naturally extends to a partial order on 
(︁
Tk
)︁t for any t ⩾ 1 where (𝒖1, . . . ,𝒖t) ≺lex

(𝒗1, . . . ,𝒗t) if there exists 1 ⩽ i ⩽ t such that 𝒖i ≺lex 𝒗i and 𝒖j = 𝒗j for all 1 ⩽ j ⩽ i−1.
Given 𝒖 ∈ Tk, we write NGd

[𝒖] simply as N [𝒖]. For n ⩾ 1, define the n-neighbourhood 
of 𝒖 to be

Nn[𝒖] :=
{︁
𝒗 ∈ Tk : distGd

(𝒖,𝒗) ⩽ n
}︁
.

Note that Nn[𝒖] = N+
2n[𝒗], where 𝒗 := 𝒖 − n(𝒙1 + . . . + 𝒙d) and N+

r [𝒗] is defined as 
in (2.2). Thus, Nn[𝒖] (resp. N+

n [𝒖]) is the set of vertices which can be reached from 𝒖 by 
taking at most n steps in any (resp. ``completely non-negative'') directions in Gd. Given 
a set S ⊆ Tk and an integer n ⩾ 1, let

Nn[S] :=
⋃︂
𝒖∈S

Nn[𝒖] and N+
n [S] :=

⋃︂
𝒖∈S

N+
n [𝒖].

We say that a set Y ⊆ Tk r-locally depends on (or is an r-local function of) 
X1, . . . , Xm ⊆ Tk if the inclusion of 𝒖 ∈ Tk in Y depends only on the intersection 
of X1, . . . , Xm with Nr[𝒖], by which we mean that it depends only on the sequence(︁{︁

n⃗ ∈ Zd : ∥n⃗∥∞ ⩽ r, 𝒖 + n1𝒙1 + . . . + nd𝒙𝒅 ∈ Xj

}︁)︁m
j=1 .

This is equivalent to Y being some Boolean combination of the sets of form Xj +n1𝒙1 +
. . . + nd𝒙d for 1 ⩽ j ⩽ m and n⃗ ∈ Zd with ∥n⃗∥∞ ⩽ r. When the specific value of r is 
unimportant or clear from context, we simply say that Y locally depends on (or is a local 
function of) X1, . . . , Xm. Here is a trivial but very useful observation.

Observation 2.6. If Y locally depends on some finite sequence of sets from an algebra 𝒜
on Tk which is invariant under the action a (that is, A ± 𝒙i ∈ 𝒜 for every A ∈ 𝒜 and 
i ∈ {1, . . . , d}), then Y also belongs to 𝒜. □
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Note that the families of subsets of Tk that are Jordan measurable or have boundary 
of upper Minkowski dimension at most some given constant are both examples of a
invariant algebras.

If f is a real-valued flow in Gd, then for γ⃗ ∈ Zd with ∥γ⃗∥∞ = 1 and ℓ ∈ R, we define

(2.14) Zf
γ⃗,ℓ :=

{︁
𝒗 ∈ Tk : f (𝒗, γ⃗ ·a 𝒗) = ℓ

}︁
.

Observation 2.7. Given a flow f in Gd and γ⃗ ∈ Zd with ∥γ⃗∥∞ = 1, the sets Zf
γ⃗,ℓ for 

ℓ ∈ R with |ℓ| ⩽ ∥f∥∞ partition Tk. If the flow f assumes finitely many possible values, 
then only finitely many of these sets are non-empty. □

A flow f with finite range will be identified with the finite sequence of sets Zf
γ⃗,ℓ for 

all possible choices of γ⃗ and ℓ. Thus we will say that a flow f is an r-local function of 
X1, . . . , Xm to mean that each set Zf

γ⃗,ℓ is an r-local function of X1, . . . , Xm. In the other 
direction, r-local dependence of a set Y on a flow f means r-local dependence on the 
sequence of the sets Zf

γ⃗,ℓ (that is, the membership condition for 𝒖 ∈ Tk to be an element 
of Y can be determined from the flow values on the edges intersecting Nr[𝒖]).

Definition 2.8. Define a strip to be a subset of Tk of the form [a, b)× [0, 1)k−1 for some 
0 ⩽ a < b ⩽ 1. The width of the strip [a, b)× [0, 1)k−1 is defined to be b− a.

Note that any translation of a strip by a vector can be written as a union of at most 
two strips and that any Boolean combination of strips can be written as a union of 
finitely many disjoint strips. For these reasons, strips are particularly convenient to work 
with.

Definition 2.9. A set X ⊆ Tk is said to be r-discrete (in Gd) if distGd
(𝒙,𝒚) > r for any 

distinct 𝒙,𝒚 ∈ X and maximally r-discrete (in Gd) if it is maximal under set inclusion 
with respect to this property.

Of course, the above properties are not affected when we replace X by any translate. 
The following fact is a consequence of (2.11), one of our assumptions on 𝒙1, . . . ,𝒙d.

Observation 2.10. For any r ⩾ 1 there exists δ > 0 such that every set X ⊆ Tk whose 
projection onto the first coordinate has diameter at most δ is r-discrete. □

We will also need the following lemma (whose main proof idea goes back to Kechris, 
Solecki and Todorcevic [21, Proposition 4.2]).

Lemma 2.11. For r ⩾ 0, let C1, . . . , Cm be subsets of Tk such that every Ci is r-discrete 
in Gd and 

⋃︁m
i=1 Ci = Tk. Then there exists a maximally r-discrete set X which is an 

r(m− 1)-local function of C1, . . . , Cm.
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Proof. Let C ′
1 := C1 and, for 2 ⩽ i ⩽ m, define

C ′
i := Ci \Nr

⎡⎣i−1 ⋃︂
j=1

C ′
j

⎤⎦ .

Let X := C ′
1 ∪ . . .∪C ′

m. By construction, and because the sets C1, . . . , Cm are r-discrete 
in Gd, the set X is also r-discrete in Gd. Since the sets C1, . . . , Cm cover Tk, it follows 
that X is maximally r-discrete in Gd.

Since X = C ′
1 ∪ . . . ∪ C ′

m, it is enough to show that each C ′
i is an r(i − 1)-local 

function of C1, . . . , Ci. We use induction on i = 1, . . . ,m. This is true for i = 1 since the 
set C ′

1 = C1 is a 0-local function of C1. For each 2 ⩽ i ⩽ m, the set C ′
i is a Boolean 

combination of Ci and the sets C ′
1, . . . , C

′
i−1 translated by vectors of the form 

∑︁d
i=1 ni𝒙i

where ∥n⃗∥∞ ⩽ r. So, by induction, C ′
i is an r(i − 1)-local function of C1, . . . , Ci, as 

desired. □
The following corollary is easily derived from Observation 2.10 and Lemma 2.11.

Corollary 2.12. For any r ⩾ 0 there exists a set X ⊆ Tk which is maximally r-discrete 
in Gd and can be expressed as a union of finitely many disjoint strips in Tk. □
Definition 2.13. For S ⊆ Tk, let comp(S) be the collection of all components of Gd ↾ S.

The following definition describes the types of structures that we will use to round a 
sequence of real-valued flows to an integer-valued one. We use the word ``toast'' which 
seems to be the standard term for structures of this type now.

Definition 2.14. We say that a sequence (D1, D2, . . .) of subsets of Tk is a toast sequence 
(in Gd) if the following three conditions are satisfied for all i ⩾ 1: 

(2.15) the elements of comp(Di) are finite and have uniformly bounded cardinality,
(2.16) any two distinct elements of comp(Di) are at distance at least 3 in Gd, and
(2.17) for 1 ⩽ j < i, every S ∈ comp(Dj) satisfies that either N2[S] ⊆ Di or 

distGd
(S,Di) ⩾ 3.

Let us make a brief contextual remark. A concept which is ubiquitous in descriptive 
graph combinatorics is the notion of hyperfiniteness. Namely, a Borel graph G is said to be 
hyperfinite if its edge set can be written as an increasing union of edge sets of Borel graphs 
with finite components; see, e.g., [12, Section 7.2] or [20, Section II.6]. In this context, 
a Borel toast sequence (D1, D2, . . .) gives a specific type of a hyperfiniteness certificate 
(D1, D1 ∪ D2, . . .) (or, more precisely, the corresponding sequence of the induced edge 
sets) for the graph Gd ↾

⋃︁∞
i=1 Di; see, e.g., [7,13].
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Remark 2.15. Note that our definition of a toast sequence allows holes in Di, that is, finite 
components of Gd ↾ (Tk \Di). (In fact, it even allows Di to have two holes at distance 2 
in Gd, even though this can be shown not occur in the toasts constructed in Section 5.) 
While it should be possible to get rid of all holes by modifying our constructions in 
Section 5.2 (as in the approach taken by Marks and Unger [28]), we found it easier 
instead to write our proofs so that they apply to toast sequences with holes.

2.6. The setting (continuation)

Here we define two sequences of sets, with these definitions applying throughout the 
paper. Namely, for each i ⩾ 1, we fix two sets Xi and Yi, each of which is a union of 
finitely many disjoint strips, so that Xi is maximally ri-discrete and Yi is maximally 
r′i-discrete. This is possible by Corollary 2.12.

For Part (b) of Theorem 1.3, we will need the additional assumption that

(2.18) distGd
(∂Yi, ∂Yj) = ∞, for all i ̸= j,

that is, each component of Gd can intersect the topological boundary of Yi for at most one 
value of i. Since each Yi is a finite union of strips, the projection on the first coordinate 
of the union of all components of Gd that intersect the topological boundary ∂Yi is a 
countable set. Thus, if Y1, Y2, . . . are translated by uniformly random vectors in Tk which 
are independent of one another and of 𝒙1, . . . ,𝒙d, then, almost surely, the translated 
countable sets inside T1 are pairwise disjoint and (2.18) holds.

To achieve Part (a) of Theorem 1.3 with good quantitative bounds on the dimension 
of the boundaries, we additionally require by our assumption (2.13) that the sets Xi

satisfy Lemma 7.6, which basically requires that Xi is an rd+1+o(1)
i -local function of a 

single strip. This extra assumption directly gives an upper bound on the number of strips 
that make up Xi; also, it will allow us to analyse the boundary of sets which are local 
functions depending on some sets Xi.

2.7. Equidecompositions from integer-valued flows

We will need the following lemma, whose main idea is inspired by the proof sketch 
in [28, Remark 6.2]. In the context of Theorem 1.3, this lemma shows that it is enough to 
find a bounded integer-valued flow f from A to B with the desired regularity properties.

Lemma 2.16. Let f be a bounded integer-valued flow from A to B in Gd. Then there 
is an integer R and an equidecomposition between A and B such that each piece is an 
R-local function of f , A, B and finitely many strips. Moreover, if (1.2) (that is, the extra 
assumption of Part (c) of Theorem 1.3) holds, then we can additionally require that each 
piece contains a Lebesgue measurable subset of positive measure.



18 A. Máthé et al. / Advances in Mathematics 484 (2026) 110685 

Proof. Using Corollary 2.12, let Wr, for each integer r ⩾ 1, be a maximally r-discrete 
subset which is a finite union of strips. For each 𝒗 ∈ Tk, let ηr(𝒗) be the vertex 𝒖 ∈Wr

such that distGd
(𝒗,𝒖) is minimised and, among all vertices of Wr at the minimum 

distance from 𝒗, the vertex 𝒖 comes earliest under ≺lex. For each r ⩾ 1 and 𝒖 ∈Wr, let

Vr(𝒖) := {𝒗 ∈ Tk : ηr(𝒗) = 𝒖}.

The sets Vr(𝒖) for 𝒖 ∈ Wr clearly partition Tk. They can be thought of as ``Voronoi 
cells'' generated by Wr with respect to the graph distance in Gd, where ties are broken 
using ≺lex. Since Wr is a maximal r-discrete set, every element of Vr(𝒖) is at distance 
at most r from 𝒖 ∈Wr and thus the diameter of every Voronoi cell is at most 2r.

Since Wr is r-discrete, we have

N⌊r/2⌋[𝒖] ⊆ Vr(𝒖)

for every 𝒖 ∈Wr. Combining this with Lemma 2.1, we see that

min 
𝒖∈Wr

min { |Vr(𝒖) ∩A|, |Vr(𝒖) ∩B| } = Ω(rd)

as r →∞. It is not hard to argue (see, e.g., the proof of Lemma 5.13) that |∂EVr(𝒖)| =
O(rd−1) as r → ∞ where the implicit constant depends on d only. (Recall that ∂E
denotes the edge boundary of a set, as defined in (2.3).) Thus, if r is sufficiently large 
with respect to ∥f∥∞, then

(2.19) min { |Vr(𝒖) ∩A|, |Vr(𝒖) ∩B| } ⩾
∑︂

𝒗𝒘∈∂EVr(𝒖)

|f(𝒗,𝒘)|

for every 𝒖 ∈Wr. We fix r large enough so that (2.19) holds for every 𝒖 ∈Wr; to achieve 
the ``moreover'' part of the lemma, we will need the slightly stronger inequality (2.20)
stated later.

For each pair 𝒖,𝒖′ ∈Wr, define

F (𝒖,𝒖′) :=
∑︂

𝒗∈Vr(𝒖)
𝒘∈Vr(𝒖′)

f(𝒗,𝒘),

that is, F (𝒖,𝒖′) is the total flow sent by f from the Voronoi cell of 𝒖 to that of 𝒖′. 
Define A(𝒖,𝒖′) := ∅ for every pair of distinct 𝒖,𝒖′ ∈ Wr with F (𝒖,𝒖′) = 0. Given 
𝒖 ∈ Wr, there are finitely many 𝒖′ ∈ Wr \ {𝒖} for which F (𝒖,𝒖′) ̸= 0. For every 
such 𝒖′, one by one in order prescribed by ≺lex, we define A(𝒖,𝒖′) to be the set of 
those max{0, F (𝒖,𝒖′)} elements of Vr(𝒖) ∩ A that have not already been assigned to 
A(𝒖,𝒖′′) for some 𝒖′′ ≺lex 𝒖′ and, subject to that, are minimal under ≺lex. Note that, 
by (2.19), this is always possible. Similarly, we define B(𝒖,𝒖′) to be the set of those 
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Fig. 1. An illustration of the construction of the equidecomposition from an integer-valued flow f in 
Lemma 2.16 in the simplified setting d = 2. White nodes are elements of a maximally 19-discrete set 
and the boundaries of the induced Voronoi cells are in bold. Elements of A and B correspond to black 
round and square nodes, respectively. The total flow from the central Voronoi cell to the bottom-left cell 
is 2; hence the first two elements of A in the lexicographic order in the central Voronoi cell are associated 
to that cell. After distributing elements of A and B to the neighbouring cells, the two remaining (lexico
graphically latest) elements of A and of B in the central cell are mapped to one another.

max {0,−F (𝒖,𝒖′)} ≺lex-minimal elements of Vr(𝒖) ∩ B that have not already been 
assigned to B(𝒖,𝒖′′) for some 𝒖′′ ≺lex 𝒖′. Finally, for each 𝒖 ∈ Wr, define A(𝒖,𝒖) to 
be the set of those vertices in Vr(𝒖)∩A that have not been assigned to A(𝒖,𝒖′) for any 
𝒖′ ∈Wr \ {𝒖} and define B(𝒖,𝒖) similarly. We have by construction that

|A(𝒖,𝒖′)| = |B(𝒖′,𝒖)|, for all distinct 𝒖,𝒖′ ∈Wr,

and this holds also for 𝒖 = 𝒖′ since f is a flow from A to B. The final equidecomposition 
assigns, for all 𝒖,𝒖′ ∈ Wr, the vertices of A(𝒖,𝒖′) to those of B(𝒖′,𝒖) in the order 
prescribed by ≺lex; see Fig. 1 for an illustration.

Since each cell has diameter at most 2r, this yields an equidecomposition by transla
tions in which the translation vectors are of the form 

∑︁d
i=1 ni𝒙i with ∥n⃗∥∞ ⩽ 4r + 1. 

Thus the total number of pieces is finite. Furthermore, the vector by which we translate 
any 𝒗 ∈ Vr(𝒖)∩A depends only on the situation inside Vr(𝒖), its adjacent Voronoi cells 
and their adjacent Voronoi cells, and the values of f at their boundary edges. All these 
cells are contained entirely inside N6r+2[𝒗], and so the statement holds with R := 6r+2.

The ``moreover'' part of the lemma is only needed for Part (c) of Theorem 1.3. Its 
proof may be skipped by the reader interested only in the other parts of Theorem 1.3. In 
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brief, the new idea is to arrange that the piece corresponding to each translation vector 
𝒕 ∈ Tk that is used in the equidecomposition is pre-assigned a small non-null subset 
A𝒕 ⊆ A. Of course, this is possible only if (A + 𝒕) ∩B has positive measure, so we have 
to exclude all vectors violating this.

Let us provide the details. For each integer r ⩾ 1, let Wr, ηr and Vr be as in the proof 
of the first part. Now, fix an integer r such that, for every 𝒖 ∈Wr, it holds that

(2.20) min { |Vr(𝒖) ∩A| , |Vr(𝒖) ∩B| } ⩾
∑︂

𝒗𝒘∈∂EVr(𝒖)

(|f(𝒗,𝒘)|+ 1) ,

that is, we require a slightly stronger bound than the one in (2.19).
Let T be the set of all vectors of the form 𝒕 =

∑︁d
i=1 ni𝒙i such that n⃗ ∈ Zd with 

∥n⃗∥∞ ⩽ 10r and (A + 𝒕) ∩ B ̸= ∅. Since (1.2) holds, we have by (2.12) that, for every 
𝒕 ∈ T , the set (A+ 𝒕)∩B has positive measure. (Recall that the sets A and B satisfying 
the assumptions of Theorem 1.3 are necessarily Lebesgue measurable.)

Claim 2.16.1. There exists a sequence (A𝒕)𝒕∈T of pairwise disjoint measurable non-null 
subsets of A such that the union 

⋃︁
𝒕∈T A𝒕 is (100r)-discrete in Gd and, for all 𝒕 ∈ T , 

A𝒕 + 𝒕 ⊆ B.

Proof. We use a simple greedy argument. By Observation 2.10, we can choose γ suffi
ciently small so that every strip of width at most γ is (100r)-discrete. Assume further 
that γ is chosen small enough so that

γ(200r + 1)d|T | < λ ((A + 𝒕) ∩B) = λ (A ∩ (B − 𝒕))

for every 𝒕 ∈ T . Label the elements of T by 𝒕1, . . . , 𝒕|T | in an arbitrary fashion.
Start by taking S𝒕1 to be a strip of width γ such that the intersection

A𝒕1 := A ∩ (B − 𝒕1) ∩ S𝒕1

is non-null. Clearly, the measure of A𝒕1 is at most the measure of S𝒕1 , which is γ.
Now, let 2 ⩽ i ⩽ |T | and assume that each of the sets A𝒕1 , . . . , A𝒕i−1 has measure at 

most γ. Then, by our choice of γ, the set

(A ∩ (B − 𝒕i)) \
⎛⎝i−1 ⋃︂

j=1
N100r

[︁
A𝒕j

]︁⎞⎠
has positive measure. Take any strip S𝒕i of width γ that has non-null intersection with 
the above set and let A𝒕i be this intersection.

The collection {A𝒕i : 1 ⩽ i ⩽ |T |} has all of the desired properties, simply by con
struction, finishing the proof of the claim. □
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Let (A𝒕)𝒕∈T be the sequence returned by the claim. Observe that, for any distinct 
𝒕, 𝒕′ ∈ T , the sets A𝒕 + 𝒕 and A𝒕′ + 𝒕′ are disjoint; otherwise, by the definition of T , 
the sets A𝒕 and A𝒕′ would be at distance at most 20r in Gd, contradicting the fact that ⋃︁

𝒕∈T A𝒕 is (100r)-discrete in Gd. Thus, the sets A𝒕 for 𝒕 ∈ T form an equidecomposition 
of the subset

A∗ :=
⋃︂
𝒕∈T

A𝒕

of A to the subset

B∗ :=
⋃︂
𝒕∈T

(A𝒕 + 𝒕)

of B using translations in T .
Now, for each 𝒕 ∈ T and each vertex 𝒗 ∈ A𝒕, take a shortest path from 𝒗 to 𝒗 + 𝒕 in 

Gd, chosen to be ≺lex-minimal among all such paths, and let f𝒗 be the (unique) {0,±1}
valued flow in Gd from {𝒗} to {𝒗 + 𝒕} supported on the pairs which form edges of this 
path. Since the set 

⋃︁
𝒕∈T A𝒕 is (100r)-discrete, any two such paths are edge disjoint; in 

fact they are at least 80r apart in Gd. Thus the flow

f∗ :=
∑︂

𝒗∈⋃︁𝒕∈T A𝒕

f𝒗

satisfies ∥f∗∥∞ ⩽ 1. Also, letting f ′ := f − f∗, we see that (2.20) implies that, for every 
𝒖 ∈Wr,

min { |Vr(𝒖) ∩A|, |Vr(𝒖) ∩B| } ⩾
∑︂

𝒗𝒘∈∂EVr(𝒖)

|f ′(𝒗,𝒘)|,

since at most one path in the support of f∗ can intersect ∂EVr(𝒖). Clearly, f ′ is a flow 
from A \A∗ to B \B∗ in Gd. By the proof of the first part of the lemma with f ′ in the 
place of f , we see that there is an equidecomposition from A \ A∗ to B \ B∗ in which 
each 𝒗 ∈ A \ A∗ is associated to a point in B \ B∗ which is either in the same Voronoi 
cell as 𝒗 or one which neighbours it. In particular, all of the translation vectors used 
in the equidecomposition are contained in T . Moreover, by making the ≺lex-smallest 
choices inside each Voronoi cell, we can assume that each piece is an O(r)-local function 
of f,Wr, A,B,A𝒕1 , . . . , A𝒕|T | . In turn, each set A𝒕i is a O(r)-local function of A, B and 
the strips S𝒕1 , . . . , S𝒕|T | .

Taking, for each 𝒕 ∈ T , the union of A𝒕 and the (possibly empty) piece of the equide
composition from A \A∗ to B \B∗ corresponding to 𝒕 yields an equidecomposition of A
to B using translation vectors in T such that every piece is non-null, as required. □
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3. Proof outline

With some preliminaries covered by Section 2, we can now provide a more detailed 
outline of the proof of Theorem 1.3 than the one given in Section 1.2. In order to 
illustrate how the various arguments fit together, we will first sketch the construction of 
an equidecomposition with Jordan measurable pieces (which are not necessarily Borel) 
and then outline how to build upon it to get the full result. Our approach mostly follows 
the general recipe established by Marks and Unger [28], some aspects of which can be 
traced back to the ideas of Laczkovich [22--24] and Grabowski, Máthé and Pikhurko [15]. 
A major challenge here is that the family of Jordan measurable subsets of Tk is not 
a σ-algebra (although it is an algebra). Therefore, there are a few key differences in 
our implementation and analysis of this strategy which are necessary to achieve Jordan 
measurable pieces.

3.1. Real-valued flows

Following Marks and Unger [28, Section 4], we construct a sequence f1, f2, . . . of 
bounded real-valued flows in Gd which converge uniformly to a bounded real-valued flow 
f∞ from A to B. The following lemma summarises the key properties of f1, f2, . . . that 
we will need. Recall that c and ε are fixed quantities which were defined in Section 2.4.

Lemma 3.1 (Marks and Unger   [28]). There exist flows f1, f2, . . . in Gd such that for all 
m ⩾ 1 the following statements hold with f0 := 0 being the flow which is identically zero: 

(3.1) 22dmfm is integer-valued,
(3.2) ∥fout

m − 1A + 1B∥∞ ⩽ 2c 
2m(1+ε) ,

(3.3) ∥fm − fm−1∥∞ ⩽ 2c 
2d+ε(m−1) , and

(3.4) fm is a (2m − 1)-local function of A and B.

The proof of the lemma follows that of a similar result in [28, Section 4]; we include the 
proof in Section 4 for completeness. The rough idea is as follows. Suppose that we have 
fixed a partition of [𝒖]Gd

∼ = Zd into discrete 2m-cubes. Within each cube Q, we define the 
flow fm so that it cancels as much as possible between the positive demand 1A and the 
negative demand −1B, and spreads the rest uniformly over Q. A bit more formally, the 
restriction of fm to Q is an (1A−1B +ξ(Q))flow, where ξ(Q) := (|A∩Q|−|B∩Q|)/|Q|. 
Also, fm is zero on all edges between distinct cubes of the partition. Assuming that 
the fixed dyadic partitions are aligned for different values of m, we can construct such 
fm incrementally from fm−1. As long as we do this increment in a ``reasonable'' way, 
the discrepancy bound of Lemma 2.1 gives a good upper bound on ∥fm − fm−1∥∞. 
Unfortunately, one cannot take a perfect dyadic decomposition of each component of 
Gd in a constructive way for a generic choice of 𝒙1, . . . ,𝒙d. However, the convenience 
of working with flows (versus graph matchings) is that we can always take their convex 
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combinations. So, in order to make the construction of each fm local, one can simply 
take the average over all 2dm possible partitions of each component (a copy of Zd) into 
a grid of discrete 2m-cubes.

Each flow fm assumes finitely many values by (3.1) and is a local function of the 
Jordan measurable sets A and B. Since the right hand side of (3.3) is summable, the 
sequence f1, f2, . . . converges uniformly to a bounded flow in Gd, which we denote by f∞. 
By (3.2), the limit f∞ is a flow from A to B.

With Lemma 3.1 in hand, the goal of the next two steps is to transform the sequence 
f1, f2, . . . into a bounded integer-valued flow f from A to B in Gd. Notice that, if we were 
indifferent about the structure of the pieces of the final equidecomposition, then we could 
just apply the Integral Flow Theorem to f∞ to obtain such a flow f and then feed it into 
Lemma 2.16. In particular, this approach is sufficient for proving Theorem 1.1. However, 
this would use the Axiom of Choice and yield virtually no structural guarantees on the 
pieces of the equidecomposition. The main purpose of the next two steps, therefore, is 
to obtain an integer-valued flow from A to B in a more careful manner which allows us 
to analyse the obtained pieces.

3.2. Toast sequences

Recall that the notion of a toast sequence was defined in Definition 2.14. Informally, 
if (Ji)∞i=1 is a toast sequence, then one can view Ji as a collection of bounded and well 
separated connected subgraphs of Gd that arrive at time i so that every component S
of vertices that arrived in an earlier stage is either entirely inside Ji or entirely outside 
Ji, including some ``padding''.

The following lemma provides a simple construction of a toast sequence which covers 
Tk up to a null set. (This will be sufficient for our sketch of the construction of an 
equidecomposition with Jordan measurable pieces.)

Lemma 3.2. There exists a toast sequence (J1, J2, . . .) in Gd such that λ (
⋃︁∞

i=1 Ji) = 1
and, for each i ⩾ 1, the set Ji is a union of finitely many disjoint strips.

Proof Sketch. The construction is slightly more complicated than is necessary, in order 
for the sets Ji to be defined in the same way as they will be in the proof of Theorem 1.3.

Recall that r′0 < r1 < r′1 < r2 < r′2 < . . . is a rapidly increasing sequence of integers 
and Xi ⊆ Tk is a maximally ri-discrete set which is a union of finitely many strips. 
Define Ii to be the set of all 𝒗 ∈ Tk for which there exists 𝒖 ∈ Xi such that

distGd
(𝒗,𝒖′) ⩾ distGd

(𝒗,𝒖) + 5r′i−1, for every 𝒖′ ∈ Xi \ {𝒖}.

Informally speaking, the components of Ii are the Voronoi cells of Xi ⊆ V (Gd), as defined 
in the proof of Lemma 2.16, except we retract somewhat from their graph boundaries. It 
is not hard to show that the diameter of each component of Ii is at most 2ri and every 
two components are at distance at least 5r′i−1 (see Lemma 5.4).
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We use induction on i to define Ji. Fix i ⩾ 1 and assume that the sets Jj, for all 
j < i, have already been defined. We obtain Ji as the result of the following procedure. 
Initialise Ji := Ii. Then, while there exist j < i and a component S of Jj such that 
distGd

(S, Ji) ⩽ q′j−1 + 4 and Nq′j−1+4[S] ̸⊆ Ji, we add to Ji all elements of Nq′j−1+4[S]. 
(Recall that q′i was defined by (2.9), being slightly larger than 4r′i/5.)

Since the sequence r′0 < r1 < r′1 < . . . increases sufficiently rapidly, this procedure 
eventually terminates and in fact stays within the q′i−1-neighbourhood of Ii (Lemma 5.6). 
Thus, when we construct Ji from Ii, the original components of Ii do not merge and stay 
well separated, being at distance at least 5r′i−1 − 2q′i−1 from each other. (This stronger 
separation property is not needed here, but will be useful in the general proof.) The 
other properties of a toast sequence from Definition 2.14 hold because, whenever some 
earlier component S′ (that is, S′ ∈ comp(Jj) with j < i) comes too close to a currently 
defined component S of Ji, we add S′ with some padding to S (with the new enlarged 
set S still being connected).

We trivially have λ(Ji) ⩾ λ(Ii). On the other hand, the measure of Ii can be shown 
to be least 1−O(r′i−1/ri) (see Lemma 5.13), which approaches 1 as i→∞.

Whether or not a vertex 𝒖 ∈ Tk is contained in Ji can be determined by the structure 
of the sets X1, . . . , Xi at bounded distance (say, 4ri) from 𝒖 in Gd (see Lemma 5.11); 
thus, Ji is a local function of X1, . . . , Xi. So, it can be written as a union of finitely many 
disjoint strips by Observation 2.6 (since such sets form an a-invariant algebra), finishing 
our proof sketch. □
3.3. Integer-valued flow

The last remaining step is to use the flows (fm)∞m=1 from Lemma 3.1 and the toast 
sequence (Ji)∞i=1 from Lemma 3.2 to construct an integer-valued bounded flow f from A
to B that will be used as input to Lemma 2.16 to equidecompose A and B. Unfortunately, 
the construction of f is somewhat involved, even in the context of Jordan measurable 
pieces.

Although this is not strictly necessary, we keep the perspective that a new set of 
vertices Ji arrives at time i and we have to fix for good the value of f on every new edge 
intersecting Ji, being compatible with all previous choices. It is enough to concentrate 
on constructing the final values of f on the edges in ∂EJi, that is, on all new boundary 
edges. Indeed, since every component S of Ji is finite, there are only finitely many 
possible extensions of f to a uniformly bounded integer flow inside S and, if at least one 
exists, then the lexicographically smallest extension is a local function of the boundary 
flow values, J1, . . . , Ji, A and B whose radius is at most the diameter of S. A bit later, 
we will address the problem of certifying the existence of such an extension.

So, take any S ∈ comp(Ji), i.e., a component of Gd ↾ Ji which must be finite by the 
definition of a toast sequence. Initially let f be fmi

on ∂ES, where mi is sufficiently large 
integer depending on the maximum diameter of the components of Ji. We repeat the 
following for every ``connected'' part P ⊆ ∂ES of the edge boundary of S. Let S′ consist 
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of the vertices ``enclosed'' by P ; thus, S′ is either a hole of S or the set S with all its holes 
filled. By adjusting the value of f on one edge of P , we make the total flow out of S′ to be 
|A∩S′|−|B∩S′|. Since fout

mi
is a very good approximation to 1A−1B , we need to adjust 

the flow by less than 1/2. Using Lemma 6.4, we find a sequence (𝒖1𝒗1, . . . ,𝒖t−1𝒗t−1) in 
P so that each edge in P appears at least once but at most constant number of times 
while 𝒖j𝒗j and 𝒖j+1𝒗j+1 are in a triangle in Gd for each 1 ⩽ j ⩽ t − 2. Make f to be 
integer on 𝒖1𝒗1 by adding a 0flow (i.e., a flow ϕ such that ϕout : V (Gd) → R is the zero 
function) on the unique triangle containing both 𝒖1𝒗1 and 𝒖2𝒗2. (Note that the third 
edge of this triangle is not in ∂ES and thus we do not care about the flow through it 
being integral at this stage.) By adding a 0flow along the triangle containing both 𝒖2𝒗2

and 𝒖3𝒗3, we make the flow value on 𝒖2𝒗2 integer, and so on. We repeat this procedure 
t − 2 times in total, ensuring that the final flow f is integer-valued on all edges of P
except perhaps 𝒖t−1𝒗t−1. Note that this part of the process does not change the flow 
out of any vertex under f . So fout(S′) keeps its (integer) value and thus the final flow 
has to be integer also on 𝒖t−1𝒗t−1. Clearly, the definition of f can be made local by 
fixing a consistent rule for choosing the adjustment, the edge sequence and the values of 
the added 0flows.

If we had used f∞ as the initial values of f on P , then the initial adjustment step would 
not be necessary, and the obtained rounding algorithm would be essentially the same 
as used by Marks and Unger [28]. Unfortunately, if we wish to have Jordan measurable 
pieces, then we should (and, in fact, we do) avoid using the values of f∞ (which is 
the pointwise limit of f1, f2, . . .) when defining f on 

⋃︁∞
i=1 ∂EJi. However, we can freely 

use f∞ to define, in a way that parallels the construction of f from fmi
, a real-valued 

flow which certifies via the Integral Flow Theorem (Theorem 2.3) that the constructed 
integer flow values on 

⋃︁∞
i=1 ∂EJi, can be extended to a bounded integer (1A − 1B)

flow on all edges of Gd (see Lemma 6.9 for details). As mentioned above, given that 
such an extension exists, we can choose the lexicographically minimal one on each finite 
component of the remaining graph; this includes all edges inside 

⋃︁∞
i=1 Ji. Here, crucially, 

the choice of the extension is independent of f∞.
Now, during the construction, each of the (finitely many) sets Zf

γ⃗,ℓ ∩
(︂⋃︁i

j=1 Jj

)︂
that 

describe the flow f on edges incident to the vertices which have arrived by time i (where 
Zf
γ⃗,ℓ is as in (2.14)), only grows in time, since the values of f fixed at time j are never 

overwritten later. These sets are Jordan measurable (as local functions of fm1 , . . . , fmi

and J1, . . . , Ji) and their union over all values of i and ℓ covers the co-null subset 
⋃︁∞

i=1 Ji

of Tk. Thus, for every ℓ, the set Zf
γ⃗,ℓ ∩

(︂⋃︁∞
j=1 Jj

)︂
is Jordan measurable by the following 

lemma (applied with Z := Tk).

Lemma 3.3. Let Z1, . . . , ZN be pairwise disjoint subsets of a Jordan measurable set Z ⊆
Tk. If, for every real ε > 0, there are Jordan measurable subsets Z ′

j ⊆ Zj such that 
λ(Z \⋃︁N

j=1 Z
′
j) < ε, then all of the sets Z1, . . . , ZN are Jordan measurable.
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Proof. By adding Tk \ Z as an extra set and increasing N by 1, we can assume that 
Z = Tk. For each integer i ⩾ 1, let Z1,i ⊆ Z1, . . . , ZN,i ⊆ ZN be Jordan measurable sets 
such that λ(Z \⋃︁N

j=1 Zj,i) < 1/i and, for 1 ⩽ j ⩽ N , we let Uj,i be the interior of Zj,i. 
Also, define Uj :=

⋃︁∞
i=1 Uj,i. Since Zj,i is Jordan measurable, we have that Uj,i has the 

same Lebesgue measure as Zj,i. Thus, the sets U1, . . . , UN are pairwise disjoint, open 
and cover Tk up to a null set. For any 1 ⩽ j ⩽ N , since Uj is open and contained in Zj, 
the boundary of Zj is disjoint from Uj . Also, for any j′ ̸= j, since the set Uj′ is open 
and disjoint from Zj , we see that the boundary of Zj is also disjoint from Uj′ . Therefore, 
for each 1 ⩽ j ⩽ N , the boundary of Zj is contained in the complement of 

⋃︁N
i=1 Ui and 

therefore has measure zero. Thus the set Zj is Jordan measurable. □
It also follows from the above lemma that the remaining set Tk \⋃︁∞

i=1 Ji is Jordan 
measurable and, being also a null set, has null closure. Thus, without destroying Jordan 
measurability, we can use the Axiom of Choice to define a suitable integer-valued flow 
on all edges inside this set, using f∞ in the same way as above to certify the existence 
via the Integral Flow Theorem.

Finally, we apply Lemma 2.16 to f to get an equidecomposition between A and B as 
an R-local function of f (that is, the sets Zf

γ⃗,ℓ) and finitely many strips; thus, the pieces 
are Jordan measurable.

Remark 3.4. We could have slightly restructured the proof so that whenever the partial 
integer-valued flow f is defined in the whole R-neighbourhood of some 𝒖 ∈ A, where 
R is the constant returned by Lemma 2.16, then we assign 𝒖 to the appropriate part 
of the final equidecomposition. Then the obtained Jordan measurable pieces will be 
incrementally growing as we process J1, J2, . . . one by one, exhausting the set A up 
to measure zero. Thus, we could have applied Lemma 3.3 directly to the pieces (with 
Z := A).

3.4. Making the pieces Borel

Let us now discuss how the approach to obtaining a Jordan measurable equidecompo
sition described above can be built upon to obtain the stronger conditions of Theorem 1.3.

The main issue to address is the use of the Axiom of Choice in the final step, which 
must be avoided in order to yield Part (b) of the theorem. If A and B are Borel, then 
a natural idea for obtaining simultaneously Jordan and Borel pieces is to try to use the 
existence of a Jordan measurable equidecomposition together with the equidecomposition 
of Marks and Unger [28]; however, we did not see a way of doing this directly. Instead, 
we follow essentially the same proof as outlined above (with all locally defined structures 
being Borel if the sets A and B are) except that we use a version of Marks and Unger’s 
proof in [28] to round the flow values inside Tk \⋃︁∞

i=1 Ji in a way that preserves Borel 
structure. The Jordan measurability of the final pieces is preserved since, in this extra 
stage, we do not change any flow value on any edge intersecting 

⋃︁∞
i=1 Ji.
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Our extra steps can be summarised as follows. With sets Ji defined as above and fixed 
for good (where the role of the parameter r′i−1 is to provide enough ``wiggle space'' be
tween the components of Ji), we interleave the sequence (J1, J2, . . .) with sets K1,K2, . . .

to create an augmented toast sequence (Ji,Ki)∞i=1. (Recall that (Ji,Ki)∞i=1 is a short
hand for (J1,K1, J2,K2, . . .).) Simultaneously, we will construct sets L1, L2, . . . so that 
(Ki, Li)∞i=1 is also a toast sequence. The purpose of the sets L1, L2, . . . will be to cover 
all of the points of Tk that are ``left behind'' by the construction of J1, J2, . . . in a Borel 
way, while the purpose of Ki is to provide some extra ``cushioning'' around Ji to pro
tect the flow values on edges intersecting Ji from being influenced by Li. The sequence 
(K1,K2, . . .) can be seen as a mediator between the competing goals of J1, J2, . . . (to 
keep the boundaries of the final pieces small) and L1, L2, . . . (to cover all of Tk in a 
Borel way).

We build Ki by initialising Ki := N2[Ji] and then iteratively adding (with an appro
priate padding) all components of Jj , Kj or Lj with j < i that come too close. As before, 
this process when started at any S ∈ comp(Ji) goes only a small distance away from 
S and the obtained component S′ of Ki satisfies S′ ⊆ Nq′i−1+2[S] (Lemma 5.7) while, 
trivially, S′ ⊇ N2[S]. Thus every component S of Ji is ``mimicked'' by a component S′

of Ki. When we construct Li, we start with Li := N2r′i/5[Yi] (where Yi is maximally 
r′i-discrete) and keep adding (with some padding) components of Kj for j ⩽ i and Lj for 
j < i that come too close. Note that each component S of Jj with j ⩽ i is ``protected'' 
in this process by the component S′ of Kj that mimics it: if Li comes too close to S
then S′ ⊇ S with some extra padding is added to Li. What we have achieved is that 
the toast sequence (Ki, Li)∞i=1 covers all vertices in 

⋃︁∞
i=1 Li ⊇

⋃︁∞
i=1 N2r′i/5[Yi]. Using a 

compactness argument, we will show that, by applying this construction with a modi
fied version of Yi, we can ensure that all vertices of Tk are covered; see the discussion 
following Lemma 5.14.

Unfortunately, (Ji,Ki, Li)∞i=1 is not, in general, a toast sequence. Also, we do not 
want any S ∈ comp(Kj)∪ comp(Lj) to ``interfere'' with what happens inside Ji for some 
i > j. Our solution is, essentially, to remove all such conflicting components S, obtaining 
sets ˜︁Kj and ˜︁Lj . The new sequence (Ji, ˜︁Ki, ˜︁Li)∞i=1 is then a toast sequence that does 
not break up any finite components coming from the toast sequence (Ji)∞i=1; also, it still 
covers every vertex of 

⋃︁∞
i=1 Li (see Lemma 5.10). The proofs of these claims rely on the 

fact that the components of Kj ``mimic'' the components of Jj .
We define the desired integer-valued Borel flow f by using the same construction as 

in Section 3.3, except that we replace the toast sequence (Ji)∞i=1 by (Ji, ˜︁Ki, ˜︁Li)∞i=1.

3.5. Reducing/analysing the complexity of the pieces

The idea to use fmi
instead of f∞ in the construction of the integer-valued flow f is, 

essentially by itself, enough to save one level of the Borel hierarchy when compared to 
the proof of Marks and Unger [28]. There are a couple of places where we change their 
construction or its analysis in order to drop down by another level of Borel complexity. 
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(In particular, we have to use a different toast sequence (Ji, ˆ︁Ki, ˆ︁Li)∞i=1, some modification 
of (Ji, ˜︁Ki, ˜︁Li)∞i=1, for the final rounding.) These changes are incorporated in the main 
construction, while the Borel complexity analysis is postponed until Section 7.2 for the 
clarity of presentation.

Our approach to bounding the upper Minkowski dimension (defined in (1.1)) of the 
boundaries of the pieces is, for given δ > 0, to choose some index i = i(δ) and run our 
algorithm to process J1, . . . , Ji. Although we do not know the final equidecomposition 
at this moment, we may nonetheless determine for some elements of A to which final 
piece they will belong. This defines the current partial pieces A1, . . . , AN (that give an 
equidecomposition of some subset of A to a subset of B). Now, we estimate the number 
of boxes of a regular grid with side length δ that intersect the currently unassigned part 
of A or the boundary of any current piece Aj. (Thus, our dimension estimates depend 
only on J1, J2, . . . and not on how K1, L1,K2, L2, . . . are built around them.) Recall by 
Lemma 3.2 that each set Jj is a finite union of strips, whose number we can estimate 
if the sets Xi are carefully chosen (namely, as in Lemma 7.6). Also, we can estimate 
a radius R so that the current pieces A1, . . . , AN can be R-locally determined from A, 
B and J1, . . . , Ji. Thus each Aj is a Boolean combination of (2R + 1)d translates of 
each of these sets, and the number of boxes that intersect its boundary ∂Aj can be 
bounded above by the number of boxes intersecting the boundary of at least one of these 
translates. Furthermore, every other box that may potentially intersect the boundary 
of a final piece has to be a subset of A′ := A \ (

⋃︁N
j=1 Aj) and their number can be 

upper bounded by λ(A′)/δk by the trivial volume argument. Thus we have to control 
our parameters carefully to get a good balance between the minimal distance between 
the components of Ji (in order to control the measure of the leftover part A′ of A) and 
their maximum diameter (as our local rule processing Ji has to use radius at least as 
large as this diameter).

4. Proof of Lemma 3.1

Our goal in this section is to present, for the sake of completeness, the (somewhat 
rephrased) construction of Marks and Unger [28] of a sequence f1, f2, . . . of real-valued 
flows in Gd which converge uniformly to a bounded flow f∞ from A to B in Gd. For the 
reader’s convenience, let us repeat the statement of the result that we will use.

Lemma 3.1 (Marks and Unger   [28]). There exist flows f1, f2, . . . in Gd such that for all 
m ⩾ 1 the following statements hold with f0 := 0 being the flow which is identically zero:

(3.1) 22dmfm is integer-valued,
(3.2) ∥fout

m − 1A + 1B∥∞ ⩽ 2c 
2m(1+ε) ,

(3.3) ∥fm − fm−1∥∞ ⩽ 2c 
2d+ε(m−1) , and

(3.4) fm is a (2m − 1)-local function of A and B.
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Proof of Lemma 3.1. First, we need to introduce a few definitions (that apply only in 
this section). Given a discrete cube Q in Gd (as defined in (2.2)), define

ξ(Q) := |Q ∩A| − |Q ∩B|
|Q| .

In other words, ξ(Q) measures the difference between the number of vertices of A and B
in Q normalised by the number of vertices in Q. In particular, if Q is a discrete 1-cube, 
i.e., Q = {𝒖} for some 𝒖 ∈ Tk, then ξ(Q) = 1A(𝒖)− 1B(𝒖).

By our assumption (2.10), it holds for every discrete 2m-cube Q that

(4.1) |ξ(Q)| ⩽ 2c(2m)d−1−ε

2dm = 2c 
2m(1+ε) .

Given 𝒖 ∈ Tk, γ⃗ ∈ {−1, 0, 1}d and n ∈ Z, let ϕ𝒖,nγ⃗ be the unique {−1, 0, 1}-valued (︁
1{𝒖} − 1{(nγ⃗)·𝒖}

)︁
flow in Gd supported on the edges of the path

𝒖, γ⃗ · 𝒖, (2γ⃗) · 𝒖, . . . , (nγ⃗) · 𝒖.

In other words, ϕ𝒖,nγ⃗ sends a unit of flow from 𝒖 to (nγ⃗) ·𝒖 along the straight-line path 
(whose direction is γ⃗ and graph length is |n|). In particular, if nγ⃗ is the zero vector, then 
the flow ϕ𝒖,nγ⃗ is identically zero. Also, for an integer m ⩾ 0 and a discrete 2m+1-cube 
Q containing 𝒖 ∈ Tk, let

ϕ𝒖,Q := 1 
2d

∑︂
γ⃗∈{−1,0,1}d

(2mγ⃗)·𝒖∈Q

ϕ𝒖,2mγ⃗ .

Note that the above sum contains exactly 2d terms. Informally speaking, ϕ𝒖,Q spreads 
one unit of demand from 𝒖 uniformly among Q ∩ ((2mZd) ·a 𝒖), the set of all 2d points 
of Q that, when we view Q as a subset of Zd, are congruent to 𝒖 modulo 2m. For every 
discrete 2m+1-cube Q, let 𝒫(Q) be the unique partition of Q into 2d discrete 2m-cubes. 
Given 𝒖 ∈ Tk, let 𝒬n(𝒖) denote the set of all discrete n-cubes that contain 𝒖. See Fig. 2
for an illustration of some of these definitions.

We are now ready to define the flows fm. We use induction on m and start by defining 
f0 := 0 to be the identically zero flow. For m ⩾ 1, we define fm := fm−1 + θm, where

(4.2) θm := 1 
2dm

∑︂
𝒖∈Tk

∑︂
C∈𝒬2m−1 (𝒖)

ξ(C)
∑︂

discrete 2m-cube Q
𝒫(Q)∋C

ϕ𝒖,Q.

Let us provide a probabilistic interpretation that motivates the definition in (4.2) and 
relates it to the proof outline of Section 3.1. Suppose that we wish to compute θm and 
fm inside the component [𝒗]Gd

of some vertex 𝒗 ∈ Tk. Take a random partition 𝒢m of 
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Fig. 2. An example, for d = 2, of a 4-cube Q, its dyadic partition 𝒫(Q) into 2-subcubes and the flow ϕ𝒖,Q

for a vertex 𝒖 ∈ Q (where each arrow represents a flow of value 1/4 in that direction).

the orbit [𝒗]Gd
, which is a copy of Zd, into a 2m-grid (that is, a regular grid of discrete 

2m-cubes), where all 2dm choices of 𝒢m are equally likely. By defining

𝒢i :=
⋃︂
{𝒫(Q) : Q ∈ 𝒢i+1}

inductively for i = m − 1, . . . , 0, we get the dyadic refinements of 𝒢m down to the 
(deterministic) partition 𝒢0 into discrete 1-cubes (i.e., singletons). Note that we work 
inside one component only since, for generic 𝒙1, . . . ,𝒙d, there cannot exist a measurable 
choice of a 2m-grid inside each orbit by ergodicity considerations.

Starting with f𝒢0 := 0 being the zero flow, obtain inductively for i = 1, 2, . . . ,m, the 
flow f𝒢i

from f𝒢i−1 by adding

(4.3) θ𝒢i
:=

∑︂
Q∈𝒢i

∑︂
𝒖∈Q

(︂
1A(𝒖)− 1B(𝒖)− fout

𝒢i−1
(𝒖)
)︂
ϕ𝒖,Q.

Note that f𝒢i
and θ𝒢i

do not depend on m (for m ⩾ i). Inside each 2i-cube Q ∈ 𝒢i, the 
increment flow θ𝒢i

spreads the current demand error 1A − 1B − fout
𝒢i−1

uniformly inside 
each congruence class modulo 2i−1. Of course, if the error 1A − 1B − fout

𝒢i−1
is constant 

on each cube in 𝒫(Q) for some Q ∈ 𝒢i then θ𝒢i
spreads this error evenly inside Q. Thus 

an easy induction on i = 1, 2, . . . ,m shows that 1A−1B−fout
𝒢i

is constant on every cube 
Q ∈ 𝒢i. Moreover, since f𝒢i

is zero on the edge boundary of Q ∈ 𝒢i (and thus sends no 
flow out of Q), this constant is ξ(Q), that is,

(4.4) 1A(𝒖)− 1B(𝒖)− fout
𝒢i

(𝒖) = ξ(Q), for all Q ∈ 𝒢i and 𝒖 ∈ Q.

Thus we have

(4.5) θ𝒢i
:=

∑︂
Q∈𝒢i

∑︂
C∈𝒫(Q)

ξ(C)
∑︂
𝒖∈C

ϕ𝒖,Q, for every 1 ⩽ i ⩽ m

(and for i = m we arrive at the definition in (4.2)).
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It follows from (4.2) and (4.5) that, inside the component [𝒗]Gd
, the flow θi for each 

1 ⩽ i ⩽ m is the expectation of θ𝒢i
over a uniformly random 2m-grid 𝒢m, since 𝒢i =

𝒫m−i(𝒢m) is a uniformly random 2i-grid. Note that, by the linearity of expectation, fm
inside [𝒗]Gd

is the expectation of f𝒢m
.

Now we are ready to verify all four conclusions, (3.1)--(3.4), of Lemma 3.1.
Conclusion (3.1) states that 22dmfm is integer-valued. Indeed, the only non-integer 

factors in (4.2) in addition to 2−dm are 2−d(m−1) (from the definition of ξ(C)) and 2−d

(from the definition of ϕ𝒖,Q), proving (3.1).
Next, let estimate how close fout

m is from the desired demand 1A−1B . By taking the 
expectation over 𝒢m of (4.4) for i := m, we get that

(4.6) 1A(𝒖)− 1B(𝒖)− fout
m (𝒖) = 1 

2dm
∑︂

Q∈𝒬2m (𝒖)

ξ(Q),

for all m ⩾ 0 and 𝒖 ∈ [𝒗]Gd
. As 𝒗 ∈ Tk was arbitrary, (4.6) holds for every 𝒖 ∈ Tk. 

Now, (4.6) and (4.1) imply that, for every 𝒖 ∈ Tk,

⃓⃓
fout
m (𝒖)− 1A(𝒖) + 1B(𝒖)

⃓⃓
=

⃓⃓⃓⃓
⃓⃓ ∑︂
Q∈𝒬2m (𝒖)

ξ(Q)
2dm

⃓⃓⃓⃓
⃓⃓ ⩽ 2dm · 2c 

2m(1+ε) ·
1 

2dm = 2c 
2m(1+ε) ,

which is exactly the bound of Conclusion (3.2).
For (3.3), we need to compute the maximum flow along any given edge under θm. Let 

us re-write the right-hand side of (4.2) using only straight-line paths:

(4.7) θm = 1 
2dm

∑︂
𝒖∈Tk

∑︂
C∈𝒬2m−1 (𝒖)

ξ(C)
∑︂

γ⃗∈{−1,0,1}d

γ⃗ ̸=(0,...,0) 

2|{i:γi=0}| ϕ𝒖,2m−1γ⃗

2d .

(Note that, for a discrete 2m−1-cube C, the quantity 2|{i:γi=0}| is exactly the number of 
discrete 2m-cubes Q such that 𝒫(Q) contains both Q and (2m−1γ⃗) ·a Q.) For any given 
edge 𝒗𝒘, there is a unique γ⃗ ∈ {−1, 0, 1}d such that 𝒘 = γ⃗ · 𝒗. The number of vertices 
𝒖 such that either ϕ𝒖,2m−1γ⃗ or ϕ𝒖,−2m−1γ⃗ are non-zero on the pair (𝒗,𝒘) is precisely 
2 · 2m−1 = 2m. Since γ⃗ is non-zero, we have 2|{i:γi=0}| ⩽ 2d−1. So, by (4.1) and (4.7), we 
have

|θm(𝒗,𝒘)| ⩽ 2−dm · 2m · 2(m−1)d · 2c 
2(m−1)(1+ε) · 

2d−1

2d = 2c 
2d+ε(m−1) .

Thus indeed, as stated by Conclusion (3.3), we have ∥fm − fm−1∥∞ ⩽ 2c 
2d+ε(m−1) .

Finally, let us prove (3.4) which states that fm is a (2m − 1)-local function of A
and B. Since this is trivially true for the zero flow f0, it is enough to prove that, for 
every m ⩾ 1, the flow θm is a (2m − 1)-local function of A and B. Since every discrete 
2m-cube containing a vertex 𝒗 lies inside the (2m − 1)-neighbourhood of 𝒗, it follows 
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from (4.2) that the values of the flow θm on the edges incident to 𝒗 depend only on 
intersections of A and B with N2m−1[𝒗]. Thus fm = θ1 + . . . + θm is indeed a (2m − 1)
local function of A and B, as required.

This completes the proof of Lemma 3.1. □
Note that the sequence f1, f2, . . . is clearly convergent as the expression on the right 

side of the inequality (3.3) is summable as a function of m. We can therefore define f∞
to be the pointwise limit of f1, f2, . . . . The following corollary is immediate by applying 
the triangle inequality and summing the bound in (3.3).

Observation 4.1. For any m ⩾ 0,

∥f∞ − fm∥∞ ⩽
∞ ∑︂

i=m

∥fi+1 − fi∥∞ ⩽
∞ ∑︂

i=m

2c 
2d+εi

= c 21+ε

2d+εm(2ε − 1) . □

5. Toast sequences

Our next goal is to formally describe the construction of the toast sequence (J1, J2, . . .)
from the proof of Lemma 3.2 as well as some other toast sequences built around it.

5.1. Some preliminaries

Let us say that a set A cuts a set B if both B \ A and B ∩ A are non-empty. The 
following definition is key to describing our constructions.

Definition 5.1. For i ⩾ 1, let D = (D1, D2, . . . , Di) be a sequence of subsets of Tk and 
let b ⩾ 0. Define 𝒞b(D) ⊆ Tk to be the set constructed as follows: 

(5.1) initialise 𝒞b(D) := Di,
(5.2) while there exist 1 ⩽ j ⩽ i− 1 and S ∈ comp(Dj) such that 𝒞b(D) cuts Nb[S], add 

all vertices of Nb[S] to 𝒞b(D).

It may help the reader to have the following informal description of the step in (5.2) 
in mind: the current set 𝒞b(D) iteratively swallows each set Nb[S] that it intersects 
(unless the whole set Nb[S] is already inside it). Note that the order in which we perform 
the operations in (5.2) does not affect the final set 𝒞b(D). Intuitively, Definition 5.1
is designed so that the boundaries of the components of the final set 𝒞b(D) are well 
separated from D1 ∪ · · · ∪ Di−1. Unfortunately, neither some separation between the 
components of the new set 𝒞b(D) nor their boundedness holds automatically (as two 
distinct components of Di may grow too close to each other, or even merge); this will 
require proofs based on various extra properties of the input sets Dj.

The next lemma will be used to demonstrate that if the diameter of each component 
of Gd ↾ Dj is not too large and the distance between them is not too small, then the 
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obtained set 𝒞b(D) can be added without violating Properties (2.15) and (2.16) from the 
definition of a toast sequence. Note that the lemma holds without assuming any bound 
on the distance between distinct components of Gd ↾ Di.

Lemma 5.2. Let D = (D1, D2, . . . , Di) be a sequence of subsets of Tk, let b ⩾ 0, and let 
(a1, a2, . . . , ai−1) and (b0, b1, . . . , bi−1) be sequences of non-negative integers such that

(5.3) bj ⩾ aj + 2bj−1 + 2b, for all 1 ⩽ j ⩽ i− 1.

If, for every 1 ⩽ j ⩽ i− 1, every component of Gd ↾ Dj has diameter at most aj in Gd

and the distance in Gd between any two components of Gd ↾ Dj is greater than bj−1 +2b, 
then 𝒞b(D) ⊆ Nbi−1 [Di].

Proof. Take any vertex 𝒘 ∈ 𝒞b(D) \Di. By definition of 𝒞b(D), there exists a sequence 
S1, S2, . . . , Sn of distinct subsets of Tk such that 

(5.4) for each 1 ⩽ ℓ ⩽ n, there exists 1 ⩽ j ⩽ i − 1 such that Sℓ is a component of 
Gd ↾ Dj ,

(5.5) distGd
(S1, Di) ⩽ b,

(5.6) distGd
(Sℓ, Sℓ+1) ⩽ 2b for 1 ⩽ ℓ < n, and

(5.7) distGd
(Sn,𝒘) ⩽ b.

Given such a vertex 𝒘 and sets S1, . . . , Sn, let 𝒖 ∈ Di be such that distGd
(𝒖, S1) ⩽ b. Our 

aim is to prove, by induction on i, that, for every such 𝒘 and 𝒖, we have distGd
(𝒖,𝒘) ⩽

bi−1. In the base case i = 1, the statement is true vacuously as 𝒞b(D) = D1 (and so no 
such 𝒘 can exist).

So, suppose that i ⩾ 2. If none of the sets S1, . . . , Sn is a component of Gd ↾ Di−1, 
then the sequence S1, . . . , Sn actually certifies that 𝒘 ∈ 𝒞b(D1, D2, . . . , Di−2, {𝒖}) and 
we have that distGd

(𝒖,𝒘) ⩽ bi−2 ⩽ bi−1 by induction on i.
Next, suppose that there is a unique index ℓ such that Sℓ is a component of Gd ↾

Di−1. Let 𝒚 be a vertex of Sℓ at distance at most 2b from Sℓ−1 (or, at distance at 
most b from 𝒖 in the case ℓ = 1) and let 𝒛 be a vertex of Sℓ at distance at most 
2b from Sℓ+1 (or at distance at most b from 𝒘 in the case ℓ = n). The sequences 
Sℓ−1, Sℓ−2, . . . S1 and Sℓ+1, Sℓ+2, . . . , Sn certify that 𝒖 ∈ 𝒞b(D1, D2, . . . , Di−2, Nb[𝒚]) and 
𝒘 ∈ 𝒞b(D1, D2, . . . , Di−2, Nb[𝒛]) respectively. So, by the inductive hypothesis and (5.3),

distGd
(𝒖,𝒘) ⩽ distGd

(𝒖,𝒚) + distGd
(𝒚, 𝒛) + distGd

(𝒛,𝒘)

⩽ (distGd
(𝒖, Nb[𝒚]) + b) + ai−1 + (distGd

(Nb[𝒛],𝒘) + b)

⩽ (bi−2 + b) + ai−1 + (bi−2 + b) ⩽ bi−1,

as desired.
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Finally, we consider the remaining case that there are two indices 1 ⩽ ℓ < ℓ′ ⩽ n such 
that Sℓ and Sℓ′ are distinct components of Gd ↾ Di−1. Choose these indices so that ℓ′−ℓ is 
minimised. Let 𝒚 be a vertex of Nb[Sℓ] which is at distance at most b from Sℓ+1 and let 𝒛
be a vertex of Nb[Sℓ′ ] at distance at most b from Sℓ′−1. The sequence Sℓ+1, Sℓ+2, . . . , Sℓ′−1
certifies that 𝒛 is in 𝒞b(D1, . . . , Di−2, {𝒚}). By the inductive hypothesis,

distGd
(Sℓ, Sℓ′) ⩽ distGd

(𝒚, 𝒛) + 2b ⩽ bi−2 + 2b,

which contradicts the hypotheses of the lemma. This completes the proof. □
5.2. Constructions of toast sequences

We now construct some toast sequences that we use in the proof of Theorem 1.3. We 
remark that, as constructed, they will not immediately cover all of Tk. However, at the 
end of the section, we will give a compactness argument of Boykin and Jackson [5] (see 
also Marks and Unger [28, Lemma A.2]) which allows us to produce one toast sequence 
that covers all of the vertices (see Lemma 5.15).

We will use the global parameters ri, r′i, qi, q′i, ti, t′i that were defined in Section 2.4. 
For the reader’s convenience, we repeat these definitions here. Namely, we set

r′i := 1002i+1−1, i ⩾ 0,(2.7)

ri := 1002i+1−2, i ⩾ 1.(2.8)

Thus r′0 = 100 while ri = (r′i−1)2 and r′i = 100ri for each i ⩾ 1. Then we defined q′0 := 0
and, for i ⩾ 1,

ti := 2ri + 4q′i−1 + 4,

qi := ti + 2q′i−1 + 4,

t′i := 4r′i/5 + 2qi,

q′i := t′i + 2qi + 4.(2.9)

Note that, within additive O(√ri) as i → ∞, the last four values are 2ri, 2ri, 84ri and 
88ri respectively. It is tedious, but not hard, to verify that, with the specific definitions 
above (or for the sufficiently fast-growing sequences as in Remark 2.4, with r′i divisible 
by 5), the following inequalities hold for all i ⩾ 1: 

r′i − 2 > q′i > t′i > qi > ti > ri > 5r′i−1,(5.8)

r′i ⩾ 15qi + 25,(5.9)

q′i+1 ⩾ 2ri+1 + 6qi + 4.(5.10)
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These are some key inequalities that will be used when establishing various properties 
of the constructed sets in Section 5.3.

Recall that, for each i ⩾ 1, Xi is maximally ri-discrete and Yi is maximally r′i-discrete 
such that both these sets are the unions of finitely many disjoint strips. For each i ⩾ 1, 
define

Ii :=
⋃︂

𝒖∈Xi

I𝒖i ,

where I𝒖i denotes the set of all 𝒗 ∈ Tk such that

distGd
(𝒗,𝒖′) ⩾ distGd

(𝒗,𝒖) + 5r′i−1, for every 𝒖′ ∈ Xi \ {𝒖}.

The set I𝒖i can be viewed as the ``partial Voronoi cell'' of 𝒖 ∈ Xi.
Now, inductively for i = 1, 2, . . ., define

Ji := 𝒞2(Nq′0+2[J1], . . . , Nq′i−2+2[Ji−1], Ii),(5.11)

Ki := 𝒞2(K1, L1, . . . ,Ki−1, Li−1, N2[Ji]),(5.12)

Li := 𝒞2(K1, L1, . . . ,Ki−1, Li−1,Ki, N2r′i/5[Yi]).(5.13)

We will show that (J1,K1, J2,K2, . . .) and (K1, L1,K2, L2, . . .) are toast sequences. 
In particular, this implies that (J1, J2, . . .) is a toast sequence. Along the way, we will 
also prove some key properties of these sequences of sets which will be applied later in 
the paper to prove Theorem 1.3.

5.3. Properties of the constructed sequences

We begin with the following statement, which simply follows by construction.

Lemma 5.3. For every i ⩾ 1, we have Ii ⊆ Ji, N2[Ji] ⊆ Ki and N2r′i/5[Yi] ⊆ Li. □
Next, we prove a lemma regarding the structure of Ii.

Lemma 5.4. The sets I𝒖i for 𝒖 ∈ Xi are exactly the components of Gd ↾ Ii and the 
distance in Gd between any two of these sets is at least 5r′i−1. Also, for each 𝒖 ∈ Xi, the 
diameter of Gd ↾ I𝒖i is at most 2ri and I𝒖i ∩ Xi = {𝒖}. Furthermore, Ii is a 2ri-local 
function of Xi.

Proof. Take any 𝒖 ∈ Xi and 𝒗 ∈ I𝒖i . It holds by ri ⩾ 5r′i−1 that 𝒖 ∈ I𝒖i . Every vertex 
on a shortest path from 𝒗 to 𝒖 in Gd is contained in I𝒖i so this set is connected. Since 
Xi is maximally ri-discrete and 𝒖 is the element of Xi at minimum distance from 𝒗, we 
have that distGd

(𝒖,𝒗) ⩽ ri. Thus, the diameter of Gd ↾ I𝒖i is at most 2ri.
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Now, for distinct 𝒖,𝒘 ∈ Xi in the same component of Gd, let 𝒗0𝒗1 . . .𝒗n be the 
shortest path in Gd from I𝒖i to I𝒘i . Then we have by definition that

distGd
(𝒗0,𝒖) + 2n ⩾ distGd

(𝒗n,𝒖) + n ⩾ distGd
(𝒗n,𝒘) + 5r′i−1 + n

⩾ distGd
(𝒗0,𝒘) + 5r′i−1 ⩾ distGd

(𝒗0,𝒖) + 10r′i−1

and so n ⩾ 5r′i−1. Therefore, the sets I𝒖i , for 𝒖 ∈ Xi, are the components of Gd ↾ Ii and 
the distance in Gd between any two such components is at least 5r′i−1.

Finally, in order to decide if some 𝒗 ∈ Tk belongs to Ii, it is enough to compute the 
distance d from 𝒗 to Xi in Gd and then check if the (d + 5r′i−1 − 1)-neighbourhood of 
𝒗 contain a unique element of Xi. Since d ⩽ ri, the set Ii is a local function of Xi of 
radius ri + 5r′i−1 ⩽ 2ri, finishing the proof of the lemma. □

The following lemma holds because Yi is maximally r′i-discrete; we omit its easy proof.

Lemma 5.5. Every component of Gd ↾ N2r′i/5[Yi] has diameter at most 4r′i/5 and contains 
exactly one vertex of Yi. Also, the distance in Gd between any two such components is 
at least r′i/5. □

The proofs of the next two lemmas are the main applications of Lemma 5.2.

Lemma 5.6. For i ⩾ 1, we have that Ji ⊆ Nq′i−1
[Ii], the distance in Gd between any two 

distinct components of Gd ↾ Ji is least 5r′i−1 − 2q′i−1, and every component of Gd ↾ Ji
has diameter at most 2ri + 2q′i−1 and contains exactly one vertex of Xi.

Proof. We proceed by induction on i. The base case i = 1 follows from Lemma 5.4 as 
J1 = I1 and q′0 = 0. Let i ⩾ 2. We would like to apply Lemma 5.2 with b := 2 to the 
sequences

(5.14) (Nq′0+2[J1], . . . , Nq′i−2+2[Ji−1], Ii), (t′1, . . . , t′i−1) and (q′0, . . . , q′i−1).

Let us check the assumptions of Lemma 5.2. By induction, for every 1 ⩽ j ⩽ i−1, every 
component of Gd ↾ Nq′j−1+2[Jj ] has diameter at most (2rj+2q′j−1)+2(q′j−1+2) = tj < t′j
and the distance in Gd between any two such components is at least (5r′j−1 − 2q′j−1)−
2(q′j−1 + 2), which is strictly larger than q′j−1 + 4 by (5.8). Also, the distance between 
any two components of Gd ↾ Ii is at least 5r′i−1 > q′i−1 + 4 while the inequality in (5.3)
for 1 ⩽ j ⩽ i − 1 (which states that q′j ⩾ t′j + 2q′j−1 + 4) holds by qj > q′j−1. Thus 
Lemma 5.2 applies to the sequences in (5.14) and gives that Ji ⊆ Nq′i−1

[Ii], proving the 
first stated property.

This routinely implies all other claims about Ji. Indeed, it follows from Lemma 5.4
that the distance in Gd between different components of Gd ↾ Ji is at least 5r′i−1− 2q′i−1
(note that 5r′i−1 − 2q′i−1 ⩾ 2) and each component has diameter at most 2ri + 2q′i−1. 
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Finally, each component S ∈ comp(Ji) is built from I𝒖i for some 𝒖 ∈ Xi and, by the 
separation bounds proved above, 𝒖 is the unique vertex in S ∩Xi. □

Lemma 5.7. For each i ⩾ 1, it holds that 

(5.15) Ki ⊆ Nq′i−1+2[Ji], the distance in Gd between any two distinct components of 
Gd ↾ Ki is least 5r′i−1− 4q′i−1− 4, and every component of Gd ↾ Ki has diameter 
at most ti and contains exactly one vertex of Xi.

(5.16) Li ⊆ N2r′i/5+qi [Yi], the distance in Gd between any two distinct components of 
Gd ↾ Li is least r′i/5− 2qi, and every component of Gd ↾ Li has diameter at most 
t′i and contains exactly one vertex of Yi.

Proof. We use induction on i. The base case i = 1 holds for Ki by Lemma 5.6 since 
K1 = N2[J1] and q′0 = 0. Let i ⩾ 2. In the i-th step of induction, we prove the claims 
about Li−1 and Ki. Analogously to the proof of Lemma 5.6, we will apply the inductive 
hypotheses and Lemma 5.2 with b := 2 to respectively

• (K1, L1, . . . ,Ki−1, N2r′i−1/5[Yi−1]), (t1, t′1, . . . , t′i−2, ti−1) and (q′0, q1, . . . , q′i−2, qi−1),
• (K1, L1, . . . , Li−1, N2[Ji]), (t1, t′1, . . . , ti−1, t

′
i−1) and (q′0, q1, . . . , qi−1, q

′
i−1).

Let us check the assumptions of Lemma 5.2 for the first triple of sequences. By in
duction, for every 1 ⩽ j ⩽ i − 1, every component of Gd ↾ Kj has diameter at most tj
and the distance in Gd between any two such components is at least 5r′j−1 − 4q′j−1 − 4, 
which is strictly more than q′j−1 + 4 by (5.8). Similarly, for each 1 ⩽ j ⩽ i − 2, every 
component of Gd ↾ Lj has diameter at most t′j and the distance in Gd between any two 
such components is at least r′j/5− 2qj , which is strictly larger than qj +4 by (5.9). Also, 
the inequalities in (5.3) are routine to verify.

So, Lemma 5.2 applies and gives that Li−1 ⊆ Nqi−1 [N2r′i−1/5[Yi−1]]. This implies all 
other stated properties of Li−1. Indeed, by Lemma 5.5, the distance between any two 
components of Gd ↾ Li−1, is at least r′i−1/5−2qi−1, and each component has diameter at 
most 4r′i−1/5 + 2qi−1 = t′i−1 and contains exactly one vertex from Yi, proving all claims 
about Li−1.

By r′i−1/5 − 2qi−1 > qi−1 + 4, we can apply Lemma 5.2 also to the second triple of 
sequences to derive that Ki ⊆ Nq′i−1+2[Ji]. It follows from Lemma 5.6 that the distance 
between any two components of Gd ↾ Ki is at least (5r′i−1 − 2q′i−1) − 2(q′i−1 + 2) =
5r′i−1−4q′i−1−4, while each component has diameter at most 2ri+2q′i−1+2(q′i−1+2) = ti
and contains exactly one element of Xi. □

We will need to refer a few times to the following, not entirely trivial result so we 
state it as a separate lemma.
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Lemma 5.8. Let i > j ⩾ 1. If S′ ∈ comp(Kj) and T ∈ comp(Ji) are at distance at most 
2 in Gd, then N2[S′] ⊆ T .

Proof. Observe that, by Lemma 5.7, we have S′ ⊆ Kj ⊆ Nq′j−1+2[Jj ]. Take a component 
S of Gd ↾ Jj such that S′′ := Nq′j−1+2[S] intersects S′. Let us show that, in fact, S′ ⊆ S′′. 
Suppose on the contrary that we have some 𝒖 ∈ S′\S′′. Again by Lemma 5.7, 𝒖 is within 
distance q′j−1 +2 to some component X ∈ comp(Jj) that has to be different from S. But 
then the distance between X and S is, by the triangle inequality when we go via S′, at 
most 2(q′j−1 + 2) + ti < 5r′j−1 − 2q′j−1, contradicting Lemma 5.6.

By the definition of Ji, every component of Nq′j−1+2[Jj ] that is within distance 2 of 
T ∈ comp(Ji) is included with its 2-neighbourhood into T . Since S′′ ⊆ Nq′j−1+2[Jj ], the 
set N2[S′′] is included into T . Thus T contains N2[S′] ⊆ N2[S′′], as desired. □

We are now in position to prove the following lemma.

Lemma 5.9. Both of (J1,K1, J2,K2, . . .) and (K1, L1,K2, L2, . . .) are toast sequences.

Proof. The fact that the components of the subgraphs of Gd induced by each of Ji, 
Ki and Li are of uniformly bounded cardinality and are pairwise separated by distance 
at least three follows from Lemmas 5.6 and 5.7. So, Properties (2.15) and (2.16) of 
Definition 2.14 hold for each of the two sequences.

Let us check Property (2.17) for the sequence (Ji,Ki)∞i=1. Note some asymmetry in 
(2.17), which states that if two components from two different times are at distance at 
most 2 then the 2-neighbourhood of the earlier one is contained in the later one. There 
are some cases to consider. First, take any S ∈ comp(Ji). Suppose on the contrary to 
(2.17) that S is at distance at most 2 from X = Jj for j > i or X = Kj for j ⩾ i but 
N2[S] is a not a subset of X. Let T ∈ comp(X) satisfy distGd

(S, T ) ⩽ 2. By construction, 
T does not cut N2[S] as otherwise this set would be added into T (since T was built 
after S). Hence we have that T ⊆ N2[S]. This is impossible for j > i because the diameter 
of S is at most 2ri+2q′i−1 by Lemma 5.6 while T contains a ball of radius ⌊(rj−5r′i−1)/2⌋
centred at the unique point of Xj ∩ T by the definition of Ij ⊆ Jj ⊆ Kj . Also, the case 
X = Ki leads to a contradiction. Indeed, when constructing T ∈ comp(Ki) we started 
with N2[T ′] for some T ′ ∈ comp(Ji), By Lemmas 5.4, 5.6 and 5.7, we must have T ′ = S. 
Thus Ki ⊇ T ⊇ N2[T ′] contains N2[S], a contradiction. Second, take any S ∈ comp(Ki). 
No set Jj with j > i can violate (2.17) by Lemma 5.8. Also, any T ∈ comp(Kj) with 
j > i and distGd

(S, T ) ⩽ 2 contains N2[S] (again since T ⊆ N2[S] is impossible by the 
diameter argument). Thus (2.17) holds for (Ji,Ki)∞i=1.

Likewise, Property (2.17) can be verified for the sequence (Ki, Li)∞i=1, using addition
ally the fact that each component of Gd ↾ Li contains a ball of radius 2r′i/5.

Thus each of (Ji,Ki)∞i=1 and (Ki, Li)∞i=1 is a toast sequence. □
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For each i ⩾ 1, define ˜︁Ki from Ki (resp. ˜︁Li from Li) by removing the vertex sets of 
all components S such that there is j > i with Jj (resp. Kj) being at distance at most 
2 from S in the graph Gd. By Lemma 5.8, it holds that, in fact,

(5.17) ˜︁Ki = Ki \
⎛⎝ ∞ ⋃︂

j=i+1
Jj

⎞⎠ ,

that is, we could have equivalently defined ˜︁Ki from Ki by removing all individual vertices 
that belong to some Jj with j > i. Likewise (with the claim following trivially from our 
definitions), we have

(5.18) ˜︁Li = Li \
⎛⎝ ∞ ⋃︂

j=i+1
Kj

⎞⎠ .

The following lemma records some properties of these sets, in particular showing that 
they together with Ji’s form a toast sequence without losing any single vertex of 

⋃︁∞
i=1 Li. 

Moreover, the structure of the toast sequence (J1, J2, . . .) is preserved in a very strong 
way.

Lemma 5.10. The following properties hold. 

(5.19) For every i ⩾ 1, we have comp( ˜︁Ki) ⊆ comp(Ki) and comp(˜︁Li) ⊆ comp(Li).
(5.20)

⋃︁∞
i=1(Ji ∪ ˜︁Ki ∪ ˜︁Li) ⊇

⋃︁∞
i=1 Li.

(5.21) For every integers i, j ⩾ 1, if T ∈ comp(Jj) and S ∈ comp(˜︁Li) are at distance at 
most 2, then i ⩾ j and N2[T ] ⊆ S.

(5.22) The sequence (J1, ˜︁K1, ˜︁L1, J2, ˜︁K2, ˜︁L2, . . .) is a toast sequence.

Proof. Conclusion (5.19) is a trivial consequence of the definition of ˜︁Ki and ˜︁Li.
For (5.20), take any 𝒖 ∈ Li \ ˜︁Li. We have to show that 𝒖 ∈ ⋃︁∞

j=1(Jj ∪ ˜︁Kj). By (5.18), 
there is j > i with 𝒖 ∈ Kj . If 𝒖 ∈ ˜︁Kj then we are done; otherwise the vertex 𝒖 lies 
inside some Jh with h > j by (5.17), proving (5.20) in either case.

For (5.21), note that i ⩾ j for otherwise the component S of Li (recall that comp(˜︁Li) ⊆
comp(Li) by (5.19)) would be removed when constructing ˜︁Li from Li. By the definition 
of Kj , we have that Kj ⊇ N2[Jj ]. Thus Kj contains every vertex of the connected set 
N2[T ] which in turn intersects S. Thus by the construction of the set Li, its component 
S must contain N2[T ] as a subset, proving (5.21).

For (5.22), note by (5.19) that no new components (and thus no new boundaries) 
are created when we construct ˜︁Kj from Kj and ˜︁Lj from Lj . Since (J1,K1, J2,K2, . . .)
and (K1, L1,K2, L2, . . .) are toast sequences by Lemma 5.9, the only remaining case that 
requires some checking is that no conflict to the definition of a toast sequence (namely, 
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Property (2.17) of Definition 2.14) can come from S ∈ comp(˜︁Li) and C ∈ comp(Jj). 
This has already been taken care of by (5.21). □
5.4. Some structure of the constructed sets

The next two lemmas will be useful in analysing the structure of the pieces in the 
final equidecomposition.

Lemma 5.11. For each integer i ⩾ 1, the set Ji is a 4ri-local function of X1, . . . , Xi.

Proof. We use induction on i with the base case i = 1 following from J1 = I1 being in fact 
an (r1+5r0)-local function of X1. Let i ⩾ 2. In order to decide if some 𝒗 ∈ Tk is included 
into Ji, it is enough to know all elements 𝒖 ∈ Xi at distance at most ri + q′i−1 from 𝒗
and the component of Gd ↾ Ji containing each such 𝒖. By Lemma 5.6, the component 
S ∈ comp(Ji) containing 𝒖 ∈ Xi has diameter at most 2ri + 2q′i−1 and contains no 
other elements of Xi. So to build S for given 𝒖 ∈ Xi, we need to know only the sets 
Nq′0+2[J1], . . . , Nq′i−2+2[Ji−1] inside N2ri+2q′i−1

[𝒖]. By induction, each of these sets is a 
4ri−1-local function of X1, . . . , Xi−1. The lemma follows since (ri+q′i−1)+(2ri+2q′i−1)+
4ri−1 ⩽ 4ri. □
Lemma 5.12. Each of the sets Ji,Ki and Li for i ⩾ 1 can be expressed as a union of 
finitely many disjoint strips.

Proof. Observe that each of the sets Ji, Ki and Li is a local function of X1, Y1, . . . , Xi, Yi. 
Lemma 5.11 proves this for Ji and its argument can be easily adapted to Ki and Lj using 
the uniform diameter bounds of Lemma 5.7. Since every set Xj and Yj is in turn a finite 
union of disjoint strips (by our choices in Section 2.6) and such unions form an invariant 
algebra, the lemma holds by Observation 2.6. □

Let us remark that the sets ˜︁Ki and ˜︁Li need not satisfy Lemma 5.12, that is, they are 
not in general finite unions of strips.

Lemma 5.13. We have

λ(Ii) = 1−O
(︁
r′i−1/ri

)︁
as i→∞, where the constant factor is bounded by a function of d only.

Proof. Note that Ii is a union of finitely many disjoint strips and, therefore, it is mea
surable. For any pair of distinct vertices 𝒖,𝒖′ ∈ Xi, let Wi(𝒖,𝒖′) be the set of all 𝒗 ∈ Tk

such that

max {distGd
(𝒖,𝒗),distGd

(𝒖′,𝒗)} ⩽ ri + 5r′i−1 and
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|distGd
(𝒖,𝒗)− distGd

(𝒖′,𝒗)| ⩽ 5r′i−1.

Define Wi to be the union of Wi(𝒖,𝒖′) over all pairs of distinct vertices 𝒖,𝒖′ ∈ Xi. 
The set Wi can be written as a Boolean combination of translates of Xi, and so it is 
measurable. By the definition of Ii and the fact that Xi is maximally ri-discrete, we have 
that Tk \ Ii ⊆Wi. So, it suffices to prove that λ(Wi) = O(r′i−1/ri).

First, for each 𝒖 ∈ Xi, let us bound the number of 𝒖′ ∈ Xi such that Wi(𝒖,𝒖′) is 
non-empty. Given any such 𝒖′, we have

distGd
(𝒖,𝒖′) ⩽ 2ri + 10r′i−1.

Therefore,

N⌊ri/2⌋[𝒖
′] ⊆ N2ri+⌊ri/2⌋+10r′i−1

[𝒖].

Since the set Xi is ri-discrete, the sets N⌊ri/2⌋[𝒖′] are disjoint for different 𝒖′ ∈ Xi. So 
the number of such 𝒖′ is at most

(︁
4ri + 2⌊ri/2⌋+ 20r′i−1 + 1

)︁d
(2⌊ri/2⌋+ 1)d

,

which can be upper bounded above by a constant that depends on d only.
Now, given a pair of distinct 𝒖,𝒖′ ∈ Xi in the same component of Gd, let n⃗ ∈ Zd be 

such that 𝒖′ = n⃗ ·a 𝒖. Note that ∥n⃗∥∞ ⩾ ri + 1 since Xi is ri-discrete. Then Wi(𝒖,𝒖′)
is the set of all 𝒗 ∈ Tk of the form 𝒗 = m⃗ ·a 𝒖 where

• ∥m⃗∥∞ ⩽ ri + 5r′i−1,
• ∥n⃗− m⃗∥∞ ⩽ ri + 5r′i−1, and
•
⃓⃓∥m⃗∥∞ − ∥n⃗− m⃗∥∞

⃓⃓
⩽ 5r′i−1.

For fixed d, the number of vectors m⃗ of this type is O
(︁
rd−1
i r′i−1

)︁
. Indeed, there are 

d2 ways to choose the indices j1, j2 ∈ {1, . . . , d} such that |mj1 | and |nj2 −mj2 | are 
maximum. In the case that j1 = j2, it holds that |mj1− (nj1−mj1)| ⩽ 5r′i−1 so there are 
O(r′i−1) choices for mj1 and O(ri) choices for mj for each j ∈ {1, . . . , d} \ {j1}. On the 
other hand, if j1 ̸= j2, then the number of choices of mj1 is O(ri) and, given this choice, 
the number of choices for nj2 −mj2 (and thus for mj2) is O(r′i−1) and, again, there are 
O(ri) choices for mj for each j ∈ {1, . . . , d} \ {j1, j2}.

Suppose now that we split Tk into Voronoi cells with the points in Xi as the centres, 
similarly to the proof of Lemma 2.16. Each Voronoi cell contains Ω(rdi ) elements and, by 
the arguments above, O(rd−1

i r′i−1) of these points are in Wi. It follows that the measure 
of Wi is O(r′i−1/ri). □
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5.5. Covering the whole torus

Finally, we apply a compactness argument of Boykin and Jackson [5] to get a toast 
sequence that covers the whole torus Tk. For each p⃗ ∈ {0, . . . , 5}d and i ⩾ 1, define

Y p⃗
i := Yi − ⌊r′i/3⌋

d ∑︂
j=1 

(pj − 3)𝒙j .

Note that Y p⃗
i is simply a shifted version of Yi and so it inherits the property of being 

a maximally r′i-discrete union of finitely many strips. Also, Y (3,3,...,3)
i is simply Yi. We 

define, for each i ⩾ 1,

K p⃗
i := 𝒞2(K p⃗

1 , L
p⃗
1, . . . ,K

p⃗
i−1, L

p⃗
i−1, N2[Ji]), and(5.24)

Lp⃗
i := 𝒞2(K p⃗

1 , L
p⃗
1, . . . ,K

p⃗
i−1, L

p⃗
i−1,K

p⃗
i , N2r′i/5[Y

p⃗
i ]),(5.25)

as well as ˜︁K p⃗
i ⊆ K p⃗

i and ˜︁Lp⃗
i ⊆ Lp⃗

i by removing whole components that are at distance 
at most 2 from respectively Jj and K p⃗

j for some j > i. Note that these definitions are 
exactly the shifted versions of the previous definitions, namely of (5.12), (5.13) and so 
on, except the same (unshifted) sets Ji are used. (Thus, for example, it is not true in 
general that e.g., K p⃗

i is just a shifted copy of Ki.) Therefore, all of the lemmas proved 
in Section 5.3 apply equally well to the sets

J1,K
p⃗
1 ,
˜︁K p⃗

1 , L
p⃗
1,
˜︁Lp⃗

1, J2,K
p⃗
2 ,
˜︁K p⃗

2 , L
p⃗
2,
˜︁Lp⃗

2, . . . ,

as they apply to the sets J1,K1, ˜︁K1, L1, ˜︁L1, J2,K2, ˜︁K2, L2, ˜︁L2, . . . .
The above definitions are motivated by the following result which implies that every 

vertex of Tk belongs to Lp⃗
i for at least one (in fact infinitely many) pairs (i, p⃗).

Lemma 5.14. Every element of Tk is covered by infinitely many of the sets N2r′i/5[Y
p⃗
i ]

for p⃗ ∈ {0, . . . , 5}d and integer i ⩾ 1.

Proof. For each vertex 𝒗 ∈ Tk, let

Ri(𝒗) := {n⃗/r′i : n⃗ ·a 𝒗 ∈ Yi} ⊆ Rd.

Note that, since Yi is maximally r′i-discrete, we have that Ri(𝒗) contains a point in 
[−1, 1]d for all i ⩾ 1. Thus, by compactness of [−1, 1]d, the set R∗(𝒗) of accumulation 
points of the sequence R1(𝒗), R2(𝒗), . . . in [−1, 1]d is non-empty.

If 𝒗 and 𝒗′ are in the same component of Gd, then Ri(𝒗) is the same as Ri(𝒗′) shifted 
by ℓ∞-distance distGd

(𝒗,𝒗′)/r′i in Rd. Since the sequence r′1, r
′
2, . . . is increasing, this 

distance tends to zero. Thus the sequences (Ri(𝒗))∞i=1 and (Ri(𝒗′))∞i=1 have the same set 
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of accumulation points in Rd; in particular, we have R∗(𝒗) = R∗(𝒗′). Thus the function 
R∗ is invariant under the action a : Zd

↷Tk.
Define

T ′
p⃗ :=

{︄
𝒗 ∈ Tk : R∗(𝒗) ∩

d ∏︂
s=1

[︃
ps − 3

3 
,
ps − 2

3 

]︃
̸= ∅

}︄
, for p⃗ ∈ {0, . . . , 5}d.

These sets cover the whole torus Tk, since R∗(𝒗) is non-empty for every 𝒗. For each 
p⃗ ∈ {0, . . . , 5}d, we let

(5.26) Tp⃗ := T ′
p⃗ \

⋃︂
q⃗∈{0,...,5}d

q⃗≺lexp⃗

Tq⃗′

consist of those 𝒗 for which p⃗ is the lexicographically smallest vector with R∗(𝒗) having 
non-empty intersection with 

∏︁d
s=1

[︁
ps−3

3 , ps−2
3 
]︁
.

Since the (set-valued) function R∗ is constant on each component of Gd, we have that 
each set T ′

p⃗ (and thus each set Tp⃗) is a union of components of Gd, that is, is invariant 
under the action a. Also, the sets Tp⃗, for p⃗ ∈ {0, . . . , 5}d, partition Tk.

Now, for any 𝒗 ∈ Tp⃗, we have by the definition of R∗(𝒗) that there are infinitely many 
indices i for which there is a vertex 𝒖 ∈ Yi of the form 𝒖 = n⃗ ·a 𝒗 for some n⃗ such that

r′i ·
(︃
pj − 3

3 
− 1 

100

)︃
⩽ nj ⩽ r′i ·

(︃
pj − 2

3 
+ 1 

100

)︃
, for all 1 ⩽ j ⩽ d.

Thus, for all such i with r′i sufficiently large, it holds that

distGd
(𝒗, Y p⃗

i ) ⩽ distGd

⎛⎝𝒗,𝒖− ⌊r′i/3⌋
d ∑︂

j=1 
(pj − 3)𝒙j

⎞⎠ ⩽ r′i
3 

+ 3r′i
100 <

2r′i
5 

.

We see that every element of Tp⃗ is covered by N2r′i/5[Y
p⃗
i ] for infinitely many integers i, 

proving the lemma. □
Finally, we are ready to construct the toast sequence that will be enough for proving 

all statements of Theorem 1.3. Namely, for i ⩾ 1, define

ˆ︁Ki :=
⋃︂

p⃗∈{0,...,5}d

(︂ ˜︁K p⃗
i ∩ Tp⃗

)︂
, and(5.27)

ˆ︁Li :=
⋃︂

p⃗∈{0,...,5}d

(︂˜︁Lp⃗
i ∩ Tp⃗

)︂
.(5.28)

Since each set Tp⃗ consists of whole components of Gd and the sets Tp⃗ form a partition 
of the torus Tk, Lemma 5.10 implies the following.
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Lemma 5.15. (J1, ˆ︁K1, ˆ︁L1, J1, ˆ︁K2, ˆ︁L2, . . .) is a toast sequence that completely covers Tk. □
6. Using toast sequences to round flows

Here we show how one can use a toast sequence to obtain an integer-valued (1A−1B)
flow from a sequence of real-valued flows. The key new challenge is that the used real
valued flows fi need not meet the demand 1A − 1B exactly (only when we pass to the 
limit as i→∞) while we are not allowed to access the whole sequence when rounding.

6.1. Dealing with finite connected sets

Here, we present one of the main subroutines, which perturbs a flow along the bound
ary of a finite set of vertices, attaining the desired properties on all edges except possibly 
one. Many of the ideas appearing here are borrowed from [28, Section 5].

Definition 6.1. A triangle in a graph G is a set {u, v, w} of three distinct vertices of G, 
every pair of which are adjacent in G.

Definition 6.2. Given a graph G and a set F ⊆ E(G), let △F be the graph with vertex 
set F where two elements uv and yz of F are adjacent in △F if they are contained in a 
common triangle of G.

Definition 6.3. An Eulerian circuit in a finite graph G is a sequence (v1, v2, . . . , vt) of 
vertices of G such that v1 = vt and the sequence (v1v2, v2v3, . . . , vt−1vt) is an enumeration 
of the edge set of G.

In the language of graph theory, an Eulerian circuit is a closed walk in a graph which 
traverses every edge exactly once. Perhaps the most classical result in graph theory is 
Euler’s Theorem from 1736 which says that a finite graph G has an Eulerian circuit if and 
only if it is connected and all of its vertices have even degree; see e.g. [10, Theorem 1.8.1]. 
The following lemma highlights a small technical advantage of defining the graph Gd in 
terms of the set {γ⃗ ∈ Zd : ∥γ⃗∥∞ = 1} of generators of Zd as opposed to the standard 
basis (although one can also work in the latter graph, see e.g. [6, Section 6]). Recall that 
the edge-boundary ∂ES of S ⊆ Tk consists of the edges of Gd with exactly one vertex 
in S.

Lemma 6.4 (Marks and Unger   [28, Proof of Lemma   5.6]). If S ⊆ Tk, then every finite 
component of △∂ES has an Eulerian circuit.

Proof. By Euler’s Theorem, it suffices to show that every vertex of △∂ES has even 
degree. Let 𝒖𝒗 ∈ ∂ES with 𝒖 ∈ S and 𝒗 / ∈ S. Note that, for any triangle {𝒖,𝒗,𝒘} in Gd

containing 𝒖 and 𝒗, exactly one of the edges 𝒖𝒘 or 𝒗𝒘 is in ∂ES. Also, for any pair of 
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edges of Gd which are adjacent in △∂ES , there is a unique triangle which contains them. 
So, it suffices to prove that 𝒖𝒗 is contained in an even number of triangles of Gd.

Let n⃗ be the unique element of Zd such that ∥n⃗∥∞ = 1 and 𝒗 = 𝒖 +
∑︁d

i=1 ni𝒙i. Let 
T0 := {i : 1 ⩽ i ⩽ d and ni = 0} and T1 := {1, 2, . . . , d} \ T0. Note that the number of 
triangles containing 𝒖𝒗 is exactly

3|T0| · 2|T1| − 2.

Indeed, the number of choices of n⃗′ = (n′
1, . . . , n

′
d) ∈ Zd such that 𝒘 := 𝒖 +

∑︁d
i=1 n

′
i𝒙i

forms a triangle with 𝒖 and 𝒗 in Gd or satisfies 𝒘 ∈ {𝒖,𝒗} is exactly 3|T0| (each n′
i for 

i ∈ T0 can assume any value in {−1, 0, 1}) times 2|T1| (there are exactly two possible 
values for n′

i for each i ∈ T1).
Since |T1| ⩾ 1, the number of triangles is even, finishing the proof. □
Recall that by a hole of S ⊆ Tk we mean a finite component of Gd ↾

(︁
Tk \ S)︁. Marks 

and Unger [28, Proof of Lemma 5.6] use a result of Timár [35] to show that, if S is a 
finite subset of Tk with no holes such that Gd ↾ S is connected, then △∂ES is connected. 
Combining this with Lemma 6.4 and Euler’s Theorem, we get the following.

Lemma 6.5 (Marks and Unger   [28, Lemma   5.6]). If S is a finite subset of Tk with no 
holes and Gd ↾ S is connected, then △∂ES has an Eulerian circuit. □

The following definition is helpful for explaining the way in which we perturb flow 
values on triangles in Gd.

Definition 6.6. Given a graph G and an ordered triple (u, v, w) ∈ V (G)3 such that 
{u, v, w} is a triangle in G, define ↺u,v,w to be the flow in G such that, for x, y ∈ V (G),

↺u,v,w (x, y) :=

⎧⎪⎨⎪⎩
1, if (x, y) ∈ {(u, v), (v, w), (w, u)},

−1, if (x, y) ∈ {(v, u), (w, v), (u,w)},
0, otherwise.

Given a flow ϕ in Gd and a finite subset S of Tk with no holes such that Gd ↾ S is 
connected, the operation of rounding ϕ along the boundary of S is defined as follows. 
Using Lemma 6.5, we let 𝒖1𝒗1, . . . ,𝒖t𝒗t be an Eulerian circuit in △∂ES where, for each 
1 ⩽ s ⩽ t, we have 𝒖s ∈ S and 𝒗s / ∈ S. Moreover, among all Eulerian circuits, we choose 
the ≺lex-minimal one (that is, one such that (𝒖1,𝒗1, . . . ,𝒖t,𝒗t) is minimal under ≺lex). 
Note that 𝒖t = 𝒖1 and 𝒗t = 𝒗1. First, we do the adjustment step, where we redefine 
ϕ(𝒖t−1,𝒗t−1) by adding [ϕout(S)]− ϕout(S) to it and change ϕ(𝒗t−1,𝒖t−1) accordingly. 
The flow out of S is now an integer. Then, for each s = 1, . . . , t− 2, one by one, we let 
𝒘s be the (unique) vertex of {𝒖s+1,𝒗s+1} such that {𝒖s,𝒗s,𝒘s} is a triangle in Gd and 
redefine ϕ to be
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Fig. 3. Two steps of the operation of rounding a flow ϕ along the boundary of a set S. The vertices within 
the grey region are in S. The edge 𝒖s𝒗s currently being rounded is depicted by a bold black line and the 
other two edges of the triangle containing 𝒖s𝒗s and 𝒖s+1𝒗s+1 are depicted by a bold grey line. Some edges 
are labelled with numbers which represent their current flow value in the direction indicated by the arrow.

(6.1) ϕ := ϕ + ([ϕ(𝒖s,𝒗s)]− ϕ(𝒖s,𝒗s)) ↺𝒖s,𝒗s,𝒘s
.

(See Fig. 3 for an illustration.) Each of the steps in (6.1) preserves the flow out of 
every vertex. After all t− 2 steps have been completed, every edge 𝒖i𝒗i of ∂ES, except 
possibly 𝒖t−1𝒗t−1, is assigned to an integer flow value by ϕ (because the last triangle 
update affecting ϕ(𝒖i𝒗i) makes it integer). However, the total flow out of S is an integer, 
and so ϕ(𝒖t−1,𝒗t−1) must be an integer as well.

For future reference, we also define the flow 𝒪ϕ
S (where ϕ in this notation will refer 

to the initial flow ϕ before any modifications took place), which is the sum of all t − 2
increments in (6.1). Thus, 𝒪ϕ

S is a 0flow (i.e., the flow out of every vertex is 0) and, 
with ϕ referring to its initial value, the flow ϕ +𝒪ϕ

S assumes integer values on all edges 
of ∂ES except possibly 𝒖t−1𝒗t−1.

More generally, given a flow ϕ in Gd and a set D ⊆ Tk such that every set in comp(D)
is finite, the operation of rounding ϕ along the boundary of D is defined as follows. First, 
for every S ∈ comp(D) and every hole S′ of S, we round ϕ along the boundary of S′. 
Then, for each S ∈ comp(D), we round ϕ along the boundary of the union of S and all 
of its holes. All of these operations are well-defined and the order in which we perform 
them does not affect the result. Note that, for every finite connected S, the edge sets 
∂ES

′, for S′ being a hole in S or being S with all its holes filled, partition the edge 
boundary of S. Indeed, every pair in ∂ES has exactly one point outside of S, lying in a 
(unique) component S′ of Gd ↾ (Tk \S). If S′ is not a hole of S, then S′ is infinite while 
S′′, the complement of S′ in the component of Gd containing S, is finite. Trivially, S′′

cannot have any holes, so S′′ is exactly S with all its holes filled, as desired.
We define

𝒪ϕ
D :=

∑︂
S∈comp(D)

∑︂
S′
𝒪ϕ

S′ ,

where S′ in the inner sum is a hole of S, or S with all its holes filled.
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Next, we show that if, additionally, any two distinct components of Gd ↾ D are at 
distance at least three4 in Gd, then rounding along the boundary of such a set D cannot 
displace the flow values by an arbitrary amount.

Lemma 6.7. Let ϕ be a flow in Gd and D be a subset of Tk such that each component 
of Gd ↾ D is finite and any two distinct components of Gd ↾ D are at distance at least 
three in Gd. Then, the sum of the absolute values of flow changes on each 𝒖𝒗 ∈ E(Gd)
when we round ϕ on the boundary of D is at most (3d − 2)/2. (In particular, this also 
upper bounds the total change on each edge, that is, ∥𝒪ϕ

D∥∞ ⩽ (3d − 2)/2.)

Proof. By construction, the flow from 𝒖 to 𝒗 changes only if there exists S ∈ comp(D)
such that either

• 𝒖𝒗 ∈ ∂ES,
• 𝒖,𝒗 ∈ N [S] \ S, or
• 𝒖,𝒗 ∈ N [Tk \ S] ∩ S.

Since any two components of D are separated by a distance of at least three in Gd, we 
see that the choice of the component S is unique.

In the first two cases, we let T be the unique component of Gd ↾
(︁
Tk \ S)︁ which 

contains {𝒖,𝒗}\S. While rounding ϕ on the boundary of T (in the case that T is finite), 
or on the boundary of the union of S and all of its holes (in the case that T is infinite), 
the value of ϕ(𝒖,𝒗) is changed at most once for every triangle containing 𝒖 and 𝒗, where 
we view the last triangle of the Eulerian tour (the one that we have not used for any 
flow updates) as ``responsible'' for the initial adjustment of the flow on the second to last 
edge. The number of such triangles is at most the number of neighbours of 𝒖 different 
from 𝒗, which is at most 3d − 2. Also, each time that the flow value of an edge changes, 
it is displaced by at most 1/2 (since we round to a nearest integer). The flow from 𝒖 to 
𝒗 is not changed at any other stage, giving the required.

In the third case, for each 𝒘 / ∈ S such that {𝒖,𝒗,𝒘} is a triangle in Gd, there is a 
unique component T of Gd ↾

(︁
Tk \ S)︁ containing 𝒘. This triangle is used at most once 

when rounding ϕ along the boundary of T (in the case that T is finite) or the union of S
and all of its holes (in the case that T is infinite). Thus, each triangle containing 𝒖 and 
𝒗 contributes at most 1/2 to the amount by which ϕ(𝒖,𝒗) changes; there are at most 
3d − 2 such triangles, and so the proof is complete. □

Next, given a flow ϕ in Gd and a subset S of Tk such that Gd ↾ S is connected, the 
operation of completing ϕ within S is defined as follows. Consider all integer-valued flows 
ϕ′ in Gd ↾ S such that

4 This assumption, while convenient, is actually not necessary.



48 A. Máthé et al. / Advances in Mathematics 484 (2026) 110685 

(6.2)
∑︂
𝒗∈S

ϕ′(𝒖,𝒗) +
∑︂

𝒗∈Tk\S
ϕ(𝒖,𝒗) = 1A(𝒖)− 1B(𝒖), for every 𝒖 ∈ S,

and, given this, ∥ϕ′∥∞ is as small as possible. (It will be the case that, whenever we 
apply this operation, at least one such ϕ′ exists.) If S is finite then we choose ϕ′ so 
that the sequence (ϕ′(𝒖,𝒗) : (𝒖,𝒗) ∈ S2) is lexicographically minimised, where the pairs 
in S are viewed as being ordered according to ≺lex. If S is infinite then we choose ϕ′

arbitrarily, using Theorem 2.3 (i.e., using the Axiom of Choice). Change ϕ(𝒖,𝒗) to be 
equal to ϕ′(𝒖,𝒗) for all 𝒖,𝒗 ∈ S.

6.2. Rounding a sequence of flows on a toast sequence

The following key definition will allow us to round flows.

Definition 6.8. The rounding of a sequence (g1, g2, . . .) of real-valued flows in Gd on a 
toast sequence (D1, D2, . . .) is the flow f obtained via the following steps.

(i) Initially, let f be the identically zero flow except for each i ⩾ 1, S ∈ comp(Di), and 
(𝒖,𝒗) ∈ ∂ES we define f(𝒖,𝒗) := gi(𝒖,𝒗) and f(𝒗,𝒖) := gi(𝒗,𝒖) (that is, we copy 
the values of gi on ∂EDi).

(ii) For each i ⩾ 1, round f along the boundary of Di.
(iii) For each component S of the graph G′ := (Tk, E(Gd) \

⋃︁∞
i=1 ∂EDi), which is ob

tained from Gd by removing the edge boundaries of all sets Di, complete f within 
S, as specified after (6.2). (If at least one completion step fails, then the whole 
procedure fails and f is undefined.)

Observe that, since (D1, D2, . . .) is a toast sequence, the first two steps in the above 
definition are well-defined; also, the second step does not depend on the order in which 
we round the boundaries.

Lemma 6.9. In the notation of Definition 6.8, suppose that there are a constant C and 
a sequence d1 ⩽ d2 ⩽ . . . of integers such that

(6.3) lim 
i→∞

gi(𝒖) = 1A(𝒖)− 1B(𝒖), for each 𝒖 ∈ Tk,

∥g1∥∞ ⩽ C and, for each i ⩾ 1, we have that

(6.4) (3d − 1) · (di + 1)d ·
∞ ∑︂
j=i 

∥gj+1 − gj∥∞ < 1/2,

and every component S of Gd ↾ Di has diameter at most di.
Then the following statements hold: 
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(6.5) all completion steps succeed,
(6.6) the obtained function f is an integer-valued flow from A to B,
(6.7) ∥f∥∞ ⩽ C + (3d + 2)/2,
(6.8) the restriction of f to the edges intersecting Di is a (di + 1)-local function of 

g1, . . . , gi and D1, . . . , Di.

Proof. By combining the fact that ∥g1∥∞ ⩽ C with the bound in (6.4) in the case 
i = 1, we see that the sequence g1, g2, . . . converges uniformly to a bounded function. 
Let f∞ denote the pointwise limit of this sequence. By (6.3), the function f∞ is an 
(1A − 1B)flow.

Let us show (6.5), that is, that all completion steps succeed. For this, we introduce one 
more operation. Given two flows ϕ and ψ in Gd and a finite subset S of Tk with no holes 
such that Gd ↾ S is connected, the operation of equalising ϕ to ψ along the boundary of 
S is defined as follows. Let (𝒖1𝒗1, . . . ,𝒖t𝒗t) with 𝒖1, . . . ,𝒖t ∈ S be the lexicographically 
minimal Eulerian circuit in △∂S (which exists by Lemma 6.5). For each s = 1, . . . , t− 2, 
one by one, we let 𝒘s ∈ {𝒖s+1,𝒗s+1} be such that {𝒖s,𝒗s,𝒘s} is a triangle in Gd and 
redefine ϕ to be

(6.9) ϕ := ϕ + (ψ(𝒖s,𝒗s)− ϕ(𝒖s,𝒗s)) ↺𝒖s,𝒗s,𝒘s
.

Note that this operation makes the new value of ϕ on (𝒖s,𝒗s) to be equal to ψ(𝒖s,𝒗s). 
Also, we define ℰϕ,ψS (where ϕ stands for its initial value) as the difference between the 
final and initial flows ϕ during this process, that is, ℰϕ,ψS is the sum of all t−2 increments 
in (6.9). Thus ℰϕ,ψS is a 0flow such that ϕ+ℰϕ,ψS is equal to ψ on every pair in ∂S except 
possibly the pair 𝒖t−1𝒗t−1. More generally, for a set D ⊆ Tk such that every component 
of Gd ↾ D is finite, equalising ϕ to ψ along the boundary of D is defined as follows. First, 
for each component S of Gd ↾ D and each hole S′ of S, we equalise ϕ to ψ along the 
boundary of S′. Then, for every component S of Gd ↾ D, we equalise ϕ to ψ along the 
boundary of the union of S and all of its holes. Also, define

ℰϕ,ψD :=
∑︂

S∈comp(D)

∑︂
S′
ℰϕ,ψS′ ,

where S′ in the inner sum is a hole of S, or S with all holes filled.
The proof of the following claim follows similar lines as that of Lemma 6.7, so we give 

only a very brief proof sketch.

Claim 6.9.1. Let ϕ and ψ be flows in Gd, M be a non-negative integer and D be a subset 
of Tk such that |∂ES| ⩽ M for every component S of Gd ↾ D and any two components 
of Gd ↾ D are at distance at least three in Gd. Then ∥ℰϕ,ψD ∥∞ ⩽ M∥ϕ− ψ∥∞.

Sketch of Proof. Note that, before the s-th step as in (6.9), the current value of ϕ on 
𝒖s+1𝒗s+1 is still the original value. Thus, during the step, its absolute value increases by 
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at most |ψ(𝒖s,𝒗s)−ϕ(𝒖s,𝒗s)|, which in turn is at most s∥ϕ−ψ∥∞ by an easy induction 
on s. The claim now follows since we do at most M − 1 steps. □

This claim gives that, for every S ∈ comp(Di), if S′ is a hole of S or S will all holes 
filled then

(6.10) ∥ℰf∞,gi
S ∥∞ ⩽ 1/2.

Indeed, |S′| ⩽ (di+1)d since the projection of S′, when viewed as a subset of Zd, on each 
coordinate is at most di+1 by the diameter assumption. Thus |∂ES′| ⩽ (3d−1)(di+1)d. 
Also,

(6.11) ∥f∞ − gi∥∞ ⩽
∞ ∑︂
j=i 

∥gj+1 − gj∥∞ <
1/2 

(3d − 1)(di + 1)d

by (6.4). Therefore, (6.10) follows from Claim 6.9.1.
Now, consider the real-valued flow

(6.12) h := f∞ +
∞ ∑︂
i=1 

ℰf∞,gi
Di

+
∞ ∑︂
i=1 

𝒪gi
Di

,

which will be used to certify that all completion steps succeed. This function h is a 
flow from A to B since it is obtained from the (1A − 1B)flow f∞ by adding a 0flow. 
Take any S which is, for some T ∈ comp(Di), either T with all holes filled or a hole 
of T . By Lemma 6.5, the graph △∂ES has an Eulerian circuit; let (𝒖1𝒗1, . . . ,𝒖t𝒗t) with 
𝒖1, . . . ,𝒖t ∈ S be the ≺lex-minimal one. By the definition of ℰf∞,gi

Di
, the flows

f ′ := f∞ + ℰf∞,gi
Di

and gi coincide on all pairs in ∂ES except possibly 𝒖t−1𝒗t−1. Also, we have by (6.11)
that⃓⃓⃓

gout
i (S)− |A ∩ S|+ |B ∩ S| ⃓⃓⃓ =

⃓⃓⃓
gout
i (S)− fout

∞ (S) ⃓⃓⃓ ⩽ |∂ES| · ∥f∞ − gi∥∞ < 1/2.

Recall that, initially, f was set to be gi on ∂ES. Thus the adjustment step of making 
fout(S) integer by adjusting its value on 𝒖t−1𝒗t−1 by at most 1/2 makes fout(S) to be 
equal to |A ∩ S| − |B ∩ S|, which in turn is equal to the flow out of S by f ′ since it is 
obtained from the (1A−1B)flow f∞ by adding a 0flow. Thus f after the adjustment is 
equal to f ′ on the edge 𝒖t−1𝒗t−1 (as they are already equal on every other edge in ∂ES). 
Thus when we round f along the boundary of S, we add the same t − 2 increments 
as we would do for f ′, that is, 𝒪f ′

S = 𝒪gi
S . Hence, the flows 𝒪f ′

Di
and 𝒪gi

Di
coincide 

on ∂ES. We do not modify the values of f on ∂ES during any other steps, so they 
are the same as the values of f ′ + 𝒪f ′

Di
(which are in turn the same as the values of h
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on ∂ES). Thus the final flow f coincides with h on ∂EDi (for every i) and the Integral 
Flow Theorem (Theorem 2.3) shows that each completion step works, that is, (6.2) can 
always be satisfied. Thus Conclusion (6.5) holds.

Conclusion (6.6) is a direct consequence of the previous conclusion since the comple
tion step is applied to every component obtained by removing 

⋃︁∞
i=1 ∂EDi from E(Gd).

For (6.7), recall that the Integral Flow Theorem (Theorem 2.3) guarantees that the 
produced integer-valued flow differs from the given real-valued flow by at most 1 on every 
edge. Thus, by Lemma 6.7 and by (6.10), we have

∥f∥∞ ⩽ ∥h∥∞ + 1 ⩽ ∥f∞∥∞ + 3d − 2
2 

+ 1
2 + 1 ⩽ C + 1

2 + 3d + 1
2 

= C + 3d + 2
2 

,

as desired.
For (6.8), take any 𝒖 ∈ Di. Its component S ∈ comp(Di) has diameter at most di and 

thus entirely lies inside the di-neighbourhood of 𝒖. Since 𝒖 has access to every vertex of 
S, it also has access to the flow values on all edges in ∂ES (because, by our conventions, 
the flow value on an edge is encoded in each of its endpoints). Since (Di)∞i=1 is a toast 
sequence, the choices of how the flow f is modified on S during the rounding along ∂ES
or any completion inside S are well-defined functions of the restrictions of g1, . . . , gi and 
D1, . . . , Di−1 to S. Thus the restriction of the final flow f to the edges intersecting S is 
indeed a (di +1)-local function of g1, . . . , gi and D1, . . . , Di. (Note that we add 1 to di so 
that each endpoint of an affected edge, which includes points in N1[S] \ S, can compute 
the new flow value on the edge.) □
7. Proof of Theorem 1.3

We are now ready to prove our main result, Theorem 1.3.
For each i ⩾ 1, let mi and m′

i be the minimal non-negative integers such that

(3d − 1) · (ti + 1)d ·
(︃

c 21+ε

2d+εmi(2ε − 1)

)︃
< 1/2, and(7.1)

(3d − 1) · (t′i + 1)d ·
(︃

c 21+ε

2d+εm′
i(2ε − 1)

)︃
< 1/2.(7.2)

The main purpose of these bounds is to certify inequalities of the type given by (6.4).
Let f = f

Jˆ︂K ˆ︁L be the rounding of the sequence (fmi
, fmi

, fm′
i
)∞i=1 of flows on the toast 

sequence (Ji, ˆ︁Ki, ˆ︁Li)∞i=1. (Recall that the sets ˆ︁Ki and ˆ︁Li were defined before Lemma 5.15
and (Ji, ˆ︁Ki, ˆ︁Li)∞i=1 is a toast sequence by the lemma; also, fm for m ⩾ 0 is the flow 
returned by Lemma 3.1.) We will use this flow f to obtain the desired equidecomposition 
between A and B.

Remark 7.1. If the reader is interested only in Parts (a) and (c) of Theorem 1.3 then 
it suffices to take for f the flow fJ , which we define to be the rounding of the se
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quence (fm1 , fm2 , . . .) on the toast sequence (J1, J2, . . .). By construction (or, formally, 
by Lemma 7.3), f and fJ are the same except on the set Tk \⋃︁∞

i=1 Ji which is small in 
many respects (e.g., its closure is null).

For reader’s convenience, let us summarise some key properties of the flow f = f
Jˆ︂K ˆ︁L

in Lemma 7.2 below. This lemma is stated in a more general form so that it also applies 
to some other auxiliary flows (in particular to fJ when we take (Ji, ∅, ∅)∞i=1 for the 
toast sequence (J ′

i ,K
′
i, L

′
i)∞i=1). Recall that, for each p⃗ ∈ {0, . . . , 5}d, the set Tp⃗ (defined 

in (5.26)) is a union of whole components of Gd; moreover, these sets partition Tk.

Lemma 7.2. Fix any p⃗ ∈ {0, . . . , 5}d. Suppose that for each i ⩾ 1, J ′
i , K ′

i and L′
i are 

obtained from respectively Ji, K p⃗
i and Lp⃗

i by removing the vertex sets of some compo
nents so that (J ′

i ,K
′
i, L

′
i)∞i=1 is a toast sequence. Let f ′ be the rounding of the flows 

(fmi
, fmi

, fm′
i
)∞i=1 on (J ′

i ,K
′
i, L

′
i)∞i=1. Then the following statements hold: 

(7.3) the function f ′ is an integer-valued flow in Gd from A to B,
(7.4) ∥f ′∥∞ ⩽ c 21+ε

2d(2ε−1) + 3d+2
2 ,

(7.5) there is a (2mi +ti)-local function of J ′
1, . . . , J

′
i ,K

′
1, . . . ,K

′
i, A and B that coincides 

with f ′ on all edges of Gd intersecting Tp⃗ ∩
(︂⋃︁i

j=1 K
′
j

)︂
,

(7.6) there is a (2m′
i + t′i)-local function of J ′

1, . . . , J
′
i ,K

′
1, . . . ,K

′
i, L

′
1, . . . , L

′
i, A and B

that coincides with f ′ on all edges of Gd intersecting Tp⃗ ∩
(︂⋃︁i

j=1 L
′
j

)︂
.

Moreover, if for every C ∈ comp(J ′
i) and S ∈ comp(K ′

j)∪ comp(L′
j) at distance at most 

2 we have that j ⩾ i and N2[C] ⊆ S, then 

(7.7) the flow f ′ coincides with g on every edge intersecting 
⋃︁∞

i=1 J
′
i , where g is the flow 

obtained by rounding (fmi
)∞i=1 on (J ′

i)∞i=1,
(7.8) there is a (2mi + 2ri + 2q′i−1)-local function of J ′

1, . . . , J
′
i , A and B that coincides 

with f ′ on all edges of Gd intersecting Tp⃗ ∩
(︂⋃︁i

j=1 J
′
j

)︂
.

Proof. We just apply Lemma 6.9 to the flows (fmi
, fmi

, fm′
i
)∞i=1 and the toast sequence 

(J ′
i ,K

′
i, L

′
i)∞i=1 that were used to define f ′. Lemmas 5.6 and 5.7 show that we can take

(7.9) (2ri + 2q′i−1, ti, t
′
i)∞i=1

for the sequence (di)∞i=1 that upper bounds the diameters of finite components in our 
toast sequence.

By (3.3), we have for all m ⩾ 0 that

(7.10) ∥fm∥∞ ⩽ ∥f0∥∞ +
m ∑︂
i=1 

∥fi − fi−1∥∞ ⩽
m ∑︂
i=1 

2c 
2d+ε(i−1) ⩽ c 21+ε

2d(2ε − 1)
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that is, the flows fm have their ℓ∞-norm uniformly bounded. Furthermore, Assump
tion (6.3) of Lemma 6.9 holds by (3.2) while Assumption (6.4) holds (with respect to 
the sequence in (7.9)) by our choice of mi and m′

i in (7.1) and (7.2).
Thus Lemma 6.9 applies to the flow f ′ with C being the expression in the right-hand 

side of (7.10).
The claims in (7.3) and (7.4) follow from respectively Conclusions (6.6) and (6.7) of 

Lemma 6.9.
Recall that fmi

is a (2mi − 1)-local function of A and B by Conclusion (3.4) of 
Lemma 3.1. Thus we can replace a local function of fmi

by a local function of A and B, 
with just increasing the locality radius by 2mi − 1. Thus (7.5) holds by Conclusion (6.8) 
of Lemma 6.9, according to which it is enough to increase the locality radius by the 
diameter bound plus 1. The same argument applied to fm′

i
shows that (7.6) holds.

It remains to show that the last two claims of the lemma hold, under the additional 
assumption. For (7.7), take any edge 𝒖𝒗 intersecting some J ′

i . Suppose first that 𝒖𝒗 ∈
∂EJ

′
i . Let S be the (unique) component of G ↾ J ′

i such that 𝒖𝒗 ∈ ∂ES. The value of g (as 
well as the value of f ′) on 𝒖𝒗 is the one which is assigned during the rounding of fmi

along 
the boundary of S. Thus g and f ′ assume the same value on 𝒖𝒗, as desired. So suppose 
that both 𝒖 and 𝒗 are in J ′

i . Let S be the component of G ↾ J ′
i containing 𝒖 and 𝒗. 

Consider any T ∈ comp(K ′
j) ∪ comp(L′

j) which is at distance at most 2 from S. By the 
extra assumption, we have that j ⩾ i and N2[S] ⊆ T . Thus ∂ES separates 𝒖𝒗 from ∂ET . 
This means that when we remove the boundary edge set 

⋃︁∞
j=1(∂EJ ′

j∪∂EK ′
j∪∂EL′

j) from 
E(Gd), the component containing 𝒖𝒗 will be the same when we remove only 

⋃︁∞
j=1 ∂EJ

′
j . 

Thus, indeed f ′ assumes the same value as g on 𝒖𝒗. This proves (7.7).
Finally, (7.8) follows from (7.7) by Conclusion (6.8) of Lemma 6.9 applied directly to 

the flow g. □
Observe that, for every p⃗ ∈ {0, . . . , 5}d, Lemma 7.2 (when we take the toast sequence 

(Ji, ˜︁K p⃗
i ,
˜︁Lp⃗
i )∞i=1 for (J ′

i ,K
′
i, L

′
i)∞i=1) applies to the restriction of the flow f = f

Jˆ︂K ˆ︁L to 
the set Tp⃗ (which consists of whole components of Gd). Indeed, ˆ︁Ki ∩ Tp⃗ = ˜︁K p⃗

i ∩ Tp⃗ and ˆ︁Li∩Tp⃗ = ˜︁Lp⃗
i ∩Tp⃗ while ˜︁K p⃗

i and ˜︁Lp⃗
i are obtained from respectively K p⃗

i and Lp⃗
i by removing 

whole components. We conclude by Conclusions (7.3) and (7.4) of Lemma 7.2 that f is 
a bounded integer flow from A to B. Also, the extra assumption of Lemma 7.2 holds 
by Lemma 5.8 and (5.21); in particular, the following (obvious from the construction) 
result is formally proved by Conclusion (7.7).

Lemma 7.3. The flows f and fJ coincide on every edge intersecting 
⋃︁∞

i=1 Ji. □
Lemma 2.16 can be applied to the integer (1A−1B)flow f , producing an equidecom

position between A and B. We claim that this equidecomposition satisfies all claims of 
Theorem 1.3. Since Part (c) of Theorem 1.3 is already taken care of by the second claim 
of Lemma 2.16, it remains to prove the remaining two parts.
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Recall that each piece returned by Lemma 2.16 is a local function of A, B, finitely 
many strips and the flow f . Since the corresponding target families in Parts (a) and (b) 
of Theorem 1.3 form a-invariant algebras (that contain all strips as well as our sets A and 
B), it is enough by Observation 2.6 to prove that each set of the form Zf

γ⃗,ℓ (as defined 
in (2.14)) for γ⃗ ∈ {−1, 0, 1}d and integer ℓ with |ℓ| ⩽ ∥f∥∞ belongs to the corresponding 
algebra.

7.1. Dimension of boundaries

Here we prove Part (a) of Theorem 1.3 that the upper Minkowski dimension of the 
boundary of the obtained pieces is strictly smaller than k. Specifically, we show that, for 
every γ⃗ ∈ {−1, 0, 1}d and |ℓ| ⩽ ∥f∥∞, the upper Minkowski dimension of the boundary 
of Zf

γ⃗,ℓ is at most k − ζ, where

(7.11) ζ := ϵ 
4dmax{d/ε, d + 1}+ 1 > 0.

(Recall that ϵ, d and ε were defined in (2.4), (2.5) and (2.6), respectively.) One can show 
that d/ε ⩾ d + 1 if k ⩾ 2.

Let us pause for a moment to discuss the quantitative bound on the boundary dimen
sion that we get when k ⩾ 2 and dim□(∂A) = dim□(∂B) = k−1. In this special case, we 
can choose ϵ to be arbitrarily close to 1, take d to be k + 1 and ε close to 1/k. Thus we 
get that any ζ < 1 

4k(k+1)2+1 works here, and so we can obtain pieces whose boundaries 
have upper Minkowski dimension arbitrarily close to k − 1 

4k(k+1)2+1 . In particular, if 
k = 2, as in the case that A is a disk and B is a square, then this quantity evaluates to 
145/73 < 1.987. Thus, this is sufficient for proving Theorem 1.2.

Here we need to use the specific choices r′i := 1002i+1−1 and ri := 1002i+1−2, as defined 
in (2.7) and (2.8) respectively.

Let us provide some auxiliary results first. A box in Tk is a set of the form 
∏︁k

i=1[ai, bi)
where 0 ⩽ ai < bi ⩽ 1 for all 1 ⩽ i ⩽ k.

Lemma 7.4 (Laczkovich   [23, Lemma   2]; see also Schmidt   [32, p.   517]). For almost every 
choice of 𝒙1, . . . ,𝒙d in Tk and for every t > 0 there exists C > 0 such that

(7.12) D
(︁
N+

r [𝒖], I
)︁
⩽ C logk+d+t(r)

for every element 𝒖 ∈ Tk, integer r ⩾ 2 and box I in Tk.

This result is needed to prove the following lemma, whose conclusion was one of the 
assumptions (namely, Property (2.13)) made about 𝒙1, . . . ,𝒙d in Section 2.4.

Lemma 7.5. There exist positive constants c1 and C2 such that the following holds. If, 
for i ⩾ 1, we define γi := c1r

−d
i log−2(ri), Ri := C2ri log(k+d+3)/d(ri) and
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(7.13) Qi := [0, γi)× [0, 1)k−1,

then, with positive probability with respect to uniform independent 𝒙1, . . . ,𝒙d ∈ Tk, it 
holds for every integer i ⩾ 1 that the strip Qi is ri-discrete in Gd while NRi

[Qi] = Tk.

Proof. Let C1 be a constant satisfying Lemma 7.4 with t = 1 for at least half (in measure) 
of the choices of (𝒙1, . . . ,𝒙d) ∈ (Tk)d. One way to see its existence (without checking 
whether the proof of Lemma 7.4 gives some effective bounds on C1) is as follows. For 
every real C, the set 𝒳C of sequences (𝒙1, . . . ,𝒙d) ∈ (Tk)d for which Lemma 7.4 holds 
for this C (with t = 1) is an analytic subset, since it is the projection of the Borel 
subset of (Tk)d × Ω of points satisfying (7.12), where Ω ⊆ Tk × {2, 3, . . .} × T2k is 
the subspace encoding all suitable triples (𝒖, r, I) equipped with the standard (Polish) 
topology. As every analytic subset is universally measurable (see e.g. [18, Theorem 21.10]) 
and the countable nested union 

⋃︁∞
i=1 𝒳i ⊆ Tk has Lebesgue measure 1, by the countable 

additivity there is an index i such that the measure of 𝒳i is at least 1/2 and we can take 
C1 to be equal to this i.

We will use the following estimates that hold by choosing the constants c1 > 0 and 
C2 ≫ C1 suitably: for every integer i ⩾ 1,

(7.14)
∞ ∑︂
i=1 

(2ri + 1)dγi < 1/12

and

(7.15) (2Ri + 1)dγi > C1 logk+d+1(2Ri).

Let us briefly check that suitable c1 and C2 exist. The i-th summand in the left-hand 
side of (7.14) is at most (3ri)d · c1r−d

i log−2(ri) ⩽ O(c12−2i). This is summable, so (7.14)
can be satisfied by choosing c1 sufficiently small. Also, the left-hand size of (7.15) is at 
least Rd

i γi = Cd
2 · c1 · logk+d+1(ri). As the exponent at the logarithm matches that in the 

right-hand side of (7.15), this constraint can be satisfied by taking C2 sufficiently large.
We start by applying a simple union bound argument to estimate the probability that 

Qi fails to be ri-discrete for some i ⩾ 1. For 1 ⩽ j ⩽ d, let 𝒙j = (xj,1, . . . , xj,d) with 
each xj,i ∈ [0, 1). Of course, only the first coordinates xj,1 matter for the lemma.

Clearly, Qi fails to be ri-discrete if and only if there exists a non-zero vector n⃗ ∈
{−ri, . . . , 0, . . . , ri}d such that the sum 

∑︁d
j=1 njxj,1 viewed in R (i.e., not modulo 1) 

is at distance less than γi from an integer. Fix a non-zero vector n⃗ = (n1, . . . , nd). By 
symmetry, assume that nd ̸= 0 and, in fact, nd > 0. Suppose that 𝒙1, . . . ,𝒙d−1 ∈ Tk

have already been sampled. Then, since 0 ⩽ ndxj,1 < nd, there are at most nd + 1
different possible integers that the sum 

∑︁d
j=1 njxj,1 can be within γi of and, for each 

of them, the probability of this event is at most 2γi/nd and thus the probability of at 
least one happening is at most 2γi(nd + 1)/nd ⩽ 4γi. By the Union Bound over n⃗, the 
probability that Qi is not ri-discrete is at most 4(2ri + 1)dγi.
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Thus the probability that the set Qi is not ri-discrete for some i ⩾ 1 is at most ∑︁∞
i=1 4(2ri + 1)dγi, which is at most 1/3 by (7.14).
Now, for the other assertion, take an arbitrary element 𝒖 ∈ Tk. By the definition 

of C1, with probability at least 1/2 it holds for every integer i that the discrepancy of 
NRi

[𝒖] with respect to any strip is at most C1 logk+d+1(2Ri). In particular, for the strip 
Qi, we have

|NRi
[𝒖] ∩Qi| ⩾ (2Ri + 1)dγi − C1 logk+d+1(2Ri),

which is strictly positive by (7.15). From the point of view of Qi, this states that its 
translates by integer vectors of ℓ∞-norm at most Ri under the action a : Zd

↷Tk cover 
the whole torus, as required.

Thus the probability that a uniform (𝒙1, . . . ,𝒙d) ∈ (Tk)d satisfies the lemma is at 
least 1/2− 1/3 > 0, as desired. □

Let us remark that the existence of C1 in the proof of Lemma 7.5 can be argued 
without referring to the theory of analytic sets. Informally speaking, to compute the 
smallest possible C1(𝒙1, . . . ,𝒙d) for given 𝒙1, . . . ,𝒙d ∈ Tk, it is enough to consider only 
those boxes that have at least one integer combination of 𝒙1, . . . ,𝒙d on each side, plus 22d

choices whether to include that side or not (realisable by making the box infinitesimally 
larger or smaller in that direction). There are countably many choices here and thus 
the best possible C1 : (Tk)d → [0,∞] is in fact a Borel function, as the supremum of 
countably many Borel functions.

Lemma 7.6. If 𝒙1, . . . ,𝒙d satisfy the conclusion of Lemma 7.5, then, as i→∞, there is 
a maximally ri-discrete set Xi which is an rd+1

i logO(1)(ri)-local function of the strip Qi

that was defined in (7.13).

Proof. Let c1 and C2 satisfy Lemma 7.5 and let Ri be defined as in the lemma. Thus the 
set 𝒬 of translates of Qi by vectors of the form 

∑︁d
i=1 ni𝒙i with n⃗ ∈ Zd and ∥n⃗∥∞ ⩽ Ri

covers Tk. Lemma 2.11, when applied to this covering, yields a maximally ri-discrete 
set Xi which is an ri(2Ri + 1)d-local function of the sets in 𝒬. Every such translate is 
an Ri-local function of Qi itself. Thus, since Ri = ri logO(1)(ri), we get that Xi is an 
rd+1
i logO(1)(ri)-local function of Qi. □

Recall that our final flow f = f
Jˆ︂K ˆ︁L was defined at the beginning of Section 7. Since 

our forthcoming argument will only use the values of f on edges intersecting 
⋃︁∞

i=1 Ii ⊆⋃︁∞
i=1 Ji, the reader may equivalently use fJ instead of f here.

Lemma 7.7. For any γ⃗ ∈ {−1, 0, 1}d, ℓ ∈ range(f) and i ⩾ 1, the set Zf
γ⃗,ℓ ∩ Ii can be 

written as a Boolean combination of at most rd max{d/ε, d+1}+o(1)
i translates of A, B and 

Q1, . . . , Qi.
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Proof. By (7.1) it holds that 2mi = Θ(rd/εi ). By Conclusion (7.8) of Lemma 7.2 (applied 
to f), each set Zf

γ⃗,ℓ∩Ii is a O(rd/εi )-local function of A, B and J1, . . . , Ji. By Lemmas 5.4
and 5.11, the sets Ii and Ji are both O(ri)-local functions of X1, . . . , Xi which in turn, 
by Lemma 7.6, are rd+1+o(1)

i -local functions of Q1, . . . , Qi. By adding the locality radii, 
we see that Zf

γ⃗,ℓ ∩ Ii is a local function of A, B and Q1, Q2, . . . , Qi of radius at most 
r
max{d/ε, d+1}+o(1)
i , implying the lemma. □

We are now in position to prove the following result.

Lemma 7.8. For every γ⃗ ∈ {−1, 0, 1}d and ℓ ∈ range(f), the boundary of Zf
γ⃗,ℓ has upper 

Minkowski dimension at most k − ζ.

Proof. By the definition of ϵ in (2.4), the upper Minkowski dimension of each of ∂A and 
∂B is less than k − ϵ. Thus we can choose δ0 > 0 to be sufficiently small so that, for all 
0 < δ < δ0,

(7.16) max
{︁
λ ({𝒙 : dist∞(𝒙, ∂A) ⩽ δ}) , λ ({𝒙 : dist∞(𝒙, ∂B) ⩽ δ})}︁ < δϵ,

where dist∞ denotes the ℓ∞-distance on the torus. Moreover, we also assume that δ0 is 
small enough so that

(7.17) r1 < δ−4ζ
0 .

Let 0 < δ < δ0 be arbitrary and let i be the unique index so that

(7.18) ri ⩽ δ−4ζ < ri+1.

Note that such an index i is guaranteed to exist by (7.17). Let 𝒫 be a collection of boxes 
in Tk of side-length δ such that each point of Tk is contained in at least one and at 
most 2k sets in 𝒫. (For example, let 𝒫 be the product of such 1-dimensional coverings.) 
Define

𝒵 :=
{︂
Zf
γ⃗,ℓ : γ⃗ ∈ {−1, 0, 1}d and ℓ ∈ range(f)

}︂
.

Since f is integer-valued, the set 𝒵 is finite, having at most 3d(2∥f∥∞+1) <∞ elements.
Since we can choose δ0 arbitrarily small, let us view δ as tending to 0 (and i → ∞) 

using the asymptotic notation accordingly. Thus, for example, |𝒵| = O(1).
Our goal is to show that at most (1/δ)k−ζ+o(1) boxes in 𝒫 can intersect 

⋃︁
Z∈𝒵 ∂Z. 

This will be enough for bounding the upper Minkowski dimension of this set, since each 
box in 𝒫 can intersect at most 2k boxes of a regular δ-grid.

Let ℬ be the collection of boxes in 𝒫 which intersect the topological boundary of Z∩Ii
for some Z ∈ 𝒵. Recall that i was chosen to satisfy (7.18) while the set Ii was defined in 
Section 5.2. Let ℐ be the collection of sets in 𝒫 which are not in ℬ and intersect Tk \ Ii. 
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By construction, ℬ∪ℐ contains every set in 𝒫 which intersects the topological boundary 
of a set in 𝒵. So, it suffices to bound |ℬ| and |ℐ|.

By Lemma 7.7, any set of the form Z ∩ Ii for Z ∈ 𝒵 can be written as a Boolean 
combination of at most rd max{d/ε,d+1}+o(1)

i translates of A, B and Q1, . . . , Qi. The union 
of all boxes in ℬ lies within dist∞-distance at most δ from the boundary of at least one of 
these translates. Thus, using the volume bound, the estimate in (7.16) and that, trivially, 
the measure of {𝒙 : dist∞(𝒙, ∂Qi) ⩽ δ} is at most 4δ, we get that

δk|ℬ| ⩽ 2kλ
(︄ ⋃︂

Z∈𝒵
{𝒙 : dist∞(𝒙, ∂(Z ∩ Ii)) ⩽ δ}

)︄

⩽ 2k |𝒵| 
(︂
r
d max{d/ε, d+1}+o(1)
i (δϵ + i · 4δ)

)︂
.

By the definitions of ζ and i (that is, by (7.11) and (7.18)) and since i = O(log(log(ri))), 
we have that iδ = o(δϵ) and

δk|ℬ| ⩽ (δ−4ζ)d max{d/ε, d+1}+o(1) · δϵ−o(1) ⩽ δζ−o(1).

So, indeed, |ℬ| ⩽ (1/δ)k−ζ+o(1).
Since none of the boxes in ℐ are contained in ℬ, and 

⋃︁
Z∈𝒵 Z = Tk, all sets in ℐ must 

all be contained in the interior of Tk \Ii. Thus, by Lemma 5.13 combined with (2.7) and 
(2.8), we have that

δk|ℐ| ⩽ 2kλ(Tk \ Ii) = O(r′i−1/ri) = O
(︂
r
−1/4
i+1

)︂
= O

(︁
(1/δ)−ζ

)︁
.

This completes the proof of Lemma 7.8. □
Proof of Theorem 1.3(a). Recall that the final equidecomposition is obtained by apply
ing the local function of Lemma 2.16 to f (i.e., to the sets Zf

γ⃗,ℓ). Clearly, the family 
of subsets of Tk whose boundary has upper Minkowski dimension at most k − ζ is a 
translation-invariant algebra. Since this algebra contains each set Zf

γ⃗,ℓ by Lemma 7.8, it 
also contains all pieces of the equidecomposition by Observation 2.6. □
7.2. Borel complexity

This part of the proof heavily relies on the properties of various toast sequences 
that we constructed earlier. First, let us briefly recall some key related definitions and 
properties. The toast sequence (Ji, ˆ︁Ki, ˆ︁Li)∞i=1, as defined before Lemma 5.15, is obtained 
by taking the toast sequence (Ji, ˜︁K p⃗

i ,
˜︁Lp⃗
i )∞i=1 inside each (a-invariant) set Tp⃗, and then 

taking the union over all p⃗. In turn, (Ji, ˜︁K p⃗
i ,
˜︁Lp⃗
i )∞i=1 (whose properties are summarised 

in Lemma 5.10) is obtained from (Ji,K p⃗
i , L

p⃗
i )∞i=1 by removing those components from 

sets K p⃗
i and Lp⃗

i that ``conflict with later sets''. Finally, the sets K p⃗
i and Lp⃗

i are defined 
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by (5.24) and (5.25) (which are the same as the definitions in (5.12) and (5.13), except 
we take the ``p⃗-shifted'' sets Yi).

Recall that we have to show that all pieces of the constructed equidecomposition 
belong to 𝓑(Σ(𝓑(Σ0

1 ∪ 𝒯A ∪ 𝒯B))), that is, each piece can be obtained from open sets 
and translations of the sets A and B by taking Boolean combinations, then countable 
unions and then Boolean combinations. (In fact, our proof gives a slightly stronger version 
where open sets can be replaced by strips.)

For p⃗ ∈ {0, . . . , 5}d, let the flow f
J˜︂Kp⃗ ˜︁Lp⃗ be obtained by rounding the sequence of 

flows (fmi
, fmi

, fm′
i
)∞i=1 on the toast sequence (Ji, ˜︁K p⃗

i ,
˜︁Lp⃗
i )∞i=1. Since the toast sequences 

(Ji, ˆ︁Ki, ˆ︁Li)∞i=1 and (Ji, ˜︁K p⃗
i ,
˜︁Lp⃗
i )∞i=1 coincide inside Tp⃗, we have for all n⃗ and ℓ that

(7.19) Zf
n⃗,ℓ =

⋃︂
p⃗∈{0,...,5}d

(︂
Tp⃗ ∩ Z

f
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ

)︂
.

So, it suffices to show that Tp⃗ and Z
f
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ for p⃗ ∈ {0, . . . , 5}d are all in the set family 
𝓑(Σ(𝓑(Σ0

1 ∪ 𝒯A ∪ 𝒯B))). We start with the former.

Lemma 7.9. Each of the sets Tp⃗ constructed in the proof of Lemma 5.14 can be written 
as a Boolean combination of Gδ sets.

Proof. Here we are going to use the assumption in (2.18) which states that each com
ponent of Gd intersects the topological boundary of at most one set Yi. Thus, if the sets 
Ri(𝒗) for i ⩾ 1 in the proof of Lemma 5.14 are re-defined in terms of the interior of Yi

instead of Yi itself, then, for each 𝒗 ∈ Tk, the sets R1(𝒗), R2(𝒗), . . . remain unchanged, 
except for possibly one index i ⩾ 1. In particular, the set R∗(𝒗) of their accumulation 
points is unchanged. So, assuming that Ri(𝒗) is defined in terms of the interior of Yi, we 
have that for any b, i ⩾ 1 and p⃗ ∈ {0, . . . , 5}d the set{︄

𝒗 ∈ Tk : Ri(𝒗) ∩
d ∏︂

s=1

(︃
ps − 3

3 
− 1

b 
,
ps − 2

3 
+ 1

b 

)︃
̸= ∅

}︄

is open as well. So, for each p⃗,

T ′
p⃗ =

{︄
𝒗 ∈ Tk : R∗(𝒗) ∩

d ∏︂
s=1

[︃
ps − 3

3 
,
ps − 2

3 

]︃
̸= ∅

}︄

=
∞ ⋂︂
b=1

∞ ⋂︂
j=1

∞ ⋃︂
i=j

{︄
𝒗 ∈ Tk : Ri(𝒗) ∩

d ∏︂
s=1

(︃
ps − 3

3 
− 1

b 
,
ps − 2

3 
+ 1

b 

)︃
̸= ∅

}︄

is a Gδ set. Recall that, by definition (namely by (5.26)), Tp⃗ consists of those 𝒗 for which 
p⃗ is the lexicographically smallest vector with 𝒗 ∈ T ′

p⃗. Thus Tp⃗ is Boolean combination 
of these sets. □
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Next, let us consider the sets of the form Z
f
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ .

Lemma 7.10. There exists a collection 𝒲 of subsets of Tk such that 

(7.20) every set in 𝒲 is a countable union of Boolean combinations of strips and trans
lates of A and B;

(7.21) for every n⃗ ∈ {−1, 0, 1}d, ℓ ∈ range(f) and p⃗ ∈ {0, . . . , 5}d, the set Zf
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ can 
be written as a Boolean combination of some sets in 𝒲.

Proof. Recall that the flow fJ is obtained by rounding (fmi
)∞i=1 on (Ji)∞i=1. For the proof, 

we need to define two further flows:

• fJKp⃗ is the rounding of (fmi
, fmi

)∞i=1 on the toast sequence (Ji,K p⃗
i )∞i=1, and

• fKp⃗Lp⃗ is the rounding of (fmi
, fm′

i
)∞i=1 on the toast sequence (K p⃗

i , L
p⃗
i )∞i=1.

Recall that each of (Ji,K p⃗
i )∞i=1 and (K p⃗

i , L
p⃗
i )∞i=1 is a toast sequence by Lemma 5.9. Also, 

Lemma 7.2 (with the used toast sequence (J ′
i ,K

′
i, L

′
i)∞i=1 being respectively (Ji,K p⃗

i , ∅)∞i=1
and (∅,K p⃗

i , L
p⃗
i )∞i=1) applies to each of these two new flows.

For every n⃗ ∈ {−1, 0, 1}d, ℓ ∈ range(f), p⃗ ∈ {0, . . . , 5}d and i ⩾ 1, define

W J
n⃗,ℓ,i :=

⎧⎨⎩𝒖 : fJ (𝒖, n⃗ ·a 𝒖) = ℓ and {𝒖, n⃗ ·a 𝒖} ∩
⎛⎝ i ⋃︂

j=1
Jj

⎞⎠ ̸= ∅
⎫⎬⎭ ,

W JKp⃗

n⃗,ℓ,i :=

⎧⎨⎩𝒖 : fJKp⃗ (𝒖, n⃗ ·a 𝒖) = ℓ and {𝒖, n⃗ ·a 𝒖} ∩
⎛⎝ i ⋃︂

j=1
K p⃗

j

⎞⎠ ̸= ∅
⎫⎬⎭ ,

WKp⃗Lp⃗

n⃗,ℓ,i :=

⎧⎨⎩𝒖 : fKp⃗Lp⃗ (𝒖, n⃗ ·a 𝒖) = ℓ and {𝒖, n⃗ ·a 𝒖} ∩
⎛⎝ i ⋃︂

j=1
(K p⃗

j ∪ Lp⃗
j )

⎞⎠ ̸= ∅
⎫⎬⎭ .

In other words, these sets are obtained by restricting fJ , fJKp⃗ and fKp⃗Lp⃗ to all edges 
intersecting respectively 

⋃︁i
j=1 Jj , 

⋃︁i
j=1 K

p⃗
j and 

⋃︁i
j=1(K

p⃗
j ∪Lp⃗

j ) and encoding the obtained 
partially defined flows by sequences of sets of vertices similarly as in (2.14). Recall that 
Jj ⊆ K p⃗

j for every j. By Lemma 7.2, each of these newly defined sets is a local function 

of A, B and finitely many of sets Ji,K p⃗
i , L

p⃗
i while, in turn, each of the sets Ji,K p⃗

i , L
p⃗
i is a 

finite union of strips by Lemma 5.12. So each set defined above is a Boolean combination 
of strips and translates of A and B.

Now, for all n⃗ and ℓ, define

W J
n⃗,ℓ :=

∞ ⋃︂
i=1

W J
n⃗,ℓ,i, W JKp⃗

n⃗,ℓ :=
∞ ⋃︂
i=1

W JKp⃗

n⃗,ℓ,i and WKp⃗Lp⃗

n⃗,ℓ :=
∞ ⋃︂
i=1

WKp⃗Lp⃗

n⃗,ℓ,i .



A. Máthé et al. / Advances in Mathematics 484 (2026) 110685 61

We define 𝒲 to be the collection of all sets of the form W J
n⃗,ℓ, W JKp⃗

n⃗,ℓ and WKp⃗Lp⃗

n⃗,ℓ for any 
n⃗, ℓ and p⃗. By above, the family 𝒲 satisfies (7.20).

By construction (i.e. by Conclusion (7.7) of Lemma 7.2), the flows f
J˜︂Kp⃗ ˜︁Lp⃗ and fJ

coincide on every pair intersecting 
⋃︁∞

i=1 Ji. Also, if an edge 𝒖𝒗 intersects K p⃗
j then, 

by (5.17), the value of f
J˜︂Kp⃗ ˜︁Lp⃗ on this edge equals the value of fJKp⃗ unless there exists 

i > j such that 𝒖𝒗 intersects Ji when we use the value of fJ (which may happen to 
coincide with the value of fJKp⃗ on 𝒖𝒗). Furthermore, we can drop the restriction that 
i > j here, since our rounding procedures for any Ji and Ji′ produce the same value 
on each edge intersecting Ji ∩ Ji′ . Similarly, if an edge intersects Lp⃗

j , then the value of 
fKp⃗Lp⃗ on this edge is retained by f

J˜︂Kp⃗ ˜︁Lp⃗ , unless it is overwritten (to a different value 
or the same one) due to Ji or K p⃗

i with i > j intersecting this edge; again we can drop 
the restriction that i > j here.

Thus, informally speaking, our flow values are partitioned into the following three 
types: J-values, K-values not overwritten by J , and L-values not overwritten by J nor K, 
that is, the order of precedence is J,K,L. Formally, we can express the above partition 
as

Z
f
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ = W J
n⃗,ℓ ∪

⎛⎝W JKp⃗

n⃗,ℓ \
⋃︂

s∈range(fJ )

W J
n⃗,s

⎞⎠
∪
⎛⎝WKp⃗Lp⃗

n⃗,ℓ \
⎛⎝⎛⎝ ⋃︂

s∈range(fJ )

W J
n⃗,s

⎞⎠ ∪
⎛⎝ ⋃︂

s∈range(f
JKp⃗ )

W JKp⃗

n⃗,s

⎞⎠⎞⎠⎞⎠ ,

for every non-zero flow value ℓ. Note that each union is over a finite set (since the involved 
flows are integer-valued and uniformly bounded), thus satisfying (7.21). The case ℓ = 0
is somewhat special since the union 

⋃︁∞
i=1(Ji ∪K p⃗

i ∪Lp⃗
i ) need not cover the whole torus. 

However, this case also satisfies (7.21) since Z
f
J˜︂Kp⃗ ˜︁Lp⃗

n⃗,0 is the complement of the union of 
the sets Zf

J˜︂Kp⃗ ˜︁Lp⃗

n⃗,ℓ over all possible (finitely many) non-zero flow values ℓ. This completes 
the proof of the lemma. □
Proof of Theorem 1.3(b). Since every strip is the difference of two open sets, Part (b) 
of Theorem 1.3 now follows by combining (7.19) with Lemmas 7.9 and 7.10. □
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Appendix A. Laczkovich’s discrepancy bound

The purpose of this appendix is to sketch a proof of Lemma 2.1. This result is implicit 
in [23, Proof of Theorem 3] and its proof sketch is given in [15, pp. 677--678]. Since the 
dependence of d on k and dim□(∂X) (which is crucial for our estimates in Section 7.1) 
is not explicitly calculated there, we present a slightly expanded proof sketch.

Let X ⊆ Tk be a measurable set such that k − 1 ⩽ dim□(∂X) < k. The first step is 
to use the upper Minkowski dimension of the boundary to reduce the proof to bounding 
discrepancy of N+

r [𝒖] relative to boxes in Tk. This argument is due to Niederreiter and 
Wills [31, Kollorar 4]. Recall that d is an integer such that d > k/(k − dim□(∂X)) and 
ε is a real number satisfying 0 < ε < (d(k − dim□(∂X))− k)/k. Define

α := (1 + ε)k
d 

.

By the definition of upper Minkowski dimension and the fact that α < k − dim□(∂X), 
there exists δ0 ∈ (0, 1) such that

(A.1) λ ({𝒙 : dist∞(𝒙, ∂X) ⩽ δ}) ⩽ δα

for all 0 < δ < δ0. Now, for r ∈ N, choose δ ∈ (0, δ0) small with respect to r, where the 
dependence is clarified below. For convenience, let us assume that δ−1 is an integer.

Let 𝒫 be the partition of Tk into a grid of δ−k boxes, each with side-length δ. Let ℬ
be the elements of 𝒫 which intersect ∂X. We have

δk|ℬ| ⩽ λ ({𝒙 : dist∞(𝒙, ∂X) ⩽ δ}) ⩽ δα

by (A.1) and so |ℬ| ⩽ δ−k+α.
Let ℐ be the elements of 𝒫 contained in the interior of X. We then let ℐ∗ be the 

collection of boxes obtained by starting with ℐ and iteratively merging two boxes if 
they have the same projection onto the first k− 1 coordinates and their closures share a 
(k−1)-dimensional face. For any two distinct boxes in ℐ∗ which have the same projection 
onto the first k− 1 coordinates, there must be at least one element in ℬ ``between'' them 
which prevents them from merging. Conversely, each element of ℬ prevents at most one 
potential merging. Therefore,

|ℐ∗| ⩽ δ−k+1 + |ℬ| ⩽ δ−k+1 + δ−k+α < 2δ−k+α,

since α < 1 by our assumption that dim□(∂X) ⩾ k− 1. Thus, ℐ∗ ∪ℬ is a covering of X
with at most 3δ−k+α boxes such that each of the boxes in ℬ has measure at most δk.

Now, given any finite set F ⊆ Tk, by the triangle inequality applied to the partition 
X = (∪I∈ℐ∗I) ∪ (∪I∈ℬ(I ∩X)), the discrepancy of F relative to X can be bounded as 
follows:
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(A.2) D(F,X) ⩽
∑︂
I∈ℐ∗

D(F, I) +
∑︂
I∈ℬ

D(F, I ∩X)

We apply Lemma 7.4 to the first sum on the right side of (A.2), say with t := 1, and 
obtain that ∑︂

I∈ℐ∗
D
(︁
N+

r [𝒖], I
)︁
⩽ C logk+d+t(r) |ℐ∗| ⩽ 2C logk+d+t(r)δ−k+α.

The contribution of I ∈ ℬ to the second sum is at most

max
{︁ |N+

r [𝒖] ∩ (I ∩X)|, |N+
r [𝒖]| μ(X ∩ I) 

}︁
⩽ max

{︁|N+
r [𝒖] ∩ I|, (r + 1)dμ(I)

}︁
,

and each term can be bounded from above by (r + 1)dδk + C logk+d+t(r). Thus, by 
|ℬ| ⩽ δ−k+α, we have∑︂

I∈ℬ
D
(︁
N+

r [𝒖], I
)︁
⩽
(︂
(r + 1)dδk + C logk+d+t(r)

)︂
δ−k+α.

So, if we set δ := (r + 1)−d/k for r →∞, then we get

D
(︁
N+

r [𝒖], X
)︁
⩽ (r + 1)d−αd/k+o(1) = (r + 1)d−1−ε+o(1).

The extra o(1) term in the exponent can clearly be taken care of by choosing ε sufficiently 
close to d(k−dim□(∂X))−k

k in the beginning. Thus, Lemma 2.1 follows from Lemma 7.4.
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