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Abstract

In the 1940s and 50s, Erdős and Rademacher raised the quantitative question of
determining the number of triangles one can guarantee in a graph of given order
and size. This problem has garnered much attention and, in a major breakthrough,
was solved asymptotically by Razborov in 2008, whose results were extended by
Nikiforov and Reiher. In this paper, we provide an exact solution for all large
graphs whose edge density is bounded away from one. This proves almost every
case of a conjecture of Lovász and Simonovits from 1975.
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1 History of the problem

Let gr(n, e) be the minimum number of r-cliques in a graph with n vertices and
e edges. Perhaps the first theorem of extremal combinatorics is Mantel’s the-
orem from 1907 [11], which asserts that the unique largest triangle-free graph
on n vertices is the complete balanced bipartite graph T2(n) := K�n/2�,�n/2�.
Turán’s [19] famous generalisation from 1940 states that the largest Kr-free
graph is the complete balanced (r − 1)-partite graph Tr(n). In other words,
gr(n, e) = 0 if and only if e ≤ tr(n), where tr(n) is the number of edges in
Tr(n).

In this paper we are interested in determining g3(n, e), the minimum num-
ber of triangles in an n-vertex e-edge graph. Rademacher (unpublished)
showed in 1941 that in fact g3(n, t2(n) + 1) = �n/2�. The unique extremal
graph is obtained by adding an edge to the larger class of T2(n). Erdős [3,4]
conjectured the generalisation that g3(n, t2(n) + �) = ��n/2� for � < �n/2�.
This bound is attained by adding � edges to the larger class of T2(n) so that
these new edges do not span a triangle. The conjecture is readily seen to be
false for � ≥ �n/2�. Erdős was able to prove his conjecture when � < cn
for some positive absolute constant c. The conjecture was eventually proved
in totality for large n by Lovász and Simonovits in 1975 [9]. This was ex-
tended significantly by the same authors who determined g3(n, e) whenever
tk(n) ≤ e ≤ tk(n) + αn2, where α = α(k) > 0. We state this result precisely
below.

Let us now turn to the asymptotic problem of determining
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for all λ ∈ [0, 1]. Goodman [7] and also Nordhaus and Stewart [14] proved
the convex lower bound g3(λ) ≥ λ(2λ − 1). An elegant argument of Bol-
lobás [1] (see also Chapter VI in [2]) shows that a lower bound on g3(λ)
is obtained by taking the piecewise linear function connecting the points(
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for all positive integers k. In 2008, a major break-

through of Razborov [17] used his newly developed theory of flag algebras to
determine g3(λ) for all λ ∈ [0, 1]. (Fisher [6] had previously used a different
method to determine g3(λ) in the range 1/2 ≤ λ ≤ 2/3, a result reproved by
Razborov [16].) One can show (see [15]) that, for all n and e,
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2 Related problems: supersaturation and graph densi-
ties

Before stating some of the results mentioned above in more detail, let us
discuss the more general supersaturation problem of determining gF (n, e), the
minimum number of copies of F in an n-vertex e-edge graph (so gKr(n, e) =
gr(n, e)). The range of e for which gF (n, e) = 0 is well understood. Indeed,
given a fixed graph F , let ex(n, F ) denote the minimum number of edges
in an F -free n-vertex graph, i.e. the maximum e for which gF (n, e) = 0.
Erdős and Stone [5] proved that ex(n, F ) = tχ(F )−1(n) + o(n2), where χ(F )
is the chromatic number of F . The supersaturation phenomenon observed by
Erdős and Simonovits [21] asserts that every n-vertex e-edge graph G with
e ≥ ex(n, F ) + Ω(n2) contains not just one copy of F , but in fact a positive
proportion of all |V (F )|-sized vertex subsets in V (G) span a copy of F . (This
also extends to hypergraphs.)

The problem of determining gr(λ) for integers r ≥ 4 (defined analogously)
has also received a great deal of attention. Lovász and Simonovits [10] (fol-
lowing Moon and Moser [12]), extended Goodman’s bound to larger cliques.
Nikiforov [13] reproved Razborov’s result and also determined g4(λ) for all
λ ∈ [0, 1]. Recently, Reiher [18] determined gr(λ) for all λ ∈ [0, 1] and all
r ≥ 3.

The case of bipartite F is very different. A famous conjecture of Sidorenko [20]
asserts that gF (λ) is attained by a random graph of density λ (we do not give
a precise statement of the conjecture here). It is known to be true in some
cases.

3 The solution to the asymptotic problem

Let us return to the problem of determining g3(n, e). To state Razborov’s
result on g3(λ) in an enlightening manner, we will require the following crucial
definitions. Given a positive integer n, e such that e ≤ (

n
2

)
, let

k = k(n, e) := min{� ∈ N : e ≤ t�(n)}. (2)

Given � ∈ N and α1, . . . , α� ∈ R, for convenience we write e(K�
α1,...,α�

) :=∑
ij∈([�]2 )

αiαj and K3(K
�
α1...,α�

) :=
∑

hij∈([�]3 )
αhαiαj in analogy with the num-

ber of edges and triangles in the complete �-partite graph K�
n1,...,n�

which is
defined when the ni are positive integers. Now let c = c(n, e) ∈ R be such
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that c ≥ 1/k and

e(Kk
cn,...,cn,n−(k−1)cn) = e, i.e. c =

1

k

(
1 +

√
1− 2ke

(k − 1)n2

)
. (3)

Razborov proved the following:

Theorem 3.1 ([17]) For all positive integers n, e with e ≤ (
n
2

)
and k, c de-

fined as as above, we have that

g3(n, e) = K3(K
k
cn,...,cn,n−(k−1)cn) + o(n3). (4)

Informally, this says that asymptotically, the number of triangles is min-
imised by taking a complete partite graph such that all but the smallest part
have the same order (which is roughly cn). Nikiforov [13] strengthened this by
achieving a better error bound. However, neither result allows one to extract
structural information about the extremal graphs, i.e. those n-vertex e-edge
graphs which contain precisely g3(n, e) triangles. But we can obtain a family
of almost extremal graphs as follows. Let Happrox(n, c) be the set of n-vertex
graphs H with vertex partition V1, . . . , Vk such that

• H[Vi] is empty for all i ∈ [k − 2]; H[Vi, Vj] is complete bipartite whenever
i �= j and {i, j} �= {k−1, k}; andH[Vk−1∪Vk] is triangle-free and e(H[Vk−1∪
Vk]) = |Vk−1||Vk|.

• |V1| = . . . = |Vk−1| = �cn�.
So one graph inHapprox(n, c) is the complete k-partite graphKk

�cn�,...,�cn�,n−(k−1)�cn�.
Observe that every graph in Happrox(n, c) contains the same number of trian-
gles, but not necessarily exactly e edges. Pikhurko and Razborov proved a
‘stability’ version of Theorem 3.1: that every extremal graph has the approx-
imate structure of a graph in Happrox(n, c).

Theorem 3.2 ([15]) For every ε > 0, there are δ, n0 > 0 such that for every
graph G on n ≥ n0 vertices with at most g3(n, e) + δ

(
n
3

)
triangles, there exists

H ∈ Happrox(n, c) such that one can obtain H from G by changing at most
ε
(
n
2

)
adjacencies.

The sizes of the parts of graphs in Happrox(n, c) are chosen somewhat arbi-
trarily, for concreteness. Indeed, though the theorem states that every near-
extremal graph is close to some H ∈ Happrox(n, c), this family is not conjec-
tured to be extremal.
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4 The Lovász-Simonovits conjecture and new results

As we stated earlier, Lovász and Simonovits [10] exactly determined g3(n, e)
for those pairs n, e with 0 ≤ e − tk(n) ≤ αn2 where α = α(k) > 0. Let us
say that an (n, e)-graph is a simple graph with n vertices and e edges. Lovász
and Simonovits went further by characterising extremal graphs for such pairs
n, e. To state their result, we need to define a family of graphs. Let n, e ∈ N

be such that e ≤ (
n
2

)
. Define H1(n, e) to be the family of (n, e)-graphs H with

the property that V (H) has partition A ∪ B such that H[A] is a complete
(k− 2)-partite graph, H[A,B] is complete bipartite and H[B] is triangle-free.
Let h(n, e) := min{K3(H) : H ∈ H1(n, e)}. Lovász and Simonovits proved
the following:

Theorem 4.1 ([10]) For all integers k ≥ 2 there exists α = α(k) > 0 such
that, for all positive integers (n, e) with tk(n) ≤ e ≤ tk(n)+αn2, we have that
g3(n, e) = h(n, e).

In fact they were able to characterise the extremal graphs in this range, and
indeed there are extremal graphs which do not lie in H1(n, e). The constant
α(k) in the proof of Theorem 4.1 is so small that Lovász and Simonovits ‘did
not even dare to estimate α(2)’. This result encompasses the entire set of
non-trivial known values of g3(n, ·). Lovász and Simonovits made the bold
conjecture that in fact g3(n, e) = h(n, e) for all valid pairs n, e. Our main
result proves almost every remaining case of this conjecture for almost the
entire range of e.

Theorem 4.2 For all ε > 0, there exists n0 > 0 such that for all positive
integers n ≥ n0 and e ≤ (

n
2

)− εn2 edges, we have g3(n, e) = h(n, e).

We regard this as a complete solution to the problem of minimising the
number of triangles in the range under consideration. Indeed, some simple
algebra, which we do not include here, allows one to evaluate h(n, e) and
thus g3(n, e). Currently we are working on an extension of our result which
characterises the extremal graphs.

5 Some remarks on the proof of Theorem 4.2

The asymptotic results of Fisher, Razborov, Nikiforov, Pikhurko-Razborov
and Reiher all use analytic methods. Such techniques do not seem to be
helpful for the exact problem, and indeed our proof of Theorem 4.2 uses purely
combinatorial methods. At its heart, our proof uses the well-known stability
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method: Theorem 3.2 implies that any extremal graph G is structurally close
to some H in Happrox(n, c) and hence some graph in H1(n, e). Then the goal
would be to analyse G and show that it cannot contain any imperfections
and must in fact lie in H1(n, e). The stability approach stems from work of
Erdős and Simonovits [21] and has been used to solve many major problems
in extremal combinatorics.

However, a significant obstacle is the fact that there is a large family of
conjectured extremal graphs. Given any H ∈ H1(n, e) with vertex partition
A ∪B as in the definition, one can obtain a different H ′ ∈ H1(n, e) such that
K3(H

′) = K3(H) simply by replacing H[B] with another triangle-free graph
containing the same number of edges. In general, there are many choices for
this triangle-free graph. Indeed, some simple algebra determines the subfamily
Hmin

1 (n, e) of H1(n, e) which minimises the number of triangles.

An additional difficulty is that H1(n, e) does not in fact contain every
extremal graph, as in Theorem 4.1. So our goal as stated above must be
modified. Full details of the proof may be found in [8].
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