Monochromatic Clique Decompositions of Graphs

Henry Liu,¹ Oleg Pikhurko,² and Teresa Sousa³

¹ CENTRO DE MATEMÁTICA E APLICAÇÕES FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA CAMPUS DE CAPARICA, 2829-516 CAPARICA, PORTUGAL E-mail: h.liu@fct.unl.pt

> ²MATHEMATICS INSTITUTE AND DIMAP UNIVERSITY OF WARWICK COVENTRY CV4 7AL, UNITED KINGDOM http://homepages.warwick.ac.uk/staff/O.Pikhurko

³DEPARTAMENTO DE MATEMÁTICA AND CENTRO DE MATEMÁTICA E APLICAÇÕES FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA CAMPUS DE CAPARICA, 2829-516 CAPARICA, PORTUGAL E-mail: tmjs@fct.unl.pt

Received January 23, 2014; Revised November 11, 2014

Published online 12 January 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jgt.21851

Abstract: Let *G* be a graph whose edges are colored with *k* colors, and $\mathcal{H} = (H_1, \ldots, H_k)$ be a *k*-tuple of graphs. A *monochromatic* \mathcal{H} -*decomposition* of *G* is a partition of the edge set of *G* such that each part is either a single edge or forms a monochromatic copy of H_i in color *i*, for some $1 \le i \le k$. Let $\phi_k(n, \mathcal{H})$ be the smallest number ϕ , such that, for every order-*n* graph and every *k*-edge-coloring, there is a monochromatic \mathcal{H} -decomposition with at most ϕ elements. Extending the previous results of Liu and Sousa [Monochromatic K_r -decompositions of graphs, *J Graph Theory* 76 (2014), 89–100], we solve this problem when each graph in \mathcal{H} is a clique and $n \ge n_0(\mathcal{H})$ is sufficiently large. © 2015 The Authors Journal of Graph Theory Published by Wiley Periodicals, Inc. J. Graph Theory 80: 287–298, 2015

Keywords: monochromatic graph decomposition; Turán number; Ramsey number

Journal of Graph Theory © 2015 The Authors Journal of Graph Theory Published by Wiley Periodicals, Inc.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

1. INTRODUCTION

All graphs in this article are finite, undirected, and simple. For standard graph-theoretic terminology the reader is referred to [3].

Given two graphs *G* and *H*, an *H*-decomposition of *G* is a partition of the edge set of *G* such that each part is either a single edge or forms a subgraph isomorphic to *H*. Let $\phi(G, H)$ be the smallest possible number of parts in an *H*-decomposition of *G*. It is easy to see that, if *H* is nonempty, we have $\phi(G, H) = e(G) - v_H(G)(e(H) - 1)$, where $v_H(G)$ is the maximum number of pairwise edge-disjoint copies of *H* that can be packed into *G*. Dor and Tarsi [4] showed that if *H* has a component with at least three edges then it is NP-complete to determine if a graph *G* admits a partition into copies of *H*. Thus, it is NP-hard to compute the function $\phi(G, H)$ for such *H*. Nonetheless, many exact results were proved about the extremal function

$$\phi(n, H) = \max\{\phi(G, H) \mid v(G) = n\},\$$

which is the smallest number such that any graph G of order n admits an H-decomposition with at most $\phi(n, H)$ elements.

This function was first studied, in 1966, by Erdős et al. [6], who proved that $\phi(n, K_3) = t_2(n)$, where K_s denotes the complete graph (clique) of order *s*, and $t_{r-1}(n)$ denotes the number of edges in the *Turán graph* $T_{r-1}(n)$, which is the unique (r - 1)-partite graph on *n* vertices that has the maximum number of edges. A decade later, Bollobás [2] proved that $\phi(n, K_r) = t_{r-1}(n)$, for all $n \ge r \ge 3$.

Recently, Pikhurko and Sousa [13] studied $\phi(n, H)$ for arbitrary graphs *H*. Their result is the following.

Theorem 1.1 [13]. *Let H be any fixed graph of chromatic number* $r \ge 3$ *. Then,*

$$\phi(n, H) = t_{r-1}(n) + o(n^2).$$

Let ex(n, H) denote the maximum number of edges in a graph on *n* vertices not containing *H* as a subgraph. The result of Turán [20] states that $T_{r-1}(n)$ is the unique extremal graph for $ex(n, K_r)$. The function ex(n, H) is usually called the *Turán function* for *H*. Pikhurko and Sousa [13] also made the following conjecture.

Conjecture 1.2 [13]. For any graph H of chromatic number $r \ge 3$, there exists $n_0 = n_0(H)$ such that $\phi(n, H) = ex(n, H)$ for all $n \ge n_0$.

A graph *H* is *edge-critical* if there exists an edge $e \in E(H)$ such that $\chi(H) > \chi(H - e)$, where $\chi(H)$ denotes the *chromatic number* of *H*. For $r \ge 4$, a *clique-extension of* order *r* is a connected graph that consists of a K_{r-1} plus another vertex, say *v*, adjacent to at most r - 2 vertices of K_{r-1} . Conjecture 1.2 has been verified by Sousa for some edge-critical graphs, namely, clique-extensions of order $r \ge 4$ ($n \ge r$) [18] and the cycles of length 5 ($n \ge 6$) and 7 ($n \ge 10$) [17, 19]. Later, Özkahya and Person [12] verified the conjecture for all edge-critical graphs with chromatic number $r \ge 3$. Their result is the following.

Theorem 1.3 [12]. For any edge-critical graph H with chromatic number $r \ge 3$, there exists $n_0 = n_0(H)$ such that $\phi(n, H) = ex(n, H)$, for all $n \ge n_0$. Moreover, the only graph attaining ex(n, H) is the Turán graph $T_{r-1}(n)$.

Recently, as an extension of Özkahya and Person's work (and as further evidence supporting Conjecture 1.2), Allen et al. [1] improved the error term obtained by Pikhurko

and Sousa in Theorem 1.1. In fact, they proved that the error term $o(n^2)$ can be replaced by $O(n^{2-\alpha})$ for some $\alpha > 0$. Furthermore, they also showed that this error term has the correct order of magnitude. Their result is indeed an extension of Theorem 1.3 since the error term $O(n^{2-\alpha})$ that they obtained vanishes for every edge-critical graph *H*.

Motivated by the recent work about *H*-decompositions of graphs, a natural problem to consider is the Ramsey (or colored) version of this problem. More precisely, let *G* be a graph on *n* vertices whose edges are colored with *k* colors, for some $k \ge 2$ and let $\mathcal{H} = (H_1, \ldots, H_k)$ be a *k*-tuple of fixed graphs, where repetition is allowed. A *monochromatic* \mathcal{H} -decomposition of *G* is a partition of its edge set such that each part is either a single edge, or forms a monochromatic copy of H_i in color *i*, for some $1 \le i \le k$. Let $\phi_k(G, \mathcal{H})$ be the smallest number, such that, for any *k*-edge-coloring of *G*, there exists a monochromatic \mathcal{H} -decomposition of *G* with at most $\phi_k(G, \mathcal{H})$ elements. Our goal is to study the function

$$\phi_k(n, \mathcal{H}) = \max\{\phi_k(G, \mathcal{H}) \mid v(G) = n\},\$$

which is the smallest number ϕ such that, any *k*-edge-colored graph of order *n* admits a monochromatic \mathcal{H} -decomposition with at most ϕ elements. In the case when $H_i \cong H$ for every $1 \le i \le k$, we simply write $\phi_k(G, H) = \phi_k(G, \mathcal{H})$ and $\phi_k(n, H) = \phi_k(n, \mathcal{H})$.

The function $\phi_k(n, K_r)$, for $k \ge 2$ and $r \ge 3$, has been studied by Liu and Sousa [11], who obtained results involving the Ramsey numbers and the Turán numbers. Recall that for $k \ge 2$ and integers $r_1, \ldots, r_k \ge 3$, the *Ramsey number for* K_{r_1}, \ldots, K_{r_k} , denoted by $R(r_1, \ldots, r_k)$, is the smallest value of s, such that, for every k-edge-coloring of K_s , there exists a monochromatic K_{r_i} in color i, for some $1 \le i \le k$. For the case when $r_1 = \cdots = r_k = r$, for some $r \ge 3$, we simply write $R_k(r) = R(r_1, \ldots, r_k)$. Since $R(r_1, \ldots, r_k)$ does not change under any permutation of r_1, \ldots, r_k , without loss of generality, we assume throughout that $3 \le r_1 \le \cdots \le r_k$. The Ramsey numbers are notoriously difficult to calculate, even though, it is known that their values are finite [15]. To this date, the values of $R(3, r_2)$ have been determined exactly only for $3 \le r_2 \le 9$, and these are shown in the following table [14].

r ₂	3	4	5	6	7	8	9
$R(3, r_2)$	6	9	14	18	23	28	36

The remaining Ramsey numbers that are known exactly are R(4, 4) = 18, R(4, 5) = 25, and R(3, 3, 3) = 17. The gap between the lower bound and the upper bound for other Ramsey numbers is generally quite large.

For the case R(3, 3) = 6, it is easy to see that the only 2-edge-coloring of K_5 not containing a monochromatic K_3 is the one where each color induces a cycle of length 5. From this 2-edge-coloring, observe that we may take a "blow-up" to obtain a 2-edge-coloring of the Turán graph $T_5(n)$, and easily deduce that $\phi_2(n, K_3) \ge t_5(n)$. See Figure 1.

This example was the motivation for Liu and Sousa [11] to study K_r -monochromatic decompositions of graphs, for $r \ge 3$ and $k \ge 2$. They have recently proved the following result.

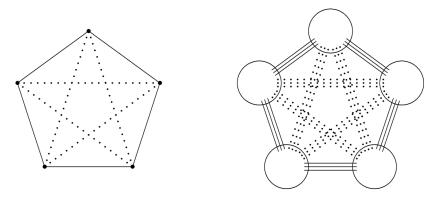


FIGURE 1. The 2-edge-coloring of K_5 , and its blow-up

Theorem 1.4 [11].

- (a) $\phi_k(n, K_3) = t_{R_k(3)-1}(n) + o(n^2);$
- (b) $\phi_k(n, K_3) = t_{R_k(3)-1}(n)$ for k = 2, 3 and n sufficiently large;
- (c) $\phi_k(n, K_r) = t_{R_k(r)-1}(n)$, for $k \ge 2$, $r \ge 4$ and n sufficiently large.

Moreover, the only graph attaining $\phi_k(n, K_r)$ in cases (b) and (c) is the Turán graph $T_{R_k(r)-1}(n)$.

They also made the following conjecture.

Conjecture 1.5 [11]. Let $k \ge 4$. Then $\phi_k(n, K_3) = t_{R_k(3)-1}(n)$ for $n \ge R_k(3)$.

Here, we will study an extension of the monochromatic K_r -decomposition problem when the clique K_r is replaced by a fixed k-tuple of cliques $C = (K_{r_1}, \ldots, K_{r_k})$. Our main result, stated in Theorem 1.6, is clearly an extension of Theorem 1.4. Also, it verifies Conjecture 1.5 for sufficiently large *n*.

Theorem 1.6. Let $k \ge 2$, $3 \le r_1 \le \cdots \le r_k$, and $R = R(r_1, \ldots, r_k)$. Let $C = (K_{r_1}, \ldots, K_{r_k})$. Then, there is an $n_0 = n_0(r_1, \ldots, r_k)$ such that, for all $n \ge n_0$, we have

$$\phi_k(n,\mathcal{C})=t_{R-1}(n).$$

Moreover, the only order-n graph attaining $\phi_k(n, C)$ is the Turán graph $T_{R-1}(n)$ (with a k-edge-coloring that does not contain a color-i copy of K_{r_i} for any $1 \le i \le k$).

The upper bound of Theorem 1.6 is proved in Section 2. The lower bound follows easily by the definition of the Ramsey number. Indeed, take a *k*-edge-coloring f' of the complete graph K_{R-1} without a monochromatic K_{r_i} in color *i*, for all $1 \le i \le k$. Note that f' exists by definition of the Ramsey number $R = R(r_1, \ldots, r_k)$. Let u_1, \ldots, u_{R-1} be the vertices of the K_{R-1} . Now, consider the Turán graph $T_{R-1}(n)$ with a *k*-edge-coloring *f* that is a "blow-up" of f'. That is, if $T_{R-1}(n)$ has partition classes V_1, \ldots, V_{R-1} , then for $v \in V_j$ and $w \in V_\ell$ with $j \ne \ell$, we define $f(vw) = f'(u_ju_\ell)$. Then, $T_{R-1}(n)$ with this *k*-edge-coloring has no monochromatic K_{r_i} in color *i*, for every $1 \le i \le k$. Therefore, $\phi_k(n, C) \ge \phi_k(T_{R-1}(n), C) = t_{R-1}(n)$ and the lower bound in Theorem 1.6 follows.

In particular, when all the cliques in C are equal, Theorem 1.6 completes the results obtained previously by Liu and Sousa in Theorem 1.4. In fact, we get the following direct corollary from Theorem 1.6.

Corollary 1.7. Let $k \ge 2$, $r \ge 3$ and n be sufficiently large. Then,

$$\phi_k(n, K_r) = t_{R_k(r)-1}(n).$$

Moreover, the only order-n graph attaining $\phi_k(n, K_r)$ is the Turán graph $T_{R_k(r)-1}(n)$ (with a k-edge-coloring that does not contain a monochromatic copy of K_r).

2. PROOF OF THEOREM 1.6

In this section, we will prove the upper bound in Theorem 1.6. Before presenting the proof we need to introduce the tools. Throughout this section, let $k \ge 2$, $3 \le r_1 \le \cdots \le r_k$ be an increasing sequence of integers, $R = R(r_1, \ldots, r_k)$ be the Ramsey number for K_{r_1}, \ldots, K_{r_k} , and $C = (K_{r_1}, \ldots, K_{r_k})$ be a fixed *k*-tuple of cliques.

We first recall the following stability theorem of Erdős and Simonovits [5, 16].

Theorem 2.1 (Stability Theorem [5,16]). Let $r \ge 3$, and G be a graph on n vertices with $e(G) \ge t_{r-1}(n) + o(n^2)$ and not containing K_r as a subgraph. Then, there exists an (r-1)-partite graph G' on n vertices with partition classes V_1, \ldots, V_{r-1} , where $|V_i| = \frac{n}{r-1} + o(n)$ for $1 \le i \le r-1$, that can be obtained from G by adding and subtracting $o(n^2)$ edges.

Next, we recall the following result of Győri [7, 8] about the existence of edge-disjoint copies of K_r in graphs on *n* vertices with more than $t_{r-1}(n)$ edges.

Theorem 2.2 [7,8]. For every $r \ge 3$ there is C such that every graph G with $n \ge C$ vertices and $e(G) = t_{r-1}(n) + m$ edges, where $m \le \binom{n}{2}/C$, contains at least $m - Cm^2/n^2$ edge-disjoint copies of K_r .

Now, we will consider coverings and packings of cliques in graphs. Let $r \ge 3$ and G be a graph. Let \mathcal{K} be the set of all K_r -subgraphs of G. A K_r -cover is a set of edges of G meeting all elements in \mathcal{K} , that is, the removal of a K_r -cover results in a K_r -free graph. A K_r -packing in G is a set of pairwise edge-disjoint copies of K_r . The K_r -covering number of G, denoted by $\tau_r(G)$, is the minimum size of a K_r -cover of G, and the K_r -packing number of G, denoted by $v_r(G)$, is the maximum size of a K_r -packing of G. Next, a fractional K_r -cover of G is a function $f : E(G) \to \mathbb{R}_+$, such that $\sum_{e \in E(H)} f(e) \ge 1$ for every $H \in \mathcal{K}$, that is, for every copy of K_r in G the sum of the values of f on its edges is at least 1. A fractional K_r -packing of G is a function $p : \mathcal{K} \to \mathbb{R}_+$ such that $\sum_{H \in \mathcal{K}: e \in E(H)} p(H) \le 1$ for every $e \in E(G)$, that is, the total weight of K_r 's that cover any edge is at most 1. Here, \mathbb{R}_+ denotes the set of nonnegative real numbers. The fractional K_r -covering number of G, denoted by $\tau_r^*(G)$, is the minimum of $\sum_{e \in E(G)} f(e)$ over all fractional K_r -covers f, and the fractional K_r -packing number of G, denoted by $\tau_r^*(G)$, over all fractional K_r -covers f.

One can easily observe that

$$u_r(G) \leq \tau_r(G) \leq \binom{r}{2} u_r(G).$$

For r = 3, we have $\tau_3(G) \le 3\nu_3(G)$. A long-standing conjecture of Tuza [21] from 1981 states that this inequality can be improved as follows.

Conjecture 2.3 [21]. For every graph G, we have $\tau_3(G) \leq 2\nu_3(G)$.

Conjecture 2.3 remains open although many partial results have been proved. By using the earlier results of Krivelevich [10], and Haxell and Rödl [9], Yuster [22] proved the following theorem which will be crucial to the proof of Theorem 1.6. In the case r = 3, it is an asymptotic solution of Tuza's conjecture.

Theorem 2.4 [22]. Let $r \ge 3$ and G be a graph on n vertices. Then

$$\tau_r(G) \le \left\lfloor \frac{r^2}{4} \right\rfloor \nu_r(G) + o(n^2).$$
(1)

We now prove the following lemma that states that a graph *G* with *n* vertices and at least $t_{R-1}(n) + \Omega(n^2)$ edges falls quite short of being optimal.

Lemma 2.5. For every $k \ge 2$ and $c_0 > 0$ there are $c_1 > 0$ and n_0 such that for every graph G of order $n \ge n_0$ with at least $t_{R-1}(n) + c_0 n^2$ edges, we have $\phi_k(G, C) \le t_{R-1}(n) - c_1 n^2$.

Proof. Suppose that the lemma is false, that is, there is $c_0 > 0$ such that for some increasing sequence of *n* there is a graph *G* on *n* vertices with $e(G) \ge t_{R-1}(n) + c_0 n^2$ and $\phi_k(G, C) \ge t_{R-1}(n) + o(n^2)$. Fix a *k*-edge-coloring of *G* and, for $1 \le i \le k$, let G_i be the subgraph of *G* on *n* vertices that contains all edges with color *i*.

Let $m = e(G) - t_{R-1}(n)$, and let $s \in \{0, ..., k\}$ be the maximum such that

$$r_1=\ldots=r_s=3.$$

Let us very briefly recall the argument from [11] that shows $\phi_k(G, C) \leq t_{R-1}(n) + o(n^2)$, adopted to our purposes. If we remove a K_{r_i} -cover from G_i for every $1 \leq i \leq k$, then we destroy all copies of K_R in G. By Turán's theorem, at most $t_{R-1}(n)$ edges remain. Thus,

$$\sum_{i=1}^{k} \tau_{r_i}(G_i) \ge m.$$
⁽²⁾

By Theorem 2.4, if we decompose G into a maximum K_{r_i} -packing in each G_i and the remaining edges, we obtain that

$$\begin{split} \phi_{k}(G,\mathcal{C}) &\leq e(G) - \sum_{i=1}^{k} \left(\binom{r_{i}}{2} - 1 \right) v_{r_{i}}(G_{i}) \\ &\leq t_{R-1}(n) + m - \sum_{i=1}^{k} \frac{\binom{r_{i}}{2} - 1}{\lfloor r_{i}^{2}/4 \rfloor} \tau_{r_{i}}(G_{i}) + o(n^{2}) \\ &\leq t_{R-1}(n) + m - \sum_{i=1}^{k} \tau_{r_{i}}(G_{i}) - \frac{1}{4} \sum_{i=s+1}^{k} \tau_{r_{i}}(G_{i}) + o(n^{2}) \leq t_{R-1}(n) + o(n^{2}). \end{split}$$
(3)

The third inequality holds since $\binom{r}{2} - 1 / \lfloor r^2/4 \rfloor \ge 5/4$ for $r \ge 4$ and is equal to 1 for r = 3.

Let us derive a contradiction from this by looking at the properties of our hypothetical counterexample G. First, all inequalities that we saw have to be equalities within an additive term $o(n^2)$. In particular, the slack in (2) is $o(n^2)$, that is,

$$\sum_{i=1}^{k} \tau_{r_i}(G_i) = m + o(n^2).$$
(4)

Also, $\sum_{i=s+1}^{k} \tau_{r_i}(G_i) = o(n^2)$. In particular, we have that $s \ge 1$. To simplify the later calculations, let us redefine *G* by removing a maximum K_{r_i} -packing from G_i for each $i \ge s + 1$. The new graph is still a counterexample to the lemma if we decrease c_0 slightly, since the number of edges removed is at most $\sum_{i=s+1}^{k} {r_i \choose 2} \tau_{r_i}(G_i) = o(n^2)$. Suppose that we remove, for each $i \le s$, an arbitrary (not necessarily minimum) K_3 -

Suppose that we remove, for each $i \le s$, an arbitrary (not necessarily minimum) K_3 -cover F_i from G_i such that

$$\sum_{i=1}^{s} |F_i| \le m + o(n^2).$$
(5)

Let $G' \subseteq G$ be the obtained K_R -free graph. (Recall that we assumed that G_i is K_{r_i} -free for all $i \ge s + 1$.) Let $G'_i \subseteq G_i$ be the color classes of G'. We know by (5) that $e(G') \ge t_{R-1}(n) + o(n^2)$. Since G' is K_R -free, we conclude by the Stability Theorem (Theorem 2.1) that there is a partition $V(G) = V(G') = V_1 \cup \ldots \cup V_{R-1}$ such that

$$\forall i \in \{1, \dots, R-1\}, \quad |V_i| = \frac{n}{R-1} + o(n) \quad \text{and} \quad |E(T) \setminus E(G')| = o(n^2),$$
(6)

where T is the complete (R - 1)-partite graph with parts V_1, \ldots, V_{R-1} .

Next, we essentially expand the proof of (1) for r = 3 and transform it into an algorithm that produces K_3 -coverings F_i of G_i , with $1 \le i \le s$, in such a way that (5) holds but (6) is impossible whatever V_1, \ldots, V_{R-1} we take, giving the desired contradiction.

Let H be an arbitrary graph of order n. By the LP duality, we have that

$$\tau_r^*(H) = \nu_r^*(H). \tag{7}$$

By the result of Haxell and Rödl [9] we have that

$$\nu_r^*(H) = \nu_r(H) + o(n^2).$$
 (8)

Krivelevich [10] showed that

$$\tau_3(H) \le 2\tau_3^*(H).$$
 (9)

Thus, $\tau_3(H) \le 2\nu_3(H) + o(n^2)$ giving (1) for r = 3. The proof of Krivelevich [10] of (9) is based on the following result.

Lemma 2.6. Let H be an arbitrary graph and $f : E(H) \to \mathbb{R}_+$ be a minimum fractional K_3 -cover. Then $\tau_3(H) \leq \frac{3}{2} \tau_3^*(H)$ or there is $xy \in E(H)$ with f(xy) = 0 that belongs to at least one triangle of H.

Proof. If there is an edge $xy \in E(H)$ that does not belong to a triangle, then necessarily f(xy) = 0 and xy does not belong to any optimal fractional or integer K_3 -cover. We can remove xy from E(H) without changing the validity of the lemma. Thus, we can assume that every edge of H belongs to a triangle.

Suppose that f(xy) > 0 for every edge xy of H, for otherwise we are done. Take a maximum fractional K_3 -packing p. Recall that it is a function that assigns a weight

 $p(xyz) \in \mathbb{R}_+$ to each triangle xyz of H such that for every edge xy the sum of weights over all K_3 's of H containing xy is at most 1, that is,

$$\sum_{\Gamma(x)\cap\Gamma(y)} p(xyz) \le 1,$$
(10)

where $\Gamma(v)$ denotes the set of neighbors of the vertex v in H.

ze

This is the dual LP to the minimum fractional K_3 -cover problem. By the complementary slackness condition (since f and p are optimal solutions), we have equality in (10) for every $xy \in E(H)$. This and the LP duality imply that

$$\tau_3^*(H) = v_3^*(H) = \sum_{\text{triangle } xyz} p(xyz) = \frac{1}{3} \sum_{xy \in E(H)} \sum_{z \in \Gamma(x) \cap \Gamma(y)} p(xyz) = \frac{1}{3}e(H).$$

On the other hand $\tau_3(H) \leq \frac{1}{2}e(H)$: take a bipartite subgraph of *H* with at least half of the edges; then the remaining edges form a K_3 -cover. Putting the last two inequalities together, we obtain the required result.

Let $1 \le i \le s$. We now describe an algorithm for finding a K_3 -cover F_i in G_i . Initially, let $H = G_i$ and $F_i = \emptyset$. Repeat the following.

Take a minimum fractional K_3 -cover f of H. If the first alternative of Lemma 2.6 is true, pick a K_3 -cover of H of size at most $\frac{3}{2}\tau_3^*(H)$, add it to F_i and stop. Otherwise, fix some edge $xy \in E(H)$ returned by Lemma 2.6. Let F' consist of all pairs xz and yz over $z \in \Gamma(x) \cap \Gamma(y)$. Add F' to F_i and remove F' from E(H). Repeat the whole step (with the new H and f).

Consider any moment during this algorithm, when we had f(xy) = 0 for some edge xy of H. Since f is a fractional K₃-cover, we have that $f(xz) + f(yz) \ge 1$ for every $z \in \Gamma(x) \cap \Gamma(y)$. Thus, if H' is obtained from H by removing 2ℓ such pairs, where $\ell = |\Gamma(x) \cap \Gamma(y)|$, then $\tau_3^*(H') \le \tau_3^*(H) - \ell$ because f when restricted to E(H') is still a fractional cover (although not necessarily an optimal one). Clearly, $|F_i|$ increases by 2ℓ during this operation. Thus, indeed we obtain, at the end, a K_3 -cover F_i of G_i of size at most $2\tau_3^*(G_i)$.

Also, by (7) and (8) we have that

$$\sum_{i=1}^{s} |F_i| \le 2 \sum_{i=1}^{s} \nu_3(G_i) + o(n^2).$$

Now, since all slacks in (3) are $o(n^2)$, we conclude that

$$\sum_{i=1}^{s} \nu_3(G_i) \le \frac{m}{2} + o(n^2)$$

and (5) holds. In fact, (5) is equality by (4).

Recall that G'_i is obtained from G_i by removing all edges of F_i and G' is the edgedisjoint union of the graphs G'_i . Suppose that there exist V_1, \ldots, V_{R-1} satisfying (6). Let $M = E(T) \setminus E(G')$ consist of missing edges. Thus, $|M| = o(n^2)$.

Let

$$X = \{x \in V(T) \mid \deg_{\mathcal{M}}(x) \ge c_2 n\},\$$

where we define $c_2 = (4(R-1))^{-1}$. Clearly,

$$|X| \le 2|M|/c_2n = o(n).$$

Observe that, for every $1 \le i \le s$, if the first alternative of Lemma 2.6 holds at some point, then the remaining graph *H* satisfies $\tau_3^*(H) = o(n^2)$. Indeed, otherwise by $\tau_3(G_i) \le 2\tau_3^*(G_i) - \tau_3^*(H)/2 + o(n^2)$ we get a strictly smaller constant than 2 in (9) and thus a gap of $\Omega(n^2)$ in (3), a contradiction. Therefore, all but $o(n^2)$ edges in F_i come from some *parent edge xy* that had *f*-weight 0 at some point.

When our algorithm adds pairs xz and yz to F_i with the same parent xy, then it adds the same number of pairs incident to x as those incident to y. Let \mathcal{P} consist of pairs xythat are disjoint from X and were a parent edge during the run of the algorithm. Since the total number of pairs in F_i incident to X is at most $n|X| = o(n^2)$, there are $|F_i| - o(n^2)$ pairs in F_i such that their parent is in \mathcal{P} .

Let us show that y_0 and y_1 belong to different parts V_j for every pair $y_0y_1 \in \mathcal{P}$. Suppose on the contrary that, say, $y_0, y_1 \in V_1$. For each $2 \le j \le R - 1$ pick an arbitrary $y_j \in V_j \setminus (\Gamma_M(y_0) \cup \Gamma_M(y_1))$. Since $y_0, y_1 \notin X$, the possible number of choices for y_j is at least

$$\frac{n}{R-1} - 2c_2n + o(n) \ge \frac{n}{R-1} - 3c_2n.$$

Let

$$Y = \{y_0, \ldots, y_{R-1}\}.$$

By the above, we have at least $(\frac{n}{R-1} - 3c_2n)^{R-2} = \Omega(n^{R-2})$ choices of Y. Note that by the definition, all edges between $\{y_0, y_1\}$ and the rest of Y are present in E(G'). Thus, the number of sets Y containing at least one edge of M different from y_0y_1 is at most

$$|M| \times n^{R-4} = o(n^{R-2}).$$

This is o(1) times the number of choices of *Y*. Thus, for almost every *Y*, H = G'[Y] is a clique (except perhaps the pair y_0y_1). In particular, there is at least one such choice of *Y*; fix it. Let $i \in \{1, ..., k\}$ be arbitrary. Adding back the pair y_0y_1 colored *i* to *H* (if it is not there already), we obtain a *k*-edge-coloring of the complete graph *H* of order *R*. By the definition of $R = R(r_1, ..., r_k)$, there must be a monochromatic triangle on *abc* of color $h \leq s$. (Recall that we assumed at the beginning that G_j is K_{r_j} -free for each j > s.) But *abc* has to contain an edge from the K_3 -cover F_h , say *ab*. This edge *ab* is not in G'(it was removed from *G*). If *a*, *b* lie in different parts V_j , then $ab \in M$, a contradiction to the choice of *Y*. The only possibility is that $ab = y_0y_1$. Then h = i. Since both y_0c and y_1c are in G'_i , they were never added to the K_3 -cover F_i by our algorithm. Therefore, y_0y_1 was never a parent, which is the desired contradiction.

Thus, every $xy \in \mathcal{P}$ connects two different parts V_j . For every such parent xy, the number of its children in M is at least half of all its children. Indeed, for every pair of children xz and yz, at least one connects two different parts; this child necessarily belongs to M. Thus,

$$|F_i \cap M| \ge \frac{1}{2} |F_i| + o(n^2).$$

(Recall that parent edges that intersect X produce at most $2n|X| = o(n^2)$ children.) Therefore,

$$|M| \ge \frac{1}{2} \sum_{i=1}^{s} |F_i| + o(n^2) \ge \frac{m}{2} + o(n^2) = \Omega(n^2),$$

contradicting (6). This contradiction proves Lemma 2.5.

We are now able to prove Theorem 1.6.

Proof of the upper bound in Theorem 1.6. Let *C* be the constant returned by Theorem 2.2 for r = R. Let $n_0 = n_0(r_1, \ldots, r_k)$ be sufficiently large to satisfy all the inequalities we will encounter. Let *G* be a *k*-edge-colored graph on $n \ge n_0$ vertices. We will show that $\phi_k(G, C) \le t_{R-1}(n)$ with equality if and only if $G = T_{R-1}(n)$, and *G* does not contain a monochromatic copy of K_{r_i} in color *i* for every $1 \le i \le k$.

Let $e(G) = t_{R-1}(n) + m$, where *m* is an integer. If m < 0, we can decompose *G* into single edges and there is nothing to prove.

Suppose m = 0. If *G* contains a monochromatic copy of K_{r_i} in color *i* for some $1 \le i \le k$, then *G* admits a monochromatic *C*-decomposition with at most $t_{R-1}(n) - {r_i \choose 2} + 1 < t_{R-1}(n)$ parts and we are done. Otherwise, the definition of *R* implies that *G* does not contain a copy of K_R . Therefore, $G = T_{R-1}(n)$ by Turán's theorem and $\phi_k(G, C) = t_{R-1}(n)$ as required.

Now suppose m > 0. We can also assume that $m < \binom{n}{2}/C$ for otherwise we are done: $\phi_k(G, C) < t_{R-1}(n)$ by Lemma 2.5. Thus, by Theorem 2.2, the graph *G* contains at least $m - Cm^2/n^2 > \frac{m}{2}$ edge-disjoint copies of K_R . Since each K_R contains a monochromatic copy of K_{r_i} in the color-*i* graph G_i , for some $1 \le i \le k$, we conclude that $\sum_{i=1}^k v_{r_i}(G_i) > \frac{m}{2}$, so that $\sum_{i=1}^k \binom{r_i}{2} - 1 v_{r_i}(G_i) \ge \sum_{i=1}^k 2v_{r_i}(G_i) > m$. We have

$$\phi_k(G, \mathcal{C}) = e(G) - \sum_{i=1}^k \binom{r_i}{2} \nu_{r_i}(G_i) + \sum_{i=1}^k \nu_{r_i}(G_i) < t_{R-1}(n),$$

giving the required.

Remark. By analyzing the above argument, one can also derive the following stability property for every fixed family C of cliques as $n \to \infty$: every graph G on n vertices with $\phi_k(G, C) = t_{R-1}(n) + o(n^2)$ is $o(n^2)$ -close to the Turán graph $T_{R-1}(n)$ in the edit distance.

ACKNOWLEDGMENTS

Henry Liu and Teresa Sousa acknowledge the support from FCT - Fundação para a Ciência e a Tecnologia (Portugal), through the projects PTDC/MAT/113207/2009 and PEst-OE/MAT/UI0297/2014 (CMA). Oleg Pikhurko was supported by ERC grant 306493 and EPSRC grant EP/K012045/1.

The authors thank the anonymous referees for the careful reading of the manuscript.

REFERENCES

- [1] P. Allen, J. Böttcher, and Y. Person. An improved error term for minimum *H*-decompositions of graphs, J Combin Theory Ser B 108 (2014), 92–101.
- [2] B. Bollobás. On complete subgraphs of different orders, Math Proc Cambridge Philos Soc 79 (1976), 19–24.
- [3] B. Bollobás. Modern Graph Theory, vol. 184 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1998.
- [4] D. Dor and M. Tarsi. Graph decomposition is NP-complete: A complete proof of Holyer's conjecture, SIAM J Comput 26 (1997), 1166–1187.
- [5] P. Erdős. Some recent results on extremal problems in graph theory. (results), Theory Graphs, Int Symp Rome (1966), 117–123 (English), (1967), 124–130 (French).
- [6] P. Erdős, A. W. Goodman, and L. Pósa. The representation of a graph by set intersections, Canad J Math 18 (1966), 106–112.
- [7] E. Győri. On the number of edge-disjoint triangles in graphs of given size, In: Combinatorics (Eger, 1987), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 1988, pp. 267–276.
- [8] E. Győri. On the number of edge disjoint cliques in graphs of given size, Combinatorica 11 (1991), 231–243.
- [9] P. E. Haxell and V. Rödl. Integer and fractional packings in dense graphs, Combinatorica 21 (2001), 13–38.
- [10] M. Krivelevich. On a conjecture of Tuza about packing and covering of triangles, Discrete Math 142 (1995), 281–286.
- [11] H. Liu and T. Sousa. Monochromatic K_r-decompositions of graphs, J Graph Theory 76 (2014), 89–100.
- [12] L. Özkahya and Y. Person. Minimum *H*-decompositions of graphs: Edgecritical case, J Combin Theory Ser B 102 (2012), 715–725.
- [13] O. Pikhurko and T. Sousa. Minimum *H*-decompositions of graphs, J Combin Theory Ser B 97 (2007), 1041–1055.
- [14] S. P. Radziszowski. Small Ramsey numbers, Electron J Combin DS01:Dynamic Survey, Version of 12 January, 2014.
- [15] F. P. Ramsey. On a problem of formal logic, Proc London Math Soc 30 (1930), 264–286.
- [16] M. Simonovits. A method for solving extremal problems in graph theory, stability problems, In: Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 279–319.
- [17] T. Sousa. Decompositions of graphs into 5-cycles and other small graphs, Electron J Combin 12 (2005), Research Paper 49, 7 pp. (electronic).
- [18] T. Sousa. Decompositions of graphs into a given clique-extension, Ars Combin 100 (2011), 465–472.
- [19] T. Sousa. Decompositions of graphs into cycles of length seven and single edges, Ars Combin to appear.

- [20] P. Turán. On an extremal problem in graph theory, Mat Fiz Lapok 48 (1941), 436–452.
- [21] Zs. Tuza. In Finite and Infinite Sets, vol. 37 of Colloquia Mathematica Societatis János Bolyai, North-Holland Publishing Co., Amsterdam, 1984, p. 888.
- [22] R. Yuster. Dense graphs with a large triangle cover have a large triangle packing, Combin Probab Comput 21 (2012), 952–962.