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1 | INTRODUCTION AND NOTATION

The notion of symmetrisation in graphs was introduced by Zykov in [40]. In its most basic form,
symmetrisation is the process of considering two non-adjacent vertices x and y in a graph G, and
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replacing x by a clone of y, that is, a vertex y’ whose neighbourhood is the same as that of y.
Zykov used symmetrisation to reprove Turan’s theorem [38], as follows. Let G be an n-vertex K-
free graph with the maximum number of edges. Whenever there are non-adjacent vertices x, y
with d;(x) < dg(y), we symmetrise by replacing x by a clone of y. The graph obtained in this way
is still K,-free and has at least as many edges as G, and one can do this so that the final graph is
complete partite. Standard convexity arguments imply that there are r — 1 parts of almost equal
size, recovering Turdn’s theorem. A variation of this approach was employed by Motzkin and
Straus [28] also to reprove Turan’s theorem.

Suppose that one seeks to maximise (or minimise) a graph parameter 1 such that there is always
a'way to symmetrise any given non-adjacent pair in a graph without decreasing A. Then it suffices
to only consider ‘totally symmetrised’ (i.e. complete partite) graphs to determine the maximum
value of 1. Bollobas [3] used symmetrisation to show that the parameter which counts any linear
combination of cliques is symmetrisable, a special case of which provides a lower bound for the
minimal number of cliques in a graph of given order and size.

In this paper, we are interested in more general graph parameters 4 which do not decrease
upon symmetrisation, in a specific sense we describe below. Like the example above, a sym-
metrisable A is maximised (not necessarily uniquely) by a complete partite graph. Our main result
gives a sufficient condition for stability for symmetrisable functions, namely that any graph which
almost maximises 4 looks very much like a complete partite graph. In fact, we prove the quanti-
tatively sharper property of perfect stability, a strong form of stability which additionally implies
an exact result.

1.1 | The statement of the main result

In order to define precisely what we mean by symmetrisable functions and perfect stability, we
need to introduce some notation. We write G = (V, E) for a graph with vertex set V and edge set
E, and let v(G) := |V| and e(G) := |E]|. Given X C V, we write

GIX] :=X,{xy€E :x,y€eX}

for the graph induced by G on X, and G — X := G[V(G) \ X], and also G — x := G — {x}. Write
Ns(x) :={y eV : xy € E}L

Fix a positive integer k > 3. Let G be the family of all finite graphs up to isomorphism and let
G, consist of graphs with n vertices. Let P, C G, be the family of complete partite graphs on n
vertices. Suppose we have a function y : G, — R. For a graph G = (V, E) with v(G) > k, define

-1
16:=(7) T reixn, 1
Xe(‘;)

where (Z) is the collection of k-element subsets of V. Thus, A(G) is the expected value of y(G[X])
where X is a random k-subset of V. We may also work with

. _(n
@) 1= 3, y(OIXD = <k>ﬂ<c),
xe(})
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which may be more convenient in some calculations. For a vertex x € V(G), define

AG.x) :=AG)-AG-x) =} (X)),
xc(}):xox
-2
AG,x) = k1 A(G, x).

Thus A(G, x) is the conditional expectation of y(G[X]) where X is a random k-subset of V
conditioned on containing x.
Let A(n) be the maximum of A(G) over all n-vertex graphs G and define
Amax 2= lim A(n).
n—oo
One can easily show that the limit exists. Note that the minimisation problem reduces to a max-

imisation one just by negating y, so we will always consider maximising A4 here. We can now define
what it means for 4 to be symmetrisable.

Definition 1 (Symmetrisability). A function A given by (1.1) is symmetrisable if for every € > 0,
there is n, > 0 such that the following two properties hold for every graph G = (V, E) of order
n > ng:

(Syml) Thereisasequence of graphs G, G, ..., G,,, on V such that G, = G; G,,, is complete partite
and for every i € [m], we have A(G;_;) < A(G;) and |E(G;_,) /\ E(G;)| < 5( )
(Sym2) 1f G — z is complete partite with partite sets Vl, . V[, then there is a sequence of graphs

Gy, Gy, .., Gy, on V(G) such that G, = G; G; — —z; M(G;_;) < AGy); |E(Gi_) A
E(G;)| € e(n —1) for all i € [m]; and for each j€E [ ], either NGm(z) 2V;or NGm(z) N
V.=g.

J

Here is an example of a symmetrisable parameter. For graphs F, G with v(F) < v(G), let P(F, G)
be the number of v(F)-subsets of V(G) that induce a subgraph isomorphic to F. Let p(F,G) =
P(F, G)/(U(G)) be the induced density of F in G. Let A(G) := X, ;p(K;, G) for ay, ... ak eR.
If we let y(F) Zl<z<k a;p(K;,F) for F € G, then (1.1) holds. (Indeed, for v(G) > k > i, we
have p(K;,G) = ZFegk p(K;, F)p(F,G) which implies the statement.) As mentioned above Bol-
lobas [3] showed that A(n) is attained on a complete partite graph and his proof shows that every
such 4 is, in fact, symmetrisable (for more details and examples, see Section 6). In Section 1.2, we
will see a generalisation of this parameter.

Secondly, we define perfect stability. The edit and normalised edit distances between graphs G
and H of the same order n are given by

A(G,H) := mm |E(H) /A E@(G))|, 6,G,H):= %Al(G,H),

where S(G, H) is the set of bijections from V(G) to V(H). (We also write S(X) := S(X, X).) We fur-
ther define A, (G, H) := miny;; A, (G, H) for afamily H of graphs of order n, and define § 1(G, H)
analogously.
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Definition 2 (Perfect stability). A graph parameter A is perfectly stable if there exists C > 0 such
that for every graph G of order n > C, there is a complete partite graph H of order n such that

8,(G,H) < C(A(n) — A(G)).

We say that a sequence x = (x;, X,,...) with x; > x, > ... > 0and Y., x; < 1 is a maximiser if
there exists a sequence (H,,),, of complete partite graphs such that, as n — oo, we have v(H,,) —
o0, A(H,) = Ay, and for every i > 1, the number of vertices in the ith largest part of H,, is (x; +
o(1))v(H,,). Let OPT = OPT(A) be the set of maximisers.

In Section 4, we will show that if OPT is a finite set, then there is 8 > 0 such that, for every
x € OPT and every i > 0, the entry x; is either O or at least 3.

Observe that, if 4 is perfectly stable, then the only graphs on which 4 is maximised are complete
partite. Perfect stability has already been proved in several contexts, most notably in Turan-type
problems; for example, by Fiiredi [13], Norin and Yepremyan [30, 31], Pikhurko, Slia¢an and
Tyros [32] and Roberts and Scott [35].

Definition 3 (Realisation G,, ). Given n € Nand x = (x, x,,...)withx; > x, > ... > 0and x, :=
1— 3, X; > 0, define a complete partite graph G, , with vertex set [n], parts V4, ..., V,, for some
m and a set V, of universal vertices, that is, | V| singleton parts, as follows. If x, = 0, take a parti-
tion[n] =V, U ..UV, with||V;| — x;n| < 1andletV;, = @. Otherwise, foralli > 1with x;n > 2,
let |[V;| = [x;n] and let V|, consist of the remaining vertices in [n].

We say that G, , is the (n-vertex) realisation of x and has P-structure Vyy, ..., V..

If H is a graph obtained by adding a new vertexz to G = G,, ., we say thatz isa cloneof u € V(G)
ifu e Vyand Ny(z) = V(G),orifu ¢ Vand Ny(z) = N (u). The following is one version of our
main result, which is also stated as Theorem 3.3, in terms of limits. Roughly speaking, it states that
a symmetrisable function 4 is perfectly stable if it is ‘strict’, meaning that it is sensitive to small
alterations in a graph.

Theorem 1.1. Let A be a symmetrisable function defined as above. Suppose |OPT| < co. Sup-
pose also that there exists ¢ > 0 such that the following hold for all large n and maximisers x =
(x1, X5, ...) € OPT, where G = G,

(i) For all distinct x,y € V(G) we have A(G) — A(G @ xy) > cn~?, where G @ xy has vertex set
V(G) and edge set E(G) /\ {{x, y}}.

(ii) If G, is obtained from G by adding a new vertex v which is complete or empty to each part of G
(where each V, i € [m] is a part and we have |V )| singleton parts), then the minimum number
of edits at v needed to make v a clone of some existing vertex of G is at most n(A(G) — A(G,,v))/c.

Then A is perfectly stable.
As mentioned, see Theorem 3.3 for the ‘limit version’ of this statement, which concerns
Ax) := lim A(G,, ).
n—oo >

One can easily show that this limit exists and that it does not depend on the choice of the part
sizes |V;| in Definition 3 (only on the ratios x;). The conditions in Theorem 1.1 become a series
of inequalities that must be verified for maximisers x, which are a finite collection of polynomial
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inequalities if the number of maximisers is finite and x, = 0, since, for example, given i, j, the
quantity A(G) — (G @ xy) is identical for all x € V; and y € V;. The value of the theorem is
that, given the set of maximisers, the conditions are usually very easy to check, so in some sense,
the ‘combinatorial part’ of the problem is solved. It remains to determine the set of maximisers,
amounting to a polynomial optimisation, which is unfortunately difficult in general.

1.2 | Applications to inducibility

A large class of problems where symmetrisation was sucessfully applied is the inducibility prob-
lem for complete partite graphs. The inducibility problem for a graph F is to determine i(F,n) :=
max{P(F,G) : v(G) = n}, the maximum number of induced copies of F that an order-n graph G
can have. Note that p(f, G)= p(F,G),where G denotes the complement of G, so i(F,n) = i(F,n).
Also, consider

i(F) 1= lim 1,
n— oo (U(’j:))

the limit is known to exist and is, in fact, equivalent to the maximum density of induced copies of
F in a graphon W. Brown and Sidorenko [7, Proposition 1] used symmetrisation to prove that
if F is complete partite, then for every n € N, at least one i(F, n)-extremal graph is complete
partite. Schelp and Thomason [36], also via symmetrisation, extended both the result of Brown
and Sidorenko and a result of Bollobas [3] by showing that the same conclusion holds (at least
one graph attaining A(n) is complete partite) if the objective function is A(G) = Y . ¢ - p(F,G),
where each F is complete partite, including K, and K, and cy. is non-negative if F is not a clique.
Their proof (which is essentially the same as that of Bollobas [3]) implies that this parameter is
symmetrisable (see Section 6 for a proof).

Lemma 1.2 [36]. The function A(G) := Y, cx - p(F,G) is symmetrisable, where each F is complete
partite and cp > 0 if F is not a clique.

In particular, Theorem 1.1 applies to the inducibility problem for complete partite graphs. To the
best of our knowledge, for every instance of this problem where the set of maximisers is known,
we can prove perfect stability.

Pippenger and Golumbic [34] determined i(Kj,,n) for all 5, ¢ with |s — ¢] < 1, observing that
the complete balanced bipartite graph is an extremal graph. Some of these results were indepen-
dently reproved in [5]. Brown and Sidorenko [7] showed that i(K; ;, n) with st > 2 is attained by a
complete bipartite graph, and that if (t;S) < s < t, then the unique maximiser is (%, %, 0,...). Per-
haps surprisingly, this does not mean that K, /5| /2] is optimal for i(K ;, n), and they show that if
3n = 4a® + 4 for alarge integer a, then K, /2—a,n/2+q 18 Optimal for K5 ;. We prove a corresponding
stability result for complete bipartite graphs.

Theorem 1.3. Let s,t € N with st > 2. Then p(Ky,,-) is perfectly stable, i(K;,) = (SH)M and
there is a unique maximiser (o¢,1 — a,0,0,0,...), where ¢ € [5, 1] maximises
f@ =’ —a) +a'(1—a)

and My, :=max 1 fst(x)fors;ét and M := zmaxxe[ 1] Ss.5(X)
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Bollobas, Egawa, Harris and Jin [4] studied the inducibility problem for complete equipartite
graphs. They showed that if the size ¢ of each part is not too small compared to the number r of
parts, then the complete balanced r-partite graph T,(n) is the unique extremal graph for each large
n. This strengthened an earlier work of Brown and Sidorenko [7] which showed that T,.(n) is an
asymptotically extremal construction (without proving any uniqueness) — that is, (%, s % 0,...)

with % repeated r times is an element of OPT. We prove a corresponding stability result.

Theorem 1.4. Letr,t > 2 be integers and let K, (t) denote the complete r-partite graph with parts of
sizet. Suppose thatt > 1 + logr (denoting the natural logarithm by log). Then p(K,(t), -) is perfectly

. _ @ . P ! 1
stable, i(K,(t)) = Tt and the unique maximiser is (;, T 0,..).
N————

r

1

Interestingly, if the above lower bound on ¢ in terms of r does not hold, then (%, T 0,..) &
OPT (see [7]).

Finally, we obtain perfect stability for every previously unknown complete partite graph F
on k <5 vertices. For this, note that trivially K, and I?k have unique maximisers (0,0, ...),
(1,0,...), respectively. If F = K, is bipartite, then Theorem 1.3 implies that the unique max-
imiser (a,1 — @,0, ...) maximises a*(1 — &)’ + a’(1 — «)°. Solving this, we see that p(K, -) has
unique maximiser (%, %,0, ...) for all s+t < 5 apart from {s, t} = {4,1}, and here p(K,,-) has
unique maximiser (‘g‘, % 0...). Pikhurko, Sliatan and Tyros [32] showed that K, ; ; is perfectly sta-

. . i 1 1
ble with unique maximiser (g,

)3

%, %, %, 0, ...) (we can also recover these results but do not provide proofs here). The remaining
F are K3, ; and K, ; ;. Flag algebra calculations of Even-Zohar and Linial [10] give numeri-
cal upper bounds for these i(F). Also, they provided lower bound constructions; these appear
to match for both K5, ; and K, ; ;. They speculated that their lower bound constructions are
tight in both cases. We confirm this and prove perfect stability for these F. (After this paper was

submitted, Liu, Mubayi and Reiher [29, Theorem 1.13] determined the value of i(K;") for every ¢,

0,...),and thatK, , , is perfectly stable with unique maximiser

.....

Theorem 1.5. p(K,,,-) is perfectly stable, i(K,;;,) = %, and the unique maximiser is
1 1

(50 5:050).

Theorem 1.6. p(Ks; ;,-) is perfectly stable, i(K; ; ;) = % and the unique maximiser is (%, 0,..).

The latter is particularly interesting since the extremal graph contains a clique part: itis a clique
with a clique of proportion 3/5 removed. This demonstrates that allowing maximisers x with x,, =
1 - 51 x; > 0in our theory — which complicates matters somewhat — is essential in giving a
full picture.

We remark that the case A(-) = — p(Iz, -) — p(K3, -) (which is not a function as in Lemma 1.2) is
given by a classical theorem of Goodman, who determined this value exactly. Here, asymptotically
extremal graphs are those for which all but o(n) vertices have degree % + o(n) (including many

graphs which are not complete partite). (Note that p(K;, ) + p(Kj, ) is trivially maximised by
the complete and empty graphs.) It remains a major open problem to determine A,,,, for A(-) =
—p(Ky, ) — p(Ky, ).
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Pikhurko, Sliacan and Tyros [32] were able to prove perfect stability for i(F, n) for several small
graphs F via flag algebra calculations. The graphs they considered were Cy = K, 5, K, ; 1, K35,
K, 1, as well as the non-complete partite graphs P; U K, the Y’ graph and the paw graph which
we do not define. Their results extend inducibility results obtained in [7], [34], and by Hirst in [18].
Our Theorem 1.3 in particular reproves the cases K, , and K; , from [32].

Before stating the limit version of our main theorem in Section 3, we give here an illustration
of it in the case F = C,. (Perfect stability was already proved here in [32].) It is easy to see that
OPT consists only of the unique vector (%, %, 0,.)withA .. = %. Thus, in order to apply our cri-
terion, we have to check that, starting with K|, /5| /21, the following two properties hold: (i) if
we add an edge into a part or remove an edge across, then we decrease the number of induced
copies of C, by Q(n?); (ii) if we add a new vertex v which is either isolated or connected to
every other vertex, the number of induced copies of C, containing v is at most (1 — Q(1)) g (Z)
Both properties trivially hold, so the inducibility problem for C, is indeed perfectly stable by
Theorem 1.1.

The following conjecture seems plausible.

Conjecture 1. The inducibility problem for F is perfectly stable for every complete partite F.

However, it is not the case that every problem with 1 = Y . cp - p(F,-) is perfectly stable,
where each F is complete partite, and c; > 0 if F is not a clique. Indeed, if k > 3 and the sum
is over all complete partite F on k vertices, and each cp = 1, then every k-vertex subset of every
complete partite graph contributes (the maximum value of) 1 to A, so OPT is the set of all x
with x; > x, > ... > 0 and Zm X; < 1. Let us show that 1 is not perfectly stable. Indeed, if it is,
there is C such that for every graph G of order n > C, there is a complete partite H such that
Sl(G,H ) < C(A(n) — A(G)). Choose 1/n <« ¢ < 1/C. Starting with K,,, remove every edge with
both endpoints inside a set A of size 5cn and add into A a blow-up of C5 with each part A, ..., A
of size cn, to obtain an n-vertex graph G. Then &, (G, H) = Q(c?) for every complete partite H, but
A(n) — A(G) =1 — A(G) = 0(c?). Indeed, a subset of G is not complete partite only if it contains
at least three vertices in A. So, the fraction of subsets inducing a non-complete partite graph is
O(c?). This is a contradiction.

Finally, it would be remiss not to remark on the inducibility problem for non-complete partite
graphs, for which the present paper does not apply, and which is in general wide open (see [10]
for a list of known results of order up to 5). The outstanding open problem in the area is deter-
mining i(P,), the smallest unsolved case, for which there is not even a conjectured value. Hatami,
Hirst and Norin proved that extremal graphs of large blow-ups are essentially blow-ups them-
selves [16]. Graphs with more interesting structure appear as extremal graphs for other F. An
important longstanding conjecture of Pippenger and Golumbic [34] is that i(C;) = k!/(k* — k)
for k > 5, attained by the iterated blow-up of C, . Balogh, Hu, Lidicky and Pfender [1] proved this
conjecture for k = 5: they obtained an exact result for A(-) = p(Cs, -) and showed that if n is a
power of 5, then the unique graph attaining i(Cs, n) is an iterated blow-up of a 5-cycle. There has
recently been progress on the general conjecture in [17, 22]. Yuster [39] and independently Fox,
Huang and Lee [11] proved that for almost all graphs F, the extremal graph is the iterated blow-up
of F. Fox, Sauermann and Wei [12] considered graphs H obtained by removing a small number of
vertices from a random Cayley graph H of an abelian group, showing that here the extremal graph
is the iterated blow-up of H (not of H). Liu, Mubayi and Reiher [29] began a systematic study of
the feasible region of induced graphs; that is, the set of points (x, y) in the unit square for which
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there is a graph of edge density approaching x with F-density approaching y. The inducibility
problem seeks the maximum y-value of such a point.

The directed analogue of the inducibility problem is also actively studied, for example, for
stars [20, 21], paths [9] and 4-vertex graphs [6, 8, 19].

1.3 | Structure of the paper

The rest of the paper is organised as follows. In Section 2, we introduce the partite limit space
corresponding to the collection of limits of complete partite graphs which we will need to prove
our main result. In Section 3, we define the notion of strictness in terms of elements of this space
and give a limit version of our main result, Theorem 3.3. The main result of Section 4 is that when
OPT is finite, all part ratios of extremal graphs are bounded away from 0. We prove Theorem 3.3 in
Section 5. We present some applications of Theorem 3.3 to the inducibility problem (Theorems 1.3-
1.6) in Section 6. Section 7 contains some concluding remarks.

We denote by N :={1,2,...} and N, :={0,1,...} the sets of respectively positive and non-
negative integers.

2 | THE PARTITE LIMIT SPACE

We will work in a space P, the partite limit space, which is in some sense the completion of the
set of complete partite graphs. The aim of this section is to define 7 and a metric 8,4, on this
set, which will essentially generalise edit distance in graphs. We prove that this yields a compact
metric space upon which 4 can be extended continuously (Lemma 2.5). Thus, the set OPT of
maximisers of A in P is non-empty. We define

Pi= {x: (x1,%9,...) 1 X; 2 X5 > ... 20and in < 1}.

i>1

As usual, supp(x) :={i > 1 : x; > 0}, and we also define supp*(x) : = supp(x) U {0} if Zi>1 x; <
1, and supp*(x) := supp(x) otherwise. For 3 > 0, we write

Py i={x€P:x >pBViesupp )}

Write 0 := (0,0, ...). Given x, x,, € P, we will always write x = (x1, X,,...) and x,, = (x;, 1, X, 5, -.)
and correspondingly x, :=1— 3., x; and x,, 5 :=1— ¥, X,,;. A complete partite graph G =
KV,,...,V,,) onvertex set [n] with |[V;| > ... > |V,,,| corresponds to the vector

xg :=(Vil/n,...,|V,l/n,0,..).

We write P for the set of those elements x of 7 with finitely many non-zero entries all of which
are rational, thus corresponding to the set of complete partite graphs. Somewhat conversely, we
have the construction G, , from Definition 3. For example, we have G, o = K, G, 1,.) = K, and

(assuming n = 27 is even) Gn,(%,%,o,...) =~ K, s, but we cannot take, say, any K, ;, ; for G, (y 1y 0. )-
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2.1 | The measure-theoretic and graphon perspectives

For each x € P, one can define a probability measure y, on N, by setting u,({i}) = x; and then
let

M :={,ux:x65}.

It is very natural to define the corresponding collection of ‘complete partite’ graphons (which
will be used in Section 4). A graphon is a quadruple Q = (Q, B, u, W), where (Q, B, ) is a standard
probability space and W : Q X Q — [0,1] is a symmetric measurable function. For every graph
G, we define the corresponding graphon Q; = (V,2", u, A;) where u is the uniform measure on
the finite set V and A; : V XV — {0, 1} is the adjacency function of G. For a graph F on [k], we
write

p(F,Q) := I wexp [T Q=W x)dutx) ... dutx),

|aut(F)| ar ijEE(F) ijeE(F)
where aut(F) is the group of automorphisms of F. In the literature, one usually encounters
tinq(F, Q) which is the above without the normalisation factor. Two graphons Q, Q' are equivalent
or weakly isomorphicif p(F, Q) = p(F, Q") for every graph F. A sequence of graphons (Q,, : n € N)
is said to converge to a graphon Q if lim,_, ., p(F,Q,) = p(F, Q) for every graph F. A Q-random
graph of order k is obtained by sampling k random points vy, ..., v, € (Q, u) uniformly and
independently, and adding each edge x;x; with probability W(x;, x;).

Now let Q, := (Ny, 2", u,,K) where K(i, j) :=0ifi = j > 1 and K(i, j) := 1 otherwise, that
is,ifi # jori = j = 0. Then define

={Qx:xef}.

There are various characterisations of weak isomorphism (see [26, Theorem 13.10]). All we will
need is the easy fact that for distinct x, y € P, their graphons Q,, Q,, are not weakly isomorphic.
Indeed, if i > 1 is the minimum integer with x; # y;, say x; > y;, then it is not hard to see directly
that the edgeless graph of sufficiently large order n has strictly larger density in x than in y.

The spaces P, M and Q are equivalent and one can take any of these perspectives, but in this
paper, we mainly work with 7 (and briefly use Q in Section 4). The space Q was used in [2] by
Bennett, Dudek Lidi¢ky and Pikhurko who determined the minimum Cs-density in graphs of
edge den51ty ! for integers k. They used Q to prove a corresponding stability result. Therefore,

we hope that the theory concerning P (and, by extension, M and Q) developed in this section may
be useful for other extremal problems where the extremal graphs are complete partite.

2.2 | The edit metric

We would like to define a metric on 7 which will correspond to the edit distance between graphs.
Firstly, we define edit distance between two graphs of possibly different orders, often called the
fractional edit distance. Given a graph G, let G™ be an n-vertex almost uniform blow-up of G,
that is, we replace each vertex x € V(G) by an independent set I,, where each ||I,.| — ||| <1
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and ¥, ) IIx| = 1, and add every edge between I, and I, whenever xy € E(G). Then let
S0qit(G,H) = lim 8,(G™,H™).
n—oo

It is easy to see that the limit exists; in fact, its value can be computed via a linear program
with v(G) X v(H) variables that considers all fractional overlays between the vertex sets of G
and H, cf. for example, [33, Equation (3)]. We also define for a family H of graphs §.4;(G, H) :=
lim,,_, , 8,(G™,{H™ : H € M}). We define the distance between x, y € P to be

Beqit(X,¥) 1= lim 6,(G,, 1. Gy ).

For a graph G, define also 8.4;(x,G) :=lim,_ ¢ 1Gyxs G™) and, for a family M of graphs,
Seqit(x, H)) in the obvious way. Again, the existence of the limit in these definitions is easy to estab-
lish. Note that the normalisation factor i in the ‘usual’ edit distance &, is motivated by vertices of

G corresponding to independent sets of relat1ve 31ze L The distances 8, and 8,g;, are not the same
even for graphs of the same order, due to rounding; see examples of Matsliah (see Appendix B in
[15]) and Pikhurko [33]. The following lemma implies that we are free to interchange & 4;; and
8, in matters of convergence, and that with respect to 8,4;, We are free to interchange H and x,
when H is complete partite.

Lemma 2.1. We have the following.

() 8eqi(G,H) < 8,(G,H) < 38,4;,(G, H) for graphs G, H with the same order. .
(i) Seqif(H,xg) =0 and 8.4;:(x, H) = 8og;(X, X)) and 8.4;:(G, H) = Soqii(Xg, Xy) for all x € P
and complete partite graphs G, H. _
(iii) &qq4i; Satisfies the triangle inequality on P.

Proof. The non-trivial inequality of part (i) was proved in [33, Lemma 14]. For (ii), let H have h ver-
tices. Then Xy = X and G, ., = (Gh,x,,)(") = H"W for any integer n. Since any subsequence
of (5,(H™, G x;, ))m converges to 8qq;(H, x;), we have

Seai(H.xyp) = lim §,(H™, Gy, ) = lim §,(HOW, HOM) = 0

The remaining parts of (ii) now follow from (iii) which is immediate since 31 satisfies the triangle
inequality on the set of graphs of the same given order. O

This notion of edit distance is very natural, yet rather unwieldy to work with. The following
easy facts concerning it will be useful. Recall first that x; is not an entry in x = (x;, X,, ...), so, for
example, ||x||; = Zizl [x;] =1—Xx,.

Proposition 2.2. Forallx,y € f, we have that

(D) Geqit(x, ) < 2[Ix = ylI;.
(i) eqir(x,0) = [|lx]13.
(i) Seqit(x, (X1, s X1, 0,.)) € Xios xizfor allM > 1
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Proof.  For (i), consider large n €N and G, ,,G,, with P-structures V,Vy,...,V,, and
U,, Uy, ..., Uy, respectively, where without loss of generality £ < m. For convenience, let U, ; =
+=U, =@. Let 0 € S([n]) be a permutation (and recall that V(G,,) = V(G, ) = [n]). For
all 0 <i,j <m,let X;; =o(V;)NU;. A pair of vertices is included in the symmetric difference
E(G, ) A\ E(o(G, y)) ifand only if elther itliesin V; for somei > 1 butnotin X;; forany j € [m],
or lies in U; for some j > 1 but notin X;; foranyi € [m]. Thus,

B(Gr) AEGG,y) = Y ((n;w)_ ¥ <|X2U|>)+ ¥ <<|t;j|>_ ¥ <|X2U|>>'
i€lm] jelml j€lm] i€[m]

21)

Take o € S([n]) so that for all i > 0, o(V;) C U; whenever |V;| < |U;|, and o(V;) 2 U; whenever
|U;| < |Vl (and o is otherwise arbitrary). If |Uy| < [V ], then | X}, | = |U;| and |Xj | = 0 for all

i # k and thus
<|ij ) N <|L;k|> -y (lXjk|> _ <|V2k|> _y <|Xjk|>
jm] jetm N 2 jetm N 2

<|Vk|>
j
Vil | Xk | 1 2 2
< - <fqv.r=u + v
< ) 5 2(| )" = 1Ukl?) + [Ugl

Then

A 1 .
By(GrasCry) < 3, (5] Vil = 1P| + min UL, 1V:el})
ke[m]

<n Y (Vi = ULl |+ yi + 0D) < n2llx = pll, + O(n).
ke[m]

S0 8.4i(x, ¥) < 2||x — y|l;, as required.
Parts (ii) and (iii) are clear. O

Note, however, that convergence in #; does not give the same topology as pointwise con-
vergence, by considering for each n € N the sequence x,, given by x,; = 1/n for all i € [n]
and x,; = 0 otherwise. We have that ||x,|l; =1 for all n, While x, clearly converges point-
wise to 0 and by Proposition 2.2(ii), we see that 8.4;(x,,,0) = ; — 0 as n - oo. On the other
hand, convergence in J.y; is equivalent to pointwise convergence, as we show in the next
lemma.

Proposition 2.3. In the space P, convergence in edit distance is equivalent to pointwise convergence.
That is, whenever (x,,),, is a sequence in P and x € P, we have that lim,,_, ., 8.4;(%,,,X) = 0 if and
only if foralli € N, we have that lim,_, , |x,,; — x;| = 0.
Proof. Let (x,), be asequence in P and let x € P. Fix an arbitrary ¢ > 0.

Suppose first that x,, — x pointwise. We need to show that §.4;,(x,,, X) < ¢ for sufficiently large
n.Since Y., x; < land x; > X, > ... > 0, there exists an integer M > 0 such that Y.,/ x; < /8,
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in particular, x,; < £/8. As x,, — x pointwise, there exists n, such that, for all i < M and for all
integers n > n,, we have that |x, ; — x;| < ¢/(8M). In particular, since x,, ; is non-increasing with
Jj» we have for all integers n > nO and j > M that x,, i< e/4. Lety :=(xq,...,%0,...) and, for
eachn € N, definey, :=(x,,...,X,, M 0,..).Letn > n, be an integer. Then by Proposition 2.2(i),
Seait®, ¥) L 2|x — Y|l =2 21>M x; << Slrmlarly, by Proposition 2.2(ii) and (iii),

5edit(xn’ yn) < 5edit((xn,M+1’xn,M+2’ ), 0) = Z xni = Sup Xni® Z xnz S XM+l S <
i>M >M i>M

Nm

But also 844;:(3, ¥,.) < 2|y — Yull; =2 EKM 1%, — x| < 5 . By Lemma 2.1(iii), J4;; defined on P
satisfies the triangle inequality. Thus, we have §4;;(x,,, x) ¢ whenever n > n,. Thus, x,, - xin
edit distance, as required.

Conversely, suppose now that (x,,),, converges to x in edit distance §.4;;. Let i > 1. We need to
show that there exists n, > 0 such that for all n > n,, we have |x,; — x;| < &. Now, there exists
ny > 0 such that for all n > n,, there is a permutation o : [n] — [n] such that

Ai(Gpx,sGux) = [E(Gyx ) AN E(0(Gy )l < (en/12).

Let n > n,. For A C [n], denote by o(A) and o~!(A) the image and pre-image of A, respectively.
By definition, G, , has a vertex partition V,, , UV, ; U..UV,, ,,, where V, ; isaclique, V', ; isan
independent set foralli € [m]and G, . is complete between every distinct V,,; and V', ;. Define
VoUV;U...uV, analogously for G, ,. S

[Vpil =x,;n+01) and [|V;|=xn+0(1) foralli>O0. (2.2)

Choose an ordering of the vertices of G, , so thatavertexu € V,; comes before a vertexv € V,, ;
if 1 <i< j;orifi#0and j=0.Choose an analogous ordering for V(G,, ,). Note the following
trivial equality:

oV AVl =V, Ao ' (V, )l forall i,jeN,. (2.3)
We first show that for each vertex part V,, ; which is not too small, there is a unique part V; such
that o maps most of V,, ; to Vi. Giveni €{0,1,...,m}and j € {0, 1, ..., ¢}, we say that i is j-good

iflo(V;)) AV, <en/a.

Claim 2.4. Let A :={i € [m] : |V, ;| > en/2}. Then there exists B C [¢] with |A| = |B| and a
bijection u : A — B such that, for every i € A, we have that i is j-good if and only if j = u(i).

Proof. Leti € A. Note first that i is not 0-good. Indeed, this follows from

. VaonvVv, .
(en/127 > A\ Gy, » Gpx) > ('G( o) ')

2

So, ZjeN lo(V) NVl =1V,;l —1o(Ve) NV, ;| > en/4. Suppose now that i is not j-good for
any j € [£]. Then since G, »[V;] and G, [V, ;] are empty graphs, and both G, , and G, . are
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complete partite graphs,

|EGpx,) AEGG, N = D 1o(V) AVl -1o(V)nV,,|

jen

>en/4- Y o(V)NV,;| > (en/4Y,

=

a contradiction. Thus, there is some j; € N for which i is j;-good. We claim that we can set u(i) :=
ji and B :={u(i) : i € A}. We first show that this is well defined, that is, j; is unique. Fix an
arbitrary j € [#] \ {j;}. Since o is a permutation, o(V ;1) N o(V j;) = @, and therefore,

lo(Vi) AVl 2 1o(Vi)n Vil 2 [Vl = 1o(V;) AV, >en/4,

that is, i is not j’-good. It remains to show that y is injective, that is, that if i’ € A \ {i}, we have
that i’ is not j;-good. By (2.3), it suffices to show that v, AN ] 1(Vn )| = en/4. Since o' is a
permutation, o~ (V. ;) no~*(V,,;) = @, and therefore, |Vi ANa V0l 2 IV, no WVl >
en/4 as desired, where the last inequality follows from i being j;-good and (2.3). This completes
the proof of the claim. O

We are now ready to prove the desired conclusion thatforalli € N, |x,,; — x;| < €. Suppose that
this is not true, and let k be the smallest integer i such that |x, ; — x;| > €. Assume that x,, , >
X, + € (the other case can be handled s1m11ar1y) In particular, recalhng (2.2), |Vn Kl =¢en/2,and
so [k] C A.Since x; > X, > ...and x,,; > X,,, > ..., we have for all 1 <i < k < i’ that, neglecting
O(1/n) error terms, x,,; > X, > X +€ > Xy +¢€, 80 |V, ;| > |V | +en/2. Thus, for all positive
integers i < k, we must have u(i) < k. In other words, u([k]) C [k — 1], which contradicts u being
a bijection. This completes the proof of the lemma. O

Remark 1. Lemma 3.8 in [2] proves that if x,,x € P are such that X, — X pointwise, then the
corresponding graphons Q, converge to Q,; that is, all the p(F, an) converge to p(F, Qy).

Lemma 2.5. The space P and distance Sqqit have the following properties.

(i) The space (P, 8.4;,) is a compact metric space. _
(ii) The set of complete partite graphs P is dense in (P, 8.4;()- _
(iii) The function A can be extended to a continuous function on the whole of P, namely by defining

Ax) :=lim,_ A(G,,), forxeP.

Proof. We begin with (i). From the definitions, it is clear that 8.4;,(x, ¥) = 8.4;:(y,x) forallx, y €
P. By Lemma 2.1(iii), & «dit defined on P satisfies the triangle inequality. Finally, by definition,

Seait(X, ¥) = 0 if and only if x = y. So, (P, .4y, is a metric space. To show that it is compact,
Proposition 2.3 implies that it suffices to show that Pis compact under the topology of pointwise
convergence. For this, let (x,), be an infinite sequence of elements of 7. Then we can define
its accumulation point y iteratively as follows. Initially, let i = 0. By passing to a subsequence
of (x,),, we may assume that (x,;,;), converges to some y; ; € R. If y; ., = 0, then stop and
output y := (¥;,..-,¥;,0,0,...). Otherwise, increase i by one and continue. If the iteration does
not terminate, output y := (y;, ¥, ...)- One can easily see that y is indeed an accumulation point
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of (x,,),,, completing the proof of (i). Alternatively, the compactness of P follows from observing
that P is a closed subset of the compact space [0, 1]V.

Part (ii) immediately follows since for every x € P, the sequence (Gppx)n of complete partite
graphs converges in edit distance to x. Indeed, for each n € N, we have that Xg, . € P, and the
definitions imply that X, . converges pointwise to x. By Proposition 2.3, it also converges in
edit distance. ’

Itremains to prove (iii). Recall that we fixed a functiony : G, — Randforalln € NandG € G,
we defined A(G) as in (1.1). Let ¥, := max{|y(F)| : F € G;} (which exists since the domain of
y is finite for fixed k). Let n € N, let G € G,, and let xy be a pair in V(G). Then

-1 n=2y 2J/max ) k -
IA(G) = AG & xy)l < <Z) Y @GIXD - (G & xyIXD] < -y e (2)3
xe(" () ()

x,yeX
Therefore, using the triangle inequality, we have for any G, H € G, that

k

14(G) — A(H)| < 2<2

>ymax .8,(G,H)+0(1/n) < 6<§>ymax .G H) +O(L/n),  (2.4)

where the final inequality follows from Lemma 2.1(i). Thus

k

14Gn) = 4Gyl <6 §

)ymax : 5edit(Gn,x’ Gn,y) + O(l/n)’

and by (i) we have that the function 4 : P-o>R given by A(x) :=lim,_  A(G,,) is well defined
for all x € P and is continuous with respect to 8,;;. O

Note that the extension in Part (iii) of Lemma 2.5 is unique since P is dense in P.

The lemma implies that A, :=lim,_  A(n) defined in the introduction can equivalently
be defined as 1,,,,, := max{A(x) : x € P}. Moreover, for every X = (X, X,,...) € P, we have that
A(x) has the following analytic formula. Let w,, ..., w; be independent samples from Q, which is
the probability space on N, := {0, 1, 2, ...} where the probability of i is x;. Let the random sample

G(x, k) be equal to
WLy @f o _ [k] {] : w; = l}>
G = ([k],( : )\(U( . ))

which is the complete graph on [k] except we do not connect two distinct indices j, h € [k]ifw; =
wy, # 0. One can show using the Chernoff bound and the Borel-Cantelli lemma that (G(x, n)),,
converges to x in P with probability 1 (see, e.g. the more general Proposition 11.32 in [26]). Clearly,
we have that

A(x) = E(¥(G(x, k))).
We let OPT consist of all maximisers x € P, that is,

OPT = OPT(A) :={x € P : A(x) > A(y)forally e P} ={x € P : A(x) = A} # B
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The non-emptiness assertion follows from Lemma 2.5(i) and (iii). Let us see why the forward inclu-
sion of the third equality is true. Take any x € P with A(x) > A(y) for all y € P. For each n € N,
since A is symmetrisable, there is a complete partite graph F, on n vertices such that A(F,,) = A(n).
Lety, :=xp .Foranyx € P, we have A(G, x) < A(F,) = A(n). By passing to a subsequence we
may assume that y,, converges to some y € P. Then A(x) < A(y) = lim;_,  A(n;) = A« Thus,
we must have A(x) = A, as desired.

This definition of OPT is equivalent to the one in the introduction. Indeed, let a = (a;, a,, ...) €
P be such that there exists a sequence (H,,),, of complete partite graphs such that, asn — oo, we
have v(H,) — o0, A(H,)) = A, and for every i > 1, the number of Vertlces in the ith largest part
of H, is (a; + o(1))v(H,,). Then Xy, —a and A(a) = lim,,_, , A(H,) = Ay, as required. On the
other hand, let x € P be such that A(x) = A,,.. Then (G, is the required sequence of graphs.

2.3 | Polynomials

We will be interested in various functions on 5, in particular the extension of A from the family
of complete partite graphs to P. For these, we introduce a notion of polynomial on 7 which will
help us prove that functions related to 4 are continuous.

Let=(d) :={(d;,...,d;) EN' : t € Ny and d; + --- + d; = d} be the set of ordered tuples of pos-
itive integers summing to d. Let S(x) :=1landfort e Nandd :=(dy, ...,d;) € Z(d), define an
elementary symmetric polynomial Sy : {x € RN : ||x|; < oo} = R by

Sdy..d, (%) 1= Z Hx (2.5)

Sq(x) =

Since Y gistinct 1 j=1 |x % <Xy |x;1)¢ < o0, each Sy(x) converges absolutely.
11 ..... ltGN

We say that a function p : P — R is a P-polynomial if it can be written as a finite polyno-
mial of Sfi(x) 1= Sy(x!) for I C N, where x! € P is obtained from x by removing every x; with
i € I and moving back remaining entries to fill in the ‘gaps’. (Thus, S"i(x) is defined by the ver-
sion of (2.5) where the sum is restricted to indices not in I.) So, for example, x, = S (x) — S; (%),
x; = S1(x) — Sii}(x) forieNandx; + X3+ x5+ x;+ -+ = Sf'N(x) are P-polynomials, while x, +
2x, + 3x3 + --- is not. Given any 5—polynomial D, there is a finite partition N = I, U ... U I such
that p(x,, X,,...) = p(J}, ¥, ...) Where y is any element of P obtained from x by permuting indices
within each part I;. Indeed, one can obtain I, ..., I, by grouping together indices that belong to
exactly the same sets I in the definition of p.

Take any m € Nand d = (d,, ..., d,) € N'. Consider - (Sd(x’) Sq(x)) where, for alli > 1, we
have xlf = X;, except X/ = X, + h, and let h — 0. Apply the binomial expansion to each (x,, +
h)%. As all series converge absolutely, we can change the order of summation and collect the
same powers of 1. We obtain

Su6) = S4(%) _ 5 (1.
il Tm@xe)”

distinct
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where & is an error term satisfying |5| < h - 2%. So, we can define partial derivatives 22 for i =

ox;
1,2, ...viaterm-by-t erm dlfferentlatlon Also,if p = s(S; : d € NX)where sis a finite polynomial,
then define :7" = a s . Thus, we can define partial derivatives of any P- -polynomial, and each
0 1

such derivative is itself a P-polynomial. For a complete partite graph G on n vertices with parts
Vi,...,V,, of size at least 2 and clique part V), define for ] C N

! L\ . Vi, |+ 0\ Y
o= (;) S () = 3 ()
SIS

distinct 1)<t distinct
i1 €[mMIN\T i1 €[m\I

(2.6)

and let S4(G) := S?(G). So SQ(G) is equal to Syz(G') up to a scaling factor, where G! := G —
Uie[mJnI Vi-

Lemma 2.6. Let d be an integer and letd = (d;, ... ,d;) € 2(d). Then

(i) Sgq is uniformly continuous on (P, 8.4i0)- _
(ii) Each P-polynomial is uniformly continuous on (P, 8eg;)-
(iii) Forall x € P, we have S3(x) = lim,_, , S4(G, ;).

Proof. We start with (i). By Proposition 2.3, convergence in edit distance and pointwise conver-
gence induce the same topology on 7. By Lemma 2.5(i), P is compact. Therefore, it suffices to
show that each Sy is continuous under pointwise convergence, which is, for example, given by
the metric d(x,y) := X, 2~ {|x; — y;|. For this, let ¢ > 0 and let § = 273¢/¢, Let x,y € P sat-
isfy d(x, y) < 8. Choose M = [log,(6~'/2)] (so 1/M s/(4d)) and let x’ = (xy,..., X, 0, ...) and

Y =01 ¥10,..). Thend(x,x') = 3, ;, 27" x; \/_ 5.50,d(x',y") < 3\/5. Moreover,
Sq(x) — Sq(x') = Z Z xfissd(s)(x(i)) Sty <d/M <e/4,
1<s<t i>M

where d®) = dy,....dy_1,dg 1505 d )andx(l) = (X5 ey Xj_1, Xj4 1, -.). Similarly, Sq(y) — Sg(y) <
¢/4. Now, S;z(x') is a polynomial in at most M variables. For each 1 <i<M+1, let z; :=
(155 X1, Yi> Yig1s - > Ym0, ...). Then

M

1S4 = Sq)] = 1Sa(z1) = Sa@ars)] < Y, 1Sa(Zi11) = Sa(@)-
i=1

Now
d, d i
Sa®in1) = Sa@) = Y (& —¥)S 10 @) = pix) — p(y).
1<s<t

where we view p; as a polynomial in one variable. Thus, p; is Lipschitz with constant at most
max,eo 1 |pj(2)| < dy + -+ +d, = d. So, |p;(x;) — p;(¥))| < dlx; — y;|. Thus,

M
1S4(0) = Sq) < €/2+d Y 1x; = yil < /2 +d2Md(x, y) < £/2+ V6 < 2¢/3,
i=1

completing the proof of (i).
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Now (ii) follows immediately since every S, is bounded, and sums and products of bounded
uniformly continuous functions are uniformly continuous. For (iii), fix x € P.In G, - Writing
V' for the ith part, we have each (|V'| + O(1))/n — x; asn — o0, s0 as S, is continuous, we have
Sd(Gn,x) - Sd(x)' O

3 | STRICTNESS AND A RESTATEMENT OF THE MAIN RESULT

In this section, we will finally define what it means for 4 to be ‘strict’. Very roughly speaking,
it means that when an elementary change is made to a complete partite graph on which 1 is
maximised, the decrease in 4 is as much as it possibly could be. An ‘elementary change’ is either
‘flipping a pair’ (changing a non-edge to an edge or vice versa); or adding a vertex which is either
adjacent to every vertex in a part, or to no vertex in a part. It seems that it is more convenient to
state this property in terms of limits rather than graphs (which is why the definition is deferred
until now). We will first make the relevant definition and then discuss it further.

3.1 | Definitions and notation

Definition 4 (Vl.‘l'l.zl and v, a/l). Given an n-vertex graph G = (V, E) and a pair x, y of vertices of
G, define
. 1
ny/I(G) 1= ﬁ(A(G) — A(G & xy)).
k—2
Given x € P and i}, i, € supp*(x), define
V{l-iz/l(x) = nh_)l’lgo V;Ivzﬂ(Gn,x),

where vy, v, are distinct vertices of the vertex classes V; and V;, of G, , respectively.
Foralli € Ny, we define e, to be the functione; : N — {0, 1} with ¢;(j) = Oifand onlyif j =i (so
eg=1). Letb : N — {0,1} and a € [0, 1]. We write G +, , u for the graph obtained from G with

P-structure Vo, V1,...,V,, by adding a new vertex u and, for i > 1, adding every edge between u
and V; if b(i) = 1, and no edges otherwise; and adding |«|V || edges between u and V,,. Define

. 1 1
Vi MG) 1= i (AG o1 1) = AG +p 0 1)) = ——~(AG ¢, 1 1) = A(G + 0 ),

) ()
where u & V(G), and let
Vi AX) 1= V}ergo VoA (Gpy) and  Alx, (b)) := nh_)ngo MGy +p o UsU).
By convention, take a = 1 if x, = 0 (when Vj = @).

Given k, € Ny and a tuple k = (kq, ..., k;) of positive integers, define the graph G,Iz(’ as follows.

Let G,Iio be the complete partite graph with ¢ parts Uy, ..., U, of size k, ..., k;, respectively, together
with an additional k, singletons x1, ..., x; , whose union is denoted by U,,.
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Both limits in Definition 4 exist and each A,V;l'iz/l, Vl'),al, A(-,(b,a)) is a 5-polynomial.
Indeed, since each G,, is a complete partite graph (with parts VI, V", ..), the quantities
AGyx): Vi, MG x) and V; A(G, ) are finite polynomials in variables |V”| and SZ 4(Gnx) for
d e X(d) Wlth d<kandI C N Indeed, for 4, we need only I = @&; for Vi /1 we could take
only I = @,{v;},{v,}, {v;,0,} and their complements, and for v, A= @ supp(b) and their

complements. Thus, by Lemma 2.6, Vl.liz/l and V b’a/l are P- polynomlals.

In fact, one can explicitly write these polynomials. For positive integers b, > ... > b,, let
sym(by, ..., b,) be the number of permutations of [r] that keep the sequence (b, ..., b,) unchanged.
In other words, if we take iy :=1 < 11 <..<ig <r+1=tig, such that b; = by if and only
if there is j € [g] such that i <1, i’ < ij, then sym(by, ... b 2 = (i; —ig)! . (lqul q)' Also,
write (h,fnts) i=t1(t! ... t,))"! when Zz=1 t; = t. Consider p(K, . ,-), Which is one instance
of 1, where a,, ..., a, are in non-increasing order, and let t € [#] be the largest integer such that
aj,...,a; = 2. Then we have the following analytic formula:

<a1+~~~+a/)

£—t
p(Kal ..... ag’ ) l)(I<a1 ag? Qx) = < >x(S) . Sal .... ay (x). (3.1)

...,af) 0<s<t—1

Using (3.1), one can write Vl.“l.z/l and V; 1as P-polynomials.
1 5
The next proposition gives that for all x € OPT, V; | A(x) = 0 for all i € supp*(x), which cor-
responds to saying that every vertex in the realisation of an optimal x contributes optimally to 4.
Thus,

v, AXx) = A(x) — Ax, (b,a)) forall (b,a)and x € OPT.

Proposition 3.1. Define k and A as in (1.1). The following hold for all x € P.
(i) Foralli € supp*(x), we have ‘M(x) = Ax, (e;, 1)).

(ii) Ifin addition x € OPT, then for alll € supp*(x), we have ! a’l(x) = A(x).
(ili) The following pairs differ by O(1/n) as n — oo: {Amax,/l(n)} {A(x), A(G, )} and
{A(Gy, x> U), Apax s the last pair for x € OPT and u € V(G,, ).

Proof. The equality in (i) can be checked directly.

For (ii), the theory of Lagrange multipliers implies that, for all i, j € supp*(x), we have M(x ) =

aa’l—)(cx?. Indeed, if we fix the rest of x apart from x;, x s fixs=x;+x § and vary x;, x s then we can
J

view 4 as a polynomial in x;, x; (of degree at most k). Introducing a new variable y, the Lagrangian

is L(x;,x /x) = Ax) — u(x; + Xj— s5). The stationary points of £ occur when (M ;xﬁ , gi

(0,0,0), that is, when ag(x) u= Mx) — u, as required. Since 4 is a P—polynomlal with each

monomial having total degree k, we have for all i € supp*(x) that

oA(x) oA(x)
ax, | &4 Ox;

1 j>0

=k Ax),

giving the required.
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Let us turn to Part (iii). The inequality |4,,x — A(n)| = O(1/n) follows from a standard blow-
up trick, see, for example, [32 Lemma 2.2]. The claim for the second pair follows from the fact
that each named function on P is a P- -polynomial, a finite polynomial of Sd(GI ) terms, so the
error bound comes from (2.6) when applied to G,, .. For the last claim of Part (iii), a version of (2.6)
implies that |4(G,, ., u) — l a’l(x)

the required. L]

| =0(1/n) where u is in the ith part of G, .. Then Part (ii) gives

Corollary 3.2. Foreverys > 0, there exists § > 0 such for all x, y € P with 8.4;,(x, y) < 8, we have
AG¥) = A1, 1V}, () = V; D], 1A, (b, @) = Ay, (b, a))] <€
forallb : N—{0,1}and0< a < 1, and
Vi AG) = Vi Al <
foralli,,i, € supp™(x) N supp*(y).

Proof. We have seen that each function 4, Vi‘l'izﬂ., V,‘mﬂ., A, (b,a))isa 5-p01ynomial with degree
at most k and with coefficients whose absolute values are bounded. Thus, Lemma 2.6 implies
that the family of 4, Vl.'l'l.le, V;)’a/l,/l(-, (b,)) over all iy,i,,b, a is uniformly equicontinuous, as
required. ]

The following crucial definition of the strictness property of a function A requires that both
Vl.'l'iZ/l and V; A are bounded from below whenever (b, ) is not close to some (e;, 1). Roughly
speaking, this means that A is sensitive to small alterations in a graph.

Definition 5 (Strictness). We say that A is strict (with parameter c) if there is ¢ = ¢(4) > 0 such
that for each x € OPT, we have

(Strl) Vi'l'iz/l(x) > cforalli, i, € supp*(x),
(Str2) Vl'm/l(x) > c((1 — a)xp + minjegyppe(x) W;), Where

wi = ﬂi>0bixi + Z (1—bj)xj
Jjesupp*()\{0,i}

In the next two subsections, we will motivate these definitions, which appear somewhat
complicated at first sight.

311 | Vi']'iz/l: Flipping a pair of vertices

Take a complete partite graph G of large order n such that A(G) ~ 1,,,, and let G’ = G @ xy be
obtained by flipping the adjacency of an arbitrary pair xy € ( ‘2/) Then the number of vertex sub-

sets of size k which contain both x and y is (Z:;), so in the worst case, y decreases by a constant

for all such subsets, and thus A decreases by Q((Z:;) /(})) = Q@1/n?). Property (Strl) says that
this worst-case behaviour is realised for every ‘wrong’ pair xy.
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Observe that

that is, we look at the conditional expectation of the change in A if we flip the pair {1,2} in a
random sample G(x, k) conditioned on w; = i; and w, = i,.

312 | V; A:Adding a new vertex
,a

Again consider a complete partite graph G of large order n such that A(G) ~ 1,,,, and obtain a
graph G’ from G by adding a new vertex u which, for each part of G, either connects to all or
none of its vertices (here we are thinking of V), if it exists, as consisting of |V,| singleton parts).
If the attachment of u mirrors an existing vertex, then its contribution to 4 is approximately A,
(and G’ is the same as G in the limit). But, if not, as u lies in (kf 1) subsets, in the worst case,

A decreases by Q((,",)/ ("'kH)) = Q(1/n). Property (Str2) says that this worst-case behaviour is
realised for every u with ‘wrong’ attachment.

Suppose that G, , has P-structure V,, V5, ..., V(n)- Then, for 0 < i < m(n), let W; be the min-
imum number of edits needed to move the vertex u in G, . +; o, u into the ith part. So, each W;
being large corresponds to u being attached in an atypical manner, and some W; small means that
u behaves like an existing vertex. It is not hard to show thatlim, , W;/n = w; + (1 — a)x,, and,
of course, if b = e¢; and « = 1, then w; + (1 — a)x, = 0 (since no edits are needed to move u to the
ith part). So (Str2) requires that, whenever n is large, the contribution to 1 lost by a vertex u in
G, tbo uis asignificant fraction of the number of edits needed to fit u into G, .

Observe that (using Proposition 3.1 and the remark immediately before it)

Vl'm/l(x) :=E,

Lo @p A0 LAAEX A W,

where G171 +p.o U is the random graph obtained by adding u to G(x, k — 1) with ui an edge

when w; # 0 if and only if b(w;) = 1, and ui an edge when w; = 0 with probability «.

3.2 | Main result
We are now ready to precisely state the ‘limit version’ of our main result.

Theorem 3.3. Let k be a positive integer and lety : G, — R. Define A : G — R by setting A(G) :=

(Z)_l ZXG(V) y(G[X]) forall G € G, and n € N, and let A(n) := max;c; A(G). Suppose that A is
k n

symmetrisable and |OPT(1)| < oco. Then A has perfect stability if it is strict.

The following corollary states that strict symmetrisable functions exhibit classical stability, in
the sense that any sufficiently large graph which is sufficiently close to being optimal can be edited
by changing an arbitrarily small fraction of its adjacencies to obtain a complete partite graph with
the correct part sizes.
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Corollary 3.4. Define k and 1 as in (1.1) and suppose that they satisfy the assumptions in Theo-
rem 3.3, and suppose further that A is strict. Then for all € > 0, there exist 8, ny > 0 such that for every
graph G of order n > ng for which A(G) > A, — 0, there is x € OPT(A) for which 64;,(G,x) < e.

Proof. Let ¢ = c¢(1) > 0 be such that A is strict with parameter c. Apply Theorem 3.3 to obtain C
such that A is perfectly stable with constant C. Suppose that the statement does not hold. Then
there is a sequence of counterexamples (G,), with v,, := v(G,) — oo such that A(G,,) > A —
1/n but 6.4;:(G,,x) > ¢ for all x € OPT. By taking a subsequence if necessary, we may assume
that each v, > n. Let n be sufficiently large. By Theorem 3.3, there is some H,, € P, for which

8,(G,,H,)/C < A(v,) — A(G,) < A(V,) = Ay + O(1/v,) < O(1/n),
where we used Proposition 3.1(iii). But then by (2.4),

k

AMH,) = AG,) — 2<2

>ymax51 (Gn’H”) - O(l/vn) 2 ﬂ'max - O(l/l’l)(l +2C <I§> > .

So, writing x,, := xy , and taking a subsequence if necessary, we see that x, - x € OPT. But
then, when 7 is sufficiently large, using Lemma 2.1,

5edit(Gn9x) < aedit(Gn’Hn) + aedit(xn’x) < Sl(Gn’Hn) + 5edit(xn’x) <§,

a contradiction. O

4 | FINITELY MANY MAXIMISERS

We will need the following result which states that if the limit problem has finitely many
optimisers, then all non-zero entries in them are separated from 0 by some constant 8 > 0.

Lemma 4.1. If|OPT| < oo, then thereis 3 > 0 such that OPT C 55.

The rest of the section is dedicated to proving Lemma 4.1. Our proof is an adaptation of the proof
of Glebov, Grzesik, Klimosova and Kral’ [14] who, in particular, worked on the finite forcibility of
graphons which are a countable union of cliques. Recall notions related to graphons in Section 2.1.
A graphon Q is finitely forcible if there are finitely many graphs F, ..., F, such that for every
graphon Q', if p(F;, Q) = p(F;,Q") for all i € [£], then Q and Q' are weakly isomorphic.

Firstly, we need the following result which is Lemma 11 in [14] (except it is obtained by
complementing all graphs and using our language of partite limits).

Lemma 4.2. IfOPT = {x} consists of a single element x, then thereis ¢, (in fact, we can take £, = k
where k is as in the definition of A) such that, for any y € P with y, = x,, if p(K;, x) = p(K;, y) for
every2 <i<?y theny=x.

Proof. Our x corresponds to a graphon Q,,. The fact that x is the unique element of OPT is equiv-
alent to saying that the equations p(P;, Q) = 0 (the induced density of triples spanning exactly
one edge) and A(Q) = 1, force Q to be Q,. up to weak isomorphism in the space of graphons.
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In particular, Q, is finitely forcible. The constraint p(P_3, Q) =0 forces Q € Q (i.e. to be a com-
plete partite graphon) and thus automatically forces p(F, Q) = 0 for every graph F which is not
complete partite, so we can ignore all such induced densities.

Thus, the equation A(Q) = 4,,,, can be viewed as involving only induced densities of complete
partite graphs on at most k vertices. We claim that it can be equivalently rewritten as some poly-
nomial in x, and induced densities of independent sets of size at most k. Then, supposing that
the claim is true, if Q,, € Q has y, = x,, and the same induced densities of K,,...,K, as Q,, then
Q,, and Q,, are weakly isomorphic and thus y = x.

It remains to prove the claim. For this, it suffices to prove that for any complete partite graph
F =K, o withvertex set [k] and with ¢ parts, for all x € P, we have that p(F,Q,) is some
polynomial of x, and p(K,, Q,), ..., p(Ky, Q). The claim is clear for # = 1 so assume 2 < # < k.
Assume that a,, ..., a, are in non-increasing order, and let t € [£] be the largest integer such that
a;, ..., a; > 2. Recall the analytic formula (3.1) for p(F, Q,). We have

S a{.(x) S (x)Sa2 af(x) Sa1+a2 as a/(x) a2 a;+ay ag(x) -

....................

(4.1)

and for every a > 2, we have p(Ka, Q,) = S (x). The claim now follows by induction on 7. Indeed,
every Sy a, (x) can be expressed as a polynomial of S, (x) for 2 < a < k, by (4.1) and induction,

as required. O
We need the following easy generalisation of Lemma 4.2.

Lemma 4.3. If OPT is finite, then there is £, such that, for every x € OPT and every y € P with
Yo = Xo, if x and y have the same induced density of K; forevery 1 < i < ¢, then'y = x.

Proof. For every pair z,z’ € OPT, there is some graph F such that p(F,z) # p(F,z’). Indeed,
since z # Z, their graphons Q,, Q. are not weakly isomorphic and thus have a different induced
density of some graph F. Of course, this F has to be complete partite (otherwise its induced density
in both z and Z’ is zero). Let Fy, ..., F,, be all such graphs F where m < ('OPTl) Let £, :=k +
2maX;g[,) U(F;). Now let x and y be as in the lemma.

Consider the new optimisation problem where we maximise

V(z) := A=) — Y (p(F;,2) — p(F;, %))*.

i=1

Again, as in the proof of Lemma 4.2, 1’ can be written as a polynomial of x,, and induced densities
of anticliques on at most #,, vertices. Also, clearly, x is the unique element of OPT(1"). Apply
Lemma 4.2 to OPT(1) = {x}. O

Proofof Lemma 4.1. Let £, be as in Lemma 4.3. It is enough to show that, for every x € OPT, there
are at most m : = ¢, distinct non-zero values among x;, X,, ... (then since |OPT| < oo, the lemma
trivially follows).

Suppose on the contrary that x; , ..., x;, ., are all positive and distinct for some 1 <i; < ... <

im41- Without loss of generality, assume that these are the smallest such indices we could have
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chosen. Consider unknown variables y; ,...,y;  andsety; :=x; for every otheri > 1. We geta
contradiction to our choice of 7 if we show that there is a choice of y; , ..., y; . > 0such that

m+1 m+1
Z yd = 2 x4, foreveryd =1,..,m, (4.2)
]=1 J j=1 J

but the reordering y’ of y (so that y' >y’ > ... and y] = y,) is not equal to x. (Indeed, then
¥ € P by the case d = 1 of (4.2) and it satisfies p(K,,y') = p(K;,x) for every d = 2, ..., £, by
the corresponding case of (4.2).)

Consider the map g : R”™ X R — R which sends (z,, ..., Z,,,1) to (Z;":ll zﬁl (’1”21. The Jacobian
of g(-, ximﬂ) : R™ — R™, which sends z € R™ to ¢(z, ximﬂ), has non-zero determinant at z, :=
(xi1 yorss Xg ). Indeed, the (s, )-entry of the Jacobian at (z,, ..., z,,) is szf‘l, so if we divide its sth row
by s, we obtain the Vandermonde matrix of z;, ..., z,,, s0 its determinant is m! [ ], s ., (2s — 2,)
which is non-zero at z = z,,.

Thus, the Jacobian of g(-, ximﬂ) isinvertible. By the Implicit Function Theorem, for every choice
of y; ., sufficiently closetox; ., thereisa continuous choice of (y;,...,y; )closeto (x;,...,x; )
satisfying (4.2). Choose such a Yi,,, hot equal to any x; and such that y; ,...,y; ~are all pos-
itive. Then the reordering y’ of the obtained sequence y is not equal to x, giving the desired
contradiction. O

5 | THE PROOF OF THEOREM 3.3

In the first part of the proof, we find a suitable ‘hypothetical counterexample’ H on h vertices
(Claim 5.2). This means that H is very close to being optimal (A(H) is almost as large as A(h)), but
it is comparatively far from being complete partite (though it is important that H is not too far
from being complete partite, and also that H is very large). Using (Syml), given a candidate for H
which has too many imperfections, we can incrementally symmetrise it until this is no longer the
case, and without decreasing A.

In the second part of the proof (Claim 5.3), we use the strictness of 4 to obtain a contradiction.
We compare H with the graph H’ obtained by removing all imperfections (roughly speaking H’
is the closest complete partite graph to H). The ratios of part sizes of H’ are necessarily close to
some x € OPT. The contradiction will come from the fact that A(H") — A(H) is too large (which
implies that H is actually far from optimal). We would like to argue that A(H) — A(H’) can be
approximated looking at each wrong paire € W := E(H) /\ E(H') separately and summing its
contribution to the function. This need not be true if e is incident to many other wrong pairs, so
instead, we consider two families of wrong pairs: those incident to vertices in B, which are those
with high degree in W, and the collection E’ of remaining wrong pairs. The fact that each e € E’
has a large contribution to A(H) — A(H") will follow from (Strl): namely that Vlfl'l.z/l(x) is large,
where i, i, are the indices of the parts where e lies. The fact that the edges incident to eachv € B
have a large contribution to A(H) — A(H’) is slightly more involved. For this we use (Sym2) to
symmetrise the neighbourhood of v, and, depending on the attachment of v in the resulting graph,
the required conclusion will follow from (Strl) (if it is ‘canonical’) and (Str2) (otherwise).

The following lemma will be useful when comparing 1 evaluated on a complete partite graph
with A evaluated on the same graph with a few imperfections.
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Lemma 5.1. Letc > 0and lety : G, — R be fixed. Let H,H' be graphs on the same vertex set of
size h, where h is large and H' € P has P-structure Vy,V1,...,V,,. Write R := E(H) /\ E(H") and
given x € V(H'), write p(x) for the index of the part of H' containing x. Define

go = k2|R|C/h2, gl = ZYman4|R|2/h4’ 52 = ZYmanislA(R)/h3'

Then A(H') — A(H) is

(i) atleast&éy/2—& —¢&, ifV;)‘(x)p(y)/l(xH,) >cforallxy € R;
(ii) atleast&,/2—&, ifV;)‘(x)p(y)/l(xH/) > cforall xy € Rand R is a star;

(iii) atmost &y + &, + &, ifV;J'(x)p(y)/l(xH,) <cforallxy € R.

Proof. Write S := A(H') — A(H) = (:)‘1 Te()VEH'IX]) = y(HIX]) and

-1
Sy = <Z> > Y E'[X]) - y(H & xy)X])

xy€R Xe(‘;):{x,y}gX

(i2) © o , )
(h)2 yze:R Viopoy A HD) = (_h) yZeR (Vp(x)p<y>/1(xHr) + o(1)>.
k) x 5) X

h . vy . X
Then (k)|S — 511 < Xxer, 2Vmax Where I 1= {X € (k) S IRN (2)| > 2}. The number of X that
contain two disjoint pairs from R is at most |R|? - (Z:i) . The number of X containing two adjacent
pairs from R is at most |R| - A(R) - (Z:;) So,

Il REGE) +HIRIABGT) RPE | [RIARK
() ;) N
k k

All three parts follow immediately, noting for (ii) that when R is a star, it has no disjoint pairs. []
‘We now have all the tools in place to prove our main theorem.

Proof of Theorem 3.3. Let 1 be a symmetrisable graph parameter asin (1.1). Note that 4 is not identi-
cally O (otherwise OPT is infinite). Lemma 4.1 implies that there exists 8 > 0 such that OPT C 55.
So, |supp(x)| <1/ for all x € OPT.

Suppose that A is strict with parameter ¢ > 0. Without loss of generality, we may assume that
¢ < B,1/¥max- 1/k. We want to show that there exists a constant C > 0 such that for every graph
G on at least 1/C vertices, there exists a complete partite graph H on the same vertex set such
that §,(G, H) < C(A(v(G)) — A(G)). Suppose that this is false. That is, there exists a sequence of
counterexamples (G,,), withv, :=v(G,) — oo, such that

1>d, :=8,(G,, P, ) > n(A(v,) —A(G,)), so (51)
@) > 4G > Avy) - 5, (52)

and thus, 4(G,,) — A(v,)) — 0.
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Using the graphs G,,, we now find a large graph H which is almost optimal and has a small but
comparatively large number of imperfections.

Claim 5.2. For all ¢ > 0, there exists ¢ > 0 such that the following holds. For all N > 0, there exist
x € OPT and agraph H on vertexset [h] such thath > N, §.4;(H, x) < 2¢and A(H) > A(h) — 1/N.
Further, 8.4;,(H, P),) > min{e’, N(A(h) — A(H))}.

Proof. We consider two cases depending on whether (d,,),, contains a subsequence converging to
0. If it does not, then our counterexamples are eventually always far from being complete partite.
In this case, we perform an additional step of symmetrising each G,, to obtain a graph which hasa
controlled number of imperfections; this number will be a small fraction of vfl. In the other case,
the counterexamples are becoming gradually more like complete partite graphs, so the number of
imperfections could be subquadratic (in v,,).

Case 1: (d,,),, does not contain a subsequence converging to 0.

In this case, there exists & > 0 such that d,, > £ for all sufficiently large n. Since we are free
to make ¢ and ¢ smaller, we may assume without loss of generality that £ = ¢. Further, we may
assume that d,, > e foralln € N.

Let V,, :=V(G,,). Property (Sym1) (applied with parameter ¢) implies that there exists n, =
ny(e) such that for each n > n,, we can find a sequence G,, , Gy, 1, --- » Gy m(n) Of graphs on v, such
that G, := Gy; G, := Gy, ) is complete partite; for alli € [m(n)], we have A(G,,;_;) < A(G,,);
and 6.4;(G,,;_1,Gn;) < 6,(G,;_1,G,;) <& By (5.2), we have for all 0 <i < m(n) that 1(v,) >
AG,,) = AG,) > A(v,) — 1/n.

Let y, := X . By choosing a convergent subsequence since (P, 84i) is compact, we may

assume that y, converges tosome y € P. But A(y,) = Anax. S0y € OPT by the continuity of 1. By
definition, 5edit(Gn,0’ OPT) > 5edit(Gn,0’PU") = dn > ¢ and 5edit(Gn,m(n)’ OPT) - 5edit(y7 OPT) =
0. Let ¢ be the largest element of [m(n)] such that §.4;(G,;, OPT) > ¢, and let J, := G, ;. By
increasing n,, we can assume that t < m(n). Then

5edit(‘]n’ OPT) < aedit(Gn,t’ Gn,t+1) + 5edit(Gn,t+1’ OPT) <2e.

Thatis, §.4;;(J,,, OPT) € [¢, 2¢]. Let x,, € OPT be such that &.4;,(J,,, X,,) = Segit(,,» OPT). We claim
that there exists ¢’ > 0 for which p,, := 8.4;(J,, P, ) > €’ for all sufficiently large n.

Indeed, if the claim is not true, then by passing to a subsequence, we may assume that p,, — 0.
For each n, pick a complete partite graph P, on v, vertices with §.4;(J,,, P,) = p,,. Letz, :=xp €
P be the sequence that encodes the part ratios of P,. We can pass to a subsequence of n such
that z,, converges to some z € P; then A(g) = lim,,_, . A(P,) = A, Thus, z € OPT. However, by
Lemma 2.1,

N 5edit(]n’ OPT) < 5edit(Jn’ Z) < 5edit(Jn’Pn) + 5edit(znv Z) <SPyt 0(1) -0,

a contradiction.

This ¢’ satisfies the lemma. Indeed, for any given N > 0, choose n > N sufficiently large so that
v, > N and 8¢4i(J,,, X,,) € [e, 2¢] and S45(J, P, ) > €’. Then we can set x :=x, and H :=J,
and h :=v,, since A(J,)) = A(v,) —1/n > A(h) — 1/N. The claim is proved in this case.

Case 2: (d,),, contains a subsequence (d, ); such thatd, — 0asi — oo.
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Assume without loss of generality that (d,),, — 0. Therefore, there exists a sequence (x,,),
with x, € P such that 8.4;,(G,,x,) — 0. By choosing a convergent subsequence of (x,),, we
may assume that the sequence itself converges to some x € P. Then for sufficiently large
1, 8eqit(Gp» X) < 844it(Gps X,,) + Seqit(X,,, ) — 0. Then the continuity of 4 with respect to &.g4;;
and (5.2) imply thatx € OPT. We can choose n sufficiently large so that, by (5.1), H : = G,, satisfies
all the required properties in Claim 5.2 (where, for concreteness, we let ¢’ := 1). This completes
the proof of the claim. O

Choose an additional constant 0 < 7 < c. Obtain ¢ > 0 by applying Corollary 3.2 with 7?2, 6¢
playing the roles of ¢, &, respectively. We may assume that ¢ <« 7. Claim 5.2 furnishes us with an
¢ > 0 which we may assume satisfies ¢’ < ¢. Now choose N € N such that 1/N < ¢’. We have
the following hierarchy:

0<1/N<éd <egn<c<pB, /Y 1/k. (5.3)

Apply Claim 5.2 to yield an x € OPT and a graph H on h > N vertices. Let us list some properties
of x (which will be all we need from now on):

(P1) m := |supp(x¥)| < 1/B.
(P3) Vi'l'l.z/l(x) > c for all i}, i, € supp*(x).
(P4) V; A(x) > c((1 = a)xg + mMin;egypps (x) W;), Where

w; = Ti50bi%; + X jesuppronjo,(1 — DX

forallb : N — {O_,l} and o € [0,1].

(P5) Whenever y € P satisfies J.4;(x,y) < 6¢ and supp*(y) = supp*(x) =: S, we have
that |f(x)— f(y)| <n* for all choices of i,i, €S, b:N—{0,1}, a€[0,1] and
f € {/L Vi.lciz/‘l’ /‘l(’ (b5 a))’ V;,al}

(P6) Oogip(x, H) < 2¢.

Properties (P1) and (P2) follow immediately from |OPT| < oo and Lemma 4.1. Proper-
ties (P3) and (P4) follow since 4 is strict with parameter c. Property (P5) follows from our choice of
€ and the fact from Corollary 3.2 that any f in this family of functions is uniformly equicontinuous.
Property (P6) is a direct consequence of Claim 5.2.

Let H be the family of h-vertex graphs with P-structure (V; : i € supp*(x)), that is, V,, (if it
exists) is a clique, V; is a non-empty independent set for all i € [m] = supp™(x) \ {0} and (V;, Vj)
is complete for every distinct i, j € supp*(x).

Among all graphs in 7, let H' be one whose edit distance 8.4;, to H is minimised, with 7-
structure (V; : i € supp*(x)) asabove, where V(H') = [h] = | J{V; : i € supp*(x)}. Define W :=
([h], E(H) /\ E(H")), and call the edges of W wrong. By the definition of H’, (P6) and Lemma 2.1,
we have that 8 4;,(H, H') < 8.4i:(H, x) + O(1/h) < 3¢. Consequently,e(W) = A, (H,H') < 3h?/2 -
Seqit(H, H') < 5¢h?. Let v be the vector of part ratios in H’, that is, v : = xp.

Then

(P6)
5edit(v, x) = 5edit(H,,x) < 5edit(H7H,) + 5edit(H’ x) < Se. (54)

Note that, by (P2), this implies v; = |V;|/h > c¢/2for alli € [m]. Call a vertex x bad if it is incident
to at least nh wrong pairs, that is, dy,(x) > nh. Let B consist of all bad vertices and B¢ = [h] \ B
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of all good (i.e. not bad) vertices. Let also E’ := E(W[B¢]) and ¢’ := |E’|. By definition of B and
that € < 7, we have

e/ <e(W)<5¢h? and |B| < ZeEhW) < Veh. (5.5)

For a vertex v of H’, let H' @ v denote the graph obtained from H’ by removing every edge con-
taining v and then for all y € [h] \ {v} adding the edge vy if and only if y € Ny (v). The heart of
the proof is the following claim.

Claim 5.3. The following statements hold.
(i) Segue(H', H) < 2(2L + 5).

(ii) Foreveryv € B, A(H')—A(H' ®v) >
(iif) ACH') = ACGH) > (2 + £,

kC7)3/2

We first see how this claim completes the proof of Theorem 3.3. We have by Claim 5.2 that

1 , |B| ® 77 ' 2
N > Ah) — A(H) > AH') - /1(H) < " + h2> z — 5 OeqitH', H) > edlt(H Py)
> %mln{s NQA(R) — AH))} (5.6)

If ¢ < N(A(h) — A(H)), then considering the first and last terms of (5.6) gives 1/N > n%¢’/2, a
contradiction to our choice of N (i.e. (5.3)). If instead ¢’ > N(A(h) — A(H)), then considering the
second and last terms of (5.6) gives 1 > 7°N /2, also a contradiction to our choice of N. Thus,
Theorem 3.3 holds given Claim 5.3.

Proof of Claim 5.3. For (i), we see that

. dy (V) + € ’
5edit(H,,H)<51(H/,H)< —ZDEBh‘Z)V/(z)—*— < % + %

For (ii), fix an arbitrary v € B, and let p(v) € supp*(x) be such thatv € V p(v)- Let H consist of
all graphs G on [h] = V(H") with G — v = H' — v and for each i € [m], either N;(v) 2 V; \ {v}or
Ns;)n (V; \ {v}) = @ (and with arbitrary attachment to V,,). That is, either v is adjacent to every
vertex or no vertices in each part V', ..., V,,. For brevity, let H := H' @ v.

Apply (Sym2) with parameter ¢ to H] at v to obtain a sequence of graphs H] =: Hy, H,,...,H, €
H,such that H; —v = H — v foralli € [r]; A(H;_;) < A(H,); and A‘l’(Hl-_l,Hl-) < e(h —1) for all
i € [r], where here for any two graphs J,J’ which differ only at a vertex v, we define A;’(J ,J)) to
be the minimum number of edits of pairs containing v to make J equal to J’.

By the definition of H, there are b : [m] — {0,1} and 0 < a < 1 such that b(i) = 1 ifNHr(v) 2
Vi\{v}and b(i) = 0if Ny (v) n (V; \ {v}) = @;and dyy (v, V) = a|V,|] (if Vo = @ weleta :=
1). We consider two cases depending on (b, @): in Case 1, the attachment of v in H, is very different
to any vertex in H' — v, and in Case 2, it is similar.

Case 1: At least one of the following holds: (a) x, > 0 and « < 1 —7/2; (b) |b~1(0)| > 2; (c)
X, =0and b~1(0) =
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‘We will first show that
h .
% (/I(H’) — /I(Hr)) > Vb’axl(x) - 3772. (5.7)

For this, let y be the vector of part ratios of H —v = H’ —v, that is, y; = |V;|/(h—1) if i €

{0, ey m} \ {P(U)} and yp(v) = (le(v)I - 1)/(h - 1)- Then Hr = (H, - U) +b,oc L= Gh—l,y +b,0£ v
and so

-1
=20 = - (1) T (D =(Gory +aa IXD)
Xe(k):Xav
n h—l)
- ’E; (AH',0) = UGy y +p,q 0,0))
k

= AV, ey 1)) = A, (b, @)) + O(1/h).

Now 84i(%, ¥), it (¥, V) < 5¢. So, we have

AW, €0 1) = A0 (B, @) 5 A, (e 1) — A, (b, @) — 207 = V3 AGx) — 217,

where the final equality follows from Proposition 3.1(i). This proves (5.7). Now,
’ ’ 57 k
A = 2H @ v) > AH) = A(H,) > (v A(x) =3 )

so to complete the proof of the claim, it suffices to show that V /1(x) > cn?/2 /2.

We will use the lower bound on V; /1(x) given by (P4), and that x; = 8> cforalli € supp™(x)
from (P2). Suppose first that (a) holds Slnce each term in the expression for w; is non-negative, we
have for all i € supp*(x) = {0, ..., m} that \ /1(x) c(l—a)xy=chn/2> cn3/ 2/2, as required.
Suppose secondly that (b) holds. Then for everyl € [m], eitherb; = 1orb; = 0forsome j € [m]\
{i}. So, w; > min¢,, x; > Bforall 0 < i < m, asrequired. Finally, if (c) holds X =0,b=(1,1,..),
supp*(x) = [m] and w =x; > f for all i € [m], as required.

Case 2: Either (a) x, = 0 and [b~1(0)| = 1, or (b) x, > 0, @ > 1 — /2, and |b~1(0)| < 1.
Notice that Cases 1 and 2 are the only possible outcomes (recalling that if x, = 0, then o = 1).
Forallogi<r,let
d;:= min AV(H;,(H -v)+, ;v),
Jjesupp*(x) f’

that is, the smallest number of edits at v needed to move v into some part in H;. Now, d, = dy, (V) >
nh. On the other hand, d, is comparatively small: if (a) holds, then d, = 0, and if (b) holds, then
d, < nh/2. So, we can choose the largest integer 0 < ¢t < r such that d; > nh, and let H* := H;
and d* :=d,. Let j* € supp*(x) be such that d* = AY(H,, H) where H := (H' —v) e, V- SO,
A(H*) > A(H' & v) and additionally

nh<d* <AV(H,,H; ) +d, <e(h—1)+nh < 2nh.

So, one must make between nh and 2nh edits to H* at v to move v to the j*th part,
and the (complete partite) graph obtained in this way is H. Since 8.4y (H,H’) h?/2 <
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A\(H,H') < h, we have by (5.4) that 8.4 (X7,X) < Geqit(H, H') + 8eqt(H', %) < 5¢ + 2/h < 6¢
Now, (P5) and (P3) imply that for each of the d* vertices u for which uv was flipped,
p(u)p(v)/l(x) n% > ¢/2. Lemma 5.1(ii) implies that A(H) — A(H*) >
k2d*c/2h? — 2y, k>(d*)?/h3. So,

AMH') = A(H' @ v) > A(H) — A(H*) + O(1/h) > k*1*/%c/3h,

as required for (ii).
For (iii), our task is to obtain a suitable lower bound on T := A(H") — A(H). Notice that the
only k-sets X contributing to T are those containing some e € W. Let

Ty := Y,cpAEH) —AH @v)) and T’ :=AH')— AH' A E).

In a similar fashion to part (ii), we will first give lower bounds for T,, T’, respectively, and
then show that T is well approximated by T, + T’. First consider T,,. By Claim 5.3(ii), we have
> |B|kn/%c/(3h). Now consider T'. Again, V** A(xpr) = c/2forallxy € E’, so Lemma 5.1

and (5.5) imply that

p(x)p(y)

2 el
4h?

T' > k*€' [h? - (¢/2 = 507 maxk®e® = 2y maxkn) >
, h
For the final step, note that ()|T — T — T'| < e, 2Vmax> Where

IO={XE<V> IX N B| > 2or [XNB|,e(W[X \ B]) }

k
But
I |B|? + |Ble’ (5 5 |B
% < () - (o) 'h' (2k2\/5+ sk3e ) <1, (5.8)
() ()
Thus,
2y (5.8) IBlkn®/2c  k2ce’ B ¢
/ max ! 2
T>To+T—TIIoI > To/2+ T > —p—+ 20 -+ 5
as desired. This completes the proof of Claim 5.3. O
Thus, we complete the proof of Theorem 3.3. O

6 | APPLICATIONS TO INDUCIBILITY
Firstly we prove Lemma 1.2 which is essentially Theorem 1 in [36].

Proof of Lemma 1.2. In fact, we can require that |E(G,_;) /\ E(G;)| is at most n — 1 (resp. at most
1) in (Syml) (resp. (Sym2)) for every graph G of every order n > k.

Let us show (Syml). Initially, let H := G and let V = {V, ..., V,} be the partition of V(H) into
singletons. At each stage, every part of V will consist of twin vertices, that is, vertices with identical
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neighbourhoods (in particular, every part is an independent set). We will modify the current graph
H and the current partition ¥V = {V, ..., V} so that at each step, 4 does not decrease, while the
affected edges are incident to a single vertex.

If for each 1 <i < j <s, H[V;,V;] is complete bipartite, then H is a complete partite graph
so we stop. Otherwise, pick i < j, x € V; and y € V; such that xy & E(H). Let X = Ny (x) and
Y = Ny (). Fix a complete partite graph F. Note that every A C V with H[A] & F is one of the
following four kinds: 1) x e A,y ¢ A; Q) x g A, yeA;3)x €A, yeAand(d) x ¢ A,y & A.
Given H — x — y, we can thus write

p(F.H) = frX) + fr(Y) + ;X nY,V\ (X UY)) +Cr

for some constant Cr > 0 and functions f and gr. Here fr(X) (resp. fr(Y)) counts the number
of copies of F of type (1) (resp. type (2)) as this depends only on X (resp. Y). For disjoint U, W,
we define gp(U, W) to be the number of copies of any graph J with V(J) C U U W such that by
adding two new vertices z, z’ to J and adding edges {uz,uz’ : u € U} to J, we obtain a copy of F.
Observe that if {x, y} U V(J) induces a copy of F in H as above, then x and y are in the same partite
set,t UNV() CXNYandWnNVUI)NXUY)=@.Thus, (X NY,V \ (X UY))counts type (3)
copies. The type (4) count is a constant depending onlyon H — x — y. Then, letting f = Y ¢ - fr
and defining g, C similarly, we have

MH)=fX)+f)+gXnY,V\XUY))+C. (6.1)
Notice that ¢(-, -) is non-decreasing in both arguments, that is,
gU,W)<gU', W), YyUcU ,wWcw. (6.2)

Indeed, if F is a clique, then no copy of F contains both x and y, and cr > 0 otherwise.

Suppose that f(X) > f(Y), let H,,, be the graph obtained from H by making y a clone of x. Let
H =H xy and let V' be obtained from V by moving y to the part containing x. It satisfies all the
claimed properties as

AMH

) = 2f+ X, V\X)+C

(6.1),6.2)
>z fXO+f)+9gXnY,VN\XUY))+C=AH).

Finally, it remains to argue that one can avoid infinite cycles. The rule for breaking ties f(X) =
f(Y)with, forexample, |V;| > |V;|is to take H = H,,. Thisstrictly increases dvey |V|? € [n,n?]
so that are at most n?® steps where A stays constant. (In fact, one can bound the total number of
stepsby 1+2+ - +n—-1= (”): if there are currently i > 2 groups and we merge one group
entirely into another, then we can do this by moving at most n — i + 1 vertices.)

Let us show (Sym2). Given G and z as in the property, we have a partition consisting of all
partite sets in G — z and z will always stay a single part. Given any partite set V; of G — z, we can
partition vertices V; = V! U V! depending on their adjacency to z, say V! C N(z). Start with this
initial partition into parts V! and V!’. Fix arbitrary non-adjacent vertices x € V,y € V', note
that (6.1) and (6.2) still hold. If f(X) > f(Y), take G’ = G,,. If f(X) < f(Y), take G’ = G,.. The
rule for breaking ties is again to clone the vertex from the larger part: if f(X) = f(Y) and, say,
Vil > V], take G’ = G,,. Otherwise, take G’ = G,,.. Note that G’ differs from G only in one
pair. As before, 4 has not decreased. Then redefine Vl.’ , Vl.’ " and repeat the process. The final graph
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has N(z) C V; or N(z) N V; = @. (Note that each tie f(X) = f(Y) strictly increases [V/|* + [V]'|?
so as before there are at most n® steps where 1 stays constant, so there are no infinite cycles.)
Repeating this for all i, we make at most n steps in total, and the resulting graph is as desired. []

6.1 | Proofs of Theorems 1.3-1.6

Since by Lemma 1.2, p(F, -) is symmetrisable whenever F is complete partite, to prove Theo-
rems 1.3-1.6, it suffices to determine OPT (if it is not already known), and then check that p(F, -)
is strict. The result then follows from Theorem 3.3.

In all cases, OPT consists of a single point, and checking strictness is generally straightfor-
ward (it is slightly more involved for F = K, ;). However, determining OPT where it is not already
known, for F = K,;; and F = K3 ;, is challenging and we are required to solve a polyno-
mial optimisation problem. We use computer-assisted semidefinite programming to solve the
last problem.

Proof of Theorem 13. Assume s < t. Firstly we collect some facts about the function f,
defined on [0,1] given by f ,(a) = a’(1 —a)' + a'(1 — «)*, recalling that for s <t, f (o) =

([+S
t

% on the right-hand side:

)_1p(KS,t, (¢,1—0a,0,..)) forax € [%, 1], and f can similarly be expressed with a factor of

(i) Ifs> (t;S), then the unique maximum of f, in [%, 1]is %
(i) Ifs < (t;S), then f/, has a single root in ( % 1), which corresponds to a maximum, has % a
root corresponding to a minimum and has no other roots in [%, 1).
(iii) Ifa € [%, 1] maximises f; ;, then1 —a > Hil

(iv) max,epq)(t + D' (1 —a) = (HLI)‘, attained uniquely at H—Ll

Note that f ; is symmetric about & = % For (i) and (ii), we just follow the proof of [ 7, Theorem 3].
We have

1—«a

fli@ = a1 - h(

) where h(x) = sx' =t — tx!75 + tx —s.

Assume first that s > ([;S). Setting x = 1 + ¢ for € > 0, one can show that h(x) > 0, so f;, is non-
decreasingin [0, %], and thus, the unique maximum of f , in [0,1] is at % asrequired for (i). (In the
calculation in [7, Theorem 3], it is shown that h(x) > 0, but there is equality in the first inequality
onlyift — s = 1, but in this case, the final inequality is strict.) Note that [7] uses (¢, s + t) and (a, b)
instead of our (s, t). Assume secondly that s < (t;s). Following the remarks after [7, Theorem 5],
it suffices to show that h has a single root in (0,1). This is a consequence of h(0) < 0, h(1) = 0,
h'(1) < 0and h"'(x) < 0 for all x € (0, 1), as required for (ii).

Next we show that (iii) holds. If t = 2,3 (i.e. 1 > (tgl)), then (i) implies that 1 —a = %, as
required. If ¢ > 4, then by (ii), f], has a unique root (i.e. 1 —a) in (0, %), corresponding to a
maximum and % is a root corresponding to a minimum. Thus, f ; [(x)>0 for x € (0,1 —-a)

and f{l(x) <0forxe(l—a, %). One can check that f’(h%l) > 0, which gives 1 —a > HLI

This proves (iii). Property (iv) can be easily checked via differentiation: indeed, dd—aoc[ Q—-—a)=
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al~1(t — (t + 1a) is strictly positive for 0 < a < HLI, equals 0 at a = [i—l and is strictly negative

fora > .
+1

Now we show that OPT = {(a,1 — «,0,..)} with a > % (where f () is uniquely maximised).
This was essentially proved by Brown and Sidorenko [7]. They do not prove the uniqueness of the
optimal element but this can be extracted from their proof, so we only give a sketch of how to do
this here.

Firstly we claim that if G is a complete multipartite graph on n vertices whose two largest
parts of sizes n,,n,_; satisty n,,n,_; = Q(n) and n — n, — n,_; = Q(n), then by merging parts,
we increase the number of induced copies of Ky, by Q(n**'). Indeed, to see the claim, fix
€>0andsuppose G =K, , ., Withr>3andn; <n,<..<n, with Ziem n; =n,n,_; > ¢n,
Yiclr—2) i > €n and G = Ky 4nyns,..n,- 1t is shown in [7, Proposition 2] that merging the two
smallest parts in any complete multipartite graph with at least three parts does not decrease the
number of induced copies of K ;. Thus, in G, we can successively merge two smallest parts until
we obtain a graph G’ with exactly three parts, of sizes m; < m, < m; with m; > en. Now merge
the parts of size m; and m, to obtain a complete bipartite graph G’”’. Then

I(K,,,G"") - I(K,;,G)

> I(K

() )
()= -()
() ()= () ) - (7)

() () () ()= () ()= () (%)
() ()= () () - () ()= () ()

_ 1 t N N N N N t t t t
= ﬁ(mz((m1 +my)* —mi —mi —m)) + m5((my + my)' —m) —mf —m))) +O(n

GIN) _ I(Ks’p Gll)

S+t—1).

To prove the claim, it suffices to prove that this is at least O(¢e)n**! for all (s, t). Neglecting the
O(n***~1) error terms, the quantity in the last line is at least

ﬁ (m3(t —2)m! + mi(s—2)m}) > ﬁmi” ifs+t>5

|5 (o3 + 3mims —mes) > Senf i) = (1,3)
5 2m2Q2mymy —m?) > sm} if (s,8) = (2,2)
Lm2m, — mim,) > 2(m, — m)m? if (s,1) = (1, 2).

Since m,; > en, this proves the claim unless (s,t) =(1,2) and m, —m; < en. In this case,
we have I(K, ,,G"") —I(K, ,,G") = mim; —m? + O(e)n® = u*(1 — 3u)n® + O(e)n® where u :=
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m,/n. We are done if u < % —e¢. If not, G” has three parts of size 1 + ¢ which is far from
optimal, by comparing to the complete balanced bipartite graph. This completes the proof of
the claim.

Thus, if s > 2, then every x € OPT has exactly two non-zero entries which sum to 1, as required.
We want to show that this also holds for s = 1. For this, we only need to show that there is no
0 < x < 1for which x = (x,0,...) is optimal. Indeed, A(x) = p(K; ;,x) = (t + Dx'(1 — x) < (L)

t+1
by (iv). But A(K, ;, (5> 75,0, ) = (t + D1, (77) = 2(-5)', s0 x & OPT.

We have shown that every element of OPT is of the form («,1 — «,0,...) for some a € [%, 1].
By (i) and (ii), f, has a unique maximum in [%, 1]. Thus, OPT contains a unique element x : =
(a,B,0,...) (Where from now on we write § := 1 — «). It remains to show that thereisc = c¢(4) > 0
such that (Strl) and (Str2) hold, where A(-) := p(Ky,,-).

LetG := G, . Firstwe check (Strl). A non-edge between two partite sets is not contained in any
induced copy of K ;, nor is an edge within a partite set. So, V )‘C‘yl(G) is the number of copies of F
in G containing the pair xy divided by (;’r ;_22) Rather roughly, this is always at least f5+=2 + o(1)
asn — oo.

Now we check (Str2). We have x, =0 and supp*(x) ={1,2}. Since x, =0, given any
(b(1),b(2)) =: (by,b,) € {0,1}?, we are required to show that

VZ;,1/1(x) =A(x) — y}l_l)g AG, +p u,u) > cminibya + (1 — b,)B, b, + (1 — by)al.

Recall that as usual the right-hand side equals 0 if (b, b,) € {(0,1),(1,0)}, so the inequality is
trivially true. If (b;, b,) = (0,0), then u lies in no copies of K , in G, . +} ; u; similarly, if (b;, b,) =
(1,1) and s > 2. So, we may assume that (b,, b,,s) = (1,1, 1), and we need to show Vl')’l/l(x) >cf
(recalling a > 3). We have

Ax) =t +D(ap' +a'pB), Alx,(b,1)=a' +8".

Recall that % = (¢t + 1)A(x) for i = 1, 2 by Proposition 3.1(ii). We have
9Ax) _ (t+1)(B +ta'"'p) and 9ALx) _ (t + D(taB™ +a'), and so
ox; 0x,
I _ 1 (0 ™\ L
2Vb’1/1(x) =2A(x) — 2A(x,(b,1)) = i1 ( ax, + ax, 2(at + )

=@ — )+ Bt — ) =@ I+ DB - D+ BN + D= ).

It suffices to show that § > HLl since then writing e = § — ti—l we have Vl‘) 1/1(x) > (t+ 1) te.
This follows from (iii), completing the proof. 1

Proof of Theorem 1.4. Firstly we show that for F := K,.(¢) with t > 1 + logr, we have OPT = {x}
where x = (%, s %,0, ..) and x, = 0. This essentially follows from [7] where it is proved that
x lies in OPT (but without proving uniqueness), and [4, Theorem 13] where it is proved that
the Turdn graph with r parts is the unique extremal graph; but as in the proof of Theorem 1.3,
we again need to make some modifications. Write A(-) := p(K,(t),-), and observe that A(y) =
@&r)t/(r'(@)") - S, (y) where t is repeated r times. The method of Lagrange multipliers [7, Propo-
sition 7] shows that every y which maximises 4 has exactly r non-zero entries (which sum to
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1, since ¢ > 1). Thus, it suffices to show that S!(x,,...,x,) := x! ... x[ over all x,,...,x, > 0 with

X, + -+ + x, = 1 is uniquely maximised by (%, s %). This is easy to see for r = 2. Suppose that
it is not true for some r > 3, and so x; # X,, say. Then Sﬁ(xl, s Xp) > Sﬁ(mez, %,xb s X)),

a contradiction.

We have proved that OPT = {x}. It remains to show that there is ¢ =c(1) > 0 such
that (Strl) and (Str2) hold.

Note that (Strl) is immediate as a non-edge between two partite sets is not contained in any
induced copy of F, and an edge within a partite set is not contained in any induced copy of F.
As in the proof of Theorem 1.3, this means that every Vl.’j'l(x) = A(x), which is always at least

(%)"‘2 + o(1). Similarly, (Str2) is immediate since any vertex in G, , without neighbours in at
least two parts does not have a K,_; in its neighbourhood so does not lie in any copies of K,.(¢),
and any dominating vertex clearly lies in no copies of K,.(¢). So again, v 1/1(x) = A(x) whenever

b #e; foranyi € [r]. O
Proof of Theorem 1.5. Letus show thatA,,, is4, := % and the vector a = (%, s %, 0, ...), which
is the limit of K: 18,.n)8° is the unique maximiser. (Here, K,fl oy is the complete Z-partite graph

with parts of size ny, ..., n,.)

Let x € OPT be arbitrary. At some places, it will be convenient to use the language of finite
graphs. So, let n be large and let G = G, , be a realisation of x with P-structure V,, ..., V,,.

Let us show that there are # €N, p :=(1—-x,)/¢ and a sequence x = X,...,X; =
(p, ..., pP,0,...) € OPT where for all j € [t], Xjo = Xo, the entries of x; are obtained by replac-
ing some non-zero x;_;; ,x;_; in the entries of x;_; with z; :=x;_,; +x;_;; , and any y;
obtained by replacing x;_;; ,x;_;; in the entries of x;_; with non-negative reals that sum to z;
is also in OPT.

Indeed, suppose that there are non-zero x; # x;, and let i + j be minimal with this property.
Each copy of F = K, ; ; ; intersects each V; U V; in at most three vertices. Thus, if we fix the rest
ofx,fixs = x; + x; and vary a = x; /s between 0 and 1, then the number of copies of F is given by a
polynomial p(a) of degree at most 2 which is symmetric around %: p(a) = p(1 — a). (Note that the
number of copies of F having 2 + 1 vertices in V; U V| is a constant times a?l-a)+(1—-a)a=
a — a?, which has no a® term, that is, is also a quadratic polynomial.) If p is not constant, then by
symmetry, it follows that p’ (%) = 0 and since p’ is a linear function of q, this is the only root. Thus,

p is maximised at 0,1 or % and we can strictly increase p, a contradiction. Thus, p is constant, and
any z obtained from x by replacing x; and x; by one or two new entries whose sum of sizes is
X; + x; is in OPT (corresponding to taking any value 0 < a < 1). We let i; =i and i, = j, giving
x;. Then x; and any y; as described lie in OPT. If we cannot take ¢ = 1, then x; has unequal
non-zero entries and we can repeat the above. It remains to check that this process terminates. If
not, since we can always merge the largest part with the next (non-equal non-zero) largest part,
for all ¢ > 0, there is some m = m(¢) > 0 such that x,,, ; > 1 — x;, — ¢ (recalling x,,, , = x,). Then
p(F,x,,) =5!(1—x)%/2" x3/6 + O(e) which is maximised when x, = % with value % < 150%,
a contradiction.

Let y = x;, so y has ¢ equal non-clique parts each of ratio p = (1 — y)/¢ for some y € [0,1].
Thus, p(F,y) is equal to h,(y), where

1-p)

. p’ 3 p? p’
he(y) =52 7( 3 —(f—1)7(1—2p)—(f—1)§>_

85UB0 |7 SuoWIWoD aAIEe.D) a|qeal|dde ay) Aq peussnof 8. Ssjoie VO ‘8sN JO Se|n oy Akelq 1T 8uljuO 4|1 UO (SUONIPUOD-PUB-SLUBIALI0D A3 | M Aelq 1puljuoy//:sdny) SuonIpuoD pue swie | 8y) 88S *[£202/60/70] Uo Ariqiauliuo A8|IM ‘oL Aq 22221 'SW(ZTTT 0T/I0P/WO0d A3 | 1M ARelq | BU 1 |UO"O0SUTRWPUO|//:SANY WOl popeo|umoq ‘€ ‘€202 ‘0S.LL691T



STABILITY FROM GRAPH SYMMETRISATION ARGUMENTS | 1155

Indeed, we first choose one part V; where two non-adjacent vertices go (¢ (pz") choices). Then the

other three vertices of F have to go outside of V; (((173[’ n

(exclusive) cases: exactly two of them are in some V' i (¢ - 1)(1)21’1) (n — 2pn) choices) and all three

) choices) except we have to rule out two

of them are in some V; ((# — 1)(";") choices). We have h),(y) = %(y — 1)q(y) where

q(y) = =30+ 497 — 212 + 263 + 90y — 123¢y + 33£%y — 90y?

+997y% — 12£2y? + 30y° — 25¢y°.

We claim that for each # > 8, the function h, is strictly monotone decreasing (i.e. the opti-
mal y is 0 meaning that the clique part is empty). So, it suffices to show that g(y) > 0 for £ > 8
and y € [0,1]. We have that g is positive at its endpoints: q(0) = 42 + 97(Z — 8) + 27(¢ — 8)* +
2(¢ — 8)% and q(1) = 2¢3. So, if q(y) < 0 for some y € [0, 1], then ¢’ has a root in [0,1]. How-
ever, the quadratic polynomial ¢’ has a negative coefficient at y? and is positive at endpoints:
q'(0) = 1218 + 405(¢ — 8) + 33(¢ — 8)? and q’(1) = 9¢2, so there is no such root. (These symbolic
calculations can be found in 2111 .nb in the ancillary folder of the arXiv version of this paper [23].)

We claim that k € R[#] given by k(¢) = h,(0) is decreasing for # > 8. That is, out of all y
with at least eight non-zero entries which are all equal, the unique extremal y is a. Indeed,
kK'(¢) = —10j(£)/¢> where j(£) = (£ —9)* + 15(£ — 9)* + 60(¢ — 9) + 30 so k/(¢) is decreasing
forall # > 9, and also k(9) = % < % = k(8). (See 2111 .nb.)

Let us show that none of # € [7] is optimal. Fix such an #. Direct calculations show that 11,(0) <
Ao (while y = 1 gives K, which has zero density of F). So, it remains to investigate critical points,
thatis, y € (0, 1) such that h, has derivative zero at y. Thus, g(y) = 0.

Introduce a new variable z and define p,(y) := h;,(y) and p,(y,z) :=z — hy(y). Thus, if y
is a critical point with 4,,,,, = h,(y) and we define z : = h,(y), then (, z) belongs to the variety
V = V(I) C R?defined by the ideal I := (p;, p,) generated by the polynomials p;, p,. By applying
Buchberger’s algorithm to I (where we eliminate the variable y), we see that J, the intersection
of I with R[z] (the set of polynomials that depend on z only), is generated by one polynomial
q,, explicitly computed in 2111.nb for every £ € [7]. We actually need only a part of the above
claim, namely that there are polynomials f,, f, € R[y, z] such that we have a polynomial identity
q,(z) = f10,2)p1(¥) + f2(y, 2)p,(y, 2), that is, all terms on the right-hand side depending on y
cancel each other.

We have q,(z) = z(625z — 216) which has roots at z = 0, %, and h,(z;) < A, for both roots
z,. For each 2 <1 <7, the polynomial g, on inspection has the following properties: we have
q,(z) = zr,(z) where r, has degree at most 3, the coefficient of the leading term of r, is positive,
and furthermore, we have r,(0) > 0, r,(4,) < 0 and r,(1) < 0. This implies that r, has no roots
in [4,, 1], and hence, g, has no roots in (0,1]. That is, it is impossible to have 1.,,,, > 4, (because,
as a graph density, 4., is at most 1). Thus, 4,,,, = 4, and none of the polynomials can achieve
Amax €Xcept when £ = 8 (with y = (%, s %, 0, ...) being the unique maximiser among y € P with
y; =yjforalli,j € [8]).

If y = x; # x,,, then x,_, exists, and it is of the form x,_; := (%, s %,
1

T <a< %, where % is repeated seven times, and moreover, the element of P obtained by setting

a= %, say, lies in OPT. A routine calculation shows this to be a contradiction (see 2111.nb).

Thus, OPT = {a}, where a := (%, . %,0, ..)with g, = 0.
Finally, it remains to check strictness. Let us check (Strl). First let x,y be in different parts
Vi, Vjof G =G, 4. Write p = % and assume 8|n. Consider copies of K, ; ; ; that contain both x

a, % —a,0,...) for some
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and y, with A denoting the two-element part. Then in G, the edge xy can be such that x lies
in A (pn- (g) - (pn)?) choices), y lies in A (the same), or neither x nor y liein A (6 (°) - 5pn
choices). In G @ xy, xy is a non-edge and so we can only have {x, y} playing the role of A in F, so
the number of such copies of F is (2)( pn)3. Thus, for distinct i, j € [8], we have

Vi Aa) = 3!p3<2<g> +15— <2>> = %.

Now let x, y be in the same part V; of G. Then in G, the non-edge xy lies in (;)( pn)? copies of F.
In G @ xy, the edge xy lies in 7(”2”) - 6pn copies of F. So,

7 7-6 84
. =31p3 ) =22
VijAa) =3ip ((3) 2 > 512°
as required.

For (Str2), let b : [8] — {0, 1} be such that |supp(b)| = k. Then

_(n\ ¢ k k 1\ 4 [(k\/19
o= () @) (o0 0) (e D) ()3

Indeed, counting induced copies of F in G, , +; ; u containing u: if u plays the role of a vertex in

A, then we choose the other vertex from this set among any of the 8 — k parts not adjacent to u,

and then choose three distinct parts of the k adjacent to u to contain the other vertices. If u plays

the role of a singleton, we choose two among k parts for the other two singletons, and another for

A (dividing by two for both orders). Routine calculations show that this is uniquely maximised

(with value A,) when k = 7, as required. O
216

Proofof Theorem 1.6. We will show that OPT = {(%, 0,.)}and A, = =5 LetG be a complete par-

tite graph on n vertices which maximises the number of F : = K3, ;- Comparing G to (g, 0,0,..),

we have P(F,G) > % (';) + O(n*). Suppose that Y, Z are the two largest parts of G, with |Y| = yn,

|Z| =znandy > z. Let S :=V(G) \ (Y U Z).
First, let us derive a contradiction from assuming that z > % Lets :=1—y—2,505 <
number of copies of F with at least three vertices in S is at most

5 4 3 5 4 3

(s> s*(1-5) s s(s st s s 151
wl=4+—+=-yz || =+=+= | <n—0.
<5! 41 3 Y)STAS T T ) S 00 625

The number of copies of F with exactly two vertices in S is at most

<S£l> <(y3n> + <I’l - SV; —yn>> _ %()ﬁ +(1—s _y)3) + O(l’l4). (6.3)

We have y <1—s— % (since z > %) and y > 1—s—y (since y > z). For fixed s, the expression

. The

W=

3+ (1 —s — y)? is maximised when y is as large as possible. Indeed, y> + (1 —s—y)3 fory € R
is a quadratic polynomial whose coefficient at y? is positive and whose minimum is at %, and

we have y > 122 So, the expression in (6.3) is at most

r(s)n®> + 0(n*) where r(s) = %((1 —5— %>3 + <%>3>
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We claim that v’ has no roots in (0, l] which implies that r(s) attains its maximum at s = %,

of value - 01)6225 Indeed, r/(s) = %t(s) where t(s) = —125s3 4+ 180s% — 81s + 14. Furthermore,

t(1) <0<t 5) so t has at least one root in [g’ 1]. If the claim does not hold, then ¢ has three real
roots, which are interlaced by the roots of the quadratic t’(s) = —3(5s — 3)(25s — 9). The smallest
root of t’ is 2—95 > %, and the coefficient of s> in t is negative, so t has a root in (0, %] only if t(%) <0,
a contradiction.

Every other copy of F has exactly four vertices in Y U Z. So, writing q : = ?, their number is

<y3n>zn - sn+ <z3n> -yn-sn= %S(q3(l — )+ —-q9)>°qs(1—s)*+0m",

640 n5 4
500 " 625 + O(n*). So, when

zZ> %, we have p(F,G) < 600 mh —=—(151 + 160 + 640) < /10, and we obtain the desired contradiction.
Assume from now on that z < 2/5. Fix v € Z. Let p(F,G,v) be the number of copies of F
containing v. Then

P(F,G,v) < p(v) := <zn2— 1) <<(1 —zz)n> - <y2n>> + <y3n>(1 -y—2z)n

+= Z < d(w)>(d(w) — zn).

weS

which, for s € [%, 1], is maximised when (s,q) = ( ) with value —

We would like a good upper bound for the last term. Since Z is the second largest part, we have that
Q-2z)n<dw)<nforall wesS. Now f(x) = %(1 —x)%(x — z) is maximised when x = x; :=
5(1 + 2z) and is decreasing on the interval [x,, 1]. Since z < 2 <> we have x <1 -z, s0 f defined
in the range [1 — z, 1] is maximised at x = 1 — z. So, the last term divided by n* is at most

2 Z Fldw)n~ +0(1/n) = —(1 —y=2)f1 —2)+01/n),

3 ies
Define
. z? TN 1
12) i=12( G0 =2 =3+ 0y =)+ 0 -y a9 - 2 )
=2y’ —2y* —2y3z + 522 — 2yz* — 3y?z* — 122° + 4yz® + 77° 2—(2)2

By the above, h(y, z) > 12(p(v)n=* + O(1/n) — %) > 0(1/n), thatis, h(y,z) > Oforall0<z <y
withz+y<landz < %.Let

R:={y,2)€[0,1:y>zy+z<1kL
Claim 6.1. For every (y,z) € R with h(y, z) > 0, we have that y > %

Suppose that the claim holds. Since G is optimal, Proposition 3.1 implies that v has optimal
attachment in G; that is, P(F,G,v) = (" 1)/1(G v) = (” 1)/1maX +0(n3) > —n + O(n3) Thus,
h(y, z) > 0 for the y, z corresponding to Y, Z, since, as we have shown, z s So y ==, Cons1der
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the graph H obtained by replacing Z by a clique. Then we lose every copy of F containing the 3-
independent set in Z (and lose no other copies), while we gain copies of F with the 3-independent
setin Y and the two other vertices in Z. So,

P(F,G) - P(F,H 3(1—-2)2% (3/5)3 22 1—2z2)? 3
(F,G) — P( )gz_( Z)_(/)z_+0(1)_z_ z(1-2z) 3 +o()
120n° 31 2 312 2 6 6.5
z2( 4 33 =229
< = ———= ) +o() < +o(1
2\6-3 6-5 M < 20500~ .

This is a contradiction to the optimality of G if z = Q(1). Thus, z = o(1) and, up to o(n?)
edits, G consists of an independent set of size yn and (1 — y)n universal vertices. So p(F,G) =
120(%; v (l_y i ) + o(1). Ignoring the error term, this is uniquely maximised when y = % with value

% Then OPT = {a}, where a = ( 0,...).

So, in order to determine OPT, 1t remains to prove Claim 6.1.

Proof of Claim 6.1. Firstly we consider (y, z) on the boundary of R. If z = 0, then h(y,0) = % +

1250y3(1 — y) which is uniquely maximised when y = % Ify = z, then h(y,y) = y?(2y — 1)y —
5)— 108 - Which is negative for y € [0,1].

Now we consider (y, z) in the interior of R. Let (y,, z,) in the interior of R be such that h(y,, z,) >
0 and y, is minimal with this property (such a y, exists by compactness of R and continuity of h).
Since (yo, z,) is in the interior of R, we have h(y,, z,) =0 and ¢ (yo, Zo) = 0 (otherwise we can
find z’ ~ z, with h(y,,z") > h(y,, z,) = 0 and by the contlnulty of h, y' <y, and h(y’,z’) >
contradicting the minimality of y,). Applying Buchberger’s algorithm to eliminate z, we obtain a
degree-12 polynomial q such that y satisfies h(y,z) = 0 = %(y, z) only if g(y) = 0 (see 311.nb):

q(y) := — 2500858044 + 14 506 020 000y — 18 911 610 000y> — 85830 803 750y>
+ 545884288 750y* — 1430659 375000y° + 4 001 212 109 375y°
— 12503827343 750y + 30477 566 015 625y° — 54 597 656 250 000y’

+ 64171142578 125y'0 — 42002929 687 500y*! + 12102 539 062 500y 2.

Leta := 1272 andR’ :={(y,z) € (0,1)? < a}. Weclaim that p(y) := q(y + ) isa positive
polynomial. Then q(y) > Oforally € R \ R’ s and hence, (¥,,2,) € R’. For this, it suffices to show
that there are polynomials r, (y), r,(y) with non-negative coefficients satisfying p(y)r,(y) = r,(»).
Once one fixes the degree d of r;, this amounts to solving a linear program, where q,, is the kth
coefficient of p and by, is the kth (unknown) coefficient of r;:

minimise Z by
o<ksd
subject to 2 ajbk >0, i=0,1,...,d + 12,
JHk=i:
0<j<12;
O<k<d
b, >0, k=0,1,..,d.
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In fact, we only need a feasible solution, not an optimal one, so the objective function can be
anything. For degreesd = 1, 2, ..., we attempted this (using python) until we obtained a numerical
solution for d = 16. The following degree-16 polynomial was obtained by multiplying this solution
by a fairly large power of 10 and rounding.

r1(») =405 631 585 336x'° + 291 048 000 156x' + 172 228 102 580x'* + 76 577 243 592x"3
+32501733953x" + 13576227 809x™ + 5344727909x'° + 1954 537 506x°
+ 73709 7269x% + 264 696 828x” + 90984 085x° + 30184 081x° + 10472 958x*

+ 3090485x% + 1000 538x2 + 206 609x + 108 298.

Clearly, its coefficients are positive and one can check (see 311 .nb) that the degree-28 polynomial
p(»)r (») also has positive coefficients, as required.
Suppose we can find non-negative polynomials s, ..., S; in ¥, z and positive ¢t € Q such that

—h(y,z)—t—2z8, — (¥ —2)8, — (@ —Y)$3 = S,

where a polynomial p € R[y, z] is non-negative if p(y, z) > 0 whenever y, z > 0. Then —h(y, z) >
0 on R’. This will complete the proof of the claim. Let x =1,z ¥2,yz,2?)T. To ensure that
the s; are non-negative, it suffices to find positive semidefinite 6 x 6 matrices Q; such that
5;(y,z) = x7Q;x. For this, a sum-of-squares solver (we used the YALMIP Matlab toolbox [24, 25]
with SeDuMi [37]) numerically maximises ¢ such that the above equality holds; that is, we obtain
t' ~ 0.02 and real matrices Q[, ..., Q} such that —h(y,z) —t' — zs| — (y — 2)s, — (@ — y)s, = s,
where 57 = xTQ!x. Now let Q; be a (symmetric) rational approximation to Q] for i € [3] and let R,
be a rational approximation to Qg. We obtain

47560627 __ 27288737 _ 5823553 __ 22660833 64761 638 _ 10092851
605 583 685 128683162 403 766 228 166 625377 445638833 42370543
_ 27288737 412450960 154126052 123333398 __ 45208772 29997552
128683162 208083 677 222170865 74059181 76054353 77062243
_ 5823553 154126052 56961038 75134651 114623437 68 436 686

R. = 403766 228 222170865 76 246 587 68479911 74768 701 157424 595 >0

0 _ 22660833 _ 123333398 75134651 231222579 _ 33046138 _ 27557233 -

166 625377 74059181 68479911 42911653 90840815 25108 228
64761638 _ 45208772 114623437 _ 33046138 142375474 204334483
445638 833 76054 353 74768 701 90840815 17195129 99 244906
10092851 29997552 68 436 686 27557233 204334483 152251273
42370543 77062243 157424 595 25108228 99 244906 45491 357
113823133 153720698 514694857 26958123 5214837 424549711
103564772 116964 597 175951034 134065612 679 601 578 451760648
_ 153720698 98271451 108 839 271 _ 37652132 _ 98556781  _ 86545565
116 964 597 22705510 102 671 668 76331505 98719 039 156277133
_ 514694857 108 839271 178543136  _ 13588975 _ 66382289 _ 315010733

Q — 175951034 102671 668 16280101 554452603 197496 474 72953 806 >0

1 _ 26958123 _ 37652132 13588975 127914572 93779957 258311971 ~

134065612 76331505 554452 603 23010911 771873704 316 622401
_ 5214837 _ 98556781  _ 66382289 _ 93779957 183401329 _ 60904303
679601578 98719039 197496 474 771873704 33290110 161 208 591
424549711 86545565 315010733 258311971  _ 60904303 502508117
451760 648 156277133 72953 806 316 622401 161 208 591 78490 640
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21520940 _ 56020343 40731578 __ 46544963 41177990 26606007

25577879 32074003 751516279 139367268 108 764 983 46612636

56020343 112841678 139240153 45501317 64055491 21288 583

T 32074003 19842961 T 172670104 " 43903809 88725341 30121110
40731578 139240153 68362401 168386141 155286027 30506 956

Q — 751516 279 172670104 21097442 819717774 198 655 888 19158 511 >0
2 46 544963 45501317 168 386 141 166235485 15677552 15992364 | ©

T 139367268 T 43903809 819717774 28138938 218059291 25871383

_ 41177990 64055491 155286027 15677 552 253525900 95613053

108 764 983 88725341 198 655 888 218059291 46511459 837681775
26606007 21288583 30506 956 15992364 95613053 267687310
46612636 30121110 19158 511 25871383 837681775 41812157

29877454 110018062 39492021 44736353 _ 27286543 211317628
113194375 390364 861 93889856 260223501 148218452 549271497

110018 062 168 343 502 63781 869 813722845 1719950 20149420

7390364 861 34876437 T 56201314 556 876 698 4084346189 711586 093

_ 39492021 __ 63781869 293980 380 _ 16659683 24295714 20062513

Q — 93889 856 56201 314 89098 241 50114131 57792167 28511329 >0
3 _ 44736353 813722845 16659683 166235485 91733513 11949058 ~

260223501 556876 698 50114131 28138938 894919 007 15299253

27286 543 1719950 24295714 91733513 187073 509 1990762

T 148218452 4084346189 57792167 894919007 34708 874 " 36615949
211317628 20149 420 20062513 11949058 _ 1990762 192 697 280
549271497 711586 093 28511329 15299253 36615949 35564393

At this stage, it does not matter (for the purposes of a verifiable proof) where R, Q;, Q,, Q;
came from; it suffices to show that they are positive semidefinite and that the polynomial

£,z) 1= —h(y,2) —zs; — (Y —2)5, — (@ = Y)s3 — 1

is positive on [0, 1]2, where ro = XTRyx. To check positive semi-definiteness of a matrix A =
(a; j)i, jelm]» We first check that A is symmetric, then we use Sylvester’s criterion, which says that
a Hermitian matrix A is positive semi-definite if and only if A®) = (g, )i,jefk) has positive deter-
minant for all k € [m]. We bound ¢(y, z) from below by its constant term minus the sum of the
absolute value of its other coefficients (see 311.nb) to see that e(y, z) > % in the required region.
This completes the proof of the claim. O

Since Claim 6.1 implies that OPT = {(%,0, ..)}, it remains to check that p(Kj;,-) is strict.
Consider G = G, , which has a clique part V,, of size 2?” + O(1) and another part V; of size
3?" + O(1) which is an independent set. Now (Strl) is immediate as G @ xy has no induced copy
of F containing both x and y. -

Now we check (Str2). Letc := 5
a € [0,1] it is enough to show that

We have supp*(a) = {0, 1}, so given any b : {1} - {0,1}and

Vzml(a) = A(a) — AMa,(b,x)) = A(a) — nh_)r{)lo MG g +pq thsU) > %c(l — o) = A (1 — ),

that is, A(a, (b, a)) < Ay, If b(1) = 0, then u lies in a copy of K5 ; only if it lies in the 3-set
with two vertices in V; and the two singletons are in N(u) NV, so A(a, (b, a)) = ( 242)(2?“)2(%)2 =
lmax
singleton is in N(u) NV, so A(a, (b, a)) = (143)(2?“)(%)3 = A ax @, as required.

This completes the proof of the theorem. O

a?, asrequired. If b(1) = 1, then u lies in a copy of K5 ; ; only if the 3-set is in V; and the other
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7 | CONCLUDING REMARKS

In this paper, we have shown how to obtain stability from results in extremal graph theory which
use symmetrisation. We have applied our general theory to the inducibility problem for complete
partite graphs. It would be interesting to solve other instances of the polynomial optimisation
problem which amounts to determining i(F).

It would be particularly interesting to find other extremal graph theory problems to which our
theory applies.
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