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For a sequence (Hi)ki=1 of graphs, let nim(n; H1, . . . , Hk) de-
note the maximum number of edges not contained in any 
monochromatic copy of Hi in colour i, for any colour i, over 
all k-edge-colourings of Kn.
When each Hi is connected and non-bipartite, we introduce 
a variant of Ramsey number that determines the limit of 
nim(n; H1, . . . , Hk)/

(
n
2
)

as n → ∞ and prove the correspond-
ing stability result. Furthermore, if each Hi is what we call 
homomorphism-critical (in particular if each Hi is a clique), 
then we determine nim(n; H1, . . . , Hk) exactly for all suffi-
ciently large n. The special case nim(n; K3, K3, K3) of our 
result answers a question of Ma.
For bipartite graphs, we mainly concentrate on the two-colour 
symmetric case (i.e., when k = 2 and H1 = H2). It is triv-
ial to see that nim(n; H, H) is at least ex(n, H), the max-
imum size of an H-free graph on n vertices. Keevash and 
Sudakov showed that equality holds if H is the 4-cycle and n
is large; recently Ma extended their result to an infinite fam-
ily of bipartite graphs. We provide a larger family of bipartite 
graphs for which nim(n; H, H) = ex(n, H). For a general bi-
partite graph H, we show that nim(n; H, H) is always within 
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a constant additive error from ex(n, H), i.e., nim(n; H, H) =
ex(n, H) + OH(1).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many problems of extremal graph theory ask for (best possible) conditions that guar-
antee the existence of a given ‘forbidden’ graph. Two prominent examples of this kind are 
the Turán function and Ramsey numbers. Recall that, for a graph H and an integer n, the 
Turán function ex(n, H) is the maximum size of an n-vertex H-free graph. Let Kt denote 
the complete graph on t vertices. The famous theorem of Turán [48] states that the unique 
maximum Kr+1-free graph of order n is the Turán graph T (n, r), the complete balanced 
r-partite graph. Thus ex(n, Kk+1) = t(n, r), where we denote t(n, r) := e(T (n, r)). For 
a sequence a1, . . . , ak of integers, the Ramsey number R(a1, . . . , ak) is the minimum R
such that for every edge-colouring of KR with colours from [k] := {1, . . . , k}, there is a 
colour-i copy of Kai

for some i ∈ [k]. The fact that R exists (i.e., is finite) was first estab-
lished by Ramsey [39] and then independently rediscovered by Erdős and Szekeres [16]. 
Both of these problems motivated a tremendous amount of research, see e.g. the re-
cent surveys by Conlon, Fox and Sudakov [4], Füredi and Simonovits [20], Keevash [28], 
Radziszowski [38] and Sudakov [44].

A far-reaching generalisation is to ask for the number of guaranteed forbidden sub-
graphs. For the Turán function this gives the famous Erdős–Rademacher problem that 
goes back to Rademacher (1941; unpublished): what is the minimum number of copies 
of H in a graph of given order n and size m > ex(n, H)? This problem was revived by 
Erdős [8,9] in the 1950–60s. Since then it continues to be a very active area of research, 
for some recent results see e.g. [3,5,6,26,30,32,34–36,40,41,45]. The analogous question 
for Ramsey numbers, known as the Ramsey multiplicity problem, was introduced by 
Erdős [10] in 1962 and is wide open, see e.g. [2,7,17,21,27,43,46,47].

A less studied but still quite natural question is to maximise the number of edges that 
do not belong to any forbidden subgraph. Such problems in the Turán context (where 
we are given the order n and the size m > ex(n, H) of a graph G) were studied in [13,19,
22,23]. In the Ramsey context, a problem of this type seems to have been first posed by 
Erdős, Rousseau, and Schelp (see [12, Page 84]). Namely, they considered the maximum 
number of edges not contained in any monochromatic triangle in a 2-edge-colouring 
of Kn. Also, Erdős [12, Page 84] wrote that “many further related questions can be 
asked”. Such questions will be the focus of this paper.

Let us provide a rather general definition. Suppose that we have fixed a sequence of 
graphs H1, . . . , Hk. For a k-edge-colouring φ of Kn, let NIM(φ) consist of all NIM-edges, 
that is, those edges of Kn that are not contained in any colour-i copy of Hi for any 
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i ∈ [k]. In other words, NIM(φ) is the complement (with respect to E(Kn)) of the union 
over i ∈ [k] of the edge-sets of Hi-subgraphs of colour-i. Define

nim(n;H1, . . . , Hk) := max
φ:E(Kn)→[k]

|NIM(φ)|,

to be the maximum possible number of NIM-edges in a k-edge-colouring of Kn. If all Hi’s 
are the same graph H, we will write nimk(n; H) instead. Note that for k = 2 by taking 
one colour-class to be a maximum H-free graph, we have nim2(n; H) ≥ ex(n, H). In ([12, 
Page 84]), Erdős mentioned that together with Rousseau and Schelp, they showed that 
in fact

nim2(n;H) = ex(n,H), for all n ≥ n0(H), (1)

when H = K3 is the triangle. As observed by Alon (see [29, Page 42]), this also follows 
from an earlier paper of Pyber [37]. Keevash and Sudakov [29] showed that (1) holds 
when H is an arbitrary clique Kt (or, more generally, when H is edge-colour-critical, 
that is, the removal of some edge e ∈ E(H) decreases the chromatic number) as well as 
when H is the 4-cycle C4 (and n ≥ 7). They [29, Problem 5.1] also posed the following 
problem.

Problem 1.1 (Keevash and Sudakov [29]). Does (1) hold for every graph H?

In a recent paper, Ma [33] answered Problem 1.1 in the affirmative for the infinite 
family of reducible bipartite graphs, where a bipartite graph H is called reducible if it 
contains a vertex v ∈ V (H) such that H−v is connected and ex(n, H−v) = o(ex(n, H))
as n → ∞. Ma [33] also studied the case of k ≥ 3 colours and raised the following 
question.

Problem 1.2 (Ma [33]). Is it true that nim3(n; K3) = t(n, 5)?

The lower bound in Problem 1.2 follows by taking a blow-up of a 2-edge-colouring of 
K5 without a monochromatic triangle, and assigning the third colour to all pairs inside 
a part.

1.1. Non-bipartite case

In order to state some of our results, we have to introduce the following variant of 
Ramsey number. Given a set X, denote by 

(
X
i

)
(resp. 

(
X
≤i

)
), the set of all subsets of X

of size i (resp. at most i). Given two graphs H and G, a (not necessarily injective) map 
φ : V (H) → V (G) is a homomorphism if it preserves all adjacencies, i.e. φ(u)φ(v) ∈ E(G)
for every uv ∈ E(H), and we say that G is a homomorphic copy of H.
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Definition 1.3. Given a sequence of graphs (H1, . . . , Hk), denote by r∗(H1, . . . , Hk) the 
maximum integer r∗ such that there exists a colouring ξ :

([r∗]
≤2

)
→ [k] such that

(P1) the restriction of ξ to 
([r∗]

2
)

is (H1, . . . , Hk)-homomorphic-free (that is, for each 
i ∈ [k] there is no edge-monochromatic homomorphic copy of Hi in the i-th colour);

(P2) for every distinct i, j ∈ [r∗] we have ξ({i, j}) �= ξ({i}), that is, we forbid a pair 
having the same colour as one of its points.

For any r′ ≤ r∗, we will call a colouring ξ :
([r′]
≤2

)
→ [k] feasible (with respect to 

(H1, . . . , Hk)) if it satisfies both (P1) and (P2). We say that (H1, . . . , Hk) is nice if 
every feasible colouring ξ :

([r∗(H1,...,Hk)]
≤2

)
→ [k] assigns the same colour to all singletons.

Note that the colour assigned by ξ to the empty set ∅ ∈
([r∗]
≤2

)
does not matter. Note 

also that when k = 2, due to (P2), a feasible colouring should use the same colour 
on all singletons. Thus, r∗(H1, H2) = max{χ(H1), χ(H2)} − 1. If we ignore (P2), then 
we obtain the following variant of Ramsey number that was introduced by Burr, Erdős 
and Lovász [1]. Let rhom(H1, . . . , Hk) be the homomorphic-Ramsey number, that is the 
maximum integer r such that there exists an (H1, . . . , Hk)-homomorphic-free colouring 
ξ :

([r]
2
)
→ [k]. We remark that for the homomorphic-Ramsey number, the colours of 

vertices do not play a role. When all Hi’s are cliques, this Ramsey variant reduces to 
the classical graph Ramsey problem:

rhom(Ka1 , . . . ,Kak
) = R(a1, . . . , ak) − 1. (2)

There are some further relations to r∗. For example, by assigning the same colour i
to all singletons and using the remaining k − 1 colours on pairs, one can see that

r∗(H1, . . . , Hk) ≥ max
i∈[k]

rhom(H1, . . . , Hi−1, Hi+1, . . . , Hk). (3)

If some Hi is bipartite, then the problem of r∗ reduces to rhom. Indeed, as K2 is a ho-
momorphic copy of any bipartite graph, when some Hi is bipartite, no feasible colouring 
ξ can use colour i on any pair. Consequently, we have equality in (3). This is one of the 
reasons why we restrict to non-bipartite Hi in this section.

It would be interesting to know if (3) can be strict. We conjecture that if all Hi’s are 
cliques then there is equality in (3) and, furthermore, every optimal colouring uses the 
same colour on all singletons:

Conjecture 1.4. For any integers 3 ≤ a1 ≤ . . . ≤ ak, (Ka1 , . . . , Kak
) is nice. In particular, 

r∗(Ka1 , . . . , Kak
) = R(Ka2 , . . . , Kak

) − 1.

It is worth noting that not all k-tuples are nice. For example, it is easy to show that 
r∗(C5, C5, C5) = rhom(C5, C5) = 4, where Ci denotes the cycle of length i, while Fig. 1
shows a feasible colouring of 

( [4]) assigning two different colours to singletons.
≤2
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Fig. 1. A feasible colouring of K4 with respect to (C5, C5, C5), with two different colours on vertices.

Our first result shows that this new variant plays a similar role for the function nim(·)
as the chromatic number in the Erdős–Simonovits–Stone Theorem [15,14].

Theorem 1.5. Let Hi be a non-bipartite graph, i ∈ [k], and let r∗ := r∗(H1, . . . , Hk). For 
every ε > 0, we have that, for all large n,

nim(n;H1, . . . , Hk) ≤
(

1 − 1
r∗

)
n2

2 + εn2. (4)

Furthermore, if each Hi is connected or there exists a feasible colouring of 
([r∗]
≤2

)
with k

colours such that all singletons have the same colour, then we have nim(n; H1, . . . , Hk) ≥
t(n, r∗).

We also obtain the following stability result stating that if the number of NIM-edges 
is close to the bound in (4), then the NIM-graph is close to a Turán graph. Let the edit 
distance between graphs G and H of the same order be

δedit(G,H) := min
σ

|E(G) 	 σ(E(H))|, (5)

where the minimum is taken over all bijections σ : V (H) → V (G). In other words, 
δedit(G, H) is the minimum number of adjacency edits needed to make G and H isomor-
phic.

Theorem 1.6. For any non-bipartite graphs Hi, i ∈ [k], and any constant ε > 0, there 
exists δ > 0 such that the following holds for sufficiently large n. If the number of
NIM-edges of some φ :

([n]
2
)
→ [k] satisfies

nim(φ;H1, . . . , Hk) ≥
(

1 − 1
r∗

)
n2

2 − δn2,

then δedit(Gnim, T (n, r∗)) ≤ εn2, where r∗ := r∗(H1, . . . , Hk) and Gnim is the NIM-graph 
of φ, i.e., the spanning subgraph with edge set NIM(φ).

Our next theorem shows that if Conjecture 1.4 is true, then this would determine 
the exact value of nim(·) for a rather large family of graphs, including cliques. We 
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call a graph H homomorphism-critical if it satisfies the following. If F is a minimal 
homomorphic copy of H, i.e. no proper subgraph of F is a homomorphic copy of H, 
then for any edge uv ∈ E(F ), there exists a homomorphism g : V (H) → V (F ) such that 
|g−1(u)| = |g−1(v)| = 1, i.e. the pre-image sets of u and v are singletons. For example, all 
complete multipartite graphs with at least two parts of size 1 are homomorphism-critical. 
A simple consequence of this property is the following. As F is minimal, it does not have 
any isolated vertices. Therefore, for any vertex v ∈ V (F ), there exists a homomorphism 
g : V (H) → V (F ) such that |g−1(v)| = 1.

Theorem 1.7. Let (H1, . . . , Hk) be a nice sequence of non-bipartite graphs such that each 
Hi is homomorphism-critical. Then for sufficiently large n,

nim(n;H1, . . . , Hk) = t(n, r∗),

where r∗ := r∗(H1, . . . , Hk); additionally, the NIM-graph of every extremal colouring is 
isomorphic to T (n, r∗).

In the following theorems, we prove Conjecture 1.4 for k = 3, and for a1 = . . . = a4 = 3
when k = 4.

Theorem 1.8. For all integers 3 ≤ a1 ≤ a2 ≤ a3, (Ka1 , Ka2 , Ka3) is nice. In particular,

r∗(Ka1 ,Ka2 ,Ka3) = R(a2, a3) − 1.

Theorem 1.9. We have that (K3, K3, K3, K3) is nice. In particular,

r∗(K3,K3,K3,K3) = R(3, 3, 3) − 1 = 16.

The following is an immediate corollary of Theorems 1.7, 1.8 and 1.9. In particular, 
the special case a1 = a2 = a3 = 3 answers Problem 1.2 affirmatively.

Corollary 1.10. Let 3 ≤ a1 ≤ a2 ≤ a3 be integers. Then for sufficiently large n,

nim(n;Ka1 ,Ka2 ,Ka3) = t(n,R(a2, a3) − 1),

nim4(n; K3) = t(n, 16), and the NIM-graph of every extremal colouring is the corre-
sponding Turán graph. �
1.2. Bipartite graphs

For bipartite graphs, we will provide a new family for which Problem 1.1 has a positive 
answer. Let us call an h-vertex graph H weakly-reducible if there exist n0 ∈ N and a 
vertex v ∈ V (H) such that ex(n, H−v) < ex(n, H) −22h2

n for all n ≥ n0. (The function 
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22h2 comes from the proof and we make no attempt to optimise it.) Note that the family 
of weakly-reducible graphs includes all reducible graphs except the path of length 2 and 
this inclusion is strict. For example, for integers t > s ≥ 2, the disjoint union of the 
complete bipartite graphs K2,t and K2,s is weakly-reducible but not reducible; this can 
be easily deduced from the result of Füredi [18] that ex(n, K2,k) = (

√
k/2 + o(1)) n3/2

for any fixed k ≥ 2 as n → ∞.

Theorem 1.11. Let H be a weakly-reducible bipartite graph and n be sufficiently large. 
Then

nim2(n;H) = ex(n,H).

Furthermore, every extremal colouring has one of its colour classes isomorphic to a 
maximum H-free graph of order n.

For a general bipartite graph H, we give in the following two theorems a weaker bound 
with an additive constant error term, namely,

nim2(n;H) ≤ ex(n,H) + OH(1).

This provides more evidence towards Problem 1.1.

Theorem 1.12. Let H be a bipartite graph on at most h vertices containing at least one 
cycle. Then for sufficiently large n,

nim2(n;H) ≤ ex(n,H) + h2.

For more than 2 colours, we obtain an asymptotic result for trees. Fix a tree T , by 
taking random overlays of k−1 copies of extremal T -free graphs, we see that nimk(n; T ) ≥
(k− 1)ex(n, T ) −Ok,|T |(1) (this construction is from Ma [33]). We prove that this lower 
bound is asymptotically true.

Theorem 1.13. Let T be a forest with h vertices. If k = 2 or if T is a tree, then there 
exists a constant C := C(k, h) such that, for all sufficiently large n,

∣∣ nimk(n;T ) − (k − 1) ex(n, T )
∣∣ ≤ C(k, h).

Organisation of the paper. We first introduce some tools in Section 2. Then in Section 3, 
we will prove Theorems 1.11, 1.12, and 1.13. In Section 4, we will prove Theorems 1.5
and 1.6. We will present the proof for Theorem 1.7 in Section 5 and the proofs of 
Theorems 1.8 and 1.9 in Section 6. Finally, in Section 7 we give some concluding remarks.
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2. Preliminaries

In this section, we recall and introduce some notation and tools. Recall that [m] :=
{1, 2, . . . , m} and 

(
X
i

)
(resp. 

(
X
≤i

)
) denotes the set of all subsets of a set X of size i

(resp. at most i). We also use the term i-set for a set of size i. We may abbreviate a 
singleton {x} (resp. a pair {x, y}) as x (resp. xy). If we claim, for example, that a result 
holds whenever 1 � a � b > 0, this means that there are a constant a0 ∈ (0, 1) and a 
non-decreasing function f : (0, 1) → (0, 1) (that may depend on any previously defined 
constants or functions) such that the result holds for all a, b ∈ (0, 1) with a ≤ a0 and 
b ≤ f(a). We may omit floors and ceilings when they are not essential.

Let G = (V, E) be a graph. Its order is v(G) := |V | and its size is e(G) := |E|. The 

complement of G is G :=
(
V,

(
V
2
)
\ E

)
. The chromatic number of G is denoted by χ(G). 

For U ⊆ V , let G[U ] := (U, {xy ∈ E : x, y ∈ U}) denote the subgraph of G induced by 
U . Also, denote

NG(v, U) := {u ∈ U | uv ∈ E},

dG(v, U) := |NG(v, U)|,

and abbreviate NG(v) := NG(v, V ) and dG(v) := dG(v, V ). Let δ(G) := min{dG(v) : v ∈
V } denote the minimum degree of G.

Let U = {U1, U2, . . . , Uk} be a collection of disjoint subsets of V . We write 
G[U1, . . . , Uk] or G[U ] for the multipartite subgraph of G with vertex set U := ∪i∈[k]Ui

where we keep the cross-edges of G (i.e. edges that connect two parts); equivalently, we 
remove all edges from G[U ] that lie inside a part Ui ∈ U . In these shorthands, we may 
omit G whenever it is clear from the context, e.g. writing [U1, . . . , Uk] for G[U1, . . . , Uk]. 
We say that U is a max-cut k-partition of G if e(G[U1, . . . , Uk]) is maximised over all 
k-partitions of V (G).

For disjoint sets V1, . . . , Vt with t ≥ 2, let K[V1, . . . , Vt] denote the complete t-partite 
graph with parts V1, . . . , Vt. Its isomorphism class is denoted by K|V1|,...,|Vt|. For example, 
if part sizes differ by at most 1, then we get the Turán graph T (|V1| + . . . + |Vt|, t). Let 
Mh denote the matching with h edges.

Definition 2.1. For an edge-colouring φ :
([n]

2
)
→ [k] of G := Kn, define NIM(φ; H1, . . . ,

Hk) to be the set of all edges not contained in any monochromatic copy of Hi in colour 
i, and let nim(φ; H1, . . . , Hk) := |NIM(φ; H1, . . . , Hk)|. Thus

nim(n;H1, . . . , Hk) = max
φ:E(Kn)→[k]

nim(φ;H1, . . . , Hk).

If the Hi’s are all the same graph H, then we will use the shorthands NIMk(φ; H), 
nimk(φ; H) and nimk(n; H) respectively. Also, we may drop k when k = 2 and omit 
the graphs Hi when these are understood. Let Gnim be the spanning subgraph of G
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with E(Gnim) = NIM(φ; H1, . . . , Hk). For i ∈ [k], denote by Gi and Gnim
i the spanning 

subgraphs of G with edge-sets E(Gi) = {e ∈ E(G) : φ(e) = i} and E(Gnim
i ) = {e ∈

E(Gnim) : φ(e) = i}. We call an edge e ∈ E(Gnim) (respectively, e ∈ E(Gnim
i )) a 

NIM-edge (resp. a NIM-i-edge).

Definition 2.2. For ξ :
( [t]
≤2

)
→ [k] and disjoint sets V1, . . . , Vt, the blow-up colouring

ξ(V1, . . . , Vt) :
(
V1∪···∪Vt

2
)
→ [k] is defined by

ξ(V1, . . . , Vt)(xy) :=
{
ξ(ij), if xy ∈ E(K[Vi, Vj ]),
ξ(i), if x, y ∈ Vi.

If |Vi| = N for every i ∈ [t], then we say that ξ(V1, . . . , Vt) is an N -blow-up of ξ.

We say that a colouring φ contains another colouring ψ and denote this by φ ⊇ ψ if 
ψ is a restriction of φ. In particular, φ ⊇ ξ(V1, . . . , Vt) means that φ is defined on every 
pair inside V1 ∪ · · · ∪ Vt and coincides with ξ(V1, . . . , Vt) there.

We will make use of the multicolour version of the Szemerédi Regularity Lemma 
(see, for example, [31, Theorem 1.18]). Let us recall first the relevant definitions. Let 
X, Y ⊆ V (G) be disjoint non-empty sets of vertices in a graph G. The density of (X, Y )
is

d(X,Y ) := e(G[X,Y ])
|X| |Y | .

For ε > 0, the pair (X, Y ) is ε-regular if for every pair of subsets X ′ ⊆ X and Y ′ ⊆ Y

with |X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, we have |d(X, Y ) − d(X ′, Y ′)| ≤ ε. Additionally, if 
d(X, Y ) ≥ γ, for some γ > 0, we say that (X, Y ) is (ε, γ)-regular. A partition P =
{V1, . . . , Vm} of V (G) is an ε-regular partition of a k-edge-coloured graph G if

1. for all ij ∈
([m]

2
)
, 
∣∣ |Vi| − |Vj | 

∣∣ ≤ 1;
2. for all but at most ε

(
m
2
)

choices of ij ∈
([m]

2
)
, the pair (Vi, Vj) is ε-regular in each 

colour.

Lemma 2.3 (Multicolour Regularity Lemma). For every real ε > 0 and integers k ≥ 1
and M , there exists M ′ such that every k-edge-coloured graph G with n ≥ M vertices 
admits an ε-regular partition V (G) = V1 ∪ . . . ∪ Vr with M ≤ r ≤ M ′.

Given ε, γ > 0, a graph G, a colouring φ : E(G) → [k] and a partition V (G) =
V1 ∪ · · · ∪ Vr, define the reduced graph

R := R(ε, γ, φ, (Vi)ri=1) (6)

as follows: V (R) = {V1, . . . , Vr} and Vi and Vj are adjacent in R if (Vi, Vj) is ε-regular 
with respect to the colour-
 subgraph of G for every 
 ∈ [k] and the colour-m density 
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of (Vi, Vj) is at least γ for some m ∈ [k]. For brevity, we may omit φ or (Vi)ri=1 in (6)
when these are clear. The graph R comes with the majority edge-colouring which assigns 
to each edge ViVj ∈ E(R) the colour that is the most common one among the edges in 
G[Vi, Vj ] under the colouring φ. In particular, the majority colour has density at least 
γ in G[Vi, Vj ]. We will use the following consequence of the Embedding Lemma (see 
e.g. [31, Theorem 2.1]).

Lemma 2.4 (Embedding Lemma). Let H and R be graphs and let 1 ≥ γ � ε � 1/m > 0. 
Let G be a graph obtained by replacing every vertex of R by m vertices, and replacing 
the edges of R with ε-regular pairs of density at least γ. If R contains a homomorphic 
copy of H, then H ⊆ G.

We will also need the Slicing Lemma (see e.g. [31, Fact 1.5]).

Lemma 2.5 (Slicing Lemma). Let ε, α, γ ∈ (0, 1) satisfy ε ≤ min{γ, α, 1/2}. If (A, B) is 
an (ε, γ)-regular pair, then for any A′ ⊆ A and B′ ⊆ B with |A′| ≥ α|A| and |B′| ≥ α|B|, 
we have that (A′, B′) is an (ε′, γ − ε)-regular pair, where ε′ := max{ε/α, 2ε}.

Conventions: Throughout the rest of this paper, we will use G as an edge-coloured Kn. 
For a given number of colours k and a sequence of graphs (Hi)ki=1, we will always write 
ψ :

([n]
2
)
→ [k] for an extremal colouring realising nim(n; H1, . . . , Hk). We do not try to 

optimise the constants nor prove most general results, instead aiming for the clarify of 
exposition.

3. Proofs of Theorems 1.11, 1.12 and 1.13

By adding isolated vertices, we can assume that each graph Hi has even order. 
The following proposition will be frequently used. It basically says that there are no 
monochromatic copies of Kv(Hi),v(Hi)/2 in colour i that contains a NIM-i-edge. Its proof 
follows from the fact that every edge of Kv(Hi),v(Hi)/2 is in an Hi-subgraph.

Proposition 3.1. For every graph G, fixed bipartite graphs H1, . . . , Hk, and a k-edge-
colouring φ : E(G) → [k], we have the following for every vertex v ∈ V (G) and i ∈ [k]. 
Let Ui := {v′ ∈ V (G) : vv′ ∈ Gnim

i }.

(i) For every vertex u ∈ Ui, the graph Gi[NGi
(v) \{u}, NGi

(u) \{v}] is Kv(Hi),v(Hi)/2-
free.

(ii) The graph Gi[Ui, V \ (Ui ∪ {v})] is Kv(Hi),v(Hi)/2-free. �
One of the key ingredients for the 2-colour case for bipartite graphs is the following 

lemma, which is proved by extending an averaging argument of Ma [33]. It states that 
any 2-edge-colouring of Kn has only linearly many NIM-edges, or there is neither a large 
NIM star nor matching in one of the colours.
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Lemma 3.2. For any h-vertex bipartite H with h even and any 2-edge-colouring φ of 
G := Kn with nim(φ; H) > 22h2

n, there exists i ∈ [2] such that Gnim
i is {K1,h, Mh/2}-free.

Proof. We may assume, without loss of generality, that Gnim
1 contains K1,h, since oth-

erwise

nim(φ;H) ≤ 2 · ex(n,K1,h) ≤ (h− 1)n,

contradicting nim(φ; H) > 22h2
n. Let Sv be an h-star in Gnim

1 centred at v. We will show 
that if Gnim

2 contains the star K1,h (Case 1) or the matching Mh/2 (Case 2), then it 
follows that nim(φ; H) ≤ 22h2

n, which is a contradiction. In each case, we will define a set 
S ⊆ V (G), with h +1 ≤ |S| ≤ h2, containing Sv as follows. In Case 1, let Su be an h-star 
centred at u in Gnim

2 (u and v are not necessarily distinct). Define S = V (Sv) ∪ V (Su)
with h + 1 ≤ |S| ≤ 2h + 2. In Case 2, let M ⊆ Gnim

2 be a matching with edge set 
{e1, . . . , eh/2}, where ei = zi,1zi,2 for every 1 ≤ i ≤ h/2. Denote Z := ∪h/2

i=1{zi,1, zi,2}. 
For each edge ei ∈ E(M), without loss of generality, assume that dG2(zi,1) ≥ dG2(zi,2). 
Define iteratively for every i = 1, . . . , h/2 a set U ′

i as follows,
{
U ′
i ⊆ Wi, |U ′

i | = h
2 , if |Wi| ≥ h/2,

U ′
i = Wi, otherwise,

where Wi := NG2(zi,1) \
(
Z ∪

(
∪i−1
j=1U

′
j

))
; further define Ui := U ′

i ∪ {zi,1, zi,2}. Finally, 
set S :=

(
∪h/2
i=1Ui

)
∪ V (Sv). So h + 1 ≤ |S| ≤ h + 1 + (h/2 + 2) · h/2 ≤ h2.

We now define a partition of V (G) \ S that will be used in both Case 1 and Case 2. 
For each vertex w ∈ V (G) \S, denote by fw the function S → [2] whose value on s ∈ S is 
fw(s) = φ(sw). In other words, fw encodes the colours of the edges from w to S. Define

Y1 := { v ∈ V (G) \ S : |f−1
v (2)| < h/2 },

Y2 := { v ∈ V (G) \ S : |f−1
v (1)| < h/2 },

X := V (G) \ (S ∪ Y1 ∪ Y2).

Thus X consists of those v ∈ V (G) \ S that send at least h/2 edges of each colour to S.
We will show in the following claims that, for each class in this partition, there are 

few vertices in that class or the number of NIM-edges incident to it is linear.

Claim 3.3. e(Gnim[X]) ≤ h
( |S|
h/2

)
n.

Proof of Claim. Assume to the contrary that e(Gnim
i [X]) ≥ h

( |S|
h/2

)
n/2, for some i ∈ [2]. 

Then there exists a vertex x ∈ X with dGnim
i [X](x) ≥ h

( |S|
h/2

)
. By the definition of X, 

each vertex in NGnim
i [X](x) has at least h/2 Gi-neighbours in S. By the Pigeonhole 

Principle, there exists a copy of Kh,h/2 ⊆ Gi[NGnim
i [X](x), S], which is a contradiction 

by Proposition 3.1(ii). �
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Fig. 2. Case 2 of Lemma 3.2.

Claim 3.4. |Y1| < h · 2|S|.

Proof of Claim. Assume to the contrary that |Y1| ≥ h · 2|S|. Since the total number of 
functions S → [2] is 2|S|, by averaging, there exists a function f and a subset Yf ⊆ Y1
with |Yf | ≥ h such that for all vertices y ∈ Yf , the functions f and fy are the same. By 
the definition of Y1, there is a subset I ⊆ V (Sv) \ {v} with |I| ≥ h/2 such that for all 
s ∈ I, f(s) = 1, i.e., all pairs between Yf and I are of colour 1. Recall that Sv is the 
h-star consisting of NIM-i-edges, thus, there exists a copy of Kh/2,h ⊆ G1[NGnim

1
(v), Yf ], 

which contradicts Proposition 3.1(ii). �
We now show that Y2 has also to be small (given that Gnim

2 contains a large star or 
matching), otherwise nim(φ, H) is linear.

Case 1. Gnim
2 has the star K1,h.

A similar argument as in Claim 3.4 (with Su playing the role of Sv) shows that 
|Y2| < h · 2|S|.

Case 2. Gnim
2 has the matching Mh/2.

By the definition of S, all the Ui’s are pairwise disjoint and h + 1 ≤ |S| ≤ h2, see 
Fig. 2. Suppose that |Y2| ≥ h · 2|S|. Again there exists a function f : S → [2] with 
|f−1(1)| < h/2 and a subset Yf ⊆ Y2 with |Yf | ≥ h, such that for all vertices y ∈ Yf , fy
is the same as f . We will use the following claim.

Claim 3.5. For every 1 ≤ i ≤ h/2, there exists w ∈ Ui such that f(w) = 1.

Proof of Claim. For a fixed 1 ≤ i ≤ h/2, assume to the contrary that for all s ∈ Ui, 
we have f(s) = 2, i.e., E(G[Ui, Yf ]) ⊆ E(G2). Thus, |NG2(zi,1) \ (∪i−1

j=1U
′
j ∪ Z)| ≥ |Yf |. 
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Consequently, |U ′
i | = h/2. Therefore, there exists Kh/2,h ⊆ G2[Ui \{zi,1}, Yf ], which con-

tradicts Proposition 3.1(i) with zi,1 and zi,2 playing the roles of v and u respectively. �
By Claim 3.5 together with the fact that the Ui’s are pairwise disjoint, f assumes value 

1 at least h/2 times, which contradicts Yf ⊆ Y2. Therefore, in both cases, |Y2| < h · 2|S|.
Let Y := Y1 ∪ Y2. Since |S| ≤ h2, by Claims 3.3 and 3.4, we get that

nim(φ;H) ≤ e(Gnim[S]) + e(Gnim[S, V \ S]) + e(Gnim[Y ]) + e(Gnim[Y,X]) + e(Gnim[X])

≤ |S| · n + |Y | · n + e(Gnim[X])

≤ (h2 + 2 · h2h
2
)n + h

(
h2

h/2

)
n < 22h2

n,

a contradiction.
This completes the proof of Lemma 3.2. �

3.1. Weakly-reducible bipartite graphs

Proof of Theorem 1.11. Let H be a weakly-reducible bipartite graph. Let h = v(H) and 
w ∈ V (H) be a vertex such that ex(n, H−w) < ex(n, H) −22h2

n for n ≥ n0. In particular, 
we have that ex(n, H) > 22h2

n for n ≥ n0. Thus by Lemma 3.2, we may assume that 
there is i ∈ [2] such that e(Gnim

i ) ≤ ex(n, {K1,h, Mh/2}) ≤ h2. By the symmetry between 
the two colours, let us assume that i = 1. Suppose that E(Gnim

1 ) �= ∅ as otherwise we 
are trivially done. We now distinguish the following two cases.

Case 1. For every edge e = uv ∈ E(Gnim
1 ), dG1(u) ≤ 10h and dG1(v) ≤ 10h.

In this case, pick one such edge, e = uv, and define V1 = (NG1(u) ∪NG1(v)) \ {u, v}. 
So |V1| ≤ dG1(u) + dG1(v) ≤ 20h. Let

V2 := V (G) \ (V1 ∪ {u, v}) = NG2(u) ∩NG2(v).

Note that the subgraph of Gnim
2 induced on vertex set V2 satisfies e(Gnim

2 [V2]) ≤ ex(n,
H − w). Otherwise, a copy of H − w in Gnim

2 [V2] together with u forms a copy of H in 
colour 2. Recall that |V1| ≤ 20h, e(Gnim

1 ) ≤ h2 and V1∪V2∪{u, v} is a partition of V (G). 
Therefore for large n, we have

nim(ψ;H) ≤ e(Gnim
2 ) + e(Gnim

1 ) ≤ e(Gnim
2 [V2]) + (|V1| + 2)n + h2 (7)

≤ ex(n,H − w) + 30hn ≤ ex(n,H) − 22h2
n + 30hn < ex(n,H).

Case 2. There exists an edge e = uv ∈ E(Gnim
1 ) such that dG1(u) ≥ 10h.
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Pick A ⊆ NG1(u) with |A| = 10h, and denote

X := {z ∈ V (G) \ (A ∪ {u, v}) : dG2(z,A) ≥ h},
Y := {z ∈ V (G) \ (A ∪ {u, v}) : dG1(z,A) ≥ h} \X.

Note that X ∪ Y ∪A ∪ {u, v} is a partition of V (G). We will use the following claims.

Claim 3.6. For every vertex w ∈ X ∪ Y , dGnim
2

(w, X) < h
(10h

h

)
.

Proof of Claim. Assume to the contrary that there exists a vertex w ∈ X ∪ Y with 
dGnim

2
(w, X) ≥ h

(10h
h

)
, and define S := NGnim

2
(w, X). Since |A| = 10h and vertices in S

all have G2-degree at least h in A, there exists a subset of S of size at least h such that 
its vertices are connected in G2 to the same h vertices in A, i.e., Kh,h ⊆ G2[S, A], which 
contradicts Proposition 3.1(ii). �

Define Y ′ = Y ∩NG1(v) to be the set of all vertices in Y that are adjacent to v with 
a 1-coloured edge, and Y ′′ = Y \ Y ′.

Claim 3.7. |Y ′| <
(10h

h

)
h.

Proof of Claim. Assume to the contrary that |Y ′| ≥
(10h

h

)
h. Since all vertices in Y ′ have 

at least h G1-neighbours in A, there exists a copy of Kh,h ⊆ G1[Y ′, A], which extends 
to a copy of Kh+1,h+1 ⊇ H containing the edge uv ∈ E(Gnim

1 ), a contradiction. �
By Claims 3.6, 3.7 and since |A| = 10h, the number of edges in Gnim

2 with at least 
one end point in the set A ∪ Y ′ ∪X ∪ {u, v} is at most 3h

(10h
h

)
n. It remains to estimate 

e(Gnim
2 [Y ′′]). We claim that e(Gnim

2 [Y ′′]) ≤ ex(n, H − w). Otherwise, since all the edges 
connecting v to Y ′′ have colour 2, we can extend the copy of H − w ⊆ Gnim

2 [Y ′′] to a 
copy of H by adding v. This contradicts the definition of Gnim

2 . Hence,

nim(ψ;H) = e(Gnim
2 ) + e(Gnim

1 ) ≤ 3h
(

10h
h

)
n + ex(n,H − w) + h2

< ex(n,H) − 22h2
n + 4h

(
10h
h

)
n < ex(n,H).

Thus, any colouring with NIM-edges of two different colours is not extremal. �
3.2. General bipartite graphs

In this subsection, we will prove Theorems 1.12 and 1.13.

Proof of Theorem 1.12. As H contains a cycle, ex(n, H)/n → ∞ as n → ∞. Then by 
Lemma 3.2, we may assume that, for example, Gnim

1 is {K1,h, Mh/2}-free. Since Gnim
2 is 

H-free, we immediately get that
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nim2(n,H) ≤ ex(n,H) + ex(n, {K1,h,Mh/2}) ≤ ex(n,H) + h2,

as desired. �
Proof of Theorem 1.13. Let us first present the part of the proof which works for an 
arbitrary number of colours k and any forest T . Let h = v(T ).

The stated lower bound on nimk(n; T ) can be obtained by using the argument of 
Ma [33]. Fix some maximum T -free graph H on [n] and take uniform independent per-
mutations σ1, . . . , σk−1 of [n]. Iteratively, for i = 1, . . . , k − 1, let the colour-i graph 
Gi consists of those pairs {σi(x), σi(y)}, xy ∈ E(H), that are still uncoloured. Finally, 
colour all remaining edges with colour k. Clearly, all edges of colours between 1 and k−1
are NIM-edges. Since e(H) ≤ hn = O(n), the expected size of 

∑k−1
i=1 e(Gi) is at least

(k − 1)e(H) −
(
k − 1

2

)
e(H)2

(
n

2

)−1

≥ (k − 1)ex(n, T ) − k2h2.

By choosing the permutations for which 
∑k−1

i=1 e(Gi) is at least its expectation, we obtain 
the required bound.

Let us turn to the upper bound. Fix an extremal G with colouring φ :
([n]

2
)
→ [k], so 

nimk(φ; T ) = nimk(n; T ). For every 1 ≤ i ≤ k, denote

Ai := {v ∈ V (G) : ∃u ∈ V (G), uv ∈ E(Gnim
i )} and ai := |Ai|.

In other words, Ai is the set of all vertices incident with at least one i-coloured NIM-edge. 
Note that

nimk(φ;T ) ≤
k∑

i=1
ex(ai, T ). (8)

Also, for every X ⊆ [k], define

BX := {v ∈ V (G) : v ∈ Ai ⇔ i ∈ X} = ∩i∈XAi \ (∪j /∈XAj) and bX := |BX |.

In other words, BX is the set of vertices which are incident with edges in Gnim
i if and 

only if i ∈ X. By definition, for two distinct subsets X, Y ⊆ [k], BX ∩BY = ∅.

Claim 3.8. For every two subsets X, Y ⊆ [k] with X ∪ Y = [k], min{bX , bY } < 6kh.

Proof of Claim. Assume on the contrary that there exist two subsets X, Y ⊆ [k] such 
that X ∪ Y = [k] and bX , bY ≥ 6kh. Let B′

X ⊆ BX and B′
Y ⊆ BY be such that 

|B′
X | = |B′

Y | = 6kh. By averaging, some colour, say colour 1, contains at least 1/k
proportion of edges in G[B′

X , B′
Y ]. Set F = G1[B′

X , B′
Y ]. Then there exists F ′ ⊆ F on 
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Fig. 3. Finding a copy of T ∈ G1.

vertex set B′′
X ∪B′′

Y , where B′′
X ⊆ B′

X and B′′
Y ⊆ B′

Y , such that the minimum degree of 
F ′ is at least half of the average degree of F , that is,

δ(F ′) ≥ e(F )
|V (F )| ≥

|B′
X | · |B′

Y |
k · (|B′

X | + |B′
Y |)

= (6kh)2

k · 12kh = 3h.

Let v ∈ V (T ) be a leaf, u be its only neighbour, and T ′ := T − v, where T − v is 
the forest obtained from deleting the leaf v from T . Since X ∪ Y = [k], without loss 
of generality, we can assume that 1 ∈ X. Fix an arbitrary vertex x ∈ B′′

X and let w
be a Gnim

1 -neighbour of x. (Such a vertex exists as x ∈ B′′
X ⊆ BX and 1 ∈ X.) Then 

δ(F ′ − w) ≥ δ(F ′) − 1 ≥ 2h. We can then greedily embed T ′ in F ′ − w with x playing 
the role of u. As this copy of T ′ is in F ′ − w ⊆ G1, together with xw ∈ Gnim

1 , we get a 
monochromatic copy of T with an edge in Gnim, a contradiction (see Fig. 3). �

We will divide the rest of the proof into two cases.

Case 1. There exists a subset X ⊂ [k] such that |X| = k − 1 and bX ≥ 6kh.

Let {j} = [k] \ X, and Y be the collection of all subsets of [k] containing j. By 
Claim 3.8, bY < 6kh, for every set Y ∈ Y, implying that aj =

∑
Y ∈Y bY < 2k · 6kh. 

Hence, by (8),

nimk(φ;T ) ≤
∑
i∈[k]

ex(ai, T ) ≤
∑

i∈[k]\{j}
ex(ai, T ) + ex(2k · 6kh, T )

≤ (k − 1)ex(n, T ) + 2k · 6kh2.

Thus the theorem holds in this case.

Case 2. For all subsets X ⊂ [k] with |X| = k − 1, we have bX < 6kh.
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By Claim 3.8, we have b[k] ≤ 2 · 6kh. Hence, all but at most (k + 2)6kh vertices are 
adjacent to NIM-edges with at most k− 2 different colours, which implies that they are 
in at most k − 2 different sets Ai. Therefore,

a1 + · · · + ak ≤ (k − 2)n + 12(k + 2)kh. (9)

Now our analysis splits further, depending on the cases of Theorem 1.13. If k = 2, 
then we are done by (8) and (9):

nim2(φ;T ) ≤ h(a1 + a2) ≤ 96h2 ≤ ex(n, T ).

Thus it remains to consider the case when k ≥ 3 and T is a tree. By taking the 
disjoint union of two maximum T -free graphs, we see that the Turán function of T is 
superadditive, that is,

ex(
, T ) + ex(m,T ) ≤ ex(
 + m,T ), for any 
,m ∈ N. (10)

The Fekete Lemma implies that ex(m, T )/m tends to a limit τ . Since, for example, 
ex(m, T ) ≤ hm, we have that τ ≤ h, in particular, τ is finite. Also, excluding the case T =
K2 when the theorem trivially holds, we have τ > 0. In particular, | ex(m, T )/m −τ | < c

for all large m, where c := τ/(3k − 4) > 0 satisfies (τ + c)(k − 2) = (k − 1)(τ − 2c).
Thus (8), (9), (10) and the fact that n is sufficiently large give that

nimk(φ;T ) ≤ ex(a1 + · · · + ak, T ) ≤ ex((k − 2)n + 12(k + 2)kh, T )

≤ (τ + c)
(
(k − 2)n + 12(k + 2)kh

)
≤ (k − 1)(τ − 2c)n + 24(k + 2)kh2

≤ (k − 1)(τ − c)n ≤ (k − 1)ex(n, T ).

This finishes the proof of Theorem 1.13. �
4. Proofs of Theorems 1.5 and 1.6

We need the following lemma, which states that the reduced graph of the NIM-graph 
cannot have a large clique, linking the nim function to the new Ramsey variant r∗.

Lemma 4.1. For i ∈ [k], let Hi be a non-bipartite graph, and let 1/k, 1/r ≥ γ � ε �
1/N > 0, where r := R(a1−1, . . . , ak−1) and ai := χ(Hi). Let V1, . . . , Vm be disjoint sets, 
each of size at least N . Take any φ :

(
V
2
)
→ [k], where V := V1 ∪ · · · ∪ Vm, and let Gnim

be the NIM-graph of φ. Then the graph R := R(ε, γ, φ|E(Gnim), (Vi)mi=1) is Kr∗+1-free, 
where r∗ := r∗(H1, . . . , Hk).

Proof. Given the graphs Hi with ai = χ(Hi), and r = R(a1, . . . , ak), choose additional 
constants so that the following hierarchy holds:
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1
r
� γ � ε1 � 1

M
� ε � 1

N
> 0.

Let the Vi’s and φ be as in the statement of the lemma. For each i ∈ [m], apply the 
Multicolour Regularity Lemma (Lemma 2.3) with constants ε1 and 1/ε1 to the k-coloured 
complete graph on Vi to obtain an ε1-regular partition Vi = Ui,1 ∪ · · · ∪ Ui,mi

with 
1/ε1 ≤ mi ≤ M . Let Ri := R(ε1, γ, φ|(Vi

2
), (Ui,j)mi

j=1) be the associated reduced graph.
Note that the fraction of the elements xy ∈

(
Vi

2
)

with x ∈ Ui,a and y ∈ Ui,b such 
that the pair (Ui,a, Ui,b) is not ε1-regular in some colour or satisfies a = b is at most 
ε1 + 1/mi. Since γ ≤ 1/k, the remaining elements of 

(
Vi

2
)

come from edges of Ri. Recall 
that mi = v(Ri). Thus, we have that

e(Ri) ≥
(1 − ε1 − 1/mi)

(|Vi|
2
)

� |Vi|/mi �2
≥ (1 − 2ε1)

(
mi

2

)
. (11)

Let ξ : E(R) → [k] be the colouring of R. We extend it to the vertices of R as follows. 
Take i ∈ [m]. Let ξi : E(Ri) → [k] be the colouring of Ri. By (11) and since v(Ri) ≥ 1/ε1

and ε1 � 1/r, we have that e(Ri) > ex(mi, Kr). By Turán’s theorem [48], the graph Ri

contains an r-clique. By the definition of r, the restriction of the k-edge-colouring ξi to 
this r-clique contains a colour-p copy of Kap−1 for some p ∈ [k]. Let ξ assign the colour 
p to Vi.

Suppose to the contrary that some (r∗+1)-set A spans a clique in R. The restriction of 
ξ to 

(
A
≤2

)
violates either (P1) or (P2) from Definition 1.3. We will derive contradictions in 

both cases, thus finishing the proof. If ξ contains an edge-monochromatic homomorphic 
copy of some Hi in colour i ∈ [k], then by the Embedding Lemma (Lemma 2.4) the 
colour-i subgraph of Gnim contains a copy of Hi, a contradiction to Gnim consisting of the
NIM-edges. So suppose that (P2) fails, say, some pair ViVj ∈

(
A
2
)

satisfies ξ(ViVj) = ξ(Vi), 
call this colour p. By the definition of ξ(Vi), Ri contains an (ap − 1)-clique of colour p
under ξi, say with vertices U1, . . . , Uap−1 ∈ V (Ri). Observe that ε1 ≥ max{2ε, εM} ≥
max{2ε, ε · v(Ri)} and p is the majority colour on edges in Gnim[Vi, Vj ]. The Slicing 
Lemma (Lemma 2.5) with e.g. α := 1/M gives that each pair (Vj , Uh) with h ∈ [ap − 1]
is (ε1, γ/2)-regular in Gnim

p . The Embedding Lemma (Lemma 2.4) gives a copy of Hp in G
containing at least one (in fact, at least δ(Hp)) edges of Gnim[Vi, Vj ], a contradiction. �
Proof of Theorem 1.5. For the upper bound, let 1 � ε � γ � ε1 > 0. Let n be large 
and suppose to the contrary that there exists some colouring φ : E(Kn) → [k] that 
violates (4). Apply the Multicolour Regularity Lemma (Lemma 2.3) to the NIM-graph 
Gnim of φ with parameters ε1 and 1/ε1. A calculation similar to the one in (11) applies 
here, where additionally one has to discard at most kγ

(
n
2
)

edges in NIM(φ) coming from 
pairs that have density less than γ in each colour. By γ � ε, we conclude that the 
reduced graph R = R(ε1, γ, φ|E(Gnim)) of Gnim has at least (1 − 1/r∗ + ε/2)v(R)2

2 edges. 
By Turán’s theorem, Kr∗+1 ⊆ R, contradicting Lemma 4.1.
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For the lower bound, take a feasible k-colouring ξ of 
([r∗]
≤2

)
, where r∗ := r∗(H1, . . . , Hk). 

If possible, among all such colourings take one such that all singletons have the same 
colour. Consider the blow-up colouring φ := ξ(X1, . . . , Xr∗) where the sets Xi form an 
equipartition of [n].

Let us show that every edge of K[X1, . . . , Xr∗] is a NIM-edge. Take any copy F of Hi

which is i-monochromatic in φ. Since the restriction of ξ to 
([r∗]

2
)

has no homomorphic 
copy of Hi by (P1), the graph F must use at least one edge that is inside some Vj. If 
ξ assigns the value i only to singletons, then no edge of the colour-i graph F can be a 
cross-edge. Otherwise, if F is connected, then E(F ) ⊆

(
Vj

2
)

because no edge between Vj

and its complement can have φ-colour i by (P2). We conclude that every cross-edge is a
NIM-edge, giving the required lower bound. �
Proof of Theorem 1.6. Choose ε � ε1 � δ � γ � ε2 � 1/n > 0. Let φ be as 
in the theorem. Apply the Regularity Lemma (Lemma 2.3) to NIM-graph Gnim with 
parameters ε2 and 1/ε2 to get an ε2-regular partition V (Gnim) = V1 ∪ · · · ∪ Vm. Let 
R = R(ε2, γ, φ|E(Gnim), (Vi)mi=1) be the reduced graph. A similar calculation as in (11)
yields that e(R) ≥

(
1 − 1

r∗ − 2δ
)

m2

2 . On the other hand, by Lemma 4.1, R is Kr∗+1-free. 
Thus, the Erdős–Simonovits Stability Theorem [11,42] implies that δedit(R, T (m, r∗)) ≤
ε1m

2/2. Let a partition V (R) = U1 ∪ · · · ∪ Ur∗ minimise |E(R) 	 E(K[U1, . . . , Ur∗ ])|. 
We know that the minimum is at most ε1m

2/2. Let V (Gnim) = W1 ∪ · · · ∪Wr∗ be the 
partition induced by Ui’s, i.e., Wi := ∪Vj∈Ui

Vj for i ∈ [r∗]. Let G′ be the graph obtained 
from Gnim by removing all edges that lie in any cluster Vi; or between those parts Vi

and Vj such that ViVj is not an ε2-regular pair or belongs to E(R) 	E(K[U1, . . . , Ur∗ ]). 
We have

|E(Gnim) 	 E(G′)| = |E(Gnim) \ E(G′)|

≤ m · (n/m)2

2 + ε2m
2 · n2

m2 + |E(R) 	 E(T (m, r∗))| · n2

m2 ≤ ε1n
2.

As e(Gnim) ≥ (1 − 1/r∗)n2/2 − δn2, we have e(G′) ≥ (1 − 1/r∗)n2/2 − 2ε1n
2. Since G′ is 

r∗-partite (with parts W1, . . . , Wr∗), a direct calculation gives that δedit(G′, T (n, r∗)) ≤
εn2/2. Finally, we obtain

δedit(Gnim, T (n, r∗)) ≤ |E(Gnim) 	 E(G′)| + δedit(G′, T (n, r∗)) ≤ ε1n
2 + εn2

2 ≤ εn2,

as desired. �
5. Proof of Theorem 1.7

The following lemma will be useful in the forthcoming proof of Theorem 1.7. It is 
proved by an easy modification of the standard proof of Ramsey’s theorem.
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Lemma 5.1 (Partite Ramsey Lemma). For every triple of integers k, r, u ∈ N there is ρ =
ρ(k, r, u) such that if φ is a k-edge-colouring of the complete graph on Y1∪· · ·∪Yr, where 
Y1, . . . , Yr are disjoint ρ-sets, then there are u-sets Ui ⊆ Yi, i ∈ [r], and ξ :

( [r]
≤2

)
→ [k]

such that ξ(U1, . . . , Ur) ⊆ φ. (In other words, we require that each 
(
Ui

2
)

and each bipartite 
graph [Ui, Uj ] is monochromatic.)

Proof. We use induction on r with the case r = 1 being the classical Ramsey theorem. 
Let r ≥ 2 and set N := (u − 1)kr + 1. We claim that ρ := (2k)N ρ(k, r − 1, u) suffices 
here. Let ξ be an arbitrary k-edge-colouring of the complete graph on Y1∪· · ·∪Yr where 
each |Yi| = ρ.

Informally speaking, we iteratively pick vertices x1, . . . , xN in Yr shrinking the parts 
so that each new vertex xi is monochromatic to each part. Namely, we initially let 
U0
i := Yi for i ∈ [r]. Then for i = 1, . . . , N we repeat the following step. Given vertices 

x1, . . . , xi−1 and sets U i−1
r ⊆ Yr \ {x1, . . . , xi−1} and U i−1

j ⊆ Yj for j ∈ [r − 1], we 
let xi be an arbitrary vertex of U i−1

r and, for j ∈ [r], let U i
j be a maximum subset of 

U i−1
j such that all pairs between xi and U i

j have the same colour, which we denote by 
cij ∈ [k]. Clearly, |U i

j | ≥ (|U i−1
j | − 1)/k (the −1 term is needed for j = r), which is at 

least (2k)N−i by a simple induction on i. Thus we can carry out all N steps. Moreover, 
each of the final sets UN

1 , . . . , UN
r−1 has size at least ρ/(2k)N = ρ(k, r − 1, u). By the 

induction assumption, we can find u-sets Uj ⊆ UN
j , j ∈ [r−1], and ξ :

([r−1]
≤2

)
→ [k] with 

ξ(U1, . . . , Ur−1) ⊆ φ.
Each selected vertex xi comes with a colour sequence (ci1, . . . , cir) ∈ [k]r. So we can 

find a set Ur ⊆ {x1, . . . , xN} of �N/kr� = u vertices that have the same colour sequence 
(c1, . . . , cr). Clearly, all pairs in 

(
Ur

2
)

(resp. [Ur, Uj ] for j ∈ [r−1]) have the same colour cr
(resp. cj). Thus if we extend the colouring ξ to 

( [r]
≤2

)
by letting ξ(i, r) := ci for i ∈ [r− 1]

and ξ(r) := cr, then ξ(U1, . . . , Ur) ⊆ φ, as required. �
The main step in proving Theorem 1.7 is given by the following lemma.

Lemma 5.2. Under the assumptions of Theorem 1.7, there is n0 such that if φ is an 
arbitrary k-edge-colouring of G := Kn with n ≥ n0, e(Gnim) ≥ t(n, r∗) and

δ(Gnim) ≥ δ(T (n, r∗)), (12)

where δ denotes the minimum degree, then Gnim ∼= T (n, r∗) (in particular, e(Gnim) =
t(n, r∗)).

Proof. Let Hi, i ∈ [k], and r∗ be as in Theorem 1.7. So r∗ = r∗(H1, . . . , Hk). Let

N := max
i∈[k]

v(Hi) − 1 ≥ 1 and 1 � ε � ε1 � 1/n0 > 0.

Let n ≥ n0 and let φ be an arbitrary k-edge-colouring of G := Kn.
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Let P = {V1, . . . , Vr∗} be a max-cut r∗-partition of Gnim. In particular, for every 
i, j ∈ [r∗] and every v ∈ Vi, we have dGnim(v, Vj) ≥ dGnim(v, Vi). By applying Theorem 1.6
to Gnim, we have

e(Gnim[P]) ≥ t(n, r∗) − ε1n
2. (13)

A simple calculation shows that |Vi| = n
r∗ ± 3

√
ε1n for all i ∈ [r∗].

Claim 5.3. For every i ∈ [r∗] and v ∈ Vi, dGnim(v, Vi) ≤ εn.

Proof of Claim. Assume to the contrary that there exist i ∈ [r∗] and v ∈ Vi such that 
dGnim(v, Vi) > εn. For each j ∈ [r∗], as P is a max-cut, there exists a colour 
 ∈ [k] such 
that

dGnim
�

(v, Vj) ≥ dGnim(v, Vj)/k ≥ dGnim(v, Vi)/k ≥ εn/k =: m.

So, for j ∈ [r∗], let Zj ⊆ NGnim
�

(v, Vj) be any subset of size m. We have

e(Gnim[Z1, . . . , Zr∗ ]) ≤ e(Gnim[V1, . . . , Vr∗ ])
(13)
≤ ε1n

2. (14)

Let ρ := ρ(k, r∗, N), where ρ is the function from the Partite Ramsey Lemma 
(Lemma 5.1). For i ∈ [r∗], let Yi be a random ρ-subset of Zi, chosen uniformly and 
independently at random. By (14), the expected number of missing cross-edges in 
Gnim[Y1, . . . , Yr∗ ] is at most

ε1n
2
((

m− 1
ρ− 1

)/(
m

ρ

))2

= ε1

(
ρk

ε

)2

< 1.

Thus there is a choice of the ρ-sets Yi’s such that Gnim[Y1, . . . , Yr∗ ] has no missing 
cross-edges. By the definition of ρ, there are N -sets U1 ⊆ Y1, . . . , Ur∗ ⊆ Yr∗ and a 
colouring ξ :

([r∗]
≤2

)
→ [k] such that ξ(U1, . . . , Ur∗) ⊆ φ.

Note that ξ is feasible. Indeed, if we have, for example, ξ(ij) = ξ(i) =: c, then by 
taking one vertex of Uj and all N vertices of Ui we get a colour-c copy of KN+1. However, 
since N + 1 ≥ v(Hc), every edge of this clique is in an Hc-subgraph, contradicting the 
fact that all pairs in the complete bipartite graph K[Ui, Uj ] are NIM-edges.

Consequently, as (H1, . . . , Hk) is nice, ξ must assign the same colour to all singletons, 
say colour 1. By construction, the vertex v is monochromatic into each Zi ⊇ Ui. So we 
can take ξ′ :

([r∗+1]
≤2

)
→ [k] such that ξ′(U1, . . . , Ur∗ , {v}) ⊆ φ, where we additionally 

let ξ′(r∗ + 1) := 1. As r∗ = r∗(H1, . . . , Hk), the colouring ξ′ violates (P1) or (P2). This 
violation has to include the vertex r∗ +1 since the restriction of ξ′ to 

([r∗]
≤2

)
is the feasible 

colouring ξ. We cannot have i ∈ [r∗] with ξ′(i, r∗ + 1) = 1 because otherwise Ui ∪ {v} is 
an (N +1)-clique coloured 1 under φ, a contradiction to all pairs between Zi ⊇ Ui and v
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being NIM-edges. Therefore, there exists an edge-monochromatic homomorphic copy of 
Hj of colour j, say F , with r∗+1 ∈ V (F ). By the definition of homomorphism-criticality, 
there exists a homomorphism g : V (Hj) → V (F ) such that |g−1(r∗ + 1)| = 1. Therefore, 
we can find an edge-monochromatic copy of Hj in colour j, with g−1(r∗ + 1) mapped 
to v, and all the other vertices of Hj mapped to vertices in U1∪ . . .∪Ur∗ , a contradiction 
to all pairs between this set and v being NIM-edges. �

We next show that all pairs inside a part get the same colour under φ.

Claim 5.4. For any p ∈ [r∗] and any u1u2, u3u4 ∈
(
Vp

2
)
, we have φ(u1u2) = φ(u3u4).

Proof of Claim. Suppose on the contrary that u1, . . . , u4 ∈ Vp violate the claim. Without 
loss of generality, let p = r∗. Let U := {u1, . . . , u4}. By (12), Claim 5.3 and the fact that 
|Vr| = n/r± 3

√
ε1 n, all but at most 2εn edges from any u ∈ Vr∗ to V \Vr∗ are NIM-edges. 

For i ∈ [r∗ − 1] (resp. i = r∗), define Zi ⊆ Vi to be a largest subset of ∩4
j=1NGnim(uj , Vi)

(resp. Vr∗ \ U) with the same colour pattern to U , i.e., for all x, x′ ∈ Zi and j ∈ [4] we 
have φ(ujx) = φ(ujx

′). By the Pigeonhole Principle, we have for i ∈ [r∗ − 1] that

|Zi| ≥
| ∩4

j=1 NGnim(uj , Vi)|
k4 ≥ |Vi| − 4 · 2εn

k4 ≥ n

2r∗k4 .

Also, |Zr∗ | ≥ (|Vr∗ | − 4)/k4 ≥ n/(2r∗k4).
Similarly to the calculation after (14), there are N -subsets Ui ⊆ Zi, i ∈ [r∗], such 

that φ contains the blow-up ξ(U1, . . . , Ur∗) of some ξ :
([r∗]
≤2

)
→ [k]. As in the proof 

of Claim 5.3, ξ is feasible and assigns the same colour, say 1, to all singletons. Since 
φ(u1u2) �= φ(u3u4), assume that e.g. φ(u1u2) �= 1.

We define the colouring ξ′ :
([r∗+1]

≤2
)
→ [k] so that ξ′(U1, . . . , Ur∗−1, {u1}, {u2}) ⊆ φ, 

where additionally we let both ξ′(r∗) and ξ′(r∗ + 1) be 1. Note that ξ′(r∗, r∗ + 1) =
φ(u1u2). Also, observe that we do not directly use the part Ur∗ when defining ξ′: the 
role of this part was to guarantee that ξ is monochromatic on all singletons. By the 
definition of r∗, the colouring ξ′ violates (P1) or (P2).

Suppose first that ξ′ violates (P2), that is there is a pair ij ∈
([r∗+1]

2
)

with ξ′(ij) = 1. 
Since ξ′(r∗, r∗ + 1) = φ(u1u2) �= 1, we have {i, j} �= {r∗, r∗ + 1}. Also, we cannot have 
i, j ∈ [r∗ − 1], because ξ′ coincides on 

([r∗−1]
≤2

)
with the feasible colouring ξ. So we can 

assume by symmetry that i ∈ [r∗ − 1] and j = r∗. However, then the vertex u1 is 
connected by NIM-1-edges to the colour-1 clique on the N -set Ui, a contradiction.

We may now assume that the colouring ξ′ violates (P1). Let this be witnessed by an 
edge-monochromatic homomorphic copy of Hj of colour j, say F . If F contains exactly 
one vertex from {r∗, r∗ + 1}, then by an argument similar to the last part of the proof 
of Claim 5.3 we get a contradiction. Otherwise, if {r∗, r∗ + 1} ⊆ V (F ), then, by the 
definition of homomorphism-critical, there exists a homomorphism g : V (Hj) → V (F )
such that |g−1(r∗)| = |g−1(r∗ + 1)| = 1. Therefore, we can find an edge-monochromatic 
copy of Hj in colour j, with g−1(r∗) (resp. g−1(r∗ + 1)) mapped to u1 (resp. u2), and 
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all the other vertices of Hj mapped to vertices in U1 ∪ . . .∪Ur∗−1, a contradiction to all 
pairs between this set and {u1, u2} being NIM-edges. �

Let i ∈ [r∗]. By Claim 5.4 we know that G[Vi] is a monochromatic clique. Since 
|Vi| ≥ maxj∈[k] v(Hj), no pair inside Vi is a NIM-edge. Thus Gnim is r∗-partite. Our 
assumption e(Gnim) ≥ t(n, r∗) implies that Gnim is isomorphic to T (n, r∗), as desired. �

We are now ready to prove the desired exact result.

Proof of Theorem 1.7. We know by Theorem 1.5 that nim(n; H1, . . . , Hk) ≥ t(n, r∗) for 
all n.

On the other hand, let n0 be the constant returned by Lemma 5.2. Let n ≥ n2
0 and 

let ψ be an extremal colouring of G := Kn. In order to finish the proof of the theorem 
it is enough to show that necessarily Gnim ∼= T (n, r∗).

Initially, let i = n, Gn := G and φn := ψ. Iteratively repeat the following step as long 
as possible: if the NIM-graph of φi has a vertex xi of degree smaller than δ(T (i, r∗)), 
let φi−1 be the restriction of φi to the edge-set of Gi−1 := Gi − xi and decrease i by 1. 
Suppose that this procedure ends with Gm and φm.

Note that, for every i ∈ {m + 1, . . . , n}, we have that

t(i− 1, r∗) = t(i, r∗) − δ(T (i, r∗)),

nim(φi−1) ≥ nim(φi) − δ(T (i, r∗)) + 1,

the latter inequality following from the fact that every NIM-edge of φi not incident to 
xi is necessarily a NIM-edge of φi−1. These two relations imply by induction that

nim(φi) ≥ t(i, r∗) + n− i, for i = n, n− 1, . . . ,m. (15)

In particular, it follows that m > n0 for otherwise NIM(φn0) is a graph of order n0 with 
at least n − n0 >

(
n0
2
)

edges, which is impossible. Thus Lemma 5.2 applies to φm and 
gives that NIM(φm) ∼= T (m, r∗). By (15) we conclude that m = n, finishing the proof of 
Theorem 1.7. �
6. Proofs of Theorems 1.8 and 1.9

Next we will show that Conjecture 1.4 holds for the 3-colour case.

Proof of Theorem 1.8. Take an arbitrary feasible 3-colouring ξ of 
( [r]
≤2

)
, where r =

R(a2, a3) − 1.
It suffices to show that ξ assigns the same colour to all the singletons in [r]. In-

deed, suppose that (Ka1 , Ka2 , Ka3) is not nice. Suppose first that there exists a feasible 
3-colouring ξ∗ of 

([r∗]) that is not monochromatic on the singletons in [r∗], where 
≤2
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r∗ := r∗(Ka1 , Ka2 , Ka3) ≥ r. Up to relabeling, we may assume that [r] contains two 
singletons of different colours in ξ∗. We then arrive to a contradiction, as the restriction 
of ξ∗ on [r] is also feasible. Otherwise take an arbitrary feasible 3-colouring ξ∗ of 

([r∗]
≤2

)
such that ξ∗ is monochromatic on singletons, say in colour i. Then due to (P2), colour 
i cannot appear on 

([r∗]
2
)
, and so r∗ ≤ R(aj , ak) − 1 ≤ r, where {j, k} = [3] \ {i}. Thus 

r∗ = r and since ξ∗ was arbitrary, the triple (Ka1 , Ka2 , Ka3) has to be nice.
For i ∈ [3], let Vi be the set of vertices with colour i with respect to ξ. Thus we 

have a partition [r] = V1 ∪ V2 ∪ V3. For i, j ∈ [3], let ωj(Vi) be the size of the largest 
edge-monochromatic clique of colour j in Vi.

Observe the following properties that hold for every triple i, j, 
 ∈ [3] of distinct 
indices, i.e., for {i, j, 
} = [3]. By (P2), the colour of every edge inside Vi is either j
or 
 while all the edges going between Vj and V� have colour i. By the latter property 
and (P1), we have

ωi(V�) + ωi(Vj) ≤ ai − 1 and Vj �= ∅ ⇒ ωi(V�) ≤ ai − 2. (16)

For notational convenience, define r(n1, . . . , nk) := R(n1, . . . , nk) − 1 to be one 
less than the Ramsey number (i.e. it is the maximum order of a clique admitting a 
(Kn1 , . . . , Knk

)-free edge-colouring). By the definition of ωj(Vi), we also have

|Vi| ≤ r(ωj(Vi) + 1, ω�(Vi) + 1). (17)

Also, we will use the following trivial inequalities involving Ramsey numbers that hold 
for arbitrary integers a, b, c ≥ 2: r(a, b) + r(a, c) ≤ r(a, b + c −1) and r(a, b) < r(a +1, b).

First, let us derive the contradiction from assuming that each colour i ∈ [3] appears 
on at least one singleton, that is, each Vi is non-empty. In order to reduce the number 
of cases, we allow to swap colours 1 and 2 to ensure that ω1(V2) ≥ ω2(V1). Thus we do 
not stipulate now which of a1 and a2 is larger. Observe that

|V1| + |V2|
(17)
≤ r(ω2(V1) + 1, ω3(V1) + 1) + r(ω1(V2) + 1, ω3(V2) + 1)

≤ r(ω1(V2) + 1, ω3(V1) + 1) + r(ω1(V2) + 1, ω3(V2) + 1)

≤ r(ω1(V2) + 1, ω3(V1) + ω3(V2) + 1)
(16)
≤ r(ω1(V2) + 1, a3). (18)

Hence, we get

r = |V1| + |V2| + |V3|
(17),(18)

≤ r(ω1(V2) + 1, a3) + r(ω1(V3) + 1, ω2(V3) + 1)
(16)
≤ r(ω1(V2) + 1, a3) + r(ω1(V3) + 1, a2 − 1)

< r(ω1(V2) + 1, a3) + r(ω1(V3) + 1, a3)

≤ r(ω1(V2) + ω1(V3) + 1, a3)
(16)
≤ r(a1, a3) ≤ r.
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The above contradiction shows that, for some 
 ∈ [3], the part V� is empty. Let 
{i, j, 
} = [3]; thus [r] = Vi ∪ Vj . It remains to derive a contradiction by assuming that 
each of Vi and Vj is non-empty. By the symmetry between i and j, we can assume that 
ωj(Vi) ≥ ωi(Vj). Then we have

r = |Vi| + |Vj |
(17)
≤ r(ωj(Vi) + 1, ω�(Vi) + 1) + r(ωi(Vj) + 1, ω�(Vj) + 1)

≤ r(ωj(Vi) + 1, ω�(Vi) + 1) + r(ωj(Vi) + 1, ω�(Vj) + 1)

≤ r(ωj(Vi) + 1, ω�(Vi) + ω�(Vj) + 1)
(16)
≤ r(aj − 1, a�) < r(aj , a�) ≤ r,

which is the desired contradiction that finishes the proof of Theorem 1.8. �
Next, let us present the proof that r∗(3, 3, 3, 3) = 16, the only non-trivial 4-colour 

case that we can solve.

Proof of Theorem 1.9. Let ξ :
([16]
≤2

)
→ [4] be an arbitrary feasible colouring. It is enough 

to show that all singletons in [16] get the same colour. For every i ∈ [4], let Vi denote the 
set of vertices of colour i. Suppose there are at least two different colours on the vertices, 
say V3, V4 �= ∅. As 5 does not divide 16, there exists at least one class, say V3, of size 
not divisible by 5, i.e., |V3| �≡ 0 (mod 5). Choose an arbitrary vertex v ∈ V4. Since ξ is a 
feasible colouring, by (P2) the edges incident to v cannot have colour ξ(v) = 4. We can 
then partition [16] \ {v} = ∪j∈[3]Wj , where Wj := {u : ξ(uv) = j}. Let j ∈ [3]. By (P1) 
and (P2), colour j is forbidden in 

(
Wj

≤2
)
. Then by Theorem 1.8, |Wj | ≤ r∗(K3, K3, K3) =

R(3, 3) − 1 = 5. Since 
∑

j∈[3] |Wj | = 15, we have that |Wj | = 5 for every j ∈ [3]. Again 
by Theorem 1.8, all vertices in Wj should have the same colour. Recall that v ∈ V4, so 
V3 ⊆ ∪j∈[3]Wj and consequently V3 is the union of some Wj’s. This contradicts |V3| �≡ 0
(mod 5). �
7. Concluding remarks

• As pointed out by a referee, the function nim(n; H1, . . . , Hk) is related to that of 
exr(n; H1, . . . , Hr), which is the maximum size of an n-vertex graph G that can be 
r-edge-coloured so that the i-th colour is Hi-free for all i ∈ [r]. Indeed, we have the 
following lower bound:

nim(n;H1, . . . , Hk) ≥ max
i∈[k]

exk−1(H1, . . . , Hi−1, Hi+1, . . . , Hk).

It is not inconceivable that the equality holds above if n ≥ n0(H1, . . . , Hk). Theo-
rems 1.7 and 1.11 give classes of instances, when we have equality above. We refer 
the readers to Section 5.3 of [25] for more on the function exr.
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• The Ramsey variant r∗ introduced here is related to the version of Ramsey num-
bers studied by Gyárfás, Lehel, Schelp and Tuza [24]. In particular, Proposition 5 
in [24] states that r∗(K3, K3, K3, K3) = 16, which is the consequence of the fact that 
(K3, K3, K3, K3) is nice from Theorem 1.9.

• We prove in Theorem 1.13 that for any tree T , nimk(n; T ) = (k−1)ex(n, T ) +OT (1). 
Let T be an (h + 1)-vertex tree and suppose that the Erdős–Sós conjecture holds, 
i.e. ex(n, T ) ≤ (h − 1)n/2. Then for each n ≥ k2h2 with h|n, we can get rid of 
the additive error term in the lower bound, namely, it holds that nimk(n; T ) ≥
(k − 1)ex(n, T ). This directly follows from known results on graph packings. We 
present here a short self-contained proof (with a worse bound on n). Let F be the 
disjoint union of n/h copies of Kh. Let fi : V (F ) → [n], i ∈ [k − 1], be k − 1
arbitrary injective maps and let Fi be the graph obtained by mapping F on [n] via 
fi. It suffices to show that we can modify fi’s to have E(Fi) ∩ E(Fj) = ∅ for any 
ij ∈

([k−1]
2

)
. Indeed, then the lower bound is witnessed by colouring e ∈ E(Kn) with 

colour-i if e ∈ E(Fi), for each i ∈ [k − 1], and with colour-k otherwise. Suppose 
that there is a “conflict” uv ∈ E(Fi) ∩ E(Fj). Let F ∗ := ∪i∈[k−1]Fi. Note that 
Δ(F ∗) ≤ (k − 1)(h − 1). As n > Δ(F ∗)2 + 1, there exists a vertex w that is at 
distance at least 3 from v. We claim that switching v and w in fi will remove all 
conflicts at v and w. If true, one can then repeat this process till all conflicts are 
removed to get the desired fi’s. Indeed, suppose that after switching v and w, there 
is a conflict wz ∈ E(Fi) ∩ E(F�) for some z ∈ NFi

(v) and 
 ∈ [k − 1] \ {i}. Then 
w, z, v form a path of length 2 in F ∗, contradicting the choice of w.
It would be interesting to prove a matching upper bound, i.e. to show that

nimk(n;T ) = (k − 1)ex(n, T )

for every tree T and sufficiently large n. Note that equality above need not be true 
when T is a forest. Indeed, consider M2, the disjoint union of two edges. Recall 
that ex(n, M2) = n − 1. For any k ≥ 3 and n ≥ 4k, we have that nimk(n; M2) =
(k − 1)ex(n, M2) − 1

2 (k − 1)(k − 2). Indeed, for any k-edge-colouring φ of Kn, one 
colour class, say colour-1, has size at least 

(
n
2
)
/k ≥ 2(n − 1). As every edge share 

endpoints with at most 2n − 4 other edges, we see that every colour-1 edge is in 
a copy of M2. Thus, nim(φ) ≤ exk−1(n, M2, . . . , M2) =

∑k−2
i=0 (n − 1 − i) = (k −

1)ex(n, M2) − 1
2 (k − 1)(k − 2), as desired.
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