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Grosu (2016) [11] asked if there exist an integer r ≥ 3 and 
a finite family of r-graphs whose Turán density, as a real 
number, has (algebraic) degree greater than r − 1. In this 
note we show that, for all integers r ≥ 3 and d, there exists 
a finite family of r-graphs whose Turán density has degree at 
least d, thus answering Grosu’s question in a strong form.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

For an integer r ≥ 2, an r-uniform hypergraph (henceforth, an r-graph) H is a collec-
tion of r-subsets of some finite set V . Given a family F of r-graphs, we say H is F-free
if it does not contain any member of F as a subgraph. The Turán number ex(n, F) of F
is the maximum number of edges in an F-free r-graph on n vertices. The Turán density
π(F) of F is defined as π(F) := limn→∞ ex(n, F)/

(
n
r

)
; the existence of the limit was 

established in [12]. The study of ex(n, F) is one of the central topics in extremal graph 
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and hypergraph theory. For the hypergraph Turán problem (i.e. the case r ≥ 3), we refer 
the reader to the surveys by Keevash [13] and Sidorenko [18].

For r ≥ 3, determining the value of π(F) for a given r-graph family F is very difficult in 
general, and there are only a few known results. For example, the problem of determining 
π(Kr

� ) raised by Turán [19] in 1941, where Kr
� is the complete r-graph on � vertices, is 

wide open and the $500 prize of Erdős for solving it for at least one pair � > r ≥ 3 is 
still unclaimed.

For every integer r ≥ 2, define

Π(r)
fin := {π(F) : F is a finite family of r-graphs} , and

Π(r)
∞ := {π(F) : F is a (possibly infinite) family of r-graphs} .

For r = 2 the celebrated Erdős–Stone–Simonovits theorem [6,7] determines the Turán 
density for every family F of graphs; in particular, it holds that

Π(2)
∞ = Π(r)

fin = {1} ∪ {1 − 1/k : integer k ≥ 1} .

The problem of understanding the sets Π(r)
fin and Π(r)

∞ of possible r-graph Turán den-
sities for r ≥ 3 has attracted a lot of attention. One of the earliest results here is the 
theorem of Erdős [5] from the 1960s that Π(r)

∞ ∩ (0, r!/rr) = ∅ for every integer r ≥ 3. 
However, our understanding of the locations and the lengths of other maximal intervals 
avoiding r-graph Turán densities and the right accumulation points of Π(r)

∞ (the so-called 
jump problem) is very limited; for some results in this direction see e.g. [1,8,9,17,21].

It is known that the set Π(r)
∞ is the topological closure of Π(r)

fin (and thus the former set 
is easier to understand) and that Π(r)

∞ has cardinality of continuum (and thus is strictly 
larger than the countable set Π(r)

fin ), see respectively Proposition 1 and Theorem 2 in [16].
For a while it was open whether Π(r)

fin can contain an irrational number (see the 
conjecture of Chung and Graham in [3, Page 95]), until such examples were independently 
found by Baber and Talbot [2] and by the second author [16]. However, the question of 
Jacob Fox ([16, Question 27]) whether Π(r)

fin can contain a transcendental number remains 
open.

Grosu [11] initiated a systematic study of algebraic properties of the sets Π(r)
fin and 

Π(r)
∞ . He proved a number of general results that, in particular, directly give further 

examples of irrational Turán densities.
Recall that the (algebraic) degree of a real number α is the minimum degree of a 

non-zero polynomial p with integer coefficients that vanishes on α; it is defined to be ∞
if no such p exists (that is, if the real α is transcendental). In the same paper, Grosu [11, 
Problem 3] posed the following question.

Problem 1.1 (Grosu). Does there exist an integer r ≥ 3 such that Π(r)
fin contains an 

algebraic number α of degree strictly larger than r − 1?
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Apparently, all r-graph Turán densities that Grosu knew or could produce with his 
machinery had degree at most r − 1, explaining this expression in his question. His 
motivation for asking this question was that if, on input F , we can compute an upper 
bound on the degree of π(F) as well as on the absolute values of the coefficients of its 
minimal polynomial, then we can compute π(F) exactly, see the discussion in [11, Page 
140].

In this short note we answer Grosu’s question in the following stronger form.

Theorem 1.2. For every integer r ≥ 3 and for every integer d there exists an algebraic 
number in Π(r)

fin whose minimal polynomial has degree at least d.

Our proof for Theorem 1.2 is constructive; in particular, for r = 3 we will show that 
the following infinite sequence is contained in Π(3)

fin :

1√
3
,

1√
3 − 2√

3

,
1√

3 − 2√
3− 2√

3

,
1√

3 − 2√
3− 2√

3− 2√
3

, . . . . (1)

2. Preliminaries

In this section, we introduce some preliminary definitions and results that will be used 
later.

For an integer r ≥ 2, an (r-uniform) pattern is a pair P = (m, E), where m is a positive 
integer, E is a collection of r-multisets on [m] := {1, . . . , m}, where by an r-multiset we 
mean an unordered collection of r elements with repetitions allowed. Let V1, . . . , Vm be 
disjoint sets and let V = V1 ∪ · · · ∪ Vm. The profile of an r-set R ⊆ V (with respect to 
V1, . . . , Vm) is the r-multiset on [m] that contains element i with multiplicity |R∩Vi| for 
every i ∈ [m]. For an r-multiset S ⊆ [m], let S( (V1, . . . , Vm) ) consist of all r-subsets of V
whose profile is S. We call this r-graph the blowup of S and the r-graph

E((V1, . . . , Vm)) :=
⋃
S∈E

S((V1, . . . , Vm))

is called the blowup of E (with respect to V1, . . . , Vm). We say that an r-graph H is a 
P -construction if it is a blowup of E . Note that these are special cases of the more general 
definitions from [16].

It is easy to see that the notion of a pattern is a generalization of a hypergraph, since 
every r-graph is a pattern in which E is a collection of (ordinary) r-sets. For most families 
F whose Turán problem was resolved, the extremal F-free constructions are blowups of 
some simple pattern. For example, let PB := (2, {{{1, 2, 2}}, {{1, 1, 2}}}), where we use 
{ { } } to distinguish multisets from ordinary sets. Then a PB-construction is a 3-graph 
H whose vertex set can be partitioned into two parts V1 and V2 such that H consists 
of all triples that have nonempty intersections with both V1 and V2. A famous result 
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in the hypergraph Turán theory is that the pattern PB characterizes the structure of 
all maximum 3-graphs of sufficiently large order that do not contain a Fano plane (see 
[4,10,14]).

For a pattern P = (m, E), let the Lagrange polynomial of E be

λE(x1, . . . , xm) := r!
∑
E∈E

m∏
i=1

x
E(i)
i

E(i)! ,

where E(i) is the multiplicity of i in the r-multiset E. In other words, λE gives the 
asymptotic edge density of a large blowup of E , given its relative part sizes xi.

The Lagrangian of P is defined as follows:

λ(P ) := sup {λE(x1, . . . , xm) : (x1, . . . , xm) ∈ Δm−1} ,

where Δm−1 := {(x1, . . . , xm) ∈ [0, 1]m : x1 + . . . + xm = 1} is the standard (m − 1)-
dimensional simplex in Rm. Since we maximise a polynomial (a continuous function) 
on a compact space, the supremum is in fact the maximum and we call the vectors in 
Δm−1 attaining it P -optimal. Note that the Lagrangian of a pattern is a generalization of 
the well-known hypergraph Lagrangian that has been successfully applied to Turán-type 
problems (see e.g. [1,9,20]), with the basic idea going back to Motzkin and Straus [15].

For i ∈ [m] let P − i be the pattern obtained from P by removing index i, that 
is, we remove i from [m] and delete all multisets containing i from E (and relabel the 
remaining indices to form the set [m − 1]). We call P minimal if λ(P − i) is strictly 
smaller than λ(P ) for every i ∈ [m], or equivalently if no P -optimal vector has a zero 
entry. For example, the 2-graph pattern P := (3, { { { 1, 2 } }, { { 1, 3 } } }) is not minimal as 
λ(P ) = λ(P − 3) = 1/2.

In [16], the second author studied the relations between possible hypergraph Turán 
densities and patterns. One of the main results from [16] is as follows.

Theorem 2.1 ([16]). For every minimal pattern P there exists a finite family F of r-
graphs such that π(F) = λ(P ), and moreover, every maximum F-free r-graph is a P -
construction.

Let r ≥ 3 and s ≥ 1 be two integers. Given an r-uniform pattern P = (m, E), one 
can create an (r+ s)-uniform pattern P + s := (m + s, Ê) in the following way: for every 
E ∈ E we insert the s-set {m + 1, . . . , m + s} into E, and let Ê denote the resulting 
family of (r + s)-multisets. For example, if P = (3, {{{1, 2, 3}}, {{1, 3, 3}}, {{2, 3, 3}}}), 
then P + 1 = (4, {{{1, 2, 3, 4}}, {{1, 3, 3, 4}}, {{2, 3, 3, 4}}}).

The following observation follows easily from the definitions.

Observation 2.2. If P is a minimal pattern, then P + s is a minimal pattern for every 
integer s ≥ 1.
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For the Lagrangian of P + s we have the following result.

Proposition 2.3. Suppose that r ≥ 2 is an integer and P is an r-uniform pattern. Then 
for every integer s ≥ 1 we have

λ(P + s) = rr(s + r)!
(r + s)r+sr! λ(P ).

In particular, the real numbers λ(P + s) and λ(P ) have the same degree.

Proof. Assume that P = (m, E). Let P̂ := P + s = (m + s, Ê). Let (x1, . . . , xm+s) ∈
Δm+s−1 be a P̂ -optimal vector. Note from the definition of Lagrange polynomial that

λ(P̂ ) = λÊ(x1, . . . , xm+s) = (r + s)!
r! λE(x1, . . . , xm)

m+s∏
i=m+1

xi.

Let x := 1
s

∑m+s
i=m+1 xi and note that 

∑m
i=1 xi = 1 − sx. Since λE is a homogeneous

polynomial of degree r, we have

λE(x1, . . . , xm) = λE

(
x1

1 − sx
, . . . ,

xm

1 − sx

)
(1 − sx)r ≤ λ(P )(1 − sx)r.

This and the AM-GM inequality give that

λ(P̂ ) = (r + s)!
r! λE(x1, . . . , xm)

m+s∏
i=m+1

xi ≤
(r + s)!

r! λ(P )(1 − sx)rxs.

For x ∈ [0, 1/s], the function (1 − sx)r(rx)s, as the product of s + r non-negative terms 
summing to r, is maximized when all terms are equal, that is, at x = 1

r+s . So

λ(P̂ ) ≤ (r + s)!
r! λ(P )(1 − sx)rxs ≤ rr(s + r)!

(r + s)r+sr! λ(P ).

To prove the other direction of this inequality, observe that if we take (x1, . . . , xm) =
r

r+s (y1, . . . , ym), where (y1, . . . , ym) ∈ Δm−1 is P -optimal, and take xm+1 = · · · =
xm+s = 1

r+s , then all inequalities above hold with equalities. �

3. Proof of Theorem 1.2

In this section we prove Theorem 1.2. By Theorem 2.1, it suffices to find a sequence of 
r-uniform minimal patterns (Pk)∞k=1 such that the degree of the real number λ(Pk) goes 
to infinity as k goes to infinity. Furthermore, by Observation 2.2 and Proposition 2.3, it 
suffices to find such a sequence for r = 3. So we will assume that r = 3 in the rest of 
this note.
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Fig. 1. Constructions with one level and two levels.

To start with, we let P1 := (3, {{{1, 2, 3}}, {{1, 3, 3}}, {{2, 3, 3}}}). Recall that a 3-graph 
H is a P1-construction (see Fig. 1) if there exists a partition V (H) = V1 ∪ V2 ∪ V3 such 
that the edge set of H consists of

(a) all triples that have one vertex in each Vi,
(b) all triples that have one vertex in V1 and two vertices in V3, and
(c) all triples that have one vertex in V2 and two vertices in V3.

The pattern P1 was studied by Yan and Peng in [20], where they proved that there exists 
a single 3-graph whose Turán density is given by P1-constructions which, by λ(P1) =
1/

√
3, is an irrational number. It seems that some other patterns could be used to prove 

Theorem 1.2; however, the obtained sequence of Turán densities (i.e. the sequence in (1)) 
produced by using P1 is nicer than those produced by the other patterns that we tried.

Next, we define the pattern Pk+1 = (2k + 3, Ek+1) for every k ≥ 1 inductively. It is 
easier to define what a Pk+1-construction is rather than to write down the definition 
of Pk+1: for every integer k ≥ 1 a 3-graph H is a Pk+1-construction if there exists a 
partition V (H) = V1 ∪ V2 ∪ V3 such that

(a) the induced subgraph H[V3] is a Pk-construction, and
(b) H \H[V3] consists of all triples whose profile is in {{{1, 2, 3}}, {{1, 3, 3}}, {{2, 3, 3}}}.

The pattern Pk can be written down explicitly, although this is not necessary for our 
proof later. For example, P2 = (5, E2) (see Fig. 1), where

E2 = {{{1, 2, 3}}, {{1, 2, 4}}, {{1, 2, 5}}, {{1, 3, 3}}, {{1, 3, 4}}, {{1, 3, 5}},

{{1, 4, 4}}, {{1, 4, 5}}, {{1, 5, 5}}, {{2, 3, 3}}, {{2, 3, 4}}, {{2, 3, 5}},

{{2, 4, 4}}, {{2, 4, 5}}, {{2, 5, 5}}, {{3, 4, 5}}, {{3, 5, 5}}, {{4, 5, 5}}} .

Our first result determines the Lagrangian of Pk for every k ≥ 1. For convenience, we 
set P0 := (1, {∅}) and λ0 := 0.
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Proposition 3.1. For every integer k ≥ 0, we have λ(Pk+1) = 1/
√

3 − 2λ(Pk) and the 
pattern Pk+1 is minimal. In particular, (λ(Pk))∞k=1 is the sequence in (1).

Proof. We use induction on k where the base k = 0 is easy to check directly (or can be 
derived by adapting the forthcoming induction step to work for k = 0). Let k ≥ 1.

Let us prove that λ(Pk+1) = 1/
√

3 − 2λ(Pk). Recall that Pk = (2k + 1, Ek) and 
Pk+1 = (2k + 3, Ek+1). Let (x1, . . . , x2k+3) ∈ Δ2k+2 be a Pk+1-optimal vector. Let 
x :=

∑2k+3
i=3 xi = 1 − x1 − x2. It follows from the definitions of Pk+1 and the Lagrange 

polynomial that

λ(Pk+1) = λEk+1(x1, . . . , x2k+3) = 6
(
x1x2x + (x1 + x2)

x2

2

)
+ λEk

(x3, . . . , x2k+3).(2)

Since λEk
(x3, . . . , x2k+3) is a homogeneous polynomial of degree 3, we have

λEk
(x3, . . . , x2k+3) = λEk

(x3

x
, . . . ,

x2k+3

x

)
x3 ≤ λ(Pk)x3.

So it follows from (2) and the 2-variable AM-GM inequality that

λ(Pk+1) ≤ 6
((

x1 + x2

2

)2

x + (x1 + x2)
x2

2

)
+ λ(Pk)x3

= 6
((

1 − x

2

)2

x + (1 − x)x
2

2

)
+ λ(Pk)x3 = 3x− (3 − 2λ(Pk))x3

2 .

Since 0 ≤ λ(Pk) ≤ 1, one can easily show by taking the derivative that the max-
imum of the function 

(
3x− (3 − 2λ(Pk))x3) /2 on [0, 1] is achieved if and only if 

x = 1/
√

3 − 2λ(Pk), and the maximum value is 1/
√

3 − 2λ(Pk). This proves that 
λ(Pk+1) ≤ 1/

√
3 − 2λ(Pk).

To prove the other direction of this inequality, one just need to observe that when we 
choose

x1 = x2 = 1
2 − 1

2
√

3 − 2λ(Pk)
and (x3, . . . , x2k+3) = 1√

3 − 2λ(Pk)
(y1, . . . , y2k+1)

(3)

where (y1, . . . , y2k+1) ∈ Δ2k is a Pk-optimal vector, then all inequalities above hold with 
equality. Therefore, λ(Pk+1) = 1/

√
3 − 2λ(Pk).

To prove that Pk+1 is minimal, take any Pk+1-optimal vector (x1, . . . , x2k+3) ∈ Δ2k+2; 
we have to show that it has no zero entries. This vector attains equality in all our 
inequalities above, which routinely implies that (x1, . . . , x2k+3) must satisfy (3), for some 
Pk-optimal vector (y1, . . . , y2k+1). We see that x1 = x2 are both non-zero because the 
sequence (λ(P0), . . . , λ(Pk+1)) is strictly increasing (since x < 1/

√
3 − 2x for all x ∈



414 X. Liu, O. Pikhurko / Journal of Combinatorial Theory, Series B 161 (2023) 407–416
[0, 1)) and thus λ(Pk) < 1. The remaining conclusion that x3, . . . , x2k+3 are non-zero 
follows from the induction hypothesis on (y1, . . . , y2k+1). �

In order to finish the proof of Theorem 1.2 it suffices to prove that the degree of 
μk := λ(Pk) goes to infinity as k → ∞. This is achieved by the last claim of the following 
lemma.

Lemma 3.2. Let p1(x) := 3x2 − 1 and inductively for k = 1, 2, . . . define

pk+1(x) = (2x2)2
k

pk

(
3x2 − 1

2x2

)
, for x ∈ R.

Then the following claims hold for each k ∈ N :

(a) pk(μk) = 0;
(b) pk is a polynomial of degree at most 2k with integer coefficients: pk(x) =

∑2k

i=0 ck,ix
i

for some ck,i ∈ Z;
(c) the integers bk,i := ck,i for even k and bk,i := ck,2k−i for odd k satisfy the following:

(c.i) for each integer i with 0 ≤ i ≤ 2k, 3 divides bk,i if and only if i �= 2k;
(c.ii) 9 does not divide bk,0;

(d) the polynomial pk is irreducible of degree exactly 2k;
(e) the degree of μk is 2k.

Proof. Let us use induction on k. All stated claims are clearly satisfied for k = 1, when 
p1(x) = 3x2 − 1 and μ1 = 1/

√
3. Let us prove them for k + 1 assuming that they hold 

for some k ≥ 1.
For Part (a), we have by Proposition 3.1 that

3μ2
k+1 − 1
2μ2

k+1
= 3/(3 − 2μk) − 1

2/(3 − 2μk)
= μk

and thus pk+1(μk+1) = (2μ2
k+1)2

k

pk(μk), which is 0 by induction.
Part (b) also follows easily from the induction assumption:

pk+1(x) = (2x2)2
k

2k∑
i=0

ck,i

(
3x2 − 1

2x2

)i

=
2k∑
i=0

ck,i(3x2 − 1)i(2x2)2
k−i. (4)

Let us turn to Part (c). The relation in (4) when taken modulo 3 reads that

2k+1∑
ck+1,jx

j ≡
2k∑

ck,ix
2k+1−2i (mod 3).
j=0 i=0
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Thus, ck+1,j ≡ ck,2k−j/2 (mod 3) for all even j between 0 and 2k+1, while ck+1,j ≡ 0
(mod 3) for odd j (in fact, ck+1,j = 0 for all odd j since pk+1 is an even function). In 
terms of the sequences (b�,j)2

�

j=0, this relation states that

bk+1,j ≡ bk,j/2 (mod 3) for all even j with 0 ≤ j ≤ 2k,

while bk+1,j ≡ 0 (mod 3) for all odd j. This implies Part (c.i). For Part (c.ii), the relation 
in (4) when taken modulo 9 gives that ck+1,0 ≡ ck,2k and ck+1,2k+1 ≡ ck,0 · 22k + ck,1 ·
3 · 22k−1. Since ck,1 is divisible by 3, we have in fact that ck+1,2k+1 ≡ ck,0 · 22k ≡ ck,0
(mod 9). By the induction hypothesis, this implies that 9 does not divide bk+1,0.

By the argument above, ck+1,2k+1 is non-zero module 3 for odd k and non-zero module 
9 for even k. Thus, regardless of the parity of k, the degree of the polynomial pk+1 is 
exactly 2k+1. Moreover, pk+1 satisfies Eisenstein’s criterion for prime q = 3 (namely, that 
q divides all coefficients, except exactly one at the highest power of x or at the constant 
term while the other of the two is not divisible by q2). By the criterion (whose proof can 
be found in e.g. [16, Section 4]), the polynomial pk+1 is irreducible, proving Part (d).

By putting the above claims together, we see that μk+1 is a root of an irreducible 
polynomial of degree 2k+1, establishing Part (e). This completes the proof the lemma 
(and thus of Theorem 1.2) �

4. Concluding remarks

Our proof of Theorem 1.2 shows that for every integer d which is a power of 2 there 
exists a finite family F of r-graphs such that π(F) has algebraic degree d. It seems 
interesting to know whether this is true for all positive integers.

Problem 4.1. Let r ≥ 3 be an integer. Is it true that for every positive integer d there 
exists a finite family F of r-graphs such that π(F) has algebraic degree exactly d?

By considering other patterns, one can get Turán densities in Π(r)
fin whose algebraic 

degrees are not powers of 2. For example, the pattern ([3], { { 1, 2, 3 } }, {1, 2}) with recursive 
parts 1 and 2 (where we can take blowups of the single edge { { 1, 2, 3 } } and recursively 
repeat this step inside the first and the second parts of each added blowup) gives a Turán 
density in Π(3)

fin (by [16, Theorem 3], a generalisation of Theorem 2.1) whose degree can 
be computed to be 3. However, we did not see any promising way of how to produce a 
pattern whose Lagrangian has any given degree d.
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