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OPTIMIZERS FOR SUB-SUMS SUBJECT TO A SUM-
AND A SCHUR-CONVEX CONSTRAINT WITH
APPLICATIONS TO ESTIMATION OF EIGENVALUES

A. KovACEC, J. K. MERIKOSKI, O. PIKHURKO, A. VIRTANEN

(communicated by G. P. H. Styan)

Abstract. A complete solution is presented for the problem of determining the sets of points at
which the functions (xa, ..., Xn) — Xk + ...+ X|, subject totheconstraints M >x > ... >

Xn=>M X3+Xo+...+Xn=a and g(x1) +9g(X2) + ...+ 9(Xn) = b, with g strictly convex

continuous, assume their maxima and minima. Applications are given.

0. Introduction

Let mM € R = RU {~o00,+00} = [~00,+¢], b€ R ad n € Zs;.
For an extended function g: R — ] — o0, +00] andintegers 1 < k < | < n, define
(x) Zg Xi). We also use the abbreviations § = §", S¢ = §, and S= S".

For convex contl nuous g: R — | — oo, +00], define the spaces
X=X(mM,ab;ng)={xeR": M2x12X>... 2X,>m §X) = a S(x) = b}.

The main objective of this paper is the determination of the subsets of X where the
functions ¢ assume their maxima and minima (called also maximum sets or maxi-
mizers, and minimum sets or minimizers) via an elementary technique; i.e. avoiding
Karush-Kuhn-Tucker theory, see e.g. [3]. The calculation of upper and lower bounds
for the functions S¢, of necessity always the best possible, is then a simple matter of
evaluation of the functionsat pointsin their maximizers and minimizers.

This article puts many of the results estimating various functions of eigenvalues
and singular values in terms of the trace and/or determinant etc. (e.g. [5], [9], [10],
[11], [12], [13], [14], [17], [18]), in particular those in the last four papers mentioned,
under a general umbrella; many bounds obtained by Wolkowicz and Styan [17], [18]
areimplied by our results.

Section 1 recalls some basics of the modern theory of convex functions; facts
yielding information about the spaces X(m, M, ), in particular also for n = 3 via
generalized barycentric coordinates in the plane, are also proved. In section 2, after
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presenting in lemma 6 the heart of our technique and theorem 7 that implicitly contains
an algorithm to test when the spaces X are nonempty, we show that for all integers
1<k<lI<nandmM € R thesets minimizer(S¢) = {x € X : $(x) = inf{S!(u) :
u € X}} and maximizer(SY) = {x € X : (x) = sup{S!(u) : u € X}} consist of
elements having asimple structure. Indeed theorems8 and 9 show that the minimization
or maximization of the functions S can be reduced to that of solving equationsin two
unknowns or to that of finding the intersections of a plane convex curve with a straight
line. The extent to which these equations can be explicitly solved depends of course on
the convex function g. The brief section 3indicatesthat our theoremsallow to calculate
explicitly the infimum and supremum of certain subsets of X in the lattice induced by
majorization order on X. In section 4 we show how our results can be used to estimate
partial sums of the eigenvalues of matrices having real spectra, given on the matrix
additional information like trA and trA?; trA and trA3; trA and detA; etc. Thisway
we gain deeper understanding of results found earlier by the second and fourth authors
on this subject.

Concerning presentation, we make differentiability assumptions on the convex
function g. These are made for simplicity, since they do not impose restrictions on our
applications, since they broaden accessibility of the paper, and since at spots they lead
to further illuminating observations. Asfar aswe see, the main theorems8 and 9 can be
stated and proved without differentiability assumptions following the indicationsin the
concluding section 5. Though the basic idea of our method is simple, we apologize for
that there are sometimes many cases to consider, the number and implications of which
are at times best controlled by applying a modest amount of the symbology of logic.
Our objects frequently depend on many parameters. To lighten notation, we usually
suppress a fair amount of these; the context provides the remaining ones. Finaly, for
precision we indicate references sometimesin ways like * [2], p12¢c-5 meaning ‘see [2]
page 12, approximately 5 centimeters from the last text row’.

1. Basic Notations, Definitions, and L emmas

a. Some of the symbols and conventionswe use are these:

IS the number of elementsof aset S

Roo the set of positive real numbers; R>o and Z 1 are defined
analogously.

RN the n-dimensional affine space; also the space of real n-tuples.

Sometimes replaced by a copy considered as an abstract Eu-
clidean space E.

1, the n-tuple (1,1, ..., 1).

X the n-tuple (X1, Xo, - . -, Xn).

x(k: 1) the subtuple (X, Xk+1, - - -, X1), empty if k > 1. (This notation
isMATLAB-inspired.)

X| decreasing rearrangement of x; e.g. (1,3,4,2); = (4,3, 2,1).

[p, q] the segment connecting points p, q in an affine space.

V, A, 3 logical symbolsfor non-exclusive‘or’, ‘and’, ‘exists'.
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P(m M, & n) theset {xe R": M >x;. > Ex. =aj.

2(n;a) the set of al decreasing n tuples of sum a; same as
P(—00, +00, &; n).

* sometimes used for arguments we do not wish to specify. For

example, ‘ consider aspace X(m, M, )" is* consider some space
X(m, M, a, b; n;g)’. The notation can mean also a union: ‘for
any x,y € 2(n,x)’ can mean ‘for any x,y € R" that are
decreasing’. Context will avoid confusion.

s, intS the topological boundary and interior of aset S.

B(p, p) the p -centered ball of Euclidean radius p.

the beginning and end of a smaller piece of reasoning; e.g. of a

proof of aclaim.

X <Y, X>Y, etc. comparability of n-tuplesin componentwise order.

X=2wY, X<y wesk, strong majorization orders. For X,y € 2(n, %), X 2y Yy
means that S'(y —x) > O for | = 1,...,n, and x <y
meansthat X <y Y A S'"(y — x) = 0. Definitive treatise on
majorization is[8].

0-+o0,a+ o0 by conventions 0- +00 = 0, a+ oo = oc.

pP~q proportionality, saying 94 # 0,p = Aq.

w.rt., Ihs(-), rhs(-)  with respect to, left-hand side of (-), right hand side of ().

b. Concerning convex functions it simplifies matters if we adopt definitions used
in modern texts on convex analysis or optimization; foremost we mention Rockafellar’'s
definitive treatise [16] and the recent book of Borwein and Lewis [3]. Let E be an
Euclidean spaceand g : E — [—o0, +00] bearea valued functionon E. The domain
of g isdomg = {x € E: g(X) < oo}; g iscaled proper if domg # @ and for
no x € E, g(x) = —oo, see 3], p44c2; [16], p23c4. The function g is convex if its
epigraph epig = {(x,r) € Ex R : g(x) < r} isaconvex set, see [3], p43c-2; [16],
p23; strictly convex if its epigraph is strictly convex, see [7], p98c-2. Proper convex
functionsinthis sense have convex domainsand satisfy for x, y € E theusual inequality
gAX+ (1 =2A)y) < Ag(X) + (1 — A)g(y), see|[3], p46cs; strictly convex functions
the strict inequality. Aswe see, every convex/strictly convex functiong: | — R (|
isaninterval) in thetraditional sense (satisfying theinequality/strict inequality) can be
trivially extendedto R putting its valuesoutside | equal to +oco and thusviewed asa
convex function in the sense here defined, see [16], p23c-3.

PrOPOSITION 1. Let k€ Z>1, o1, ..., 06 € Ry, & b e R Assumethefunction
g: R — [—o0, +00] satisfiesthefollowing: g is proper and strictly convex, domg is

open, and g isdifferentiableand unboundedon domg. Let © = —2—, m = u1,, and
zal
let & =((oq,...,0k),a b) betheset of solutions of the system of two equations
k
=> axi=a i G(x):Zaig(xi):b.
i=1 i=1

Then H = {x : x solves (i)} isa hyperplane and .~ is either empty/the point {m}
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/homeomorphicto a spherein H according to if G(m) > b/G(m) = b/G(m) < h.
Proof. Itisclearthat H isahyperplanecontaining m. Wecanwrite H = {m+tr :

teRr =(ry,...,r) € R, Za.r. =0,||r|| = 1}. Every x € H\ {m} hasaunique
representation x = m + t(x)r ( ) with t(x) > 0, and thuswe can view G henceforth
asdefined by G(m +tr) = Z oig(u + tr;) asafunction on the Euclidean space H.

Claim0. G is strlctly convex on H. [ Let x,y betwo pointsin domG and
A €]0,1]. Then

G(Ax+(1—21)y) = Za. (A% + (L= 2A)yi)

< Z ai(Ag(xi) + (L= A)g(yi))

= AG(X) + (1= 4)G(y).

Since we are supposing x # Y, there exists i such that x; # yi; hence the strict
convexity of g impliesthe strictness of the inequality. <

Clam1l. domG # 0 & m € domG < u € domg. [ The implications <
are clear. Now let t € R be such that m + tr € domG. There are i,j such that
r <0<rj;, andsoweget g(u +trj) < +oo and g(u +tr)) < +oo. If t > 0, we
have u +tr; < u < p +trj, andthereverseinequalitiesincase t < 0. Inany casethe
convexity of domg insures u € g, aswe wished to show. 9

Claim2. domG isopen. [ If domG isempty, thereisnothingto prove. Suppose
now domG # @) andlet x € H. Clearly x € domG iff, for al i, x; € domg. Since
domg isopen, thereis ¢ > 0 suchthat x;+ | — €, +¢[C domg for al i. But then the
openset (x+ ] — ¢, +¢[") NH in H isan open neighborhood of x in H, containedin
dom@G. g

Claim 3. If domG # 0§, then minimizer(G) = {m}. LBy clamsland2, m
and u areinterior points of domG and domg respectively. Hence the calculation
%G(m +1r)|t=o = > airig'(u) = 0 iswell defined and shows that m is a critical

I

point. Since G isastrictly convex function, m isthe unique minimizer of G, see[3],
pl6c-7, 19¢-5. 9

Claim4. Forany r € R, thelevel sets L, = {x € H G(x) < r} are convex
compact subsets of domG. If r > G(m), then m € int(L;) = {x: G(x) <r}. LWe
can assume L, # 0. By claims 2 and 3, there exists p > 0 such that the sphere 0B,
B = B(m,p) C H, pertainsto domG. Let d(r) = G(m + pr) — G(m) > 0. The
function d assumes on 9B its minimum, say at point ro. From an application of the
formulaein [15], p98cl or [16], p242c2 we get

dG
dt t=p

> G(m) +d(r) + (t —p)?

G(m+tr) > G(m+pr)+ (t—p)
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— G(m) + %d(r)

> G(m) + %d(ro).

Choose to such that G(m) + “2d(ro) =r. Wesee: foral x € H with x ¢ B(m, to),
thereholds G(x) > r. Hencetheset L, isbounded. Theremaining claims follow from
combining [16], p28c-2, 51¢-3, 52¢-8, 59¢2 or can otherwise be left to the reader. §
We can now concludethe proof. Case: G(m) > b. If m € domG, then by claim
3,foral x € H, G(x) > G(m) > b. If m ¢ domG, then claim 1 says G(x) = +oc
for all x € H, and we come to the same conclusion. In any case we see . = ).
Case: G(m) = b. Thenclam 3 gives ¥/ = {m}. Case. G(m) < b. Then, using
S = {x:G6(x) < b}\ {x:G(x) < b}, wehave by ([16], p59cl) that . = L.
Now [2], corallary 11.3.4 completesthe proof. O

LEMMA 2. Assume the hypotheses of proposition 1 specialized to the case k = 3
and G(m) < b. Then ¥ = ¥((«, B, v), a b) isa convex, rectifiable, smooth curve
in H. If s— (X(s), y(s), z(s)) isaregular parametric representation (e.g. w.r.t. curve
length), then with a dot denoting differentiation w.r.t. s:

ax=0sz=y, y=0&x=2z z=0&x=Y;

b. for each s with x-y-Z # 0 thereholds sgn(%, Y, z) € {(+, —, +), (—, +, —)}.

Proof. a. It is known that the boundary of a compact convex plane region is
rectifiable. Thuswe obtain from the previouslemmathat we can parametrize . inthe
form s — (X(s), y(s), z(s)), where s is the arc length measured from a certain point
onwards. (In a cartesian interpretation of coordinates, x> 4+ y? 4+ 22 = 1.) Since the
curve . sdtisfies (i) and (ii) of proposition 1, wefind upon differentiation therelations

0 = ax+By+7vz (1)
0 = ag (x)x+Bd(y)y+vd(2)z

(ax + By +v2)g'(2) + ax(g'(x) — d'(2)) + BY(I'(Y) — d'(2)
ax(g'(x) — d'(2) + By(d'(y) — d'(2). (2)

Note that the nonvanishing of the tangent vector and (1) imply that for each s at most
oneof thequantities x(s), y(s), 2(s) vanishes. Thusif x = 0, wefind g'(y)—d'(z) = 0;
hence, by monotonicity of g’ ([15], p10c-1), y = z follows. Conversely, and using that
X =y = z isimpossible, we get that y = z implies x = 0. Proceeding analogously
for thepairs x, z and x, y proves(a).

b. Assume x >y > z Then g'(x) > d(y) > d(z). Thus we see that
sgn(x)sgn(y) = —1. Interchanginginthecalculationleadingto (2) therolesof ag’(X)x
and yd'(z)z, weget similarly that sgn(x)sgn(z) = —1. Similar considerations can ob-
viously bemadein all caseswhere x #y #z#x. O

Itisinstructiveand for our later applicationsindeed useful to interpret the formulae
of lemma 2 geometrically. Select three noncollinear points X Y, Z in a plane. We
coordinatize its points by triples (X, y, z) satisfying ax + By + yz = a viathe better
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known barycentric coordinates (X, ¥, 2) w.rt. X Y,Z (see[2], p8l) viathe formulae
X=2Xy= gy, 2= 1z Wecdl (x,y,2) generalized barycentric coordinates w.r.t.
X, Y, Z and parameters «, 3, v, a.

LEMMA 3. In a generalized barycentric system with parameters o, 8, y,a, an
equation cx + dy + ez = f with (0,0,0) £ (c,d,e) £ (e, B,y) represents a line
through points Z' € {z= 0} and Y’ € {y = 0} (seetherhs-figure) located so that

_ B ac—af o o v ac—af

—
XZ' = XY, XY
a fpc—ad a yc—oae

Proof. Expressed in barycentric coordinates, cx + dy 4+ ez = f turnsinto £ +
%d)“/ + 3782 = f. Given our hypotheses, this represents a line for it is interpretable
as the intersection of two planes. Since X + ¥ + 2 = 1, one calculates that this
lineintersects {z = 0} = {Z = 0} at apoint Z' whose barycentric coordinates are
givenby X(Z') = %gé:g;‘g, y(Z') = gz@:z% We see (e.g. applying [2], p295c and
elementary triangle geometry, or otherwise) that if P is any point ontheline Z = 0,

then XP = y(P) - XY. From this follows the first assertion; the second issimilar. O

ExAmPLE 4. Consider the |hs-figure where we have chosen points X Y, Z to

define a triangle of unit side length. In such a system the coefficients of )W, XZ are
interpretable as signed distancesfrom X to Z’ and X to Y’ respectively.

The rest of the figure is to be interpreted with (o, 8,v,a) = (2,5,3,1). The
straight lines drawn are: prolonged segments XY C {z= 0}, ZY C {x =0}, ZX C
{y = 0} that definethetriangle; thecevians x =y through Z, x =z through Y, z=y
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through X, and theline 3x + y = 0.5. Thefigure shows further a convex curve which
we assume to be the sol ution of some equation 2g(x) + 59(y) + 3g(z) = b for acertain
convex g. According to lemma 2, at the point of intersection with x =y, y =z z=x
thetangentsto . are parallel to segments XY, YZ, and ZX respectively. We further
find a shadowed open region in which the coordinates of any point satisfy x >y > z
There are six such regions defined solely by thelinesthroughthepoint x =y = z. The
arrows indicate increase or decrease of coordinates X, y, z of apoint moving along .
in that region counterclockwise. Thelines x = 0,y = 0,z = 0 define seven digoint
regions. The function P — sgn(x, y, z) is constant in each of these regions. We have
indicated the values of this function for each of the regionsby — + +, etc. in the
rhs-figure.

LEMMA 5. Assume the hypotheses and notation of lemma 2. Define for m M €
[-00, +0] theset . = ' (IM M) = {(X,¥,2) € S((a,B,7),8ab) ' M =x>
y>z2>m} Let (&,1) € Z((a, B +7v),ab) with & > n' and (§,n) €
S ((a+B,v),a b) with & > n. Let

_ (&n'\n') if& <M,
(XLayLa ZL) - { (M7 Y, Z) c RZAt é’ > M7

(&, &mn) ifn>m
x,y,m e ifn<m
These points are all uniquely defined. Assume ¢, d, e € Ry satisfy, in addition to
the hypothesis of lemma 3, the inequality £ > max{%, 2} Put e = sgn(lﬁc*“d +

B yc—oae
4x28 1) Then

(Xr, YR, ZR) = { (

B YrR—YL
{(Xr, YR, ZR)} if e =41,
minimizer(cx + dy 4+ ezl (m M)) = & {(XL, Y1, Z), (Xr, YR, Zr)} if € =0,
XL,y z0) ) if e =—1.

Proof. We reason along the lines of the figures. If M is sufficiently large or m
sufficiently small, then .#/(m, M) isjust the part of . lying in the shadowed region
X >y > z of thelhs-figure and thus limited at the left by apoint (x,y, z) withy =z
coinciding evidently with the point (£’, n’, n') formed from the solution (&', n’) with
& =2n"in L((a,B + v),ab); and on the right by a point with x = y formed
similarly from the decreasing solution (&, n) in & ((a + B, y),a b). If M issmaller
than the x -coordinate of the point in . satisfying x > y = z and/or m larger than
the z-coordinate of the point in . satisfying X = y > z then upon watching the
changesof x- and z-coordinates of apoint moving in the shadowed region, we see that
the arc is defined on the left by a point of the form (M, %, %) and/or on the the right
by a point of the form (%, x, m), and the claim follows again — the rhs-figure tries to
illustrate these possibilities.

Let us now define the ‘steepness’ of a line through two points Y’ € {y = 0},
Z' € {z = 0} astheratio of the signed distancesthat Y’ and X' havefrom X. So if
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cx+dy+ez = f isanyline, thenlemma3yieldstheformula steepness(lt) = E‘(’iﬁjgg;.
Of course the steepness does not depend on f.

We now assume ¢, d, e to have the meaning and satisfy the hypotheses reserved
for them. Definefor real f theline It = {cx + dy + ez = f}. The hypotheses ensure

that the denominators figuring in the expressions given in lemma 3 for )@ and W,
Z' =Z'(f),Y = Y'(f) —these being the points of intersections of the line It with
z =0 and y = O respectively — are al positive. If f = 0, the fractions are indeed
> 1. We see that as f increases, Y’ and Z' wander toward X. Let | be the line
through points (Xi, Y, z.) and (Xg, YR, Zr)- It is a consequence of lemma 2a and the
convexity of arc .’ that we aways shall have 0 < steepness(l) < 1. The minimizer
of the function (x,y,z) — cx + dy + ez restricted to .’ is the subset of .’ that
line It hitsfirst as f increases. This set consists of the point (Xg, Yr, zr) only if
steepness(l) > steepness(l), of both points (XL, yi, Z.), (Xr, Yr, Zr) if the steepnesses.
are equal, and of point (Xg, Yr, Zr) Only if steepness(l;) < steepness(l). Theline |
obeysthe equation (Yr — L)X + (XL — Xr)Y + 02+ (XrYL — XLYr) = 0. Caculating its
steepness, the claim follows. O

2. Maximizersand Minimizers

This section presents the main results; unfortunately many of these results are
technical at first reading. However, just as is the case with lemma 5 of the previous
section, large chunks of the technicalities evaporatefor spacesinwhich m= —oo, M =
+o0; sothereader isinvited to always reflect first what happensin this case.

Fixaspace X = X(m, M, a, b; n; g) with g asinproposition 1. Itwill be sometimes
convenient to think of X = (X1,...,Xn) € X asaugmented by Xo = M, Xpt1 = M
and to say that x hasadescentin X at i € {0,1,...,n} if x; > X4y1. Sometimeswe

indicate the position of adescent at i inaformlike (... > ...), andwrite descents(x)
for the set of descents of x (in X). We extend this definition in a natural manner to
subtuples x(k : 1). For example, if x = (3,31, 1, —2) € X(-5,3 6, *;5;9), then
descents(x) = {2, 4, 5}, and descents(x(3: 4)) is {0, 2} intermsof relative positions
and {2, 4} interms of absolute ones. No confusion will arise.

Let x € X(m M, %). If thereexists i = (io, ..., is) € Z° satisfying 0 < ip < i1 <
ip<izg<ig<is<n andr,steZyand Xy ze R suchthat x can be thought of
as having the form

io I1 12 i3 ig Is .

e X=XXy,2)=(..>x > ...2yL>...>274 > ...), thenxis
amenable to an 7|7 — i-motion; i.e. to areplacement x — x' = x(X',y’,Z') with
X' > Xy <y, Z >zsuchthat x' € X;

o X =X(XVY,2) = (... |>O x1, 2.3 yls Iﬁ Iﬁ 71, 2 ...), then xis
amenable to an || — i-motion; i.e. to areplacement x — x' = x(X',y’,Z) with
X'< XYy >y,Z <zsuchthat x' € X.

Note that |1 — i-movability of x for some i is implied by (and implies) the
existence of g, i3 € descents(x) suchthat 0 < ig <ip+2 < iz < n—1 Inthiscase
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we can find X,y, 21,8 t,i1,i2 14,15 (usualy in many ways) such that x is f|f —i-
movablewith i = (ig, ..., is). Similarly thereexist iy, is € descents(x) with 1 < i, <
i2 +2 < is < nif and only if these can be completedto an i = (i, . .., i5) (usualy
in variousways) such that x is || —i-movable. A complete specification of amotion
would make necessary also the indication of one of theamounts X’ — x,y' —y,Z — z,
but these quantities are irrelevant for us. Of course i and r, s, t depend on each other;
namely we have i; —ig = r,iz — i = S i5 — iy = t. As with descents, movability
depends via the values of m and M on the space X to which we refer. Context will
avoid confusions.

LEMMA 6. For integers k| with 1 < k < I < n—1, consider a space X =
X(m,M, a b;n;g) andlet x € X.

a. Ifthereexist ip, iz € descents(x) with 0 <ip < k—11+1<iz< n—1 then
x & maximizer(S9).

b. If there exist g, i3 € descents(x) with 0 < ip < k—2 k< iz < n—1, then
x € minimizer(S9).

b'. If there exist ig, i3 € descents(x) with 0 < ip < i+ 2 < iz < |, then
x & minimizer(SY).

c. Ifthereexist iy, is € descents(x) with 1 <i> <1 — 11+ 1< is < n, then
X & maximizer(S9).

d. If there exist iy, i5 € descents(x) with 1 < i, < k— 21 < i5 < n, then
x € minimizer(S9).

d. If there exist iy, is € descents(x) with | < ix < iz +2 < is < n, then
X € minimizer(SY).

Proof. a. Choose ip = max{i € descents(x) : i < k— 1}. Then (check that it is
possibleto) complete ig, iz to i = (ig, . . ., is) V|ach0|ces i1=ks=1ig=i3t=1
such that x is 7|] —i- movable Indeed we can now think of x as having the form

X =XxX(XY,2) = (.. 2 X > ...>y 2 z > ...). Wesubject x to an associated
11 —i-motion x — x" € X. Since y and z areto theright of the I’ th entry, the motion
increases exactly the k' th component of x by the amount X’ — x, while leaving the
other componentsof x(k : 1) unaltered. Hence S¥(x’) > S¢(x), proving the claim.

In the remainder of this proof we will be more succinct and specify i usually only
to some necessary amount.

b. Choose i3 > k m|n|mal |1 = |2 = k 1 |4 = iz. Thenwe can think of x as

having the form x = (.. > x1r > y1S > zlt > ...). Consider an 1|1 — i-motion
X +— X'. If iz > 1, then all entries at positionsin {k, ..., |} decreasg; if i3 < I, then
all entries changed at positions outside {k, ..., 1} increase. These positions define a
nonempty set. Either way, the conservation of the sum of the entries of x by the motion
(i.e. S(x) = S(x')) guarantees ! (x') < !(x), proving the claim.

b'. Choose iz < | maximal, put iy = iz and t maximal. An {|T — i-motion
x — X' replaces some entriesof x outside positions {1, ..., 1} by larger values, while
no such entry is replaced by a smaller value. So from sum conservation the claim
follows.
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C. Chooseig =iz=1, i1 =i <|—1maximd (i.e. s maximal), r =1, is > |

minimal (i.e. t maximal). Thenwecanthinkof x asx = (... I>D X I>1 ylg I> 71, I>5 co)e
Subjecting x toa || —i-motionto obtain X’ € X will incase i; < k—1: increaseal
entriesin x(k : 1) = yly (forsome s < s),andincase k—1 < i; : decreaseall entries
moved outside of positions {k; .. ., I}. Thussum conservationimplies S¢(x") > S¢(x).

d. Choose is > | minimal, iy =i < k—2 maximal, s = 1, i3 = i, t

maximal. We can think of x as x = (... I>O x1; I>1 y Iﬁ 71; I>5 ...). An associated
11l -motion x — X’ decreasesal the entriesin positionsin {k, ..., |} that are moved;
hence SY(x) > S!(x').

d’. Choose i > | minimal. Put i; =i, and r maximal. We can now apply an
11l —i-motion x — X" . All entrieschanged in positions {1, ..., I} arediminished, so
theclamfollows. O

The following theorem answers completely which spaces X are nonempty and,
for certain types of points, whether they exist in a space X or not. Such criteria can
be useful in non-interactive software implementations of our method. A simple idea
and results from [6] are used: the complicated formulae in (iv) arise from explicit
enumeration of all vertices of a certain polytope given there; note that the third line of
(iv) will be true only in afew exceptional cases. The paper [6] works with ascending
chains m < X3 < ... < Xy < M instead of the descending M > x; > ... > m used
here; to ease comparison, the notation follows that paper as closely as possible.

THEOREM 7. a Let X = X(m M, a,b;n;g). If mM € R, define f(l) = (I —
1)m+ (n+ 1 —1)M. Then X # 0 if and only if ng(2) < b, m< M, and one of the
following conditionsis satisfied, where quantifications are meant over integers:

i. m=—oo,M = +c0.

ii. MeRand (m=—-ocoVvac[f(2),f(1)])and3In,1<n<n, (n—n)g(M)+

ng(2=""="%) > b,

ii.h. me Rad (M = +ooVvae [f(n+1),f(n)]) and 3n,1 < n <
n, ng(*=l=2) + (n—)g(m) > b.

iv. (MM e R andaec]f(n),f(2Q))A((In,n, 0< N <&M 0N <
M2, Nog(M) + (n—ng — np)g(3ETm=ME) 4 nyg(m) > b) v (3, N € Z>1, mm+
M =a, ng +ny =n, and n,g(M) + nig(m) > b)).

b. Givenintegers ny, Nz € Z o, let &= a—Mn;—mny, b = b—ng(M) —npg(m).
Then (M1, X, ml,,) < X furnishes a 1-1 correspondence between the points of the
formof the Ihs(«) in X(m, M, &, b; n; g) and the pointsin x € X(m, M, &, bin—n, —
ny; g). Inparticular thisallowsvia (a) to decide whether X(m, M, a, b; n; g) has points
of theform (M1,,, X, mlp,).

Proof. a. Weapply propositionlwithk=n, o1 = ... = apn = 1. Define G(x) =
gxi), H={xeR" : > xi=a}, P=PmMmMan ={XeH:M>2X1... >
i

Xn = mh . = (1n,ab) = {x € H:GX) =b}, and X = X(m M, a b;n;g).
Clearly X = . NP and P isconvex. Let extP be the set of extreme points of P.
Claiml. X#0 < (G(m) < b) A (Pisunbounded v Jp € extP, b < G(p)).
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E <: The hypotheses imply of course that P # ; hence, as is easily seen,
m = 21, € P. Now, there always exists p € P suchthat b < G(p): if P isbounded,
thisis part of the hypothesis; if P isunbounded, thisfollows by proposition 1 (or most
directly by claim 4 in its proof). By convexity of P and continuity of G, there exists
p'eP p €[mp] CHwithG(p)=b Sop' e ¥NP=X

= The hypothesis implies of course ./ # ) # P, and so m € P and, by
proposition 1, G(m) < b. If P isunbounded, then rhs( < ) istrivialy true. If P is
bounded, then P isa convex polytope and hence the convex hull of its extreme points,
called vertices. If wehad G(p) < b for al p € extP, then Jensen’s inequality ([15],
p212c7) implies G(x) < b forall x € P, hence ¥ N P = ), acontradiction.

Note that G(m) = ng(2), and that P is unbounded iff m = —oo, M = +o0. It
suffices, thus, to show the following claim.

Claim2. (ii) v (iii) v (iv) < (P isbounded A 3dp, p € extP, b < G(p)).

kL =: Fird, let P satisfy (ii). Since M € R, then P is bounded. If a €
[f(2), f(1)], then P(m M) = P(—o0, M), see[6], lemma 2f. By ([6], theorem 5),
ext (P(—o0, M)) consistsof thepoints p = p(ny, n2) = (M1y,, £1,,) where ng € Z >,
n<n m+mp=n &=EN,m) = % Hence G(p(ny, Nz)) > b isequivalent
to nzg(M)+nlg(a*n“fM) > b forsome n; and ny. Thus rhs(<) followsafter asimple
renotation. If P satisfies (iii), then one can infer rhs(<) by using reasoning similar
to that just given for (ii), using [6], lemma 2f, theorem 6; if P satisfies (iv), one uses
[6], theorem 4d.

<: The hypothesis implies that P is a nonempty polytope of one of the types
P(—o0, M), P(m M) or P(m +o00) with m M € R. The polytopes P(—oco, M) and
P(m, +00) have known extreme points. Using them and the hypothesis yields (ii) and
(iii). Finally suppose that P(m, M) satisfies the hypothesis. Since P(m, M) # 0, it
followsthat a € [f(n+ 1), f(1)] = [f(n+ 1), f(n)Ju]f(n), f(2)[U[f(2), f(1)] and
these cases are precisely covered by (ii,iii,iv), and we are done.

b. The easy considerations are left to the reader. O

Intheorems8 an 9 bel ow the structuresof the sets maximizer(S¢|X) and minimizer
(S41X), 1< k<< n, aredetermined. Note that theorem 8e relegates the cal culation
of the sets maximizer(S™), 2 < k < n, tothecalculation of the sets minimizer(St%—1).
These latter are determined in theorem 9f. Theorem 9e relegates the calculation of the
sets minimizer(S™) for 2 < k < n to the calculation of the sets maximizer(Sh<—1).
Note that the determination of the latter fall under the domain of theorem 8bcd and
the answers are more explicit than those for the minimizers of the Sb*—1. Interestingly
the optimizers of S¢ depend usually only on one of the parameters k, I; hence by
determining one of these optimizers we frequently have many others.

THEOREM 8. (maximizers) Given integers k| with 1 < k<l <n—-1anda
space X = X(m M, & b;n;g) # 0, definethesets U = {x € X : x(1: 1) = ML},
V={(EL,nl)eX:&neR}, W={xeX:x(I+1:n)=ml, }. Then:

0. maximizer(S") = X.

a 0 # maximizer(SY) C U UV U W, if two of the sets U, V, W are nonempty,
they are equal singletons.

b. If U # 0, then maximizer(S!) = U.
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c. If V # 0, then there exit &, 1, with M > & > n > m such that
maximizer(SY) =V = {(€4, nl, 1)}

d. If W # 0§, then, letting & = a— (n — I)mB = b— (n-1)g(m), and
X = X(mM, & b;l;g), there holds maximizer(8¢) = {x € X : x(1 : k—1) €
minimizer(S<1X), x(1 + 1: n) = ml,_4}.

e. For 2 < k< n, maximizer(S™) = minimizer(Sb<1).

Proof. 0. Obvious.

a. Consider, to the extent existing, u € U,v € V,w € W. These n-tuples have
the following forms: u= (M, ..., M, U41,...,Un), Vv=(&, ....&n,...,n), W=
(W1, ...,w;, m ..., m). From the facts that S'"(u) = S!"(v) = S'"(w) = a and that
u, v, w aredecreasingwith entriesin [m M|, itiseasytoseethat u = v, w = v, u =
w. Hence, if u # v, we have by [8], p64c-4, p54c8 the contradiction b = > g(u;) >
>~ g(vi) = b. Hypothesizing u # w and v # w leadsto similar contradictions. Since
X is compact and the functions S continuous, we know that maximizer(S¢) # 0.
Now lemma 6ac tells usthat if x € maximizer(S¢), then the following logical formula
holdstrue: ((descents(x) N {0, ...,k—1} =0)V (descents(x)N{l+1,...,n—1} =
0)) A ((descents(x) N {1,...,1 =1} = 0) Vv (descents(x) N {I + 1,...,n} = 0)).
Rewriting this formula as a disjunction of four conjunctions using the distributive law,
the set of all x satisfying thisformulais seen to be precisely U UV UW yielding (a).

b. Theclaimisobvious, sincefor any x € X\ U and u € U we have of course
(x) < (I —k+1)M = S(u).

c. Forany rea &, n wehaveobviously (£1), nl,) € X iff (&, n) € Z((l,n—
),ab)yandM > & >n>m Now #((I,n—1),a b) isby proposition 1 a point or
a‘sphere’ in the one-dimensional space H; = {(X,y) : Ix+ (n— 1)y = a}; henceit
consists of at most two points, (£, n) and (¢', ') say, which defineaclosed (possibly
degenerated) interval containing 21,. Hence one of the points, (£, n) say, satisfies
E=n.

d. Under the hypothesis we infer from (a) that maximizer(SY) C W, and hence
x(1+1:n) =ml,_ forany x € maximizer(S!). Fix such x. Then $(x) > S (x")
forall x' € X, hence S"*~1(x) + S*LN(x) < SH*1(x') + S*+LN(x’) foral x' € X; in
particular for thosein W, for which latter we get SH<1(x) < SH<1(x’). But X' € W
iff it is of theform x’ = (%, mil,_|) with X € X, and (d) follows.

e. Thisisaconsequenceof S**~1(x) + S(x) =a. O

THEOREM 9. (minimizers) Given integers k| with 2 < k<l <n-1anda
space X = X(m M, a,b;n;g) # 0, define U = {x € X : Xx(1: k—1) = ML_1},
V ={(El_1,Nlhks1) € X: &, ne R}, W={xe X:x(k:n)=mly_k;1}. Then:

0. minimizer(S'") = X.

a 0 # minimizer(8Y) C U UV U W, if two of the sets U, V, W are nonempty,
they are equal singletons. .

b. If U # 0, then letting & = a— (k — )M, b = b — (k — 1)g(M), and
X = X(m M, & b;n—k+1;g), thereholds minimizer(S¢) = {x € X: x(1:k—1) =
M, x(k : n) € maximizer(S—k+2n—k+1|X)}

c. If V # 0, thenthereexist M > £ > n > m such that minimizer(S¢) = V =
{(E1,n1n k1) }
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d. If W # (, then minimizer(S¢) = W.

e. For 2 < k< n, minimizer(S") = maximizer(Sb<1).

f. The set minimizer(S") can be obtained by an algorithm given below; it has
only finitely many points, each of which hastheform (M1,, X, y1g, z, ml,); if (m M) =
(=00, +0), findtheunique (&, n) € ((n—1, 1), a b) with £ > n, and theunique
(&, 1) € Z((L,n—1),a,b) with & > 1/, and calculate ¢ = sgn(1— | + $=5).
Then

{(€1h-1,m)} if e =+1,
minimizer(S') = { {(E1n_1, M), (€', 0'1n_1)} if e =0,
{(&",n'1h-1)} if e = —1.

Proof. o. Clear.

a. The proof follows by consistently substituting in the proof of theorem 7a, | by
k — 1, using that compactness of X and continuity of S¢ yields minimizer(S¢) # 0,
and using lemma6bdin away similar to the usage of lemma 6ac in the proof of theorem
Ta

b,c,d,e. Thesepartsare proved in complete anal ogy with the parts (d,c,b,e) respec-
tively of theorem 7. The somewhat complicated indicesappearingin S+ in (b) express
in disguisethefact that one seeks to maximizethe sum of the components X1, . - ., Xn-

f. By lemma 6b'd’, if x € minimizer(S'), then there do not exist i, i3 €
descents(x) with 0 < ig < ig+ 2 < i3 < | and there do not exist iy, is € descents(x)
with | < iz <iz+2 < is < n. Inparticular it followsthat |descents(x(1: 1))| < 2 and
|descents(x(l + 1 : n))| < 2; where these descent sets have to be treated with x(1 : I)
considered as extended to (Xo, X(1: 1), X+1) and X(I+1: n) to (X, X(I +1: n), Xpt1).
Furthermore if the number of descentsin one of these extended truncations of X is 2,
then the descents are adjacent. It follows that the extended x(1 : I) has one of the
forms (Xo =2 X1 2 Xo=...=X =X41), Xo=X1 2 X2 =2 X3 = ... =X = X41),

. (Xo=X1=X2=Xzg=...2=X = X41), Whereaways one or both of the > can

be strict inequality signs. We can think of (x, X(14+ 1 : n), Xn+1) inasimilar manner. It
followsthat every such x liesin oneof thesets Urg = U st = {(M1;, X, y15, 2z ml) €
X}, 1,8t € Zso, r+s+t = n—2. Thisgivesusfor thedetermination of minimizer(S")
the following algorithm:
e Determinethefamily R= {(r,st) : Uig Z0}.
e Foreach r = (r, s t) € R determine u, € minimizer(S'|U;) asfollows:

Using in lemma5 (L5) the definitions a =1, =sy =1,c=1d=I1—-r —

1 e=0, alL5) =a—rM —tm b(L5) =b—rg(M) — tg(m), and consequently

€ =sgn (—I +r+1+ ;;:;‘,FL*) , determine {(X, y, Z)} = minimizer(1x+ (I —r —

1y|.7"). Put urg = (M1, X, yls, Z, mly).
e Caculate m = S'(u;) and m= min{m : r € R}, and determine R’ = {r € R:
m = m}.
e Then minimizer(S"|X) = J, cr minimizer(S"|U;).

Finally, it is an easy task to see that in case (m M) = (—oc, +o0) the algorithm
reducesto the processgivenin (f). O
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3. Infimum and Supremum of Spaces X(x, & *; n; %) in theLattice (Z2(n, a), <)

Bapat ([1], p62, 63) and others have observed that for r = 0 theset 2(n, x) N {x:
X > r}, endowed with weak majorization order <y, has lattice theoretic properties.
From this the corresponding properties follow at once for any fixed r. Note that a
subset of Z(n, a) is bounded w.r.t. < iff it is bounded abovew.r.t. <, and aso iff it
is bounded in the sense of Euclidean metric. Furthermore, every subset of 2(n, a) is
bounded below w.rt. < by 21,

We can now use part of Bapat's discussion to obtain part of the following (using
partialy his notations).

COROLLARY 10. a. Let X = X(m M, & b; n; g) benonempty. For | =1,2,...,n,
let o = igl;(Sl'(x) and o = supS'(x). Define § = §(X) = (a, 0p — 01, . .., Gty —
X XEX

an—1) and n = n(X) = (e, as—ayg, ..., ¢, —of ;). Then § and n aretheinfimum
and supremumof X inthepartial order (2(n, a), <) ; inother words § and n satisfy:

0. §,n € 2(n, a).

i. Forall x € X, thereholds 6 < x < n.

ii. If 8',n' are any two elements for which the (corresponding) (o,i) hold, then
8286 =n=<n".

b. (2(n, a), <) isa conditionally completelattice.

Proof. a We noted that for all x € X we have x > ﬁln. So with obvious
modificationswe can reason with our X asBapat ([1], lemma3and its proof) doeswith
(his) S, to obtain from > & = an, = a the facts concerning & claimed in (o), (i),

i

and (ii). Asfor n, fixany | € {2,...,n—1}. Choose v € maximizer(S"'~1), v’ €
maximizer(S'), v/ € maximizer(Sb'+1). By theorem 8a, V' is in one of the sets
U, V,W constructed for the pair (k1) = (1,1) and it follows that (v',Vv'); € X =
X(m M, 2a, 2b; 2n; g) is in the corresponding U,V or W defined in the space X
for the pair (1,21). From this it follows that (v',Vv');, € maximizer(S+?|X) and so
20f = SH((V', V")) = SH2((v,v")|) > of_; + af,;. Thisinequality is also seen to
holdfor | = 1 if weput o, := 0. Thus n isdecreasing. Since S'(n) = ¢, it follows
that x < n for adl x € X; the remaining thing to show for n is aso an immediate
conseguence of its construction.

b. We have to show that every nonempty subset S of 2(n, a), bounded be-
low/abovew.r.t. <, hasaninfimum/supremum (in Z(n, a)). We haveobservedin (a)
that for showing the existence of the infimum one can proceed precisely asin Bapat [1]
adding the fact that the elements of S all have sum a, so as to permit expressing his
claimswith < instead of with <,,. Bapat’s corollary 4 can be used in asimilar fashion
to show the existence of the supremum of aset S bounded above. 0O

It is interesting to note that while Bapat's non-constructive supremum definition
Neap 1S applicable to our spaces X and we have by his uniqueness proofs ngzp(X) =
n(X), thetwo n’sare not always the same. For example, if we apply our construction
totheset S= {(12 2,2, 2), (6, 6, 6,0)}, then we obtain the non-decreasing element
n = (12, 2, 4, 0); the trade-off for our constructivenessis, hence, less general validity.
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4. Applicationsto Eigenvalue Estimation

In this section we show how our results can be applied to estimate eigenval ues,
given the traces of certain powers and/or the determinant of a matrix having only real
eigenvalues. Thefunctions R 3 X = x| Ry > X — x%*+1 and Rog 3 X — —Inx
arestrictly convex. Theideaisto usethat for an n x n-matrix A andany k € Z <, we

n
have trAX = 3" AKX and, if A has positive eigenvalues, — IndetA = — 3" InA;.
i=1
To gauge our estimates, which are throughout best possible (apart of rounding

which was done at the second decimal mostly) against an explicit example the reader
may wish to use the real symmetric matrix

A = (9.376,6.423, 4.775, 1.426),

4023 A = 22
0501 A2 = 154,
A=15060 |Mahes ¢ a3 — 1901
3107 wA* — 0954

detA = 410,

This matrix appeared in [17].

Asfollowsfrom the remarks preceding theorem 8, once determined the optimizers
of the S', we actually know most of the optimizers of the S¢, and therefore the best
possible estimates for sums of eigenvalues of the type Ax + ... + 4. So we limit
ourselvesto just indicate the bounds for the eigenval ues themsel ves.

PrROBLEM 1. Let 7 betheclassof al 4 x 4 matrices A of real eigenvalueswith
trace 22 (i.e. trA = 22) and the trace of whose squareis 154 (i.e. trA? = 154). Give
bounds for the eigenvalues.

Solution: The 4-tuple of eigenvalues A (A) = (A1 > ... > A4) Of A€ & liesin
the space X = X(—o0, +00, 22, 154; 4; x?). We know beforehand that A (A) € X but
could use theorem 7ato infer from 4(2)? = 121 < 154 that X # . Foreach A € o/
we have S'(minimizer(S')) < A(A) < S'(maximizer(S')). Since m = —oco,M =
+00, the sets U and W of theorems 8 and 9 are empty for al | € {1,2, 3} for
which they are defined; the sets V are consequently nonempty and obtainable from
the decreasing solutions (&, n) to the systems “((1,4 —1),22,154). For | = 1,2 3
we obtain the solutions v; = (10.48-1;,3.84-13), v, = (8.37-13,2.6313), vz =
(7.16-13, 0.53-1;), respectively. Using theorems 9c and 8c for k = | = 2, we obtain
2(v1) = 3.84 < Ax(A) < S2(vp) = 837, similarly for k = | = 3 we obtain
S¥(vy) = 2.63 < A3(A) < S¥(v3) = 7.16. Using theorem 9e for k = n = 4, and
then theorem 8c, we have S*(minimizer(S*#)) = S¥(maximizer(S1?)) = S%(v3) =
0.53 < A4(A), while A4(A) < S¥(maximizer(S*)) = S*(minimizer(S')). Now
minimizer(S3) is determined via the algorithm given in the proof of theorem 9f with
| = 3. Inthat algorithmof course r =t = 0, s= n—2 = 2. Wefind minimizer(S'®) =
v3, and hence the upper bound A4(A) < 3.84.

PROBLEM 2. Let o betheclassof al 4x 4 matrices A of real positiveeigenvalues
with trA = 22 and det A = 410. Give boundsfor the eigenvalues.
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Solution: Wehave Indet A = 6.02. Similarly asinProblem 1, wehaveto searchfor
minimizer(S') and maximizer(S'); this time in space X(—o0, +-00, 22, —6.02; 4; g)
—Inx forx >0, The

+o0o forx 0.
union of the spaces V isgiven thistime by the4-tuples v; = (12.36-1;, 3.21-13), v
(8.66:1,, 2.34-1,), vz = (6.92-13, 1.24-1;), fromwhereweread off thebounds A1 (A
12.36, S?(v1) = 3.21 < A2(A) < S?(v2) = 8.66, S¥(vy) = 2.34 < A3(A)
S¥(v3) = 6.92, 1.24 < A4(A). Invoking theorem 9f, we also find minimizer(S*)
{vz} and maximizer(S*) = {v;}; thus we have the bounds 6.92 < A;(A) and
A4(A) < 3.21.

Note that a matrix with real eigenvalues A, = A, = 12.606, A3 = A4 = —1.606
has the specified trace and determinant, but does not satisfy the bounds given. Reason:
the negative el genvaluesimpede rewriting the information on the determinant as a sum
of logarithms of eigenvalues equality.

Another reason for requiring nonnegative eigenval ues happens when admission of
negativity leads us out of the convexity region of the function g as is the case with

g(x) = x5,

defined by the proper strictly convex function g(x) =

N

(VAW Il

R

PrROBLEM 3. Let &7 be the class of al 4 x 4 matrices A of real nonnegative
eigenvalueswith trA = 22 and trA® = 1201. Give boundsfor the eigenvalues.

Solution: We apply our theorems to the space X = X(0, +oc, 22, 1201; 4; x3). It
happensthat thereexist 4-tuples (£1;, n14_) € X for | = 1, 2. Indeed minimizer(S?)
= {(10.04-1;, 3.99-13)} = maximizer(S') and minimizer(S®) = {(8.35-1,, 2.65-1)}
= maximizer($??). So the estimates easiest to obtain are A;(A) < 10.04, 3.99 <
A2(A) < 835, 2.65 < A3(A). Furthermore, minimizer(S*) = maximizer(S®) =
{x € X : x4 = 0} by theorems9eand 8ad, for it happensso that the (only) point of form
(€13, n-11) in X(—o0, +00), namely (7.37, —.11), doesnot liein X(0, +00). Sowe
find O < A4. Tofind alower bound for A1(A) we invoke theorem 9f with | = 1. The
agorithmyields r = 0,s= 1,t = 1; hence minimizer(S*) = {(7.71-1,,6.59-1;, 0)},
and so 7.71 < A1(A). Finaly we find an upper bound for A4(A). By theorem 8e,
maximizer(S*) = minimizer(S'). To find this minimizer, theorem 9f tells us to put
| =3, r =0 Witht=0,s=2 wefind minimizer(S®) = {(10.04-1;, 3.99-13)},
and so A4(A) < 3.99.

PrROBLEM 4. Let o7 betheclassof al 4 x 4 matrices A of real eigenvalueswith
trA = 22 and trA* = 9954. Give boundsfor the eigenvalues.

Solution: We can usethe space X(—oc, +00, 22, 9954; 4; x4). Wethen find by the
techniquesof the previous problemswithout diffi cultiesthat minimizer(S?2)=maximizer
(SH) = maximizer(S*) = minimizer(S®) = {(9.77:14, 4.08:13)}, minimizer(S®) =
{(8.381,,2.62:1,)} = maximizer($?), and minimizer(S') = minimizer(S¥) =
{(7.59-13, —.77-1;)} = maximizer(S®). Thuswehave 7.59 < 11(A) < 9.77, 4.08 <
A2(A) < 8.38, 2.62 < A3(A) < 7.59, —0.77 < A4(A) < 4.08.
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5. Notesand Concluding Remarks

a. Thereshould be no difficultiesin extending our theoremsto the case of continu-
ous not necessarily differentiable convex functions by using the theory of subgradients
and subdifferentials(seee.g. [16], p214c-2, 215¢2). In particular acombination of [16],
p223c5 and the fact [16], p264c2 should permit to establish proposition 1, claim 3. The
essence of lemma 2 is that if we movevia s — (X(s), y(s), z(s)) aong the curve .7,
then (x,y, z) changeaccordingto 7|1 or [{|. Thiscan be established viathe theory of
majorization. Indeed on the plane x +y + z = a such changesto (x’,y’, Z') arethe
only possible that allow escaping majorization-comparability (and hence by [8], p92c8,
inequalities of the type g(x) + g(y) + 9(z) < 9(x’) + g(y’) + 9(Z) oritsreverse).

b. Towhat degreecould one of the defining conditionsof our spaces X, namely (x)
> g(xi) = b with astrictly convex function g, be substituted by a more general one?

FIGN of the more conventional generalizations seem to be possible without at least some
technical troubles. Do our theoremsremain essentially valid if one substitutes g by an
unbounded quasiconvex function, i.e. afunction with convex level-sets? If not before,
we expect mgjor troublesin lemma2b. While an unbounded convex function, even after
‘tilting’ it with respect to its defining domain yields convex levelsets, a quasiconvex
function does not have this property. We al so expect troubleswith the validity of lemma
2bif we generalize (%) to > gi(xi) = b with g convex. Thereason is that results of

I
thetype x <y = Z 05Gi(X) < Z 0;0i(yi), donot hold in general (but are valid and

I I
wereused if dl gi areequal to acertain convex g, see [8], p92c-3).

c¢. Could we generalize, on the spaces defined in this paper, and with its methods,
thefunctions S¢ to be optimized? Again not much seemsto be possiblein thisdirection.
We run into troublesin lemma 6. Let & : R” — R be a function dependent only of
variables xy, ..., ;. At the bottom, in lemma 6 we invariably use the reasoning that a

|

positive or negativechangeof thevalue 3 x;, thatisof S¢(x), bereflected inapositive
) i=k

or negative change of the value S(x). This means that we have SY(x) = S(y) iff

S!(x) = S!(y). Hencethe function $¢(x) = g(S!(x)) for some monotone realval ued

function g. So the generalizations possible in the sense intended are trivial.

d. Theobservation (c) isdeplorable, for it meansfor exampl ethat we cannot deduce
from our results that, given a space X = X(0, +o0, & b; n; x?), one has for certain
g, & n' that minimizer([]; %) = {(£1, nly-1)} and maximizer([] ;%) =
{(é1n-1, n11)}; afact equivalent to one provedin [4].

e. Given a decreasing n-tuple a, put X = X(—oc, +00,a b;n;x?) N {x:
a = x}. Using Karush-Kuhn-Tucker theory ([5], p308) find that the structure of
maximizer(S'|X) is of the form (£1;, nl;, a(t + 1 : n)). Can problems of this type
solved by our method?

f. Summing up, in asense we now understand better why we so often find asimple

structure for the optimizers. And yet, as the results mentioned in (d) and (e) painfully
remind us, our understanding is still incomplete.
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