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ABSTRACT: It is not hard to write a first order formula which is true for a given graph G but is
false for any graph not isomorphic to G. The smallest number D(G) of nested quantifiers in such a
formula can serve as a measure for the “first order complexity” of G. Here, this parameter is studied
for random graphs. We determine it asymptotically when the edge probability p is constant; in fact,
D(G) is of order log n then. For very sparse graphs its magnitude is �(n). On the other hand, for
certain (carefully chosen) values of p the parameter D(G) can drop down to the very slow growing
function log∗ n, the inverse of the TOWER-function. The general picture, however, is still a mystery.
© 2004 Wiley Periodicals, Inc. Random Struct. Alg., 26, 119–145, 2005

1. INTRODUCTION

In this paper we shall deal with sentences about graphs expressible in first-order logic.
Namely, the vocabulary consists of the following symbols:

• variables (x, y, y1, etc.);
• the relations = (equality) and ∼ (the graph adjacency);
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• the quantifiers ∀ (universality) and ∃ (existence);
• the usual Boolean connectives (∨, ∧, ¬, ⇔, and ⇒).

These can be combined into first order formulas accordingly to the standard rules. A sentence
is a formula without free variables. On the intuitive level it is perfectly clear what we mean
when we say that a sentence is true on a graph G. This is denoted by G |= A; we write
G 	|= A for its negation (A is false on G). We do not formalize these notions; a more detailed
discussion can be found in, e.g., [21, Section 1].

Please note that the variables represent vertices so the quantifiers apply to vertices only;
i.e., we cannot express sentences like “There is a set X having a given property.” (In fact,
the language lacks any symbols to represent sets or functions.) We do not allow infinite
sentences nor infinite graphs. As we do not go beyond first order logic, the standalone term
“sentence” means a “first order sentence.”

From a logician’s point of view, the first order properties of graphs form a natural class
of properties to study. For example, the so-called zero-one laws for random graphs have
been extensively studied: see e.g., [7, 9, 11, 13–15, 19–21].

Of course, if G |= A and H ∼= G (i.e. H is isomorphic to G), then H |= A. On the other
hand, for any graph G it is possible to find a first order sentence A which defines G, that
is, G |= A while H 	|= A for any H 	∼= G. Indeed, let V(G) = {v1, . . . , vn}. The required
sentence A could read:

“There are vertices x1, . . . , xn, all distinct, such that any vertex xn+1 is equal to one of
these and xi ∼ xj iff {vi, vj} ∈ E(G), 1 ≤ i < j ≤ n.”

However, this sentence looks rather wasteful: we have n + 1 variables, the ∼-relation was
used

(n
2

)
times, etc. Of a number of possible parameters measuring how complex A is, we

choose here D(A), the quantifier depth (or simply depth) which is the size of a longest
sequence of embedded quantifiers. In the above example, D(A) = n + 1. This is a natural
characteristic which appears, for example, in the analysis of algorithms for checking whether
G |= A. Also, the depth function can be studied by using the so-called Ehrenfeucht game [8]
(see Section 2 here). Following Pikhurko, Veith, and Verbitsky [17] (see also [18]), we let
D(G) be the smallest depth of a sentence defining G. It is a measure of how difficult it is to
describe the graph G in first order logic.

A word of warning: the function D(G) does not correlate very well with our everyday
intuition of how complex the graph G is. Such are the limitations of the first order language
that, for example, D(Kn) = D(Kn) = n+1 is the largest among all order-n graphs but what
can be simpler than the complete or empty graph?!

The reason that D(G) is large for G = Kn is that this graph has a large homogeneous
set, that is, a set X ⊂ V such that any bijection V → V which is the identity on V \X
is an automorphism of G. On the other hand, it is shown in [17] that if D(G) > v(G)+5

2 ,
then G has a homogeneous set having at least D(G) − 2 vertices. However, the situation
seems to get messy when we try to tackle graphs with D(G) ≥ (

1
2 −ε

)
v(G). Besides a large

homogeneous set, there are other obstacles which may push the depth up: Cai, Fürer, and
Immerman [6] constructed graphs G to define which we need �(v(G)) nested quantifiers
even if we add counting to first order logic. This is a rather drastic addition: for example,
we need only two nested quantifiers to define Kn with counting, namely,

“There are precisely n vertices and every two of them are connected.”
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The opposite approach was taken by Pikhurko, Spencer, and Verbitsky [16]: what is q(n),
the minimum D(G) over all graphs G of order n? It turned out that q(n) can be arbitrarily
small in the following sense: for any recursive function f : N → N there is n such that
f (q(n)) < n. If we try to “smooth” q(n) by defining q∗(n) = maxi≤n q(i), then q∗(n) =
�(log∗ n). Here, the log-star log∗ n is the inverse to the TOWER-function, that is, the
number of times we have to take the binary logarithm before we get below 1:

log∗ n = min{i ∈ N : log(i)
2 n < 1}.

Such a behavior is surprising and intriguing. Having studied the two extreme cases, we
concentrate now on what happens in a typical graph. More generally, we consider the
standard Erdős-Rényi model G ∈ G(n, p), where p denotes the edge probability. Of course,
we are interested in events occurring whp (with high probability, that is, with probability
1 − o(1) as n → ∞). While a zero-one law studies the probability that a fixed sentence
holds, we take a random graph and ask what the “simplest” sentence defining it is.

As D(G) = D(G), we can assume without loss of generality that p ≤ 1
2 .

In Section 3 we study the case when 0 < p ≤ 1
2 is a constant and show that whp

D(G) = log1/p n + O(ln ln n). (1)

The case p = 1
2 is always of particular interest: G ∈ G(

n, 1
2

)
is uniformly distributed among

all graphs of order n. In Section 4, we have found a different line of argument (as far as the
upper bound is concerned), which allowed us to pinpoint D(G) down to at most 5 distinct
values for infinitely many n. Unfortunately, this approach does not seem to work for p 	= 1

2 .
In Section 5 we show that for p < 1.19

n , D(G) is determined by the number of isolated
vertices and therefore is of order �(n). Very recently, this result has been extended in [4]
to all p = O(n−1).

Rather surprisingly, for some carefully selected p = p(n) the function D(G) can be
as small as O(log∗ n). The reason is that the integer arithmetics can be modeled over the
obtained random graphs while integers can be defined by first order sentences of very small
depth. We do not present an exhaustive general theorem but give an example demonstrating
this phenomenon when p = n−1/4. On the other hand, the upper bound O(log∗ n) is sharp,
up to a multiplicative constant (cf. Theorem 20).

The first-order complexity of G ∈ G(n, p) for the general p remains a mystery. We refer
the Reader to Section 7 for some concluding remarks and open questions.

2. THE EHRENFEUCHT GAME

For non-isomorphic graphs G and G′ let D(G, G′) be the smallest quantifier depth of a first
order sentence A distinguishing G from G′ (that is, G |= A while G′ 	|= A). As the negation
sign does not affect the depth, we have D(G, G′) = D(G′, G).

Lemma 1. For any graph G we have

D(G) = max{D(G, G′) : G′ 	∼= G}. (2)

Proof. Clearly, D(G, G′) ≤ v(G) + 1, so the right-hand side of (2) is well-defined.
Theorem 2.2.1 in [21] implies that all graphs can be split into finitely many classes so
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that any first-order sentence of depth at most v(G) + 1 does not distinguish graphs within
a class. For each class, except the one which contains G, pick a representative G′ and let
AG′ be a minimum depth sentence distinguishing G from G′. The disjunction of these AG′
proves the ‘≤’-inequality in (2).

The converse inequality is trivial.

In the remainder of this section, we describe the Ehrenfeucht game which is a very
useful combinatorial tool for studying D(G, G′). It was introduced by Ehrenfeucht [8].
Earlier, Fraïssé [10] suggested an essentially equivalent way to compute D(G, G′) in terms
of partial isomorphisms between G and G′. A detailed discussion of the game can be found
in [21, Section 2].

Let G and G′ be two graphs. By replacing G′ with an isomorphic graph, we can
assume that V(G) ∩ V(G′) = ∅. The Ehrenfeucht game Ehrk(G, G′) is played by two
players, called Spoiler and Duplicator and consists of k rounds. For brevity, let us refer to
Spoiler as “him” and to Duplicator as “her.” In the ith round, i = 1, . . . , k, Spoiler selects
one of the graphs G and G′ and marks one of its vertices by i; Duplicator must put the same
label i on a vertex in the other graph. (A vertex may receive more than one mark.) At the
end of the game (i.e., after k rounds) let x1, . . . , xk be the vertices of G marked 1, . . . , k
respectively, regardless of who put the label there; let x′

1, . . . , x′
k be the corresponding ver-

tices in G′. Duplicator wins if the correspondence xi ↔ x′
i is a partial isomorphism; that

is, we require that {xi, xj} ∈ E(G) iff {x′
i , x′

j} ∈ E(G′) as well as that xi = xj iff x′
i = x′

j .
Otherwise, Spoiler wins.

The crucial relation is that for any non-isomorphic G and G′ the smallest r such that
Spoiler has a winning strategy in Ehrr(G, G′) is equal to D(G, G′). In fact, an explicit
winning strategy for Spoiler gives us an explicit sentence distinguishing G from G′.

If Spoiler can win the game, alternating between the graphs G and G′ at most r times,
then the corresponding sentence has the alternation number at most r, that is, any chain of
nested quantifiers has at most r changes between ∃ and ∀. (To make this well defined, we
assume that no quantifier is within the range of a negation sign.) Let Dr(G) be the smallest
depth of a sentence which defines G and has the alternation number at most r. Clearly,
Dr(G) = max{Dr(G, G′) : G′ 	∼= G}, where Dr(G, G′) may be defined as the smallest k such
that Spoiler can win Ehrk(G, G′) with at most r alternations.

For small r, this is a considerable restriction, giving a qualitative strengthening of the
obtained results. Therefore, we make the extra effort of computing the alternation number
given by our strategies if the obtained r is really small.

Finally, let us make a few remarks on our terminology. When a player marks a vertex, we
may also say that the player selects (or claims) the vertex. Duplicator loses after i rounds if
the correspondence between (x1, . . . , xi) and (x′

1, . . . , x′
i) is not a partial isomorphism. (Of

course, there is no point in continuing the game in this situation.)

3. CONSTANT EDGE PROBABILITY

As D(G) = D(G), we can assume without loss of generality that p ≤ 1
2 . For brevity let us

denote q = 1 − p. In this section we prove the following result.

Theorem 2. Let p be a constant, 0 < p ≤ 1
2 . Let G ∈ G(n, p). Then whp

−O(1) ≤ D(G) − log1/p n + 2 log1/p ln n ≤ (2 + o(1))
ln ln n

−p ln p − q ln q
. (3)
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The lower bound follows by observing that if for any disjoint A, B ⊂ G with |A| + |B| ≤ k,
there is a vertex y connected to everything in A but to nothing in B (this is called the
k-extension property or the k-Alice Restaurant property), then D(G) ≥ k + 2. The upper
bound is obtained by some kind of recursion, where for every x ∈ G we write a sentence
Ax describing its neighborhood �(x). Whp no two neighborhoods are isomorphic so Ax

“defines” x and the final sentence A stipulates that the (unique) vertices satisfying Ax and Ay

are connected if and only if x, y ∈ G are. As each recursive step reduces the order by a factor
of about 1/p, the obtained sentence has depth around log1/p n. There are some technicalities
to overcome. However, the combinatorial setting of the Ehrenfeucht games makes the proof
more transparent and accessible.

Unfortunately, we have hardly any control on the alternation number in Theorem 2. The
following result fills this gap by providing the defining sentences of a very restrictive form:
no alternation at all. This, however, comes at the expense of increasing the depth by a
constant factor.

Theorem 3. Let p be a constant, 0 < p < 1. Let G ∈ G(n, p). Then whp

D0(G) ≤ (2 + o(1))
ln n

− ln( p2 + q2)
. (4)

Remark. If we are happy to bound D1 only, then the constant in (4) can be improved: In
the proof (Section 3.3) we have to use Lemma 8 instead of Lemma 10.

3.1. The Lower Bound

To prove the lower bound in (3), we use the following lemma.

Lemma 4. If G has the k-extension property, then D(G) ≥ k + 2.

Proof. Let G′ 	∼= G be another graph which has the k-extension property. (For example,
we can take a random graph of large order.) Consider Ehrk+1(G, G′). Duplicator’s strategy
is straightforward. If in the ith round Spoiler selects a previously marked vertex, Duplicator
does the same in the other graph. Otherwise, she matches the adjacencies between xi and
{x1, . . . , xi−1} to those between x′

i and {x′
1, . . . , x′

i−1} by the k-extension property.

It is easy to show that whp G ∈ G(n, p), for constant p ∈ (
0, 1

2

]
, has the �r�-extension

property with
r = log1/p n − 2 log1/p ln n + log1/p ln(1/p) − o(1), (5)

which gives us the required lower bound by Lemma 4. Indeed, for k < r − �(1), the
expected number of ‘bad’ A, B ⊂ V(G) with |A| + |B| = k can be bounded by(

n

k

)
2k(1 − pk)n−k = ek ln n−pk n+o(ln2 n) = o(1).

3.2. The Upper Bound

Let G = (V , E) be a graph. Let Vi consist of all ordered sequences of i pairwise distinct
vertices of G. For x = (x1, . . . , xi) ∈ Vi define

Vx = {y ∈ V \{x1, . . . , xi} : ∀j ∈ [i] {y, xj} ∈ E},
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and Gx = G[Vx]. We abbreviate Gx1,..., xi = G(x1,..., xi), etc. Let us agree that V−1 = ∅,
V0 = {()} consists of the empty sequence, and G() = G.

The following lemma specifies our global line of attack.

Lemma 5. Suppose that a graph G, numbers l ≥ 0 and l0 ≥ 3 satisfy all of the following
conditions.

1. For any x ∈ Vl−1 ∪ Vl we have D(Gx) ≤ l0.
2. For any i ≤ l − 1, x ∈ Vi, and distinct y, z ∈ Vx, the following two conditions hold.

Let U = Vx,y,z.
a. Any injection f : U → Vx,y which embeds Gx,y,z as an induced subgraph

into Gx,y is the identity mapping. (In particular, Gx,y,z admits no non-trivial
automorphism.)

b. There is a vertex v ∈ Vx,y \U such that for any vertex w ∈ Vx,z \U we have
�(v) ∩ U 	= �(w) ∩ U, where � denotes the neighborhood of a vertex.

3. For any i ≤ l − 1, x ∈ Vi, and distinct y, z, w ∈ Vx, Gx,y,z is not isomorphic to an
induced subgraph of Gx,w.

Then D(G) ≤ l + l0.

Proof. Let us observe first that Condition 2 (or Condition 3) implies that

Gx1,..., xi ,y 	∼= Gx1,..., xi ,z, for any i ≤ l − 1, (x1, . . . , xi) ∈ Vi, and distinct y, z ∈ Vx1,..., xi .

(6)

We prove the lemma by induction on l. If l is 0 or 1, then Condition 1 alone implies the
claim. So, let l ≥ 2. Let G′ = (V ′, E ′) be any graph which is not isomorphic to G.

Case 1: Suppose that there is x ∈ V such that Gx 	∼= G′
y for any y ∈ V ′.

Spoiler selects this x. Let x′ be the Duplicator’s reply. The graph Gx satisfies all the assump-
tions of Lemma 5 with l decreased by 1. Spoiler will always play inside one of Gx or G′

x′ .
We can assume that Duplicator does the same for otherwise the adjacencies to x and x′ do
not correspond. As Gx 	∼= G′

x′ , Spoiler can use the induction to win the (Gx, G′
x′)-game in at

most l + l0 − 1 moves, as required.

The same argument works if there is x ∈ V ′ such that G′
x 	∼= Gy for any y ∈ V .

Case 2: Suppose now that there are x ∈ V and distinct y′, z′ ∈ V ′ such that

Gx
∼= G′

y′ ∼= G′
z′ . (7)

Spoiler selects y′ ∈ V ′. Assume that Duplicator replies with y = x, for otherwise Gy 	∼= G′
y′

by (6) and Spoiler proceeds as in Case 1. Now Spoiler selects z′; let z ∈ V be the Duplicator’s
reply. We can assume that

Gy,z
∼= G′

y′ ,z′ , (8)

for otherwise Spoiler applies the inductive strategy to the (Gy,z, Gy′ ,z′)-game, where l is
reduced by 2.
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We show that Spoiler can win in at most 3 extra moves now. Let U = Vy,z and U ′ =
V ′

y′ ,z′ . Spoiler selects the vertex v ∈ Vy\U given by Condition 2b. Let v′ ∈ V ′
y′\U ′ be the

Duplicator’s reply. By Condition 2a and (7)–(8) there is a bijection g : V ′
y′ → V ′

z′ which is
the identity on U ′ and induces an isomorphism of G′

y′ onto G′
z′ . Spoiler selects w′ = g(v′).

Whatever the reply w ∈ Gz\U of Duplicator is, �(v) ∩ U 	= �(w) ∩ U. But in G′ we have
�(v′)∩ U ′ = �(w′)∩ U ′. Spoiler can point this difference with one more move into U. The
total number of moves is 5 ≤ l + l0, as required.

By (6), the only remaining case is the following.

Case 3: Suppose that there is a bijection g : V → V ′ such that for any x ∈ V we have
Gx

∼= Gg(x).

As G 	∼= G′, there are y, z ∈ V such that g does not preserve the adjacency between y and z.
Spoiler selects y. We can assume that Duplicator replies with y′ = g(y) for otherwise Spoiler
proceeds as in Case 1. Now, Spoiler selects z to which Duplicator is forced to reply with
z′ 	= g(z). Assume that Gy,z

∼= Gy′ ,z′ for otherwise Spoiler applies the inductive strategy
for l − 2 to these graphs. But then Gy,z is an induced subgraph of Gw, where w = g−1(z′),
contradicting Condition 3.

In order to finish the proof of Theorem 2, we apply Lemma 5 to a random graph G ∈
G(n, p).

Let l = log1/p n − C log1/p ln n − 1 and l0 = C0 ln ln n, where C and C0 are constants
such that C > 2 and C0(−p ln p − q ln q) > C. Let m = npl+1 = lnC n. Let ε > 0 be a
small constant. Let n be sufficiently large.

Let V = ∪l+1
i=0Vi. Observe that |V| ≤ e(1+ε) log1/p n ln n = eO(ln2 n).

Lemma 6. Whp for any i ≤ l + 1 and x ∈Vi we have∣∣ |Vx| − pin
∣∣ ≤ εpin. (9)

Proof. Fix some x ∈ Vi. The size of Vx has the binomial distribution with parameters
(n−i, pi). By Chernoff’s bound ([1, Appendix A]), the probability p′ that this x violates (9) is

p′ ≤ 2e−ε2npi/3 ≤ 2e−ε2m/3 = o(|V|−1). (10)

Thus the expected number of “bad” x’s is o(1), giving the required.

Lemma 7. Whp Condition 2 holds.

Proof. Fix i ≤ l − 1, x ∈ Vi, and y, z ∈ Vx. Let U = Vx,y,z, W = Vx,y, u = |U|, and
w = |W |.

First we deal with Condition 2a. Take j ∈ [1, u]. Let g be any injection from U into W
such that |Ug| = j, where Ug = {v ∈ U : g(v) 	= v} consists of the elements moved by g.
Let the same symbol g denote also the induced action on edges. Let Eg consist of those
e ∈ (U

2

)
such that g(e) 	= e. It is not hard to see that

|Eg| ≥
(

j

2

)
+ j(u − j) − j

2
= j

(
u − j

2
− 1

)
.
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We can find a set D ⊂ Eg of size at least |Eg|/3 such that D ∩ g(D) = ∅. We do so greedily:
choose any e ∈ Eg, move e to D, and remove g(e), g−1(e) from Eg (if they belong there). The
probability that, for all e ∈ D, the 2-sets e and g(e) are simultaneously edges or non-edges
is (p2 + q2)|D| because these events are independent. This gives an upper bound on the
probability that g induces an isomorphism.

Given j, there are at most
(u

j

)
wj choices of g. The sequence (x, y), or (x, y, z), violates (9)

with probability at most p′, where p′ is as in (10). Thus we can bound the probability that
x, y, z violate Condition 2a by

2p′ +
u∑

j=1

(
u

j

)
wj(p2 + q2) j(u−j/2−1)/3 < 2p′ + (p2 + q2)

(
1
3 −ε

)
m.

Hence, the expected number of bad witnesses x, y, z is at most

|V|
(

2p′ + (p2 + q2)

(
1
3 −ε

)
m
)

= o(1),

giving the required by Markov’s inequality.
To estimate the probability that Condition 2b fails, fix some v ∈ W \U. The probability

that some vertex of Vx,z\U has the same neighborhood in U as v is at most (p2 + q2)u. We
have u > (1 − ε)m with probability at least 1 − p′. Hence, v does not satisfy Condition 2b
with probability at most

|Vx,z|
(
p′ + (p2 + q2)(1−ε)m

) = o(|V|),
finishing the proof.

Condition 3 is verified similarly to the argument of Lemma 7. (The proof is, in a way,
even easier because |Vx,y,z\Vw| = �(m) whp.) All that remains to check is Condition 1. To
deal with it, we need another strategic lemma. For a subset X of vertices of G = (V , E),
define the equivalence relation ≡X on V , called the X-similarity, by x ≡X y iff x = y or
x, y ∈ V \X satisfy �(x) ∩ X = �(y) ∩ X . This is an equivalence relation. Let

S(X) = {
x ∈ V : ∀y ∈ V ( y 	= x ⇒ y 	≡X x)

} ⊃ X.

The vertices in S(X) are sifted out by X (that is, are uniquely determined by their
adjacencies to X). We call X a sieve if S(X) = V .

Lemma 8. Let X ⊂ V. Define Y = S(X). If S(Y) = V, then D1(G) ≤ |X| + 3.

Proof. Let G′ 	∼= G. First, Spoiler selects all of X. Let X ′ ⊂ V ′ be the Duplicator’s reply.
Assume that Duplicator has not lost yet. For the notational simplicity let us identify X and
X ′ so that V ∩ V ′ = X = X ′ and our both graphs coincide on X. Let Y ′ = SG′(X).

It is not hard to see that Spoiler wins in at most two extra moves unless the following
holds. For any y ∈ Y\X there is a y′ ∈ Y ′\X (and vice versa) such that �(y)∩X = �(y′)∩X .
Moreover, this bijective correspondence between Y and Y ′ induces an isomorphism between
G[Y ] and G′[Y ′].

Clearly, if Duplicator does not respect this correspondence, she loses immediately.
Therefore, we may identify Y with Y ′. Let Z = V \Y and Z ′ = V ′\Y . Let z ∈ Z and define

W ′
z = {

z′ ∈ Z ′ : �(z′) ∩ Y = �(z) ∩ Y
}
.
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If W ′
z = ∅, Spoiler wins in at most two moves. First, he selects z. Let Duplicator reply

with z′ ∈ Z ′. As the neighborhoods of z, z′ in Y differ, Spoiler can highlight this by
picking a vertex of Y . If |W ′

z| ≥ 2, then Spoiler selects some two vertices of W ′
z and

wins with at most one more move, as required.
Hence, we can assume that for any z we have W ′

z = { f (z)} for some f (z) ∈ Z ′. It is
easy to see that f : Z → Z ′ is in fact a bijection (otherwise Spoiler wins in two moves). As
G 	∼= G′, the mapping f does not preserve the adjacency relation between some y, z ∈ Z .
Now, Spoiler selects both y and z. Duplicator cannot respond with f (y) and f (z); by the
definition of f Spoiler can win in one extra move.

By Lemma 8, to complete the proof of Theorem 2 it suffices to verify that whp for
any x ∈ Vl−1 ∪ Vl there is an (l0 − 3)-set X ⊂ Vx such that, with respect to H = Gx,
S(Y) = U, where Y = S(X) and U = Vx. Let k = l0 − 3 and u = |U|. Fix any X ∈ (U

k

)
.

With probability at least 1 − p′ we have up2 ≤ (1 + ε)m. Conditioned on this, Gx is still
constructed by choosing its edges independently. The probability that a vertex y ∈ U \X
belongs to Y is

k∑
i=0

(
k

i

)
piqk−i

(
1 − piqk−i

)u−k−1
. (11)

We want to bound this probability from below. Let, for example, i0 = pk − k1/2 ln k. For
i0 ≤ i ≤ k we have (1 − piqk−i)u ≥ 1 − ε by the definition of C0. Chernoff’s bound
implies that

∑k
i=i0

(k
i

)
piqk−i > 1 − ε as this sum corresponds to the Binomial distribution

with parameters (k, p). Hence, the expression (11) is at least (1 − ε)2 > 1 − 2ε and the
expectation

E[ |Y | ] > (1 − 2ε)u.

We construct the martingale Y0, . . . , Yu−k , where we expose the vertices of U \X one by
one and Yi is the expectation of |Y | after i vertices have been exposed. Changing edges
incident to a vertex, we cannot decrease or increase |Y | more than by two. By Azuma’s
inequality ([1, Theorem 7.2.1]), the probability that |Y | drops, say, below (1 − 3ε)u is at
most e−�(m) = o(|V|). Whp each Y has at least (1 − 3ε)u elements. The following simple
lemma completes our quest.

Lemma 9. Let ε = ε(p) > 0 be sufficiently small. Whp for any x ∈ Vl−1 ∪ Vl , every set
Y ⊂ Vx of size at least (1 − 3ε)u, u = |Vx|, is a sieve in Gx.

Proof. Let x satisfy (9). The expected number of bad triples (Y , y, z) (that is, the distinct
vertices y, z ∈ Vx\Y have the same neighborhood in a set Y of size at least (1 − 3ε)u) is

∑
i≤3εu

(
u

i

)
u2(p2 + q2)u−i = o(|V|).

The claim follows from (10).

3.3. Games with No Alternations

Following our standard scheme, we first specify a graph property which ensures the desired
bound on D0(G) and then show that a random graph satisfies this property whp.
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Lemma 10. Assume that in a graph G = (V , E) we can find X ⊂ V such that:

1. X is a sieve;
2. G[X] has no nontrivial automorphism;
3. G has no other induced subgraph isomorphic to G[X].

Then D0(G) ≤ |X| + 2.

Proof. Let G′ be an arbitrary graph non-isomorphic to G. For some G′ Spoiler plays all
the time in G, for others he plays all the time in G′.

We first describe the strategy when Spoiler plays in G. Spoiler selects all vertices in X.
Suppose that Duplicator managed to establish φ : X → X ′, a partial isomorphism from
G to G′, where X ′ ⊂ V ′ is the set of Duplicator’s responses. Denote Z = V(G)\X and
Z ′ = V(G′)\X ′. We call two vertices, v ∈ Z and v′ ∈ Z ′ φ-similar if the extension of φ

which takes v to v′ is a partial isomorphism from G to G′. Four cases are possible:

Case 1: The φ-similarity is a one-to-one correspondence between Z and Z ′.

Case 2: There is v ∈ Z without a φ-similar counterpart in Z ′.

Case 3: There is v′ ∈ Z ′ without a φ-similar counterpart in Z .

Case 4: There are v′
1, v′

2 ∈ Z ′ with the same φ-similar counterpart in Z .

In Case 1 there are v1, v2 ∈ Z with adjacency different from the adjacency between their
φ-similar counterparts in Z ′. Spoiler selects v1 and v2 and wins. In Case 2 Spoiler wins by
selecting the vertex v. In Cases 3 and 4 Spoiler fails in this way but plays differently from
the very beginning.

Namely, if there exist X ′ and a partial isomorphism φ : X → X ′ such that Cases 3
or 4 occur, Spoiler begins with selecting all vertices in X ′. Duplicator is forced to reply in
accordance with φ due to the conditions assumed for X . Then Spoiler selects the vertex v′

in Case 3 or v′
1 and v′

2 in Case 4 and wins.

Lemma 11. Let ε > 0 and 0 < p < 1 be fixed. Let G ∈ G(n, p) and let X ⊂ V be a fixed
set of size t ≥ (2 + ε) log1/r n, where r = p2 + q2. Then whp Conditions 1–3 of Lemma 10
hold.

Proof. The expected number of vertices with the same neighborhood in X is at most
n2rt = o(1), implying Condition 1. Conditions 2 and 3 follow from the following claim.

Claim 1. Whp no injective g : X → V , with the exception of the identity mapping,
preserves the adjacency relation.

Proof of Claim. Fix g. Let k = |K| and l = |L|, where

K = {x ∈ X : g(x) 	∈ X},
L = {x ∈ X : g(x) ∈ X\{x}},
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As in the proof of Lemma 7 we can find a set D ⊂ (X\K
2

)
of size at least l t−k−l/2−1

3 such that
D ∩ g(D) = ∅. The latter property still holds if we enlarge D by the set of all elements of(X

2

)
incident to K . Hence, the total probability of failure is at most

∑
0<k+l≤t

(
t

k

)(
t − k

l

)
nktlrl t−k−l/2−1

3 +k(t−1)−(k
2) = o(1),

completing the proof of the claim and the lemma.

4. EDGE PROBABILITY 1/2

Here is the main result of this section.

Theorem 12. Let G ∈ G (
n, 1

2

)
. For infinitely many values of n we have whp

D2(G) ≤ log2 n − 2 log2 ln n + log2 ln 2 + 6 + o(1). (12)

Remark. The lower bound given by Lemma 4 and the case p = 1
2 of (5) is by at most

5 + o(1) smaller than the upper bound in (12). This implies that D(G) and D2(G) are
concentrated on at most 6 different valued for such n. In Section 4.3 we will show that whp
we have only 5 possible values.

Before we start proving Theorem 12, let us observe that for p = 1
2 and an arbitrary n

the upper bound (3) can be improved by using Lemma 8 to

D1(G) ≤ log2 n − log2 ln n + O(ln ln ln n).

(Details are left to the interested reader.)

4.1. Spoiler’s Strategy

Before we can specify the plan of our attack on Theorem 12, we have to give a few definitions.
Let G = (V , E), W ⊂ V , and u ∈ N. Building upon the notions defined before

Lemma 8, let
Su(W) =

⋃
U⊂V\W
|U|=u

(S(U ∪ W)\(U ∪ W)) .

In other words, a vertex y 	∈ W belongs to Su(W) iff there is a u-set U ⊂ V \(W ∪ {y})
such that U ∪ W sifts out y. Note that S(W) = S0(W) ∪ W .

Lemma 13. Let Y = Su(W). Suppose that Y ∪ W is a sieve in G and that no two vertices
of Y have the same neighborhood in W. Then D2(G) ≤ u + w + 4, where w = |W |.

Proof. Let G′ = (V ′, E ′) be a graph non-isomorphic to G. We describe a strategy allowing
Spoiler to win the game Ehru+w+4(G, G′).
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Spoiler first claims W . Let Duplicator reply with W ′ ⊂ V ′. Assume that she does not
lose in this phase, establishing a partial isomorphism f : W → W ′. Recall that we call two
vertices v ∈ V and v′ ∈ V ′ f -similar if the extension of f taking v to v′ is still a partial
isomorphism from G to G′. Let Y ′ = Su(W ′).

Claim 1. As soon as Spoiler moves inside Y ∪ Y ′ but Duplicator replies outside Y ∪ Y ′,
Spoiler is able to win in the next u + 1 moves with 1 alternation between the graphs.

Proof of Claim. Assume for example that, while Spoiler selects y ∈ Y , Duplicator replies
with y′ /∈ Y ′. Spoiler selects some u-set U with y sifted out by U ∪ W . Let the reply to
it be U ′. By the assumption on y′, there is another vertex z′ with the same adjacencies to
U ′ ∪ W ′. Spoiler selects z′ and wins.

Claim 2. If Y ′ contains two vertices with the same adjacencies to W ′, then Spoiler is able
to win the game in w + u + 3 moves with at most 2 alternations.

Proof of Claim. Assume that y′ and z′ are both in Y ′ and have the same adjacencies to W ′.
Spoiler selects these two vertices. In order not to lose immediately, Duplicator is forced to
reply at least once outside Y . Spoiler wins in the next u + 1 moves according to Claim 1.

Assume therefore that all vertices in Y ′ have pairwise distinct neighborhoods in W ′.
This assumption and Claim 1 imply that either the f -similarity determines a one-to-one
correspondence between Y and Y ′ or Spoiler is able to win the game in w + u + 3 moves
with at most 2 alternations. We will assume the first alternative. Extend f to a map from
W ∪ Y onto W ′ ∪ Y ′ accordingly to the f -similarity correspondence between Y and Y ′.

Claim 3. Suppose that Duplicator failed to respect the bijection f after a Spoiler’s move
into Y ∪ Y ′. Then Spoiler can win in at most u + 1 extra moves, during which he alternates
at most once.

Proof of Claim. Suppose that the previous move x of Spoiler was in G, for example.
Clearly, the Duplicator’s response x′ cannot belong to Y ′ because f (x) is the only vertex in
Y ′ with the required W ′-adjacencies. Spoiler applies the strategy of Claim 1.

Claim 4. If f : W ∪ Y → W ′ ∪ Y ′ is not a partial isomorphism from G to G′, then Spoiler
is able to win the game in w + u + 3 moves with 1 alternation.

Proof of Claim. Assume, for example, that {y1, y2} ∈ (Y
2

)
is an edge while {f (y1), f (y2)} is

not. Spoiler picks y1 and y2. Duplicator cannot reply with f (y1) and f (y2) so Spoiler wins
in at most w + 2 + (u + 1) = w + u + 3 moves by Claim 3.

Assume therefore that f : W ∪ Y → W ′ ∪ Y ′ is a partial isomorphism. Denote R =
V \(W ∪ Y) and R′ = V ′ \(W ′ ∪ Y ′).

Claim 5. As soon as Spoiler moves inside R ∪ R′ but Duplicator fails to reply with an
f -similar vertex in R ∪R′ (in the other graph), Spoiler can win in at most u +2 extra moves,
during which he alternates at most once.

Proof of Claim. If Duplicator replies with a vertex x ∈ Y ∪ Y ′, in the next move Spoiler
marks the f -mate of x and then applies the strategy of Claim 3. If she replies in R ∪ R′

but not with an f -similar vertex, Spoiler highlights this in one more move and again uses
Claim 3.
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Claim 6. If W ′ ∪ Y ′ is not a sieve in G′, then Spoiler is able to win the game in w + u + 4
moves with 2 alternations.

Proof of Claim. Spoiler picks two witnesses z′
1, z′

2 ∈ R′ with the same adjacencies to
W ′ ∪ Y ′. If at least one of the corresponding replies z1, z2 is not in R, Spoiler applies the
strategy of Claim 5. Otherwise z1 and z2 belong to different W ∪ Y -similarity classes and
there is a vertex x ∈ W ∪ Y adjacent to exactly one of z1 and z2. If x ∈ W , Spoilers wins
immediately. If x ∈ Y , Spoiler picks f (x) ∈ Y ′. Duplicator cannot respond with x. Now
Spoiler wins the game in at most u + 1 extra moves by Claim 3.

In the rest of the proof we suppose that W ′ ∪ Y ′ is a sieve. This assumption and Claim 5
imply that either the f -similarity determines a one-to-one correspondence between R and R′

or Spoiler is able to win the game in w +u+3 moves with 2 alternations. Let us assume the
first alternative. Extend f to the whole of V accordingly to the f -similarity correspondence
between R and R′. Thus f is a bijection between V and V ′ now. As G and G′ are not
isomorphic, f does not preserve the adjacency for some {y1, y2} ∈ (V

2

)
. Spoiler selects y1

and y2. If Duplicator replies with f (y1) and f (y2), she loses immediately. Otherwise, Spoiler
applies the strategy of Claim 5 and wins, having made totally at most u + w + 4 moves and
1 alternation.

4.2. The Probabilistic Part

Let k be given. For simplicity let us assume that k is even. Define

f (n, k) =
(

n − k
2

k
2

)
(n − k)(1 − 2−k)n−k−1.

Basic asymptotics show that for n = �(k2 2k) we have f (n+1,k)

f (n,k)
≈ 1, and thus we can find

n = (
ln 2
2 + o(1)

)
k22k such that

f (n, k) = (10 + o(1)) log2 n.

We fix this n. Routine calculations show that

k ≤ log2 n − 2 log2 ln n + log2 ln 2 + 1 + o(1). (13)

Let A be a fixed k
2 -subset of G ∈ G(n, 1

2 ). Let U consist of pairs (U, y), where U is a k-set
containing A and y ∈ V\U. For (U, y) ∈ U , let I(U, y) denote the indicator random variable
for the event y ∈ S(U). We define

X =
∑

(U,y)∈U
I(U, y),

M = |U | =
(

n − k/2

k/2

)
(n − k),

p = E[I(U, y) ] = (1 − 2−k)n−k−1,

We further set
µ = E[X] = Mp = f (n, k) = (10 + o(1)) log2 n. (14)
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The idea behind these definitions is that we try to apply Lemma 13 for W = A and u = k
2 .

Then µ is the expected number of ways to construct a vertex of Su(W). Our proof works
only if µ is neither too big nor too small, that is, for some special values of n only. We do
not know if D(G) can pinned down to O(1) distinct values for an arbitrary n.

As k ≈ log2 n we have

M ≈ n
k
2 +1

(k/2)! = n
k
2 (1+o(1)).

As µ = no(1) we further have

p ≈ e−n2−k = n− k
2 (1+o(1)). (15)

Lemma 14. For distinct (U1, y1), (U2, y2) ∈ U ,

E[I(U1, y1)I(U2, y2)] ≤ n− 3k
4 (1+o(1)). (16)

When |U1 ∩ U2| < 9k
10 ,

E[I(U1, y1)I(U2, y2)] ≤ E[I(U1, y1)]E[I(U2, y2)]
(

1 + O
(

n− k
10 (1+o(1))

))
. (17)

Proof. Condition on the adjacency patterns of y1, y2 to U1, U2, respectively. Let z be any
vertex not in U1 ∪ U2 ∪ {y1, y2}. Suppose (the main case) U1 	= U2. Then

Pr[(z ≡U1 y1) ∧ (z ≡U2 y2)] ≤ 2−k−1 (18)

as the adjacency pattern of z to U1 ∪ U2 is then determined. When U1 = U2 the adjacency
patterns of y1, y2 to U1 must be different as otherwise I(U1, y1) = I(U2, y2) = 0. Then
it would be impossible to have z ≡U1 y1 and z ≡U2 y2 so (18) still holds. By inclusion-
exclusion

Pr[(z ≡U1 y1) ∨ (z ≡U2 y2)] ≥ 2 · 2−k − 2−k−1 = 3 · 2−k−1.

If I(U1, y1)I(U2, y2) = 1, then this fails for all such z. But these events are mutually
independent. Thus, by (15)

E[I(U1, y1) I(U2, y2)] ≤ (1 − 3 · 2−k−1)n−2k−2 = n− 3k
4 (1+o(1)), (19)

giving the required.
Suppose further that |U1 ∩ U2| < 9k

10 . Again let z be any vertex not in U1 ∪ U2 ∪ {y1, y2}
and condition on the adjacency patterns of y1, y2 to U1, U2 respectively. Now

Pr[(z ≡U1 y1) ∧ (z ≡U2 y2)] ≤ 2− 11k
10

as this event requires z to have a given adjacency pattern to U1 ∪ U2. Again by inclusion-
exclusion

Pr[(z ≡U1 y1) ∨ (z ≡U2 y2)] ≥ 2 · 2−k − 2− 11k
10 .

As with (19) we deduce

E[I(U1, y1)I(U2, y2)] ≤
(

1 − 2 · 2−k + 2− 11k
10

)n−2k−2
.
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Now we want to compare this to E[I(U1, y1)]E[I(U2, y2)]. We have

(
1 − 2 · 2−k + 2− 11k

10

)n−2k−2 = ((1 − 2−k)n−k−1)2
(

1 + O
(

n2− 11k
10

))
,

yielding (17).

Lemma 15.
Var[X] = O(E[X]). (20)

Proof. As X = ∑
I(U, y), the sum of indicator random variables, we employ the general

bound
Var[X] ≤ E[X] +

∑
Cov[I(U1, y1), I(U2, y2)], (21)

the sum over distinct (U1, y1), (U2, y2) ∈ U . The first term is µ. Consider the sum of the
covariances satisfying |U1 ∩ U2| > 9k

10 . There are M choices for (U1, y1). For a given U1

there are n
k

10 (1+o(1)) choices for (U2, y2) and∑
E[I(U1, y1)I(U2, y2)] ≤ Mn

k
10 (1+o(1))n− 3k

4 (1+o(1)) = o(1). (22)

As the covariance of indicator random variables is at most the expectation of the product,∑
Cov[I(U1, y1), I(U2, y2)] = o(1), (23)

where in (22)–(23) the sum is restricted to |U1 ∩ U2| > 9k
10 . When |U1 ∩ U2| ≤ 9k

10 , we have
from (17) that

Cov[I(U1, y1), I(U2, y2)] = O
(

E[I(U1, y1)]E[I(U2, y2)]n− k
10 (1+o(1))

)
.

Hence
(
the sum over |U1 ∩ U2| ≤ 9k

10

)
∑

Cov[I(U1, y1), I(U2, y2)] = O
(

n− k
10 (1+o(1))

) ∑
E[I(U1, y1)] E[I(U2, y2)]

But
∑

E[I(U1, y1)]E[I(U2, y2)] over all (U1, y1), (U2, y2) ∈ U is precisely µ2 = O(ln2 n).
This becomes absorbed in the n− k

10 term and
(
the sum again over |U1 ∩ U2| ≤ 9k

10

)
∑

Cov[I(U1, y1), I(U2, y2)] = O
(

n− k
10 (1+o(1))

)
. (24)

In particular, all covariances in (21) together add up to o(1) and so we actually have the
stronger result Var[X] ≤ E[X] + o(1).

Lemma 16. Whp every pair (U1, y1) 	= (U2, y2) from U with I(U1, y1) = I(U2, y2) = 1
satisfies

1. U1 ∩ U2 = A;
2. y2 	∈ U1;
3. y1 	= y2;
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4. y1 	≡A y2;
5. For u1, u2 ∈ U1 with u1 	= u2, u1 	≡A u2;
6. For u1 ∈ U1, u2 ∈ U2, u1 	≡A u2.

Proof. From (22) the expected number of pairs (U1, y1) 	= (U2, y2) with I(U1, y1) =
I(U2, y2) = 1 and |U1 ∩ U2| > 9k

10 is o(1). The total number of pairs (U1, y1) 	= (U2, y2)

with (U1 ∩ U2)\A 	= ∅ is less than M2 k2

n . For each with |U1 ∩ U2| ≤ 9k
10 a weak form of

(17) gives that E[I(U1, y1) I(U2, y2)] ≤ 2p2. Hence the expected number of such pairs with
I(U1, y1) = I(U2, y2) = 1 is bounded from above by M2 k2

n (2p2) = O((ln4 n)/n) = o(1).
Hence the probability that Property 1 fails is o(1).

For Property 2 we first employ Property 1 and restrict attention to U1 ∩ U2 = A. The
number of (U1, y1), (U2, y2) with y2 ∈ U1 is less than M2 k

n−k and for each
E[I(U1, y1) I(U2, y2)] ≈ p2 so the expected number with I(U1, y1)I(U2, y2) = 1 is less
than ≈ (Mp)2 k

n which is O((ln3 n)/n) = o(1).
For Property 3 we first employ Property 1 and restrict attention to U1 ∩ U2 = A.

The number of such (U1, y1), (U2, y2) with y1 = y2 is about M2n−1 and for each such
Pr[I(U1, y1) = I(U2, y2) = 1] ≈ p2 so the expected number of violations of Property 3 is
around (Mp)2n−1 = µ2n−1 = o(1).

For Property 4 we first employ Properties 1–3 and restrict attention to pairs satisfy-
ing those conditions. The number of such pairs is ≈ M2. For each such Pr[I(U1, y1) =
I(U2, y2) = 1] ≈ p2 and, conditioned on this, Pr[y1 ≡A y2] ≈ 2−k/2. Hence the expected
number of pairs violating Property 4 is ≈ (Mp)22−k/2 = µ22−k/2, which is again o(1).

For Property 5 there are M choices of U1, y1 and O(k2) choices for u1, u2. For each
Pr[I(U1, y1) = 1] = p, Pr[u1 ≡A u2] = 2−k/2 and these events are independent so the
expected number of violations of Property 5 is O(Mpk22−k/2), which is o(1).

For Property 6 we restrict attention to those cases satisfying Properties 1–4. There
are less than M2 choices of U1, y1, U2, y2 and O(k2) choices for u1, u2. For each Choice
Pr[I(U1, y1) = I(U2, y2) = 1] ≈ p2, Pr[u1 ≡A u2] = 2−k/2 and these events are independent
so the expected number of violations of Property 6 is O(M2p2k22−k/2), which is o(1).

Lemma 17. Let G ∈ G(n, 1
2 ) and A be a fixed subset of k

2 vertices, as above. Let Z denote
the union of all sets U − A where some I(U, y) = 1 and let S = Sk/2(A) denote the set of
all such vertices y. Let R = V \(A ∪ Z ∪ S). Then whp:

1. All y1, y2 ∈ S have y1 	≡A y2.
2. All u1, u2 ∈ Z have u1 	≡A u2.
3. There are no distinct z1, z2, z3, z4 ∈ R with z1 ≡S z2 and z3 ≡S z4.
4. There are no distinct z1, z2, z3 ∈ R with z1 ≡S z2 ≡S z3.

Proof. The first two statements are Conclusions 4–6 of Lemma 16. We concentrate on
showing Property 3 as Property 4 is similar. Set

l = µ − µ0.6. (25)

Let Y denote the number of l-sets {(Ui, yi) : 1 ≤ i ≤ l} (counting permutations of the
(Ui, yi) as the same) and z1, z2, z3, z4 satisfying:

• I(Ui, yi) = 1 for 1 ≤ i ≤ l.
• The Ui − A are disjoint, the yi are distinct, and no yi ∈ Uj.
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• z1, z2, z3, z4 ∈ R, where R denotes all vertices except the Ui and the yi.
• z1 ≡S z2 and z3 ≡S z4, where we set S = {y1, . . . , yl}.

We bound E[Y ]. There are less than Ml/l! choices for the (Ui, yi) and n4 choices for the
z1, z2, z3, z4. Fix those choices. Set R− = R\{z1, z2, z3, z4}, and let z ∈ R−. For each 1 ≤ i ≤ l

Pr[z ≡Ui yi] = 2−k .

For each 1 ≤ i, j ≤ l, as |Ui ∩ Uj| = k
2 ,

Pr[(z ≡Ui yi) ∧ (z ≡Uj yj)] ≤ 2− 3k
2 .

We apply the Bonferroni inequality, in the form that the probability of a disjunction is at
least the sum of the probabilities minus the sum of the pairwise probabilities:

Pr
[∨l

i=1z ≡Ui yi

] ≥ l2−k −
(

l

2

)
2− 3k

2 .

These events are independent over the z ∈ R− as they involve different adjacencies. Let OK
denote the event that no z ≡Ui yi for any z ∈ R− and 1 ≤ i ≤ l. The independence gives:

Pr[OK] ≤
(

1 − l 2−k +
(

l

2

)
2− 3k

2

)n−l(1+ k
2 )− k

2

.

We bound

1 − l 2−k +
(

l

2

)
2− 3k

2 ≤ (1 − 2−k)l (1 + n−1.1)

and

n − l

(
1 + k

2

)
− k

2
≤ n − k − 1,

so that
Pr[OK] ≤ pl(1 + n−1.1)n ≤ pl(1 + o(1)).

Our saving comes from

Pr[z1 ≡S z2] = Pr[z3 ≡S z4] = 2−l.

The adjacencies on the zi to S are independent of the event OK. But

∧l
i=1I(Ui, yi) = 1 ⇒ OK.

Thus
Pr

[(∧l
i=1I(Ui, yi)

) ∧ (z1 ≡S z2) ∧ (z3 ≡S z4)
] ≤ pl 2−2l(1 + o(1)).

Putting this together,

E[Y ] ≤ Ml

l! n4pl2−2l(1 + o(1)).

Recall that Mp = µ ≈ 10 log2 n. The function µx/x! hits a maximum at x = µ where it is
less than eµ. Thus

(Mp)l

l! ≤ eµ.
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Hence
E[Y ] ≤ eµn42−2l.

We have selected l ≈ µ so that

eµ2−2l =
( e

4

)µ(1+o(1)) = n−K(1+o(1)),

where K = −10 log2(e/4) > 4. We deduce

E[Y ] = o(1),

so that almost surely there is no such l-tuple. Recall that X was the total number of (U, y)
with I(U, y) = 1. As E[X] = µ and, from (20), Var[X] = O(µ) with probability 1 − o(1)

we have X ≥ l. Further, Lemmas 14 and 16 give that whp the extensions have Properties
1–2. Thus whp there exists a family of (Ui, yi) of size l which satisfies Properties 1–2. But
also whp any such family of size l will satisfy Properties 3 and 4. So whp there is such a
family. The expansion of the family to all (U, y) with I(U, y) = 1 retains Properties 3–4 as
the set S is just getting larger. So the theorem is proved.

4.3. Putting All Together

We can now finish the proof of Theorem 12. By Lemma 17 we have whp that all A∪Sk/2(A)-
similarity classes are singletons except possibly one 2-element class {x, y}. If we let W =
A ∪ {x} and u = k

2 , then clearly G satisfies all the assumptions of Lemma 13, which implies
that D2(G) ≤ k + 5, giving the required by (13).

Finally, let us justify the Remark after Theorem 12. Recall that given k we have chosen
n so that f (n, k) ≈ 10 log2 n and deduced that D2(G) ≤ k + 5 whp. The probability that the
(k − 1)-extension property fails for G is at most(

n

k − 1

)
(1 − 2−k+1)n−k = ek ln n−k ln k+k−2−k+1n+o(k) = f 2(n, k) 2−k+o(k) n−2 = o(1).

By Lemma 4, k +1 ≤ D(G). Thus, D(G) and D2(G) are concentrated on at most 5 different
values.

5. SPARSE RANDOM GRAPHS

The following lemma helps us to deal with very sparse random graphs. Let tk = tk(G) be the
number of components of G which are order-k trees. (Thus t1(G) is the number of isolated
vertices.) For a graph F, let cF(G) be the number of components isomorphic to F.

Lemma 18. Suppose that for any connected component F of a graph G we have

cF(G) + v(F) ≤ t1(G) + 1. (26)

Then D(G) = D1(G) = t1(G) + 2 unless G is an empty graph (when D(G) = D0(G) =
v(G) + 1).

Proof. Assume that e(G) 	= 0.

The lower bound on D(G) follows by considering G′ which is obtained from G by adding
an isolated vertex. The graphs G and G′ are isomorphic as far as non-isolated vertices are
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concerned. The best strategy for Spoiler is to pick t1(G) + 1 isolated vertices in G′ and, by
making one more move in G, to show that at least one of the Duplicator’s responses is not
an isolated vertex.

On the other hand, let G′ 	∼= G. There must be a connected graph F such that cF(G) 	=
cF(G′), say cF(G) < cF(G′). Spoiler picks one vertex from some cF(G) + 1 F-components
of G′. If a move x of Duplicator falls into the same component of G as some her previous
move y, then Spoiler switches to G and begins claiming a contiguous path from x to y; he
wins in at most v(F) moves by either connecting x to y or by claiming a path of length
v(F) + 1.

Otherwise, Duplicator must have selected a vertex inside a component C of G which
is not isomorphic to F. As soon as this happens, Spoiler wins by growing a connected set
inside the larger component of the two, in at most v(F) moves.

The total number of moves does not exceed (cF(G) + 1) + v(F) ≤ t1(G) + 2 (while we
have only one alternation), as required.

Theorem 19. Let ε > 0 be fixed. Let p = p(n) ≤ (α − ε)n−1, where α = 1.1918 . . . is
the (unique) positive root of the equation

se−s = αe−α , where we denote s := α − αe−α .

Then whp G ∈ G(n, p) satisfies the condition (26). In this range, whp

D(G) = D1(G) = (e−pn + o(1)) n. (27)

Proof. It is easy to compute the expectation of tk(G) for G ∈ G(n, p):

λk = E[tk] =
(

n

k

)
kk−2pk−1qk(n−k)+(k

2)−k+1.

Let c = pn. For a fixed k we have λk = (fk + o(1))n, where fk := ck−1kk−2

k! eck . We have

fk+1

fk
= ce−c ×

(
1 + 1

k

)k−2

.

The first factor ce−c is at most 1/e (maximized for c = 1). Unexciting algebraic calculations
show that the second factor is monotone increasing for k ≥ 1 and approaches e in the limit.
This implies that the sequence fk is decreasing in k. (In particular, f1 is strictly bigger than
any other fi, i ≥ 2.)

Also, f1 = e−c > 0.3 for 0 ≤ c ≤ α.
Theorems 5.7 and 6.11 in Bollobás [5] describe the structure of a typical G for p =

O(n−1). In particular, it implies that there is a constant K such that whp at least 0.9n vertices
of G belong either to tree components of orders at most K or to the giant component. The
giant component (for c > 1) has order (1 − s

c + o(1)) n, where s is the only solution of
se−s = ce−c in the range 0 < s ≤ 1. It is routine to see that f1 > 1 − s

c . (In fact, c = α is
the root of f1 = 1 − s

c ; this is where α comes from.)
A theorem of Barbour [3] (Theorem 5.6 in [5]) implies that, for any k ≤ K , we have

whp
|tk(G) − λk| ≤ o(n). (28)
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Now, we have all the ingredients we need to check (26). Let F ⊂ G be any connected
component. If F is the giant component of G, then cF(G) = 1, but, as we have seen,
v(F) ≤ t1(G), so (26) holds. So we can assume that v(F) = o(n). If v(F) > K , then
cF(G) + v(F) ≤ 0.1n

K + K < t1(G). If F is a tree with k ∈ [2, K] vertices, then (28) and the
inequality f1 > fk imply the required. Finally, it remains to assume that the component F of
order at most K contains a cycle. But the expected number of such components is at most∑K

i=2

(n
i

)
piii−1

( i
2

) = O(1). Markov’s inequality implies that whp no such F violates (26).

Of course, the value of t1(G) can be estimated more precisely for some p than we did in
Theorem 19. Without going into much details, let us describe some of the cases here. Let
ω be any function of n which (arbitrarily slowly) tends to the infinity with n.

If n2p → 0, then whp we have isolated vertices and edges only. The distribution of
t2(G) = e(G) approaches the Poisson distribution Pλ2 . Hence, we have whp that n − ω <

D(G) ≤ n + 1.
Suppose that n2p 	→ 0 but pn → 0. The expected number of vertices in components of

order at least 3 is at most n
(n

2

)
3p2 = o(λ2). By Markov’s inequality, whp we have o(λ2)

such vertices. On the other hand, the distribution of t2(G) is o(1)-close to Pλ2 (Theorem 5.1
in [5]). Hence, ∣∣∣D(G) − n + λ2

2

∣∣∣ ≤ o(λ2) + ω.

Observe that there is no phase transition in the behavior of D(G) at p ≈ 1
n . This should

not be surprising: D(G) is determined by t1(G) in this range. The more recent results in [4]
imply that (27) holds for any p = O(n−1).

6. MODELING ARITHMETICS ON GRAPHS

In this section we consider D(G) for the random graph G ∈ G(n, p) where p = n−1/4. We
expect that our results would hold for p = n−α for any rational α ∈ (0, 1), but this would
require considerable technical work so we are content with this one case. In [21, Section 8]
it was shown, for α = 1

3 , that there was an arithmetization of certain sets that led to
non-convergence and non-separability results. Our methods here will be similar.

Theorem 20. Let p = n−1/4 and G ∈ G(n, p). Then whp

log∗ n − log∗ log∗ n − 1 ≤ D(G) ≤ D3(G) ≤ log∗ n + O(1).

The lower bound is very general. We use only the simple fact that any particular unlabeled
graph is the value of G(n, n−1/4) with probability at most exp

(−(1/2 − o(1))n7/4
)
. Let F(k)

be the number of pairwise inequivalent sentences about graphs of depth at most k. Then
Pr[D(G) ≤ k] ≤ F(k) exp

(−(1/2 − o(1))n7/4
)

as there are at most F(k) such graphs. From
general principles [21, Theorem 2.2.2] we know that F(k) ≤ TOWER(k + 2 + log∗ k). If
k = log∗ n − log∗ log∗ n − 2, we have F(k) ≤ 2n and hence Pr[D(G) ≤ k] = o(1).

Now we turn to the main part, bounding D(G) from above. For any set W of vertices
let N(W) denote the set of common neighbors of W . When |W | = 4, Pr[N(W) = ∅] =
(1 − p4)n−4 ≈ e−1. We are guided by the idea that N(W) = ∅ is like a random symmetric
4-ary predicate with probability e−1, which is bounded away from both zero and one.
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Let W = {v1, v2, v3, v4} be a set of four vertices. Dependent only on W we define:

• A = N(W), the common neighbors of W ;
• B, consisting of those z 	∈ W ∪ A such that z is adjacent to precisely four vertices of

A and no other z′ 	∈ W ∪ A has exactly the same adjacencies to A.

For w 	∈ W ∪ A let Hw(A) denote the 3-uniform hypergraph on A consisting of those triples
T so that there is no z 	∈ W ∪ A adjacent to T ∪ {w}. The condition that z 	∈ W ∪ A is a
technical convenience that does not asymptotically affect the Hw(A). If, further, a ∈ A, we
let Hw,a(A) denote the 2-uniform hypergraph (i.e., graph) of pairs T with T ∪ {a} ∈ Hw(A).
Further, for distinct a, b ∈ A, we let Hw,a,b(A) denote the 1-uniform hypergraph (i.e., set)
of elements y with {a, b, y} ∈ Hw(A). For w 	∈ W ∪ A ∪ B let Hw(B) denote the 3-uniform
hypergraph on B consisting of those triples T so that there is no z 	∈ W ∪ A ∪ B adjacent to
T ∪ {w}. (Again, the condition z 	∈ W ∪ A ∪ B is a technical convenience.) Informally, the
idea is that the Hw(A), Hw(B) act like random objects with probability e−1.

Call A universal if the Hv(A), v 	∈ W ∪ A, range over all 3-uniform hypergraphs on A.
Call B splitting if the Hv(B), v 	∈ W ∪ A ∪ B, are all different. As there are 2�(m3) 3-uniform
hypergraphs over an m-set a simple counting argument gives that if A is universal we must
have |A| = O(ln1/3 n) while if B is splitting we must have |B| = �(ln1/3 n).

Our argument splits into two lemmas.

Lemma 21. Whp there exists a 4-set W such that, with A, B as defined above,

1. A is universal;
2. B is splitting.

Lemma 22. Any graph G on n vertices with the property of Lemma 21 has D3(G) ≤
log∗ n + O(1).

Note that the proof of Lemma 21 is a random graph argument while the proof of
Lemma 22 is a logic argument involving no probability.

Proof of Lemma 21. Set u = �ln0.3 n�. For any set W of four vertices

Pr[|N(W)| = u] = Pr[Bin(n − 4, p4) = u] ≈ e−1/u!.
Thus the expected number µ of such W has µ ≈ (n

4

)
e−1/u! which approaches infinity. An

elementary second moment calculation gives that the number of such W is (1 + o(1)) µ

whp. Hence it suffices to show that the expected number of W with A having size u but A, B
failing the conditions of Lemma 21 is o(µ). Fix W and A of size u. It suffices to show that
A, B satisfy Lemma 21 whp. The conditioning is only on the adjacencies involving a vertex
of W , all other adjacencies remain random.

First we show that A is universal. Let Z be those vertices adjacent to four or more vertices
of A. Let Z ′ consist of vertices with at least one neighbor in Z . Whp every four vertices in
the graph have O(ln n) common neighbors so |Z| is polylog while |Z ′| = n3/4+o(1).

For each 3-set Y ⊂ A let N−(Y) denote those v 	∈ W ∪ A ∪ Z which are adjacent to
all vertices of Y . The random variables |N−(Y)|, Y ∈ (A

3

)
, are independent, each with
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Binomial distribution Bin(n−o(n), (1+o(1)) n−3/4). The probability that |N−(Y)| > 2n1/4

or |N−(Y)| < 1
2 n1/4 is then less than exp(−cn1/4) for a constant c by Chernoff bounds.

We only need that this probability is o(n−3). Thus with high probability for every 3-set
Y ⊂ A we have |N−(Y)| ∈ [

1
2 n1/4, 2n1/4

]
. Condition on these N−(Y) satisfying these

conditions. Let R be the (remaining) vertices, not in W , A, Z , Z ′ nor any of the N−(Y).
For z ∈ R the adjacencies to the N−(Y) are still random. For such z we have Y ∈ Hz(A)

if and only if z is adjacent to no vertex in N−(Y). (Note that z does not send any edges
to Z .) As |N−(Y)| ≤ 2n1/4 the probability that z is adjacent to no vertex of N−(Y) is at
least e−2. As |N−(Y)| ≥ 1

2 n1/4 the probability that z is adjacent to some vertex of N−(Y)

is at least 1 − e−1/2. Set γ = min(e−2, 1 − e−1/2). Then for any hypergraph H on A we
have Pr[Hz(A) = H] ≥ γ (u

3). But these events are now independent over the (1 − o(1)) n
values z ∈ R so that the probability that no Hz(A) = H is less than (1 − γ (u

3))n. Here
because u3 = o(ln n) this quantity is less than, say, exp(−n0.99). There are fewer than 2u3

hypergraphs H on A. Hence the probability that any such H is not one of the Hz(A) is less
than 2u3

exp(−n0.99). The 2u3
term is basically negligible, and the probability that A is not

universal is less than exp(−n0.98) and certainly o(1). We note that A being universal will
not be fully needed in Lemma 22, we shall need only seven particular values of Hz(A).

Now we look at the size of B. For each z 	∈ A ∪ W the probability that z is adjacent to
precisely four elements of A is

(u
4

)
p4(1 − p)u−4 ≈ u4n−1/24 and given this the probability

that no other z′ has the same adjacencies is approximately (1−p4)n ≈ e−1 so B has expected
size µ ≈ u4/24e. A second moment calculation gives that whp |B| ≈ µ = �(ln1.2 n).

Finally we show that B is splitting. At this stage W , A, B are fixed and all of the adjacencies
that do not have at least one vertex from W ∪ A are random. Whp no z 	∈ W ∪ A ∪ B is
adjacent to five (or more) vertices of B. Let Z be those z 	∈ W ∪ A ∪ B adjacent to four
vertices of B. Whp |Z| is polylog.

For each 3-set Y ⊂ B we let N∗(Y) denote those v 	∈ W ∪ A ∪ B which are adjacent to
all vertices of Y and N−(Y) = N∗(Y) − Z . As before, whp all |N∗(Y)| have size between
1
2 n1/4 and 2n1/4 and so the same, asymptotically, holds for the |N−(Y)|. As before, we fix
the N∗(Y) and their adjacencies to Y . Consider distinct u, u′ 	∈ W ∪ A ∪ B. The probability
that either u or u′ is adjacent to nine (or more) vertices of Z is o(n−2). Call a 3-set Y ⊂ B
exceptional if u or u′ is adjacent to some z ∈ Z which is adjacent to all of Y . With probability
1−o(n−2) there are at most 2·8·4 = 64 exceptional Y . Hence the number of non-exceptional
Y is ≈ (|B|

3

)
. For the non-exceptional Y we have Y ∈ Hu(B) if and only if u is adjacent to no

vertex in N−(Y) and similarly for Y ∈ Hu′(B). Thus Pr[Y ∈ Hu(B)] ∈ [γ , 1 − γ ] with γ as
previously defined. Further these events are independent over different non-exceptional Y .
Set γ ∗ = γ 2 + (1 −γ )2. Then Hu(B), Hu′(B) agree on a non-exceptional Y with probability
at most γ ∗. Independence gives that they agree on all non-exceptional Y with probability
at most γ ∗ to the ≈ (|B|

3

)
power. As this power is � ln n, the probability is certainly o(n−2).

There are O(n2) choices of u, u′ so whp no Hu(B) = Hu′(B).

Proof of Lemma 22. The main portion of the argument consists of placing an arithmetic
structure on A in such a way that any vertex in A can be described with quantifier depth
log∗ |A| + O(1) ≤ log∗ n + O(1). For convenience we assume |A| = 3s + 2. (Otherwise we
would specify one or two extra elements of A by reserving for them one or two special vari-
ables and thereby increasing the depth by at most two. Note that the set A with these elements
removed stays universal.) Label the elements of A by a, b, x1, . . . , xs, y1, . . . , ys, z1, . . . , zs in
an arbitrary way. Now we, effectively, model arithmetic on A. From the universality there
exist w1, . . . , w7 (witnesses) such that:
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1. Hw1 consists of the triples {xi, yi, zi}.
2. Hw2,a,b consists of the elements xi.
3. Hw3,a,b consists of the elements yi.
4. Hw4,a consists of all pairs {xi, yj} with i ≤ j.
5. Hw5 consists of all triples {xi, yj, zi+j} with 1 ≤ i, j, i + j ≤ s.
6. Hw6 consists of all triples {xi, yj, zi·j} with 1 ≤ i, j, i · j ≤ s.
7. Hw7,a consists of all pairs {xi, y2i} with 1 ≤ i ≤ s and 2i ≤ s.

Using 13 first-order variables to denote the v1, v2, v3, v4 which define A, the special
elements a, b ∈ A, and the witnesses w1, . . . , w7, we give a first order expression which
forces A to have the above form. Note that membership in A is given by a first order statement
and membership in an Hw or Hw,a or Hw,a,b is given by a first order statement in terms of
the variables. Let A− = A − {a, b} for convenience. Now we express the following six
properties by first-order formulas.

P1 (1-Factor) Hw1 consists of vertex disjoint triples and every element of A−, and
only those elements, are in such a triple.

P2 (Splitting the 1-Factor) For each triple in Hw1 exactly one of the elements is in
Hw2,a,b and exactly one (a different one) is in Hw3,a,b. Now let (for convenience)
X denote those x ∈ A− with x ∈ Hw2,a,b, and let Y denote those y ∈ A− with
y ∈ Hw3,a,b and Z the other elements of A−. Henceforth the use of the letter x, y, z
shall tacitly assume that the element is in the respective set X, Y , Z . We write
x ↔ y or x ↔ z or y ↔ z if the two elements are in a common triple in Hw1 .

P3 (Creating ≤) Here adjacency is in Hw4,a. We require that all adjacencies be between
an x and a y. Let N(x) denote the y adjacent to x. We require that for every x, x′

either N(x) ⊂ N(x′) or N(x′) ⊂ N(x) with equality only when x = x′. We require
that when y ↔ x, then y ∈ N(x). This forces the N(x) to form a chain and
so the x and y can be renumbered to fit the condition. We now define x ≤ x′

by N(x′) ⊆ N(x). The relations ≥, >, < have their natural Boolean meaning in
terms of ≤. We define y ≤ y′ and z ≤ z′ by x ≤ x′, where x ↔ y ↔ z and
x′ ↔ y′ ↔ z′. We let x1, y1, z1 denote the first elements under ≤ and xs, ys, zs

the last elements. The notions of successor x+ and predecessor x− are naturally
defined (when they exist) in terms of ≤. We let y2 and z2 denote the successors of
y1 and z1 respectively.

P4 (Creating addition) Addition is generated from the formulas α + 1 = α+ and
α + β+ = (α + β)+, though we need some care as addition in this model is
not always defined. For every x ∈ X , y ∈ Y there is at most one z ∈ Z with
{x, y, z} ∈ Hw5 . {x, y1, z} ∈ Hw5 if and only if x 	= xs and z ↔ x+. If y 	= ys, then
{x, y+, z} ∈ Hw5 if and only if z 	= z1 and {x, y, z−} ∈ Hw5 . We let x + x′ = x∗

denote that {x, y′, z∗} ∈ Hw5 , where y′ ↔ x′ and y∗ ↔ x∗. Let x + z = z′ mean that
when z, z′ are replaced by their ↔ elements in x that then we have the equality,
and similarly for other forms like y + y′ = z.

P5 (Creating multiplication) Multiplication is generated from the formulas α ·1 = α

and α · β+ = (α · β) + β, though we need some care as addition in this model
is not always defined. For every x ∈ X , y ∈ Y there is at most one z ∈ Z
with {x, y, z} ∈ Hw6 . {x, y1, z} ∈ Hw6 precisely when x ↔ z. If y 	= ys, then
{x, y+, z} ∈ Hw6 if and only if {x, y, z′} ∈ Hw6 and x + z′ = z for some z′.
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P6 (Creating exponentiation) Base two exponentiation is defined by 21 = 2 and
2α+ = 2α + 2α , though we need some care as addition in this model is not
always defined. For every x ∈ X there is at most one y ∈ Y with {x, y} ∈ Hw7,a.
{x1, y2} ∈ Hw7,a. If x 	= xs, then {x+, y} ∈ Hw7,a if and only if {x, y′} ∈ Hw7,a and
y′ + y′ = y for some y′. We write x′ = 2x if {x, y′} ∈ Hw7,a and x′ ↔ y′.

In outline, the defining formula is constructed in the following way. An integer x can be
described with quantifier depth O(log∗ n) by listing its binary digits, where in order to
specify the position d of each digit we apply recursion on d ≤ log2 x. Now the elements v
of B are identified by describing the four vertices of A that v is adjacent to. Any v 	∈ W ∪A∪B
is described by listing the edges of Hv(B). The assumption that B is splitting means that we
have identified all the vertices; now we can just list all the graph adjacencies. Also, we have
to be careful so that the constructed defining sentence has the alteration rank at most 3, as
claimed.

We will say that a sequence of symbols ∀ and ∃ has form ∀∗∃∗∀∗ if it consists of a
block of all ∀ followed by a block of all ∃ and a concluding block of all ∀ (some blocks
may be empty). Any other regular expression over alphabet {∀, ∃}, as ∃∗∀∗ or ∃∗∀∗∃∗, will
be understood similarly. Furthermore, we will say that a first order formula P is a ∀∗∃∗∀∗

formula if any sequence of nested quantifiers in P has form ∀∗∃∗∀∗.
Each formula Pi, i ≤ 6, has free variables in the set {v1, . . . , v4, w1, . . . , w7, a, b} (for the

simplicity of notation we use the same letters for variables and vertices corresponding to
each other). A straightforward inspection shows that every Pi is a ∀∗∃∗∀∗ formula. As all
Pi’s are fixed formulas, they have constant quantifier depth.

For each xi in X , 1 ≤ i ≤ s, we now construct a formula Axi(x) that has one free variable
x and describes xi; i.e., Axi(x) will be true for x = xi and false for any other vertex of G.
Using the arithmetics introduced by P1,…, P6, we identify a vertex xi with the integer i. We
will need a formula D(d, x) whose truth value coincides with the dth binary digit of x, if
d and x range in X and d ≤ �log2 x� (we count the first digit as the first on the right, zero
if and only if x is even). The 1st digit of x is zero if and only if x = x′ + x′ for some x′.
Otherwise the dth digit is zero if and only if there exist q, r x = q ·2d + r with r < 2d−1 or if
x = q · 2d or if x < 2d−1. (This technical complication is caused by leaving zero out of the
model.) This is first order as we already have multiplication, exponentiation, less than, and
addition. D(d, x) can be written so that any sequence of nested quantifiers in this formula
has form ∃∗∀∗ or ∀∗∃∗.

The formula Ax1(x) just says that x ∈ X and x ≤ x′ for all x′ in X. For i > 1, the
construction of Axi(x) is recursive. First of all, we start Axi(x) with the assertion that x ∈ X .
Let xi have m digits. If 2m ≤ s, we put in Axi(x) the assertion ∃x′(Am(x′) ∧ x ≤ 2x′

), where
Am(x) is constructed recursively. The same can as well be expressed as ∀x′(¬Am(x′) ∨ x ≤
2x′

). Note that x ≤ 2x′
is an ∃∗∀∗ formula. If 2m > s, we reset m = �log s� and put no

assertion in Axi(x) at this stage. Furthermore, for every j ≤ m, we put in Axi(x) the assertion
∃x′(Axj (x

′)∧D(x′, x)) or its ∀-version, if the jth digit of xi is 1. If the jth digit of xi is 0, we put
the assertion ∃x′(Axj (x

′)∧¬D(x′, x)) or its ∀-version. Here Axj (x) is constructed recursively.
Therewith Axi(x) is completely specified, with the freedom to choose front quantifiers.
Observe that Axi(x) has subformulas Am(x) and Axj (x) only with xj ≤ m ≤ �log xi� + 1. It
easily follows that every Axi has quantifier depth at most log∗ s + O(1).

Choosing appropriately ∃- or ∀-variants for ingredients of Axi and all subsequent Am(x)
and Axj (x), we can write Axi in either of two forms, ∃∗∀∗∃∗ and ∀∗∃∗∀∗.
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An element yi of Y is described by formula Ayi(y) which has two variants, y ∈ Y ∧
∃x(Axi(x)∧ x ↔ y) or y ∈ Y ∧∀x(¬Axi(x)∨ x ↔ y). Elements of Z are described similarly.
Note that x ↔ y is an ∃∗∀∗ formula.

The distinguished vertices are described trivially. For example, Aa(x) is just x = a. Thus,
all elements in A ∪ W ∪ {w1, . . . , w7} have first order descriptions.

Note that the statement x ∈ B is expressible by a ∀∗∃∗ formula. A vertex x in B with
neighbors a1, a2, a3, a4 in A is described by a formula Av(x) that is x ∈ B ∧∧4

i=1 ∃y(Aai(y)∧
x ∼ y) or the ∀-variant thereof. (Recall that ∼ stands for the graph adjacency relation.)

For any remaining vertex v, its description Av(x) consists of the assertion x /∈ W ∪A∪B∪
{w1, . . . , w7} and the conjunction of∃y1,y2,y3(Ab1(y1)∧Ab2(y2)∧Ab3(y3)∧{y1, y2, y3} ∈ Hx(B))

over all triples {b1, b2, b3} ∈ Hx(B) and ∃y1,y2,y3(Ab1(y1) ∧ Ab2(y2) ∧ Ab3(y3) ∧ {y1, y2, y3} /∈
Hx(B)) over all triples {b1, b2, b3} /∈ Hx(B), b1, b2, b3 ∈ B. Again note that the conjunctive
members have alternative ∀-variants. The assumption that B is splitting means that the
constructed Av(x) indeed describes the v.

Summarizing, we conclude that every vertex v of G is described by a first-order formula
Av(x) that has quantifier depth log∗ n + O(1) and can be written in either of two forms,
∃∗∀∗∃∗ and ∀∗∃∗∀∗.

We now give a first-order sentence defining G. It is

∃v1,...,v4,w1,...,w7,a,b

(
6∧

i=1

Pi ∧ Q ∧ V ∧ E

)
, (29)

where P1, . . . , P6 are specified above and Q, V , E are as follows. The formula Q says that
all v1, . . . , v4, w1, . . . , w7, a, b are pairwise distinct, no wi is in W ∪ A, and a, b are in A. The
formula V , specifying the vertex set, is this:∧

v∈V(G)

(∃xAv(x) ∧ ∀x1,x2(Av(x1) ∧ Av(x2) → x1 = x2)
) ∧ ∀x

∨
v∈V(G)

Av(x).

Note that V determines, in particular, the number s (and the size of A). Finally, the formula
E, specifying all (non)adjacencies between the vertices, is as follows:

∀x1,x2

( ∧
{u,v}∈E(G)

(Au(x1) ∧ Av(x2) → x1 ∼ x2) ∧
∧

{u,v}/∈E(G)

(Au(x1) ∧ Av(x2) → ¬(x1 ∼ x2))

)
.

It is easy to see that the defining formula (29) has quantifier depth log∗ n + O(1). By
appropriate choice of ∃∗∀∗∃∗- or ∀∗∃∗∀∗-form for each occurrence of Av, one can ensure
that (29) is an ∃∗∀∗∃∗∀∗ formula and hence has alternation number 3.

7. CONCLUDING REMARKS

Our Theorem 2 has a strong link with the zero-one law which was discovered independently
by Glebskii et al. [11] and Fagin [9] and says that G ∈ G(n, 1

2 ) satisfies any fixed first order
sentence with probability approaching either 0 or 1. Given ε ∈ (0, 1), define Tε(n) to be the
maximum k such that, if n1, n2 ≥ n, then D(G, H) > k with probability at least 1 − ε for
independent G ∈ G(n1, p) and H ∈ G(n2, p). The Bridge Theorem [21, Theorem 2.5.1] says
that, in a rather general setting, a zero-one law is obeyed iff, for each ε, Tε(n) tends to the
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infinity as n increases. Spencer and St. John [22] call Tε(n) the tenacity function and suggest
it as a quantitative measure for observation of a zero-one law. While in [22] the tenacity
function is studied for words, here we are able to find its asymptotics in the case of graphs.
Using Theorem 2 and noting that the lower bound based on the k-extension property goes
through for D(G, H) with both G and H random, we obtain Tε(n) = log1/p n + O(ln ln n),
irrespective of the constant ε.

Another interesting first-order parameter of a graph G is I(G), the smallest depth of
a sentence distinguishing G from any non-isomorphic graph of the same order as G. Of
course, I(G) ≤ D(G), so all upper bounds we have proved apply to I(G) as well. All our
lower bounds also apply to I(G) with the exceptions of Theorem 19. Its I(G)-analog would
say that, for G ∈ G(n, c

n ) with c < c0, where c0 = 1.034 . . ., we have whp

I(G) = (1 + o(1))t2(G) = (ce−2c/2 + o(1))n, (30)

where t2(G) denotes the number of isolated edges. The reason is that if G 	∼= G′ but v(G) =
v(G′), then the multiplicities of at least two non-isomorphic components must differ while
the two most frequent components in G are isolated vertices and edges. (And the order of
the giant component catches up with t2(G) at p ≈ c0

n .) The Reader should not have any
problem in filling up the missing details.

We make the following general conjecture.

Conjecture 23. Let ε > 0 be fixed and n−1+ε ≤ p ≤ 1
2 . Then whp D(G) = O(ln n).

One can also ask about D#, the analog of D(G) when we add counting to first order logic.
Here, the situation is strikingly different. A result of Babai and Kučera [2] (combined with
Immerman and Lander’s [12] logical characterization of the vertex refinement step in [2])
implies that whp G ∈ G(n, 1

2 ) can be defined by a first-order sentence with counting of
quantifier depth at most 4.
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