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a b s t r a c t

Given a planar graphG, we consider drawings ofG in the planewhere edges are represented
by straight line segments (which possibly intersect). Such a drawing is specified by an
injective embedding π of the vertex set of G into the plane. Let fix(G, π) be the maximum
integer k such that there exists a crossing-free redrawing π ′ of G which keeps k vertices
fixed, i.e., there exist k vertices v1, . . . , vk of G such that π(vi) = π ′(vi) for i = 1, . . . , k.
Given a set of points X , let fixX (G) denote the value of fix(G, π) minimized over π locating
the vertices of G on X . The absolute minimum of fix(G, π) is denoted by fix(G).

For the wheel graph Wn, we prove that fixX (Wn) ≤ (2 + o(1))
√
n for every X . With a

somewhat worse constant factor this is also true for the fan graph Fn. We inspect also other
graphs for which it is known that fix(G) = O(

√
n).

We also show that the minimum value fix(G) of the parameter fixX (G) is always
attainable by a collinear X .

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The problem of untangling a planar graph

In a plane graph, each vertex v is a point inR2 and each edge uv is represented as a continuous plane curvewith endpoints
u and v. All such curves are supposed to be non-self-crossing and any two of them either have no common point or share
a common endvertex. An underlying abstract graph of a plane graph is called planar. A planar graph can be drawn as a
plane graph in many ways, and theWagner–Fáry–Stein theorem (see, e.g., [11]) states that there always exists a straight line
drawing in which every edge is represented by a straight line segment.

Let V (G) denote the vertex set of a planar graph G. In this paper, by a drawing of G we mean an arbitrary injective map
π : V (G) → R2. We suppose that each edge uv of G is drawn as the straight line segment with endpoints π(u) and π(v).
Due to possible edge crossings and even overlaps, π may not be a plane drawing of G. Hence it is natural to ask:

How many vertices have to be moved to obtain from π a plane (i.e., crossing-free) straight line drawing of G?

Alternatively, we could allow in π curved edges without their exact specification; such a drawing could be always assumed
to be a plane graph. Then our task would be to straighten π rather than to eliminate edge crossings.

More formally, for a planar graph G and a drawing π , let

fix(G, π) = max
π ′

v ∈ V (G) : π ′(v) = π(v)

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where the maximum is taken over all plane straight line drawings π ′ of G. Furthermore, let
fix(G) = min

π
fix(G, π). (1)

In other words, fix(G) is the maximum number of vertices which can be fixed in any drawing of Gwhile untangling it.
No efficient algorithm determining the parameter fix(G) is known. Moreover, computing fix(G, π) is known to be

NP-hard [8,18].
Improving a result of Goaoc et al. [8], Bose et al. [5] showed that

fix(G) ≥ (n/3)1/4

for every planar graph G, where here and in the rest of this paper n denotes the number of vertices in the graph under
consideration. Better bounds on fix(G) are known for cycles [12], trees [8,5] and, more generally, outerplanar graphs [8,14].
In all these cases it was shown that fix(G) = Ω(n1/2). For cycles Cibulka [6] proves a better lower bound of Ω(n2/3).

Here we are interested in upper bounds on fix(G), that is, in examples of graphs with small fix(G). Moreover, let X be an
arbitrary set of n points in the plane and define

fixX (G) = min
π

{fix(G, π) : π(V (G)) = X} .

Note that fix(G) = minX fixX (G). This notation allows us to formalize another natural question. Can untangling of a graph
become easier if the set X of vertex positions has some special properties (say, if it is known that X is collinear, i.e., lies on a
line, or is in convex position, i.e., no x ∈ X lies in the convex hull of X \ {x})? This question admits several variations:
• For which X can one attain equality fixX (G) = fix(G)?
• Are there graphs with fixX (G) small for all X?
• Are there graphs such that fixX (G) is for some X considerably larger than fix(G)?

1.2. Prior results

The cycle (resp. path; empty graph) on n vertices will be denoted by Cn (resp. Pn; En). Recall that the join of vertex-disjoint
graphs G and H is the graph G ∗ H consisting of the union of G and H and all edges between V (G) and V (H). The graphs
Wn = Cn−1 ∗ E1 (resp. Fn = Pn−1 ∗ E1; Sn = En−1 ∗ E1) are known as wheels (resp. fans; stars). By kG we denote the disjoint
union of k copies of a graph G.

Pach and Tardos [12] were the first to establish a principal fact: some graphs can be drawn so that, in order to untangle
them, one has to shift almost all their vertices. In fact, this is already true for cycles. More precisely, Pach and Tardos [12]
proved that

fixX (Cn) = O((n log n)2/3) for any X in convex position. (2)
The best known upper bounds are of the form fix(G) = O(

√
n). Goaoc et al. [9]1 showed it for certain triangulations. More

specifically, they proved that

fixX (Pn−2 ∗ P2) <
√
n + 2 for any collinear X . (3)

Shortly after [9] and independently of it, there appeared our manuscript [10], which was actually a starting point of
the current paper. For infinitely many n, we constructed a family Hn of 3-connected planar graphs on n vertices with
maxH∈Hn fix(H) = o(n). Though no explicit bound was specified in [10], a simple analysis of our construction reveals that

fixX (Hn) ≤ 2
√
n + 1 for any X in convex position, (4)

where Hn denotes an arbitrary member of Hn. While the graphs in Hn are not as simple as Pn−2 ∗ P2 and the subsequent
examples in the literature, the construction of Hn has the advantage that this class contains graphs with certain special
properties, such as bounded vertex degrees. By a later result of Cibulka [6], we have fix(G) = O(

√
n(log n)3/2) for every G

with maximum degree and diameter bounded by a logarithmic function. Note in this respect that Hn contains graphs with
bounded maximum degree that have diameter Ω(

√
n).

In subsequent papers [16,5], examples of graphs with small fix(G) were found in special classes of planar graphs, such as
outerplanar and even acyclic graphs. Spillner and Wolff [16] showed for the fan graph that

fixX (Fn) < 2
√
n + 1 for any collinear X (5)

and Bose et al. [5] established for the star forest with n = k2 vertices that

fixX (kSk) ≤ 3
√
n − 3 for any collinear X . (6)

Finally, Cibulka [6] proved that
fixX (G) = O((n log n)2/3) for any X in convex position

for all 3-connected planar graphs.

1 The papers [9,16] from conference proceedings were subsequently combined into the journal paper [8].
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Fig. 1. Example of a graph in H16 .

1.3. Our present contribution

In Section 2we notice that the choice of a collinear vertex position in (3), (5) and (6) is actually optimal for proving upper
bounds on fix(G). Specifically, we show that for any G the equality fixX (G) = fix(G) is attained by some collinear X (see
Theorem 2.1).

In Section 3 we extend the bound fix(G) = O(
√
n) in the strongest way with respect to specification of vertex positions.

We prove that

fixX (Wn) ≤ (2 + o(1))
√
n for every X, (7)

fixX (Fn) ≤ (2
√
2 + o(1))

√
n for every X (8)

(see Theorem 3.5). Let us define

FIX(G) = max
X

fixX (G)

(while fix(G) = minX fixX (G)). With this notation, (7) and (8) read

FIX(Wn) ≤ (2 + o(1))
√
n and FIX(Fn) ≤ (2

√
2 + o(1))

√
n.

In Section 4 we discuss an approach attempting to give an analog of (7) for the aforementioned family of graphs Hn. A
member of this family is defined as a plane graph of the following kind. Let k ≥ 3 and n = k2. Draw k triangulations, each
having k vertices, such that none of them lies inside an inner face of any other triangulation. Connect these triangulations
by some more edges making the whole graph 3-connected. Hn is the set of all 3-connected planar graphs obtainable in this
way. This set is not empty. Indeed, we can allocate the k triangulations in a cyclic order and connect each neighboring pair by
two vertex-disjoint edges as shown in Fig. 1. Note that k new edges form a cycle Ck and the other k new edges participate in
a cycle C2k. If we remove any two vertices from the graph obtained, each triangulation and the whole ‘‘cycle’’ stay connected
(since the aforementioned cycles Ck and C2k are vertex-disjoint, at most one of them can get disconnected).

Note that, if we start with triangulations with bounded vertex degrees, the above construction gives us a graph with
bounded maximum degree. In this situation our argument for (7) does not work. We hence undertake a different approach.

Given a set of colored points in the plane, we call it clustered if its monochromatic parts have pairwise disjoint convex
hulls. Given a set X of n = k2 points, let C(X) denote the maximum cardinality of a clustered subset existing in X under any
balanced coloring of X in k colors (see Definition 4.1). It is not hard to show (see Lemma 4.2) that

fixX (Hn) ≤ C(X) + k, (9)

where Hn denotes an arbitrary graph in Hn. We prove that C(X) = O(n/ log n) for every X , which implies that FIX(Hn) =

O(n/ log n) (Theorem 4.4).
Better upper bounds for C(X) would give us better upper bounds for FIX(Hn). Note that C(X) has relevance also to the

star forest kSk, namely

fixX (kSk) ≥ C(X) − k (10)

(see part 2 of Lemma 4.2). Thus, if therewere a set X with C(X) ≫ k, the parameter FIX(kSk)would be far apart from fix(kSk).
As we do not know how close or far away the parameters fix(G) and FIX(G) are for G = Hn and G = kSk, the two graph

families deserve further attention. Section 5 is devoted to estimation of fixX (G) for X inweakly convex position, which means
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that the points in X lie on the boundary of a convex body (including the cases where X is in convex position and where
X is a collinear set). Since C(X) < 2k for any X in weakly convex position, by (9) we obtain fixX (Hn) < 3

√
n for such X

(Theorem 5.2).
This result for Hn together with the stronger results obtained for Wn and Fn in Section 3 might suggest that fixX (G) =

O(fix(G)) should hold for any Gwhenever X is in weakly convex position. The simplest casewherewe are not able to confirm
this conjecture is G = kSk. By (9) and (10) we have fixX (Hn) ≤ fixX (kSk) + 2k for any k and n = k2, and bounding fixX (kSk)
from above seems harder. Nevertheless, even here we have a rather tight bound: if X is in weakly convex position, then
fixX (kSk) = O(

√
n 2α(

√
n)), where α(·) denotes the inverse Ackermann function (Theorem 5.4).

We conclude with a list of open questions in Section 6.

2. Hardness of untangling from a collinear position

Theorem 2.1. For every planar graph G we have fix(G) = fixX (G) for some collinear X.

Theorem 2.1 can be deduced from [5, Lemma 1]. For the reader’s convenience, we give a self-contained proof.

Proof. Let fix−(G) denote the minimum value of fixX (G) over collinear X . We have fix(G) ≤ fix−(G) by definition. The
theorem actually states the converse inequality fix(G) ≥ fix−(G). That is, given an arbitrary drawing π : V (G) → R2, we
have to show that it can be untangled while keeping at least fix−(G) vertices fixed.

Choose Cartesian coordinates in the plane such that π(V (G)) is located between the lines y = 0 and y = 1. Let
px, py : R2

→ R denote the projections onto the x-axis and the y-axis, respectively. We also suppose that the axes are
chosen such that the map λ = pxπ is injective. Let us view λ as a drawing of G, aligning all the vertices on the line y = 0. By
definition, there is a plane drawing λ′ of G such that the set of fixed vertices F =


v ∈ V (G) : λ′(v) = λ(v)


has cardinality

at least fix−(G).
Given a set A ⊂ R2 and a real ε > 0, let Nε(A) denote the ε-neighborhood of A in the Euclidean metric. For each pair of

disjoint edges e, e′ in λ′, there is an ε such that Nε(e) ∩ Nε(e′) = ∅. Since G is finite, we can assume that the latter is true
with the same ε for all disjoint pairs e, e′.

We now define a drawing π ′
: V (G) → R2 by setting

π ′(v) =


(pxπ(v), εpyπ(v)) if v ∈ F ,
λ′(v) otherwise.

Note that π ′(v) ∈ Nε(λ
′(v)) for every v ∈ V (G). Since λ′ is crossing-free, so is π ′.

Finally, define a linear transformation of the plane by a(x, y) = (x, ε−1y) and consider π ′′
= aπ ′. Clearly, π ′′ is a plane

drawing of G and all vertices in F stay fixed under the transition from π to π ′′. �

3. Hardness of untangling from every vertex position

In Section 3.1 we state known results on the longest monotone subsequences in a random permutation. These results
are used in Section 3.2 for proving upper bounds on FIX(Wn) and FIX(Fn).

3.1. Monotone subsequences in a random permutation

By a permutation of [N] = {1, 2, . . . ,N} we will mean a sequence S = s1s2 . . . sN where each positive integer i ≤ N
occurs once (that is, S determines a one-to-one map S : [N] → [N] by S(i) = si). A subsequence si1si2 . . . sik , where
i1 < i2 < · · · < ik, is increasing if si1 < si2 < · · · < sik . The length of a longest increasing subsequence of S will be denoted
by ℓ(S).

Lemma 3.1. Let SN be a uniformly random permutation of {1, 2, . . . ,N}.

1. (Pilpel [13]) E [ℓ(SN)] ≤
∑N

i=1 1/
√
i ≤ 2

√
N − 1.

2. (Frieze [7]; Bollobás and Brightwell [4]) For any real ϵ > 0 there is a β = β(ϵ) > 0 such that for all N ≥ N(ϵ) we have

P

ℓ(SN) ≥ E [ℓ(SN)] + N1/4+ϵ


≤ exp


−Nβ


.

Further concentration results for ℓ(SN) are obtained in [17,3].
Lemma 3.1 shows that ℓ(SN) ≤ 2N1/2(1+N−1/4+ϵ)with probability at least 1−exp


−Nβ


.Wewill also need a bound for

another parameter of SN , roughly speaking, for themaximum total length of two non-interweavingmonotone subsequences
of SN . Let us define this parameter more precisely. A subsequence of a permutation S will be called monotone if it can be
made increasing by shifting and/or reversing (for example, 21 543). This notion is rather natural if we regard S as a circular
permutation, i.e., S is considered up to shifts. Call two subsequences S ′ and S ′′ of S non-interweaving if they have no common
element and S has no subsequence si1si2si3si4 with si1 , si3 occurring in S ′ and si2 , si4 in S ′′ or vice versa. Define ℓ2(S) to be the
sum of the lengths of S ′ and S ′′ maximized over non-interweaving monotone subsequences of S.
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Lemma 3.2. Let SN be a uniformly random permutation of {1, 2, . . . ,N}. For any real ϵ > 0 there is a γ = γ (ϵ) > 0 such that
for all N ≥ N(ϵ) we have

P

ℓ2(SN) ≥ 2

√
2N1/2

+ 2N1/4+ϵ


≤ exp (−Nγ ) . (11)

Proof. Given a sequence SN = s1s2 . . . sN and a pair of indices 1 ≤ i < j ≤ N , consider the splitting of the circular version of
SN into two parts P1 = si . . . sj−1 and P2 = sj . . . sN s1 . . . si−1. Let P ′

1 = sj−1 . . . si and P ′

2 = si−1 . . . s1sN . . . sj be the reverses
of P1 and P2. Define

λij = max{ℓ(P1), ℓ(P ′

1)} + max{ℓ(P2), ℓ(P ′

2)}.

Note that ℓ2(SN) = λij for some pair i, j. Since there are only polynomially many such pairs, it suffices to show for each i, j
that the inequality

λij ≥ 2
√
2N1/2

+ 2N1/4+ϵ (12)

holds with an exponentially small probability. Denote the length of Pk by Nk, so we have N1 + N2 = N . For each k = 1, 2,
note that both ℓ(Pk) and ℓ(P ′

k) are distributed identically to ℓ(SNk).
Suppose first that N1 or N2 is relatively small, say, N1 ≤ 2(

√
2 − 1)

√
N . Then (12) implies that

ℓ(P2) ≥ 2N1/2
2 + 2N1/4+ϵ

2

or this estimate is true for P ′

2. Provided N and, hence, N2 are large enough, we conclude by Lemma 3.1 that (12) happens
with probability at most 2 exp(−Nβ

2 ) ≤ 2 exp

−

1
2N

β

.

Suppose now that Nk > 2(
√
2−1)

√
N for both k = 1, 2 and that N is large enough. Since N1/2

1 +N1/2
2 ≤ 2


N1+N2

2

1/2
=

√
2N1/2, the inequality (12) entails that for k = 1 or k = 2 we must have

ℓ(Pk) > 2N1/2
k + N1/4+ϵ

k

or this estimate must be true for P ′

k. By Lemma 3.1, the event (12) happens with probability no more than 4 exp

−cβNβ/2


,

where c = 2(
√
2 − 1).

We see that, whatever N1 and N2 are, (11) holds for any positive γ < β/2 and large enough N . �

3.2. Graphs with small FIX(G)

Recall that FIX(G) = maxX fixX (G). If FIX(G) is small, this means that no special properties of the set of vertex locations
can make the untangling problem for G easy.

Lemma 3.3. For any 3-connected planar graph G on n vertices with maximum vertex degree N = n − o(
√
n) we have

FIX(G) ≤ (2 + o(1))
√
n.

Proof. We have to prove that fixX (G) ≤ (2 + o(1))
√
n for any set X of n points. Let X = {x1, . . . , xn} and define

XN = {x1, . . . , xN}. We need to fix the north direction in the plane R2. For definiteness, let it be determined by the vector
(0, 1). Given a point p in the plane, we define a permutation Sp describing the order inwhich the points in XN are visible from
the standpoint of p. If p = xs with s ≤ N , we take p as the first visible point, that is, let s be the first index in the sequence
Sp. Now, we look around, starting from the north, in a clockwise direction and put i before j in Sp if we see xi earlier than xj.
If xi and xj lie in the same direction from p, we see the nearer point first, that is, i precedes j in Sp whenever xi ∈ [p, xj].

Define an equivalence relation ≡ such that S ≡ S ′ if S and S ′ are obtainable from one another by a shift. Let us show
that the quotient set Q =


Sp : p ∈ R2


/≡ is finite and estimate its cardinality. Suppose first that not all points in XN are

collinear. Let L be the set of lines passing through at least two points in XN . After removal of all lines in L, the plane is split
into connected components that will be called L-faces. Any intersection point of two lines will be called an L-vertex. The
L-vertices lying on a line in L split this line into L-edges. Exactly two L-edges for each line are unbounded. It is easy to see
that Sp ≡ Sp′ whenever p and p′ belong to the same L-face or the same L-edge. It follows that |Q | does not exceed the total
amount of L-faces, L-edges, and L-vertices.

Let us express this bound in terms of l = |L| ≤


N
2


. If we erase all the unbounded L-edges, we obtain a crossing-free

straight line drawing of a planar graph with at most


l
2


vertices. It has less than 3

2 l
2
−

3
2 l edges and less than l2 − l faces.

Restoring the unbounded L-edges, we see that the total number of L-edges is less than 3
2 l

2
+

1
2 l and the number of L-faces is
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less than l2 + l. Therefore,

|Q | < (l2 + l) +


3
2
l2 +

1
2
l


+


1
2
l2 −

1
2
l


<
3
4
N4.

In the much simpler case of a collinear XN , we have |Q | ≤ N .
Let c be a vertex of G with maximum vertex degree. By the Whitney theorem on embeddability of 3-connected graphs,

the neighbors of c appear around c in the same circular order v1, . . . , vN in any plane drawing of G. Pick up a random
permutation σ of {1, . . . ,N} and consider a drawing π : V (G) → X such that π(vi) = xσ(i). Let π ′ be an unentanglement
of π . Let p = π ′(c) and denote the set of all shifts and reverses of the permutation Sp by Sp.

We have to estimate the number of vertices remaining fixed under the transition from π to π ′, that is, the cardinality
of the set F =


π(v) : v ∈ V (G), π(v) = π ′(v)


. Let F∗

= {π(vi) ∈ F : i ≤ N}, which is the subset of F corresponding to
the fixed neighbors of c . Note that |F \ F∗

| ≤ n − N and recall that n − N = o(
√
n) by our assumption. It follows that

|F | ≤ |F∗
| + o(

√
n), and we have to estimate |F∗

|.
The points in F∗ go around p in the canonical Whitney order. This means that the indices of the corresponding vertices

form an increasing subsequence in σ−1S for some S ∈ Sp. For each S, the composition σ−1S is a random permutation
of {1, . . . ,N}. Recall that, irrespectively of the choice of p = π ′(c), there are at most 2N|Q | < 3

2N
5 possibilities for

S. By Lemma 3.1, every increasing subsequence of σ−1S has length at most 2N1/2
+ N1/4+ϵ with probability at least

1 − O

N5 exp


−Nβ


. Thus, if N is sufficiently large, we have |F∗

| ≤ (2 + o(1))
√
n for all unentanglements π ′ of some

drawing π (in fact, this is true for almost all π ). This implies the required bound |F | ≤ (2 + o(1))
√
n. �

While Lemma 3.3 immediately gives us a bound on FIX(Wn) for the wheel graph, this lemma does not apply directly to
the fan graph Fn because it is not 3-connected and has a number of essentially different plane drawings. Nevertheless, all
these drawings are still rather structured, whichmakes analysis of the fan graph only a bitmore complicated. Indeed, denote
the central vertex of Fn by c and let v1 . . . vn−1 be the path of the other vertices. Let α be a plane drawing of Fn. Label each
edge α(c)α(vi) with number i and denote the circular sequence in which the labels follow each other around α(c) by Rα .
Split Rα into two pieces. Let R′

α be the sequence of labels starting with 1, ending with n− 1, and containing all intermediate
labels if we go around α(c) clockwise. Let R′′

α be the counter-clockwise analog of R′
α . Note that R

′
α and R′′

α overlap in {1, n−1}.

Lemma 3.4. Both R′
α and R′′

α are monotone.
Proof. Weproceed by induction on n. The base case of n = 3 is obvious. Suppose that the claim is true for all plane drawings
of Fn and consider an arbitrary plane drawing α of Fn+1. Let β be obtained from α by erasing α(vn) along with the incident
edges. Obviously, β is a plane drawing of Fn.

In the drawing α of Fn+1, we consider the triangle T with vertices α(c), α(vn−1), and α(vn). Clearly, all points α(vi) for
i ≤ n − 2 are inside T or all of them are outside. In both cases, n − 1 and n are neighbors in Rα . Therefore, Rα is obtainable
from Rβ by inserting n, on the one side or the other, next to n− 1. It follows that R′

α is obtained from R′

β either by appending
n after n − 1 or by replacing n − 1 with n (the same is true for R′′

α and R′′

β ). It remains to note that both operations preserve
monotonicity. �

We are now prepared for obtaining upper bounds on FIX(G) for the wheel graph Wn and the fan graph Fn. Note that,
up to a small constant factor, these bounds match the lower bound fix(Fn) ≥ fix(Wn) ≥

√
n − 2 (which follows, e.g.,

from [14, Theorem 4.1]).

Theorem 3.5.
1. FIX(Wn) ≤ (2 + o(1))

√
n.

2. FIX(Fn) ≤ (2
√
2 + o(1))

√
n.

Proof. The bound forWn follows directly from Lemma 3.3 as observed before.
As for Fn, notice that the argument of Lemma 3.3 becomes applicable if, in place of the Whitney theorem, we use

Lemma 3.4. Let π be a random location of V (Fn) on X , as in the proof of Lemma 3.3. More precisely, let v1 . . . vn−1 denote the
path of non-central vertices in Fn. We pick a random permutation σ of {1, . . . , n − 1} and set π(vi) = xσ(i). As established
in the proof of Lemma 3.3, the set X determines a set of permutations SX with |SX | = O(n4) such that, from any standpoint
p in the plane, the vertices v1, . . . , vn−1 are visible in the circular order τp = σ−1S for some S ∈ SX .

Letα be any untangling ofπ and Rα be the associated order on the neighborhood of the central vertexα(c). By Lemma3.4,
Rα consists of two monotone parts R′

α and R′′
α . The set F of fixed vertices is correspondingly split into F ′ and F ′′. Since R′

α and
R′′

α overlap in two elements, F ′ and F ′′ can have one or two common vertices. If this happens, we remove those from F ′′.
Notice that the indices of the vertices in F ′ and in F ′′ form non-interweaving monotone subsequences of τα(c). Therefore,
|F ′

| + |F ′′
| ≤ ℓ2(τα(c)) and part 2 of the theorem follows from Lemma 3.2. �

4. Making convex hulls disjoint

In Section 1.2 we listed the few graphs for which an upper bound fix(G) = O(
√
n) is known, namely Pn−2 ∗ P2, Fn, any

Hn ∈ Hn, and kSk. By Theorem 3.5 in the former two cases we have a stronger result FIX(G) = O(
√
n) (note that Pn−2 ∗ P2

containsWn as a subgraph). We now consider a problem related to estimating the parameters FIX(Hn) and FIX(kSk).
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Definition 4.1. Let n = k2 and X be an n-point set in the plane. Given a partition X = X1 ∪ · · · ∪ Xk, we regard
X = {X1, . . . , Xk} as a coloring of X in k colors. We will consider only balanced X with each |Xi| = k. Call a set Y ⊆ X
clustered if the monochromatic classes Yi = Y ∩ Xi have pairwise disjoint convex hulls. Let C(X, X) denote the largest size
of a clustered subset of X . Finally, define C(X) = minX C(X, X).

Lemma 4.2. Let Hn denote an arbitrary graph in Hn, where n = k2 with k ≥ 3.
1. fixX (Hn) ≤ C(X) + k.
2. fixX (kSk) ≥ C(X) − k.

Proof. 1. Recall that Hn is defined as a plane graph whose vertex set V (Hn) = V1 ∪ · · · ∪ Vk is partitioned so that each Vi
spans a triangulation and these k triangulations are in the outer faces of each other. Take X such that C(X, X) = C(X) and
π : V (Hn) → X such that π(Vi) = Xi. Consider an unentanglement π ′ of π and denote the set of fixed vertex locations
by Y . By the Whitney theorem, π ′ is obtainable from the plane graph Hn by a homeomorphism of the plane, possibly after
turning some inner face of Hn into the outer face. Since Vi spans a triangulation in Hn, the convex hull of π ′(Vi) is a triangle
Ti. Since the corresponding triangulations are pairwise disjoint in Hn, the triangles Ti are pairwise disjoint possibly with a
single exception for some Ts containing all the other triangles. Let Yi = Y ∩ Xi. It follows that the convex hulls of the Yi’s do
not intersect, perhaps with an exception for a single set Ys. The exception may occur if π ′ is homeomorphic to a version of
Hn with different outer face. Therefore, |Y | ≤ C(X) + k, where the term k corresponds to the exceptional Ys.

2. Given an arbitrary drawing π : V (kSk) → X of the star forest, we have to untangle it while keeping at least C(X) − k
vertices fixed. Let V (kSk) = V1 ∪ · · · ∪ Vk where each Vi is the vertex set of a star component. Define a coloring X of X
by Xi = π(Vi). Let Y be a largest clustered subset of X . Choose pairwise disjoint open convex sets C1, . . . , Ck such that Ci
contains Yi = Y ∩ Xi for all i. Redraw kSk so that, for each i, the ith star component is contained in Ci. It is clear that, doing
this, we can leave all non-central vertices in Y fixed. Thus, we have at least |Y | − k ≥ C(X) − k fixed vertices. �

Lemma 4.3. For any set X of n = k2 points in the plane, we have C(X) = O(n/ log n).

Proof. Let B(X) denote the set of all balanced k-colorings of X , i.e., the set of partitions X = X1 ∪ · · · ∪Xk with each |Xi| = k.
We have |B(X)| = n!/(k!)k.

Call a k-tuple of subsets Z1, . . . , Zk ⊂ X a crossing-free coloring of X if the Zi’s have pairwise disjoint convex hulls. We
do not exclude the possibility that some Zi’s are empty and the coloring is partial, i.e.,

k
i=1 Zi ( X . Denote the set of all

crossing-free colorings of X by F(X).
Let X ∈ B(X). An estimate C(X, X) ≥ ameans that

k−
i=1

|Xi ∩ Zi| ≥ a (13)

for some Z ∈ F(X). Regard X and Z as elements of the space {1, . . . , k, k + 1}X of (k + 1)-colorings of X , where the new
color k + 1 is assigned to the points that are uncolored in Z. Then (13) means that the Hamming distance between X and
Z does not exceed n − a. Note that the (n − a)-neighborhood of Z can contain no more than

 n
n−a


kn−a elements of B(X).

Therefore, an estimate C(X) < a would follow from the inequality

|F(X)|
n
a


kn−a < |B(X)|. (14)

Given a partition Z = P1 ∪ · · · ∪ Pm of a point set Z , we call it crossing-free if the convex hulls of the Pi’s are nonempty
and pairwise disjoint. According to Sharir andWelzl [15, Theorem 5.2], the overall number of crossing-free partitions of any
l-point set Z is at most O(12.24l). In order to derive from here a bound for the number of crossing-free colorings, with each
coloring (Z1, . . . , Zk) we associate a partition (P1, . . . , Pm) of the union Z =

k
i=1 Zi such that (P1, . . . , Pm) is the result of

removing all empty sets from the sequence (Z1, . . . , Zk). Since (P1, . . . , Pm) is the crossing-free partition of a subset of X , the
Sharir–Welzl bound implies that the number of all possible partitions (P1, . . . , Pm) obtainable in this way does not exceed
O(24.48n). Since (Z1, . . . , Zk) can be restored from (P1, . . . , Pm) in


k
m


ways, we obtain |F(X)| < c2k24.48n for a constant

c. Thus, we would have (14) provided

c2k24.48n n
a

a!
kn−a

≤
n!

(k!)k
.

Taking the logarithm of both sides, we see that the latter inequality holds for all sufficiently large n if we set a =

6.4n/ ln n. �

Part 1 of Lemma 4.2 and Lemma 4.3 immediately give us the main result of this section.

Theorem 4.4. FIX(Hn) = O(n/ log n) for an arbitrary Hn ∈ Hn.

Note that the bound of Theorem4.4 is the best upper bound on FIX(G) thatwe know for graphswith bounded vertex degrees.
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5. Hardness of untangling from a weakly convex position

Despite the observations made in Section 4, we do not know whether or not fixX (Hn) and fixX (kSk) are close to,
respectively, fix(Hn) and fix(kSk) for every location X of the vertex set. We now restrict our attention to point sets X in
weakly convex position, i.e., on the boundary of a convex plane body.

We will use Davenport–Schinzel sequences defined as follows (see, e.g., [1] for more details). An integer sequence
S = s1 . . . sn is called a (k, p)-Davenport–Schinzel sequence if the following conditions are met:

• 1 ≤ si ≤ k for each i ≤ n;
• si ≠ si+1 for each i < n;
• S contains no subsequence xyxyxy . . . of length p + 2 for any x ≠ y.

By a subsequence of S we mean any sequence si1si2 . . . sim with i1 < i2 < · · · < im. The maximum length of a (k, p)-
Davenport–Schinzel sequence will be denoted by λp(k). We are interested in the particular case of p = 4.

We inductively define a family of functions over positive integers:

A1(n) = 2n n ≥ 1,
Ak(1) = 2 k ≥ 1,
Ak(n) = Ak−1(Ak(n − 1)) n ≥ 2, k ≥ 2.

Ackermann’s function is defined by A(n) = An(n). This function grows faster than any primitive recursive function. The
inverse of Ackermann’s function is defined by α(n) = min {t ≥ 1 : A(t) ≥ n}.

Agarwal et al. [2] proved that λ4(k) = O(k2α(k)). Note that α(n) grows very slowly, e.g., α(n) ≤ 4 for all n up to A(4),
which is the exponential tower of twos of height 65536. Thus, the bound for λ4(k) is nearly linear in k.

Sometimes it will be convenient to identify a sequence S = s1 . . . sn with all its cyclic shifts. This way, sjsns1si, where
i < j, is a subsequence of S. In such circumstances we will call a sequence circular. Subsequences of S will be regarded also
as circular sequences. Note that the set of all circular subsequences is the same for S and any of its shifts. The length of S will
be denoted by |S|.

Lemma 5.1. Let k, s ≥ 1 and Sk,s be the circular sequence consisting of s successive blocks of the form 12 . . . k.

1. Suppose that S is a subsequence of Sk,s with no 4-subsubsequence of the form xyxy, where x ≠ y. Then |S| < k + s.
2. Suppose that S is a subsequence of Sk,s with no 6-subsubsequence of the form xyxyxy, where x ≠ y. Then |S| < λ4(k) + s ≤

O(k2α(k)) + s.

Proof. 1. We proceed by double induction on k and s. The base case where k = 1 and s is arbitrary is trivial. Let k ≥ 2 and
consider a subsequence S with no forbidden subsubsequence. If each of the k elements occurs in S at most once, then |S| ≤ k
and the claimed bound is true. Otherwise, without loss of generality we suppose that S contains ℓ ≥ 2 occurrences of k. Let
A1, . . . , Aℓ (resp. B1, . . . , Bℓ) denote the parts of S (resp. Sk,s) between these ℓ elements. Thus, |S| = ℓ +

∑ℓ
i=1 |Ai|.

Denote the number of elements with at least one occurrence in Ai by ki. Each element x occurs in at most one of the Ai’s
because otherwise S would contain a subsequence xkxk. It follows that

∑ℓ
i=1 ki ≤ k − 1. Note that, if we append Bi with

an element k, it will consist of blocks 12 . . . k. Denote the number of these blocks by si and notice the equality
∑ℓ

i=1 si = s.
Since Ai has no forbidden subsequence, we have |Ai| ≤ ki + si − 1. If ki ≥ 1, this follows from the induction assumption
because Ai can be regarded as a subsequence of Ski,si . If ki = 0, this is also true because then |Ai| = 0. Summarizing, we
obtain |S| ≤ ℓ +

∑ℓ
i=1(ki + si − 1) ≤ ℓ + (k − 1) + s − ℓ < k + s.

2. Let S ′ be obtained from S by shrinking each block z . . . z of the same elements to z. Since S ′ is a (k, 4)-
Davenport–Schinzel sequence, we have |S ′

| ≤ λ4(k). Note now that any two elements neighboring in a shrunken block
are at distance at least k − 1 in Sk,s. It readily follows that the total number of elements deleted in S is less than s. �

Theorem 5.2. Let Hn be an arbitrary graph in Hn. For any X in weakly convex position we have

fixX (Hn) < 3
√
n.

Proof. By part 1 of Lemma 4.2, it suffices to show that C(X) < 2k for any set X of n = k2 points on the boundary Γ

of a convex body. Let X be the interweaving k-coloring of X where the colors appear along Γ in the circular sequence
Sk,k as in Lemma 5.1. Suppose that Y is a clustered subset of X . Note that there are no two pairs {y1, y2} ⊂ Y ∩ Xi and
{y′

1, y
′

2} ⊂ Y ∩ Xj, i ≠ j, with intersecting segments [y1, y2] and [y′

1, y
′

2]. This means that the subsequence of Sk,k induced by
Y does not contain any pattern ijij. By part 1 of Lemma 5.1, we have |Y | < 2k and, hence, C(X, X) < 2k as required. �

Remark 5.3. With a littlemore care, we can improve the constant factor in Theorem 5.2 by proving that fixX (Hn) ≤ 2
√
n+1

for any X in weakly convex position.
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Fig. 2. Proof of part 1 of Theorem 5.4: an ijij-subsequence in A.

The rest of this section is devoted to the star forest kSk. This sequence of graphs is of especial interest because this is the
only example of graphs for which we know that fix(G) = O(

√
n) but are currently able to prove neither that FIX(G) = o(n)

nor that fixX (G) = O(
√
n) for X in weakly convex position.

The first part of the forthcoming Theorem 5.4 restates [5, Theorem 5] (see (6) in Section 1.2) with a worse factor in
front of

√
n; we include it for an expository purpose. The proof of this part is based on part 1 of Lemma 5.1, which we

already used to prove Theorem5.2. The second part, which is our primary interest, requires amore delicate analysis based on
part 2 of Lemma 5.1.

Theorem 5.4. Let kSk denote the star forest with n = k2 vertices. For every integer k ≥ 2 we have
1. fixX (kSk) < 7

√
n for any collinear X;

2. fixX (kSk) = O(
√
n2α(

√
n)) for any X in weakly convex position.

Proof. Define V = V (kSk). Let V =
k

i=1 Vi ∪ C , where each Vi consists of all k − 1 leaves in the same star component and
C consists of all k central vertices.

1. Suppose that X consists of points x1, . . . , xn lying on a line ℓ in this order. Consider a drawing π : V → X such that

π(Vi) = {xi, xi+k, xi+2k, . . . , xi+(k−2)k} for each i ≤ k,
π(C) = {xn−k+1, xn−k+2, . . . , xn}.

(15)

Let π ′ be a crossing-free straight line redrawing of kSk. We have to estimate the number of fixed vertices, i.e., those vertices
participating in F = {π(v) : v ∈ V , π(v) = π ′(v)}. For this purpose we split F into four parts: F = A ∪ B ∪ D ∪ E where A
(resp. B; D) consists of the fixed leaves adjacent to central vertices located in π ′ above ℓ (resp. below ℓ; on ℓ) and E consists
of the fixed central vertices.

Trivially, |E| ≤ k and it is easy to see that |D| ≤ 2k. Let us estimate |A| and |B|. Label each xm by the index i for which
xm ∈ π(Vi) and view x1x2 . . . xn−k as the sequence Sk,k−1 defined in Lemma 5.1. Let S be the subsequence induced by the
points in A. Note that S does not contain any subsequence ijij because otherwise we would have an edge crossing in π ′ (see
Fig. 2). By part 1 of Lemma 5.1, we have |A| = |S| < 2k. The same applies to B. It follows that |F | = |A|+|B|+|D|+|E| < 7k,
as claimed.

2. Let X be a set of n = k2 points on the boundary Γ of a convex plane body P . It is known that the boundary of a convex
plane body is a rectifiable curve and, therefore, we can speak of the length of Γ or its arcs. Clearly, the convex body P plays
a nominal role and can be varied once X is fixed. Thus, to avoid unnecessary technical complications in the forthcoming
argument, without loss of generality we can suppose that the boundary curve Γ contains only a finite number of (maximal)
straight line segments. In particular, we can suppose thatΓ contains no straight line segment at all if X is in ‘‘strictly’’ convex
position.

Wewill use the following terminology. A chord is a straight line segmentwhose endpoints lie onΓ . An arrow is a directed
chord with one endpoint called a head and the other called a tail. Call an arrow a median if its endpoints split Γ into arcs of
equal length. Fix the ‘‘clockwise’’ order of motion along Γ and color each non-median arrow in one of two colors, red if the
shortest way along Γ from the tail to the head is clockwise and blue if it is counter-clockwise.

Given a point a outside P , we define quiver Qa as follows. For each line going through a and intersecting Γ in exactly two
points, h and t , Qa contains the arrow th directed so that the head is closer to a than the tail.

Given a non-median arrow th, we will denote the shorter component of Γ \ {t, h} by Γ [t, h]. Our argument will be based
on the following elementary fact.

Claim A. Let arrows th and t ′h′ be in the same quiver Q and have the same color. Suppose that Γ [t ′, h′
] is shorter than Γ [t, h].

Then both t ′ and h′ lie in Γ [t, h].

Proof of Claim A. Let t∗h∗ be the median in Q . Since th and t ′h′ are of the same color, the four points t, h, t ′, h′ are in the
same component ofΓ \{t∗, h∗

}. The claim readily follows from the fact that the chords th and t ′h′ do not cross (see Fig. 3). �

After these preliminaries, we beginwith the proof. Let x1, . . . , xn be a listing of points in X alongΓ . Fixπ to be an arbitrary
map satisfying (15). Let π ′ be a crossing-free redrawing of kSk. Look at the edges in π ′ with one endpoint π ′(v) on Γ and the
other endpoint elsewhere. Perturbing π ′ a little at the positions not lying on Γ (and using the regularity assumption made
about Γ ), we can ensure that
(1) any such edge intersects Γ in at most two points, including π ′(v) (this is automatically true if Γ contains no straight

line segment);
(2) if an edge intersects Γ in two points, it splits Γ into components having different lengths.
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Fig. 3. Proof of Claim A.

Fig. 4. Proof of part 2 of Theorem 5.4: the impossibility of an ijijij-subsequence in R.

Assume that π ′ meets these conditions. Let v be a leaf adjacent to a central vertex c . Suppose that π ′(v) ∈ Γ , π ′(c) ∉ P ,
and the segment π ′(v)π ′(c) crosses Γ at a point h ≠ π ′(v). By Condition 2, the arrow π ′(v)h is not a median and hence
colored in red or blue. We color each such π ′(v) in red or blue correspondingly.

Nowwe split the set of fixed vertices F into five parts. Let E consist of the fixed central vertices, I (resp. O) consist of those
fixed leaves such that the edges emanating from them are completely inside (resp. outside) P , and R (resp. B) consist of the
red (resp. blue) fixed leaves. By Condition 1, we have F = E ∪ I ∪ O ∪ R ∪ B.

Trivially, |E| ≤ k. Like in the proof of the first part of the theorem, notice that the subsequences of Sk,k−1 corresponding
to I and O do not contain ijij-subsubsequences. By part 1 of Lemma 5.1, we have |I| < 2k and |O| < 2k.

Finally, consider the subsequence S of Sk,k−1 corresponding to R and show that it does not contain any ijijij-
subsubsequence. Assume, to the contrary, that such a subsubsequence exists. This means that x1 . . . xn−k contains two
interleaving subsequences a1a2a3 and b1b2b3 whose elements belong to two different star components of π ′, with central
vertices a and b, respectively. Since a1, a2, a3 are red, Claim A implies that, say, a2 and a3 lie on the shorter arc of Γ cut off
by the edge aa1 (see Fig. 4).

Without loss of generality, let b1 be between a1 and a2 and b2 be between a2 and a3. Since b1 and b2 are red and π ′ is
crossing-free, it must be the case that bb1 intersects Γ [a1, a2] and bb2 intersects Γ [a2, a3] (in another point). This makes a
contradiction with Claim A.

Thus, S is ijijij-free and, by part 2 of Lemma 5.1, we have |R| = |S| ≤ O(k2α(k)). The same applies to B. Summarizing, we
see that |F | = |E| + |I| + |O| + |R| + |B| ≤ O(k2α(k)), as claimed. �

6. Open problems

1. Can the parameters fix(G) and FIX(G) be far apart from each other for some planar graphs? Say, is it possible that for
infinitely many graphs we have FIX(G) ≥ nϵ fix(G) with a constant ϵ > 0?



M. Kang et al. / Discrete Applied Mathematics 159 (2011) 789–799 799

2. Lemma 4.3 states an upper bound C(X) = O(n/ log n) for any set X of n = k2 points in the plane. A trivial lower bound
is C(X) ≥

√
n. How do we make the gap closer? By Lemma 4.2, in this way we could show either that FIX(Hn) is close to

fix(Hn) or that FIX(kSk) is far from fix(kSk).
3. Find upper bounds on FIX(G), at least FIX(G) = o(n), for the cycle Cn, the star forest kSk, and the uniform binary tree.

Recall that upper bounds on fix(G) for these graphs are obtained in [12,5,6], respectively (the uniform binary tree is just
a particular instance of the class of graphs with logarithmic vertex degrees and diameter treated in [6]).

4. Let Fix(G) denote the maximum of fixX (G) over X in weakly convex position. Obviously, fix(G) ≤ Fix(G) ≤ FIX(G). Note
that the first inequality can be strict: for example, fix(K4) = 2 while Fix(K4) = 3 for the tetrahedral graph. Is it true that
Fix(G) = O(fix(G))? Currently we cannot prove this even for graphs G = kSk; cf. Theorem 5.4.

5. By Theorem 2.1, for every G we have fix(G) = fixX (G) for some collinear X . Does this equality hold for every collinear X?
This question is related to the discussion in [14, Section 5.1].
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