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Turán’s theorem states that the maximum size of a Kr+1-free graph G of order n is attained
by a complete r-partite graph. Here we determine the maximum size of G on the additional
restriction that G is not r-partite. Also, we present a new proof of the result of Andrásfai,
Erdős, and Gallai on the maximum size of an order-n graph whose shortest odd cycle has given
length 2l + 1. The extremal graphs are characterized for all feasible values of parameters.
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Òåîðåìà Òóðàíà óòâåðæäàåò, ÷òî ìàêñèìàëüíûé ðàçìåð Kr+1- ñâîáîäíîãî ãðàôà ïîðÿä-
êà n äîñòèãàåòñÿ ïîëíûì r-äîëüíûì ãðàôîì. Çäåñü ìû îïðåäåëÿåì ìàêñèìàëüíûé ðàçìåð
G ïðè äîïîëíèòåëüíîì îãðàíè÷åíèè, ÷òî G íå ÿâëÿåòñÿ r-äîëüíûì. Ìû òàêæå ïðèâîäèì
íîâîå äîêàçàòåëüñòâî ðåçóëüòàòà Àíäðàøôàè, Ýðäåøà è Ãàëëàè î ìàêñèìàëüíîì ðàçìåðå
ãðàôà ïîðÿäêà n, ó êîòîðîãî êðàò÷àéøèé íå÷åòíûé öèêë èìååò çàäàííóþ äëèíó 2l + 1.
Îõàðàêòåðèçîâàíû ìàêñèìàëüíûå ãðàôû äëÿ ïîäõîäÿùèõ çíà÷åíèé ïàðàìåòðà.

1. Introduction. Let Km denote the complete graph on m vertices. The fundamental

theorem of Tur�an [6] states that ex(n, Kr+1), the maximum size of a Kr+1-free graph G
of order n, is attained by the complete r-partite graph with parts whose sizes differ by at

most 1. This result is one of the cornerstones of extremal graph theory. For future use, let

the Tur�an graph Tr(n) be the corresponding extremal graph and let

tr(n) = e(Tr(n)) = ex(n, Kr+1).

It is interesting to know what happens if we additionally require that G is not r-partite,
that is, we consider the graphs in

Gn,r = {G : v(G) = n, G 6⊃ Kr+1, χ(G) > r}.
The classical paper of Andr�asfai, Erd�os and S�os [1] determines max{δ(G) : G ∈ Gn,r},

the largest minimum degree of G ∈ Gn,r. Erd�os and Simonovits [4] studied the more general

problem of maximizing δ(G) over

Hn,r,s = {G : v(G) = n, G 6⊃ Kr+1, χ(G) > s}.
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(Note that Gn,r = Hn,r,r.)

In this paper we investigate

pr(n) = max{e(G) : G ∈ Gn,r}.
This problem is completely settled in Section 2. Namely, we will prove the following

result.

Theorem 1. Let n ≥ r + 3 and r ≥ 2. If r > n−1
2
, then pr(n) = tr(n) − 2. If r ≤ n−1

2
, then

pr(n) = tr(n) −
⌊n

r

⌋
+ 1. (1)

Moreover, the extremal graphs are characterized by Theorem 4 and Lemma 5.

For convenience, the bound (1) on pr(n) is stated relative to the Tur�an function tr(n) =
ex(n, Kr+1) so that it is immediately obvious how many edges we lose by imposing the

restriction χ(G) > r. Note also that Gn,r = ∅ for n ≤ r + 2 or for r = 1. (In order to see

the former claim, note that the complement of any Kr+1-free graph G of order r + 2 must

contain either two disjoint edges or a triangle, so χ(G) ≤ r.)
It would be nice to compute max{e(G) : G ∈ Hn,r,s}. It is easy to see that this function

equals tr(n)−O(n) if r, s are fixed. However, the exact computation seems to be a hard task

in general.

For r = 2, we have canonical examples of graphs of chromatic number larger than r:
odd cycles. H�aggkvist [5] studied the problem which odd cycles must be present in a non-

bipartite graph of given minimum degree. Andr�asfai and, independently, Erd�os and Gallai

(see Erd�os [3, Lemma 1]) computed bl(n), the maximum size of a non-bipartite graph of

order n whose shortest odd cycle has length 2l + 1. Unfortunately, this result is not well

known, appearing only as an auxiliary lemma in [3]. In fact, we were unaware of it until

we rather accidentally came across [3] while revising the current paper. Since no attempt to

characterize the extremal graphs was made in [3] and our proof is different (albeit longer),

we decided to keep it. Here is the precise statement of the result.

Theorem 2. Let l ≥ 2 and n ≥ 2l + 1. Then

bl(n) =

⌊
(n − 2l + 3)2

4

⌋
+ 2l − 3 . (2)

All extremal graphs are described by the construction at the beginning of Section 3.

One of the extremal graphs for the bl(n)-problem is obtained by taking C2l+1 and appro-

priately cloning two adjacent vertices, but there are other constructions.

It is easy to see that the right-hand side of (2) strictly decreasing as a function of l for
fixed n, 2 ≤ l ≤ n−1

2
. Hence, bl(n) is also equal to the maximum size of a non-bipartite graph

G of order n without any odd cycle of length less than 2l + 1.
Thus the problems of determining pr(n) and bl(n) overlap in a special case: b2(n) = p2(n).

A more remarkable relation is that our proofs of Theorems 1 and 2 are based on the same

idea of Erd�os [2].

2. Determining pr(n). A construction giving a lower bound on pr(n) can be obtained as

follows. Let n ≥ r + 3. Choose integers

1 ≤ n1 ≤ · · · ≤ nr such that

r∑
i=1

ni = n − 1 and nr−1 ≥ 2, (3)



and pairwise disjoint sets N1, . . . , Nr, where |Ni| = ni. Let s and t be the two smallest indices

i (in either order) for which ni > 1. (Thus |s− t| = 1.) Let S = [r]\{s, t}. Choose any subset

A ⊂ Ns which is proper (that is, A 6= ∅ and A 6= Ns). Choose y ∈ Nt. To Kr(N1, . . . , Nr),
the complete r-partite graph on N1 ∪ · · · ∪ Nr, add a vertex x connected to everything in

(∪i∈SNi) ∪ ({y} ∪A) but remove all edges between y and A. Let us call the obtained graph

G = G(n), where n = (n1, . . . , nr). Of course, the isomorphism class of G depends on the

choice of |A| (and the choice of s, t if ns 6= nt) but the size e(G) does not:

e(G) = σ2(n) + σ1(n) − ns − nt + 1, (4)

where σ2(n) =
∑

i<j ninj and σ1(n) =
∑

i ni. More generally, for an arbitrary (not necessarily

increasing) sequence n with at least two entries larger than 1, let G(n) be obtained by

properly ordering n and then taking the above construction.

It is easy to see that Kr+1 6⊂ G. Indeed, if some (r+1)-set K ⊂ V (G) spanned a complete

graph, then x, y ∈ K (because G−x and G−y are r-partite); however, Γ(x)∩Γ(y) = ∪i∈SNi

is (r − 2)-partite, a contradiction. (Here, Γ(x) denotes the neighborhood of x.)
Also, we have χ(G) > r. Indeed, suppose on the contrary that we can color G with r

colors. Choosing arbitrary ys ∈ Ns \ A, yt ∈ Nt, and yi ∈ Ni, i ∈ S, we obtain a copy

of Kr, so the colors of these vertices do not depend on their choices. But then x and each

vertex of A see the same set of r − 1 colors among its neighbors. Hence the set A ∪ {x} is

monochromatic, which is a contradiction as x is connected to A.

Let us turn to proving upper bounds on pr(n). As we have already observed, Gn,r = ∅

for n ≤ r + 2. Therefore we restrict our attention to n ≥ r + 3. First we prove the required
upper bound in the following special case.

Lemma 3. Let r ≥ 2 and n ≥ r + 3. Let G ∈ Gn,r be such that for some vertex y we have

χ(G − y) = r. Then e(G) ≤ e(G(n)) for some n satisfying (3).

Proof. Take an r-coloring of G − y. Let {y1}, . . . , {yl}, N1, . . . , Nr−l be the color classes, of

which l have size one. Let n1, . . . , nr−l, all at least 2, be the sizes of N1, . . . , Nr−l, respectively.

As n ≥ r + 3, we have l < r.
Let Y = {y, y1, . . . , yl}. Note that Y spans the complete subgraph for otherwise G is

r-colorable. Let

Mi = {x ∈ Ni : Γ(x) ⊃ Y }
and mi = |Mi|. By reordering, let us assume that m1 ≤ · · · ≤ mr−l.

We claim that each Mi is non-empty. Otherwise, for every x ∈ Ni choose f(x) ∈ Y such

that {x, f(x)} 6∈ E(G). The l + 1 sets {z} ∪ {x ∈ Ni : f(x) = z}, z ∈ Y , are independent

and partition Y ∪ Ni. Together with the r − l − 1 remaining parts Nj, j 6= i, this gives an
r-coloring of G, contradicting our assumption.

Thus each mi ≥ 1. Moreover, l ≤ r − 2 for otherwise Y ∪ {x} for some x ∈ M1 spans a

copy of Kr+1.

Let ēij be the number of edges missing between Ni and Nj. Potentially, Y creates
∏r−l

i=1 mi

copies of Kr+1. A missing edge between Ni and Nj destroys at most 1
mimj

∏r−l
h=1 mh such

copies. Hence,
r−l∏
h=1

mh ≤
∑
i<j

ēij

mimj

r−l∏
h=1

mh ≤
∑

i<j ēij

m1m2

r−l∏
h=1

mh. (5)



We see that
∑

i<j ēij , the total number of edges missing between the Ni's, is at least

m1m2. Thus

e(G) ≤ σ2(1
(l), n1, . . . , nr−l) − m1m2 + l +

r−l∑
i=1

mi, (6)

where 1(l) means the number 1 repeated l times. A simple optimization shows that it is

best to take mi = ni for i ≥ 3, and m1 = 1 (recall m1 ≤ m2), which gives us e(G) ≤
e(G(1(l), n1, . . . , nr−l)), as required.

Now we are ready to prove our main result whose proof relies on Lemma 3.

Theorem 4. Let r ≥ 2 and n ≥ r + 3. Then pr(n) equals the maximum of e(G(n)) over all

integers satisfying (3). Moreover, all extremal graphs are described by our construction.

Proof. Our argument is built upon the ideas from Erd�os' proof [2] of Tur�an's theorem, where

it is shown that the degree sequence of a Kr+1-free graph can be majorized by that of an

r-partite graph.
Let G ∈ Gn,r have the maximum size. We prove the theorem by induction on r. We do

not give a separate proof for the base case r = 2: the inductive step, when specialized to

r = 2, gives a self-contained proof. We prove the desired bound first and then analyze the

cases of equality.

Let V = V (G). Choose x ∈ V with its degree being equal to the maximal degree of G,

that is, d(x) = ∆(G). Let D = Γ(x). Let the graph H be obtained from G by removing all

edges inside C = V \ D and adding all edges between D and C.

We claim that H 6⊃ Kr+1. Indeed, suppose otherwise. The vertex set K of this Kr+1 must

intersect C because G[D] and H [D] are the same. As C is an independent set in H , we have

|K ∩ C| = 1. By the symmetry of C, we can assume that K ∩ C = {x}. But then K spans

a complete graph in G, a contradiction.

Note that for every y ∈ V we have dG(y) ≤ dH(y): if y ∈ C, this follows from dG(y) ≤
∆(G) = dH(y); if y ∈ D, then ΓG(y) ⊂ ΓH(y).

If H [D] is not (r − 1)-partite, then by the induction assumption we have e(H [D]) ≤
e(G(n)) for some n = (n1, . . . , nr−1). Let the r-vector m be obtained from n by inserting

the number |C|. We have

e(G) ≤ e(H) ≤ (n − |C|) |C|+ e(G(n)) ≤ e(G(m)),

proving the required upper bound.

Hence, we can assume that H [D] is (r − 1)-partite: D = ∪r−1
i=1 Di. (For r = 2 we get this

conclusion for free: D = Γ(x) is an independent set because G 6⊃ K3.) Let di = |Di|, d = |D|,
and c = |C|. We can assume that each di is at least 2 for otherwise the required upper bound

follows by Lemma 3. Also, c ≥ 2 for otherwise G = H is r-partite.
Call a part Di good if there is yi ∈ Di which is connected in G to everything in V \ Di.

We claim that all, but at most one, parts are good. (We assume here that r ≥ 3 as the claim

is vacuously true for r = 2.) Suppose on the contrary that, for example, D1 and D2 are bad.

Let the r-vector d be made of the numbers d1, . . . , dr−1, c. We have

e(G) ≤ σ2(d) − d1 + d2

2
,



which strictly beats the desired bound. Indeed, assuming d1 ≤ d2, we have

σ2(d) − d1 + d2

2
≤ σ2(d) − d1 ≤ e(G(d1, d2 − 1, d3, . . . , dr−1, c)) − 1.

Note that the last sequence has at least two elements which are at least 2 (namely, d1 and c),
so it still satisfies (3). This upper bound on e(G) contradicts the maximality of G.

We also obtain a contradiction by assuming that all parts are good: if G[C] is empty,

then χ(G) ≤ r; otherwise G ⊃ Kr+1. So, let D1 be the unique bad part. If each vertex of D1

misses at least 2 neighbors in C, then

e(G) ≤ σ2(d) − 2d1 < σ2(d) − d1,

which is too small. Hence, there is y1 ∈ D1 such that C \ Γ(y1) consists of a single vertex z.
Choose yi ∈ Di, i ∈ [2, r − 1], which witnesses the fact that Di is good. Then {y1, . . . , yr−1}
is an (r − 1)-clique which is connected (in G) to everything in C \ {z}. Hence, this set is
independent, which implies that χ(G − z) ≤ r. Now, we can apply Lemma 3 again. The

upper bound is proved.

Let us characterize the cases of equality. We go over the proof of the upper bound, using

the same notation.

If G[D] is not (r − 1)-partite, then by induction G[D] ∼= G(m) for some m. Moreover,

each vertex y ∈ D is connected in G to everything in C: otherwise dG(y) < dH(y) and

e(G) < e(H), a contradiction to the maximality of G. It follows that G[C] is the empty

graph and G is as desired.

Suppose that G[D] is (r − 1)-partite. Our proof shows that there is a vertex y, either
y ∈ C or y ∈ D, such that G − y is (r − 1)-partite. Let the parts of V ′ = V \ {y} be

{y1}, . . . , {yl}, N1, . . . , Nr−l. (Now we use the notation of Lemma 3.) Of all possible choices

of y and an (r − 1)-partition of V ′, take one which minimizes l.
We must have mi = ni for i ≥ 3 and m1 = 1. As we have equality in (5), all missing edges

in G[Ni, Nj] lie between M1 and M2 ∪ · · · ∪ Mk, where m2 = · · · = mk. In fact, all missing

edges lie inside just one G[M1, Mi] for otherwise starting with Y ∪ M1 we can greedily add

zi ∈ Mi, consecutively for i = 2, . . . , r − l, to get a Kr+1-subgraph.

The case m2 = n2 is impossible: otherwise we can move the vertex in M1 into N2 to

obtain another legitimate (r − 1)-partition of V \ {y} with the new M1 being empty, which

is a contradiction as we already know.

If some yi is not connected to some u ∈ V \ Y , then u belongs to Nj with nj = 2.
(Otherwise, moving u to the part {yi} we obtain a new legitimate r-partition of V \{y} with
a smaller l.) Then either j = 1 or j = 2 (because Mi = Ni for i ≥ 3). As we have equality

in (6), every vertex of V \ Y has at most one non-neighbor in Y .

It is impossible that some two vertices w, z ∈ Y have degree less than n − 1 each.

Otherwise, it follows from the above information that n1 = n2 = 2, the graph G[N1 ∪ N2 ∪
{w, z}] contains a perfect matching in its complement and so is 3-colorable, which implies

that χ(G) ≤ r, a contradiction.

Thus, all missing edges in G[Y, V \ Y ] are between (N1 \ M1) ∪ (N2 \ M2) and some

z ∈ Y , which is exactly what we want. Now we know all the edges of G and in order to

maximize e(G) we must have that n1, n2 are the two smallest numbers among the ni's, which

is precisely what our construction says.

The theorem is proved.

It remains to describe which sequences n give us pr(n).



Lemma 5. Let n ≥ r + 3 ≥ 5. If r > n−1
2
, then n = (1(2r−n+1), 2(n−r−1)) is the (unique)

sequence satisfying (3) and maximizing (4). If r ≤ n−1
2
, then the optimal sequences are

precisely those n in (3) which satisfy all of the following inequalities:

n1 ≥ 2, (7)

n2 ≤ n1 + 1, (8)

nr ≤ n1 + 2, (9)

nr ≤ n3 + 1. (10)

Proof. Let n be an optimal sequence and s = min{i ∈ [r] : ni ≥ 2}. If s ≥ 2, then decreasing

nr by 1 and increasing ns−1 by 1, we increase e(G(n)) by nr + ns+1 − 4 ≥ nr − 2. By the

maximality of n we conclude that nr = 2, r > n−1
2
, and n is precisely the required (unique)

sequence.

So, suppose that n1 ≥ 2 and thus r ≤ n−1
2
. If we move 1 from nr to n1, then e(G(n))

increases by at least nr−n1−2, implying (9). The remaining inequalities are proved likewise.

We have shown that any optimal sequence has the stated form.

Finally, let us consider, for r ≤ n−1
2
, the set N of sequences satisfying (3) and (7)�(10).

It is a routine to see that 1 ≤ |N | ≤ 3 and e(G(n)) is constant on N . It follows that N is

precisely the set of optimal sequences.

Remark. Note that, depending on n and r, there are from one to three different sequences

satisfying (3) and (7)�(10).

Proof of Theorem 1. Let r ≤ n−1
2
, for example. It is easy to see that among all sequences n

satisfying (3) and (7)�(10), we can choose one satisfying nr ≤ n1 + 1. This choice of parts is
the same as the choice for Tr(n − 1). Now, to construct the Tur�an graph Tr(n) we add one

more vertex to the smallest part, that is, n2 + · · ·+ nr extra edges. Comparing this with the

construction of G(n) and using the fact that n2 = bn/rc, we obtain (1).

3. Determining bl(n). Recall that bl(n) is the maximum size of a graph of order n containing

a cycle of length 2l + 1 but no odd cycle of strictly smaller length. Trivially, b1(n) =
(

n
2

)
so

let us assume that l ≥ 2.
A lower bound on bl(n) is given by the following construction. Take the Tur�an graph

T2(n − 2l + 3); let its parts be X and Y , |X| − |Y | ∈ {−1, 0, 1}. Let x ∈ X and let A be

an arbitrary proper subset of Y , that is, A 6= ∅ and A 6= Y . Add a set L of 2l − 3 vertices

spanning a path; let its end-vertices be u and v. Remove all edges between x and A but add

edges {x, u} and {v, y} for all y ∈ A.

As A is a proper subset of Y , the constructed graph G contains a (2l + 1)-cycle. On the

other hand, the removal of any vertex of L makes G bipartite. Hence, any odd cycle C must

traverse all vertices of L. But we need at least 4 more vertices in order to connect u to v.
This implies that C has at least 2l + 1 vertices, as required.

It is easy to see that the size of G is given by formula (2) of Theorem 2. We claim that

this construction is optimal.

Proof of Theorem 2. We have to prove the upper bound on bl(n). For l = 2, the theorem

follows from the results of Section 2 because all p2(n)-extremal graphs contain a 5-cycle. So,
let us assume that l ≥ 3. If n = 2l + 1, then bl(n) = n with C2l+1 being the only available

graph. So, assume that n > 2l + 1.



Let G be a graph attaining bl(n). Let V = V (G).
Let x ∈ V be a vertex of maximum degree and Y = Γ(x) be its neighborhood. We have

|Y | ≥ 3. Let y be a vertex of Y of the largest degree; let X = Γ(y). As K3 6⊂ G, the sets

X and Y are independent and X ∩ Y = ∅. Let C ⊂ G be a (2l + 1)-cycle visiting vertices

v1, v2, . . . , v2l+1 in this order. Define

L = V (C) \ (X ∪ Y ),

F = G[X ∪ Y ],

R = V \ (X ∪ Y ∪ L),

r = |R|,
H = G[ R ] = G[X ∪ Y ∪ L].

We claim that |L| ≥ 2l − 3. Let us suppose the contrary. As F is bipartite, we can find

distinct a, b ∈ X ∪ Y which are connected by a path P whose interior points lie inside L
such that the length of P is odd if and only if a, b lie in the same part. This gives us the

required contradiction. For example, if a, b lie in different parts, then we can connect them

by a path P ′ ⊂ F of length one or three (use x, y if {a, b} 6∈ E(G)). But then P ∪ P ′ is an
odd cycle of length at most (2l − 4) + 3, a contradiction.

Suppose first that |L| = 2l−3, that is, C intersects X ∪Y in 4 vertices. The properties of

x, y ∈ F imply, after a moment's thought, that C has precisely two vertices in each part of F
and, moreover, these 4 vertices are consecutive vertices of C, say, v1, v3 ∈ X and v2, v4 ∈ Y .

Clearly, C is an induced cycle for otherwise we can find a shorter odd cycle. Also, it

is routine to see that the vertices v6, . . . , v2l of C cannot send any edges to X ∪ Y for

otherwise we can find a shorter odd cycle by using the vertices x, y. Likewise, Γ(v5) ∩ X =
Γ(v2l+1) ∩ Y = ∅ for otherwise we can find a 5-cycle, contradicting our assumption l ≥ 3.
Let A = Γ(v2l+1) ∩ X 6= ∅, a = |A|, B = Γ(v5) ∩ Y 6= ∅, and b = |B|.

We already know the H-degrees of all vertices in L: (b + 1, 2, 2, . . . , 2, a + 1). Please also
notice that we cannot have any edges between A and B for it would create a shorter odd

cycle. By the choice of x, the H-degree of each vertex in X \A (resp. A) is at most |Y | (resp.
|Y | − b + 1). Likewise, each H-degree in Y \ B (resp. B) is at most |X| (resp. |X| − a + 1).
And, of course, every vertex has degree at most ∆(G) = |Y | in G.

This shows that

2e(G) ≤ 2e(H) + 2
∑
z∈R

dG(z) ≤ (b + 1) + (a + 1) + (|L| − 2) × 2

+ (|X| − a)|Y | + a(|Y | − b + 1) + (|Y | − b)|X| + b(|X| − a + 1) + 2r |Y |
= 2

(
(|X| + r) · |Y | + a + b − ab + |L| − 1

)
.

A simple optimization, in view of |X| + |Y | + r + |L| = n and the inequalities a ≥ 1 and

b ≥ 1, shows that we have to take min(a, b) = 1 and that the sets Y and X ∪ R must be

nearly equal. This gives

e(G) ≤
⌊

(n − |L|)2

4

⌋
+ |L|. (11)

Recall that |L| = 2l − 3, obtaining precisely the required upper bound.

In order to characterize the extremal graphs (at least in this case) let us show that

R = ∅. Suppose on the contrary that R is non-empty. Then there are no edges connecting

R to (X \A)∪ (Y \B) because each such edge is counted three times in the bound on 2e(G).



Similarly, R spans no edge in G but every z ∈ R has degree ∆(G). As min(a, b) = 1, it
follows that max(a, b) = |Y | − 1 and each vertex z ∈ R is connected to everything in A∪B.

But then G ⊃ C5, a contradiction. Now, it easily follows from R = ∅ that G is given by our

construction.

Hence, let us assume that for any choice of a (2l+1)-cycle C we have |L| ≥ 2l−2. Suppose
first that there is C intersecting both X and Y . Because the diameter of the bipartite graph

F is 3, we can assume by symmetry that v1 ∈ X and then that v2 ∈ Y or v4 ∈ Y . (We do

not exclude the possibility that |V (C) ∩ (X ∪ Y )| = 3.)
Let us consider the case v2 ∈ Y . By threatening to create a (2l+1)-cycle having 4 vertices

in X∪Y or a shorter odd cycle via x, y, one can show that there is no edge between X∪Y and

{v4, . . . , v2l}. Thus v3, v2l+1 are the only vertices of L that are connected to X∪Y . Repeating

the argument leading to (11), but with respect to X ′ = X ∪ {v3}, Y ′ = Y ∪ {v2l+1}, and
L′ = L \ {v2l+1, v1, v2, v3}, we obtain (11) (with L′ instead of L). However, this time the

inequality is strict, because when we passed from X, Y to X ′, Y ′ at least one of these sets

strictly increased its size. This is the desired contradiction.

If v4 ∈ Y , then one can argue that v2, v3 are the only vertices of L that can be connected

to (X ∪ Y ) \ {v1, v4} and the same contradictory bound arises.

The case when C intersects, say X, in two vertices u, v reduces to the above case: replace

the even uv-path along C by two edges {u, y} and {y, v}, obtaining an odd cycle of length

at most 2l + 1 which intersects both X and Y .

Therefore, it remains to consider only the case when every (2l + 1)-cycle C intersects

X ∪ Y in at most one vertex. Suppose first that v1 ∈ X. Then v2, v2l+1 cannot be connected

to Y . (Otherwise we get K3 or C5.) Likewise, v3, v2l cannot be connected to X. Moreover,

Γ(v3) ∩ Γ(v2l) = ∅. Also, none of v4, . . . , v2l−1 can be connected to X ∪ Y for otherwise we

would get a shorter odd cycle or a cycle intersecting both X and Y , a contradiction. Thus∑
v∈L

dH(v) ≤ 2(|X| + 1) + (|Y | + 4) + (2l − 4) × 2 = 2|X| + |Y | + 4l − 2.

Similarly to what we did before (and using |X| = n − |Y | − 2l − r), we obtain

2e(G) ≤ 2|X| · |Y | + (
2|X| + |Y | + 4l − 2

)
+ 2r|Y |

= |Y | (2n − 2|Y | − 4l − 1
)

+ 2n − 2r − 2.

The optimal choice here is r = 0 and y = bn
2
c−l. By considering odd/even n ≥ |L|+4 = 2l+4

separately, one can see that the obtained bound is strictly smaller than (2), a contradiction.

Similarly, we show that v1 ∈ Y is also impossible.

Finally, assume that every (2l + 1)-cycle is disjoint from X ∪ Y . Suppose first that v1 is

connected to, for example, X. The routine analysis shows that, in order to prevent a shorter

odd cycle or a C2l+1 intersecting X ∪ Y , there are no edges between the following pairs of

sets: (X, {v2, v4, v2l−1, v2l+1}), (Y, {v1, v3, v2l}) and (X ∪Y, {v5, . . . , v2l−2}). Moreover, the X-

neighborhoods of v1, v3, v2l are disjoint as well as the Y -neighborhoods of v2, v4, v2l−1, v2l+1.

We conclude that

2e(G) ≤ 2|X| · |Y | + |X| + |Y | + (2l + 1) × 2 + 2r|Y | (12)

= 2 |Y | (n − |Y | − 2l − 1
)

+ n − r + 2l + 1.

Optimizing, we take |Y | = bn−1
2
c − l and r = 0. One can see that the obtained bound is

strictly less than (2) for n ≥ |L| + 4 ≥ 2l + 5.



If there are no edges between C and X∪Y , then we get a strictly better bound than (12).

This finishes the proof of the theorem.
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